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Abstract

When attempting to avoid global warming, individuals often face a social dilemma in which, besides securing future benefits,
it is also necessary to reduce the chances of future losses. In this manuscript, we introduce a simple approach to address this type
of dilemmas, in which the risk of failure plays a central role in individual decisions. This model can be shown to capture some
of the essential features discovered in recent key experiments, while allowing one to extend in non-trivial ways the experimental
conditions to regions of more practical interest. Our results suggest that global coordination for a common good should be attempted
by segmenting tasks in many small to medium sized groups, in which perception of risk is high and uncertainty in collective
goals is minimized. Moreover, our results support the conclusion that sanctioning institutions may further enhance the chances of
coordinating to tame the planet’s climate, as long as they are implemented in a decentralized and polycentric manner.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The most recent report of the Intergovernmental Panel on Climate Change (IPCC) accumulates evidence that
Human activity is responsible for most of the Global Warming we have witnessed since the 50s. The recent World
Summits set up to work out a solution to Global Warming have added up to a (now) long list of unsuccessful attempts
to solve the Climate Change problem. Despite i) the actual risk of collective disaster, ii) the scientific consensus that
anthropogenic greenhouse gas (GHG) emissions perturb global climate patterns with negative consequences for many
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ecosystems [1–3] and iii) the predictions of early warning signals and severe climate change consequences that are
already in place, such as increased occurrence of heat waves and droughts [1], country leaders insist in discounting
[4] the severity of the problem, given the scientific uncertainty regarding the impacts of climate change [5–7].

Similar to other public goods dilemmas of collective action [8], any participant that curbs emissions pays a cost
while the benefits are shared between everyone. As a result, individuals, regions or nations often unilaterally opt to
be free riders, thus benefiting from the efforts of others, while making no effort themselves. Mechanisms that act to
promote and maintain cooperation based on joint decisions made by groups involving more than two individuals have
been thoroughly investigated [8–12], leading to the formulation of N -person Public Goods games (PGG), in which
collective action often depends on the coordination, into cooperation, of a threshold number of group members.

Given the inevitable uncertainties regarding the schedule and consequences of GHG-induced climate change,
collective action cannot be dissociated from the overall perception of risk that climate change imparts. This feature
was confirmed by actual experiments [13]. In addition, the global nature of the problem, combined with the increasing
levels of globalization, begs the question of who should participate in the summits, whether world citizens, cities [14],
regions or country leaders, and to which extent the chances of overall cooperation depend on it. Another problem
relates to the lack of sanctioning mechanisms to be imposed on those who do not contribute (or stop contributing) to
the welfare of the planet [15–18]. Naturally, agreeing on the way punishment should be implemented is also far from
reaching a consensus, given the difficulty in converging on the pros and cons of some procedures against others.

Each of the issues mentioned above may play a role of its own, as well as when combined with other issues, and
the study of these effects and their interactions poses severe constraints from an experimental standpoint, calling for a
theoretical framework in which such issues may be addressed in a unifying way. Here, we provide such a theoretical
framework, which can be shown to capture some of the essential features discovered in recent key experiments,
while allowing one to extend in non-trivial ways the experimental conditions to regions of more practical interest.
To this end, we model N -person group interactions as a threshold Public Goods Game (PGG) in the presence of
risk (introduced as an exogenous parameter), and allowing individual behaviors to change (evolve) in time [19,20],
taking into consideration decisions and achievements of others, which influence one’s own decisions [21–24]. This
dynamical process is conveniently described in the framework of Evolutionary Game Theory (EGT). Moreover, we
shall realistically consider the dynamics of finite (and small) populations, and allow for the fitness driven dynamics to
occur in the presence of errors [25] and spontaneous exploration of the possible strategies [26], adding to the overall
stochasticity of the dynamical process. Incidentally, this will also allow us to assess the validity of infinite population
approximations often used in the literature in related contexts.

In the following section we introduce what we haughtily designate as “the standard model of Climate Change”
we shall employ throughout this work. We investigate the effect of group size and risk perception on the chances of
coordinating to save the planet’s climate. We shall also investigate the role of sanctioning, when combined with risk,
addressing the important point of whether to set up local or global sanctioning institutions. In this already complex
scenario, we shall also study the effect of uncertainties regarding the targets required to reach collective cooperative
action. We conclude that overall risk perception constitutes the most important ingredient determining collective
cooperative action. In the presence of risk, sanctioning needs to be neither high nor does it require a global institution
to supervise abidance (or opposition) to the agreement. Instead, multiple local institutions [15,27] may provide a
solution to this “game that concerns all of us, and we cannot afford to lose” [28]. Threshold uncertainty, in turn, acts
to obliterate the coordination towards collective action. Depending on the overall conditions, the consequences can
vary from mild to disastrous. We close the text with conclusions and further discussion on future prospects.

2. Methods

The intricacies and variability of Human behavior are so complex that there is little hope that one is able to model
theoretically, in detail, every aspect of a human population of decision makers. This problem is well-known to Physi-
cists, where systems with too many degrees of freedom are more the rule rather than the exception. Hence, what at
first seems to be an apparent disadvantage, however, is amenable to constitute an advantage from a Physics point
of view. In fact, the interference of such a diverse plethora of complex behaviors may actually render the descrip-
tion of average salient properties and their evolution not only feasible but also they may turn out to be governed by
considerably simpler laws [29–32]. For this reason, we make use of a variety of concepts related to the statistical
mechanics of non-equilibrium stochastic processes. We start by describing how individuals interact in Section 2.1,
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whereas in Section 2.2. we describe the stochastic process which conveniently frames the strategy revision process in
finite populations of individuals.

2.1. The game we cannot afford to lose

Individuals of a population of size Z are organized into groups of size N . Each individual has an initial endowment
b (viewed as the asset value at stake) and individuals are classified according to their behavior regarding climate issues.
In the simplest scenario, they are either Cooperators (C), who contribute a fraction cb of their endowment, or Defectors
(D), who do not contribute anything. A successful agreement is reached if the overall number of contributions to the
public good in the group exceeds a certain threshold (npgcb). In that case, all participants will keep whatever they
have. Otherwise, if the goal is not met, with a probability r (the risk of collective disaster [13,33]) everyone in the
group will lose whatever she/he had. In other words, failure to reach a given minimum contribution may imply – also
depending on the risk (r) of disaster – that cooperators invest in vain and all endowments are lost. By imposing such
a coordination threshold into a N -person cooperation dilemma [11,12,33–36] we are mimicking situations common
to most of human public endeavors, including international environmental agreements [16,37–39], which demand a
minimum number of ratifications to come into practice [40,41].

Overall, the payoff of Ds and Cs in a group of size N with jC Cs and N − jC Ds can be summarized as

P D(jC) = bΘ(jC − npg) + (1 − r)b
(
1 − Θ(jC − npg)

)
P C(jC) = P D(jC) − cb (1)

where Θ(k) is the Heaviside function (that is, Θ(k) = 1 whenever k � 0, being zero otherwise).
The simplicity of this core model allows us to easily include additional strategies or more complex interactions.

Indeed, in Section 6 we extend this model to incorporate a new strategy in connection with the study of emergence
of sanctioning institutions, whereas in Section 7 npg is replaced by a probability distribution, allowing one to inves-
tigate the role played by (scientific, for instance) uncertainties in defining the coordination targets required to avoid a
collective disaster. All variations introduced on this standard model will be detailed in the appropriate section.

2.2. Strategy revision and population dynamics

Unlike common treatments based on economic theory [16,37], we shall not rely on individual or collective ratio-
nality. Instead, we adopt a dynamical approach, in which individuals revise their strategies through peer-influence,
copying others whenever these appear to be more successful. Such social learning (or evolutionary, in the sense of
cultural evolution) approach allows policies to change in time [19,20,42] as individuals are influenced by the behavior
(and achievements) of others, something one actually witnesses in the context of donations to public goods [21–23].
This also takes into account the fact that agreements may be vulnerable to renegotiation [16,37–39,43,44]. Moreover,
we also include what is known as random exploration of strategies, or strategy mutation, to take into account all those
additional circumstances that may lead individuals to change their behavior.

Formally, this setup can be conveniently implemented as a birth-death process with mutations [45], here combined
with the pairwise comparison rule [25], also known as the Fermi process (see below). In a nutshell, at each (discrete
and asynchronous) time-step, a random individual i will adopt the strategy of a randomly selected member of the
population k with a probability p, which increases with the fitness difference between the two (where we employ the
Fermi distribution function [25]).

In a stochastic mean field description, all those who behave as Cs will have the same fitness, the same happening to
all those behaving as Ds. In other words, groups of N individuals are assembled at random from a population of size
Z � N , such that each individual potentially interacts with any of the other Z −1 players. Thus, individual fitness will
be given by the average payoff resulting from all possible group interactions. Under such mean-field description, we
are able to characterize a given state of the population by determining the fraction of individuals who (for instance)
adopt a cooperative behavior at any time. In the following paragraphs we describe the details of the method, where we
write down the equations in a general framework which will prove adequate to deal with the generalizations introduced
in the following sections.

Let us consider a population of Z individuals, each of whom can be in one of s states, corresponding to different
strategies or behaviors: S1, . . . , Ss , and let us study the time evolution of this population. Let ik(t) be, at a given time t ,
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the number of individuals with strategy Sk , satisfying
∑s

k=1 ik(t) = Z. At the mean-field level of description, the set of
s integers will specify what we designate by a configuration of the population. Since individuals revise their strategy
solely based on theirs and others present fitness, the evolutionary dynamics of the population constitutes a Markov
process embedded in a phase space of dimension d = s − 1, where s is the number of strategies; transitions take place
between different configurations of the population characterized by the vector i(t) = {i1, . . . , id}. Consequently, the
Probability Density Function pi(t) (PDF) associated with the process i(t) obeys the discrete time Master-Equation,
Eq. (2), for some delta-shaped initial condition [46]. This allows one to compute pi(t) given the transition probability
from the configuration i to the configuration i′ = i + �, T �

i , in the time interval τ :

pi(t + τ) − pi(t) =
∑
�

(
T −�

i+�pi+�(t) − T �
i pi(t)

)
(2)

The stationary solution for pi is obtained by making the left side zero, in which case our problem reduces to an
eigenvector search problem [46]. Additionally, it is possible to expand the right hand side of Eq. (2) in powers of 1/Z

in order to obtain the Drift vector field, that is, the so-called gradient of selection [11], g, which provides information
on the most likely direction of change of the population configuration with time. As shown in Appendix A, this is
given by the difference between the probabilities of increasing and decreasing the number of individuals of a given
strategy:

gk(i) = T
Sk+

i − T
Sk−
i . (3)

The above transition probabilities depend on individual fitness, which defines how good a strategy is. At the mean-
field level, each individual potentially interacts with any of the other Z −1 players when assembling groups of size N .
In each group interaction, individuals acquire a game payoff, such that individual fitness will be given by the average
payoff resulting from all possible group compositions. This is readily computed employing hypergeometric sam-
pling without replacement [11,33,47,48]. Thus, we may associate with each strategy, Sk , and for each configuration
i, a well-defined fitness, f

Sk

i , which results from the interactions with the other players (with given strategies). Let
j = {j1, . . . , jd} be the configuration of all but one players in a group of size N (j is defined in the same way as i but
replacing Z by N − 1, i.e., the configuration of the group interacting with a given player). Then, f

Sk

i is given (for an
arbitrary number of strategies) by

f
Sk

i =
(

Z − 1

N − 1

)−1 ∑
j1+···+js�N−1

P
Sk

j

(
ik − 1

jk

) s∏
l �=k

(
il

jl

)
(4)

where P
Sk

j is the payoff of an individual with strategy Sk in an N -person game with configuration j, which must be
such that the group of N contains at least one individual (the focal individual) with strategy Sk [11,12,27,33,48,49].
As a result, we write up the transition probability that an individual with a given strategy, Sl , changes into another
specific strategy, Sk , TSl→Sk

≡ T
�={01,...,−1l ,...,+1k,...,0d }

i in the following way, making use of the Fermi update rule or
pairwise comparison rule [25,50] with mutation:

TSl→Sk
= il

Z

(
ik

Z − 1

1 − μ

1 + exp(β�SlSk
)

+ μ

d

)
(5)

where �SlSk
= f

Sl

i − f
Sk

i , μ stands for the mutation probability and β , the inverse of the temperature, translates into
noise associated with errors in the imitation process.

3. The effect of risk

We introduce the risk r as the probability of losing the benefit if the threshold is not met, inspired by the risk
implementation adopted in behavioral experiments between Cs and Ds [13] on the same issue. Thus, the present
model includes key factors present in any real setting, such as bounded rational individual behavior, peer-influence
and the importance of risk assessment in meeting the goals defined.

In the context of evolutionary game theory, the evolution in time of the fraction x of Cs (and 1 − x Ds) in infinite
populations can be conveniently described by means of a gradient of selection g(x) associated to the so-called repli-
cator equation g(x) ≡ ẋ = x(1 − x)(fC(x) − fD(x)), which characterizes the rate of change of Cs in the population.
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Fig. 1. Gradient of selection and prevalence of cooperation in finite populations. The right panel shows the stationary distribution corresponding
to the prevalence of each fraction of Cs that emerges from the discrete gradient of selection g(i) shown in the left panel. Each curve corresponds
to a different value of risk, as indicated. Whenever risk is high, stochastic effects turn collective cooperation into a pervasive behavior, rendering
cooperation viable and favoring the overcome of coordination barriers, irrespective of the initial configuration (Z = 50, N = 6, npg = 3, c = 0.1,
μ = 0.005, β = 5.0).

In this context and in the absence of risk (r = 0), it can be shown [33] that g(x) is always negative, leading the popu-
lation to full defection. Increasing risk, in turn, leads to the emergence of two mixed internal equilibria (xL and xR),
rendering cooperation viable: for finite risk r , both Cs (for (x < xL) and Ds (for (x > xR) become disadvantageous
when rare, turning co-existence between Cs and Ds stable at a fraction xR which increases with r . Collective coordi-
nation becomes easier to achieve under high-risk and, once the coordination barrier (xL) is overcome, high levels of
cooperation will be reached. For fixed (and low) c/r , increasing npg will maximize cooperation (increase of xR) at
the expense of making it more difficult to emerge (increase of xL) [33,47].

Without dismissing the usefulness of such analysis, real populations are finite and often rather small. This means
that one has to be careful before inferring the overall behavior based on results obtained using infinite population
approximations, which may be too simplistic [51]: Indeed, stochastic effects do play an important role, in particular,
for the case of the world summits where group and population sizes are comparable and of the order of the hundreds.
The finite population equivalent of the replicator equation corresponds to the discrete gradient of selection introduced
in Eq. (3) – g(i) = T +

i − T −
i , i.e., the difference between the probabilities to increase and decrease the number i of

Cs in the population by one. If we plot the gradient of selection of a finite population, g(i), shown in the left panel
of Fig. 1, we can describe the general behavior of the population in a manner which is qualitatively identical to that
obtained from g(x) in infinite populations [33,47] although only an analysis of the stationary distributions pi – which
provides information on the fraction of time the population spends in each possible configuration (specified by a given
number of Cs in the population) – allows us to assess the importance of the roots and magnitude of g(i).

In the right panel of Fig. 1 we show the stationary distributions for different values of risk. They show that the
population spends most of the time in configurations where Cs prevail, irrespectively of the initial condition. This is
a direct manifestation of the role of stochastic effects, which allow the “tunneling” through the coordination barrier
associated with xL, rendering such coordination barrier (xL) irrelevant when extant and turning cooperation into the
prevalent strategy. On the other hand, the existence of a stable root of g(i) (probability attractor) leads to a maximum
of pi at this position.

4. Scale of agreements

Not only the total number of individuals taking part in the decision making process (Z), but also the group size
(N ) in which decisions are made can influence the dynamics. Both of these give us a notion of the scale at which
the agreements should be attempted. Indeed, when one thinks on current attempts to achieve global agreements,
we are lead to a portrait of a single global group of players, of the same size of the population Z. Sadly, when
one increases the group size N , maintaining constant the population size Z, one observes a sharp reduction of the
interval of cost-to-risk ratios in which a defection dominance dilemma is replaced by a combination of coordination
and co-existence dilemmas; this implies a reduction of the overall levels of cooperation. In other words, the higher the
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Fig. 2. Group size dependence for npg = N/2. Cooperation will be maximized in small groups, where the risk is high and goal achievement
involves stringent requirements. Other parameters: Z = 100, μ = 1/Z, c = 0.1, b = 1, β = 1.0.

Fig. 3. a) Given an interaction network of size Z and average degree 〈k〉, where nodes represent individuals, and links exchanges or shared goals,
N -person collective dilemmas may be setup in groups, each associated with a neighborhood in this network. As an example, the central individual
participates in 6 groups, such that the individual fitness derives from the payoff accumulated from all games she/he participates. b) Gradients of
selection g(i) obtained analytically for homogeneous (well-mixed) setting and numerically for heterogeneous (scale-free) networks, for different
values of risk (npg = 3, Z = 500, 〈N〉 = 7, β = 5.0). In the heterogeneous case, we compute numerically the average probability that each C(D)

imitates a D(C) randomly chosen from the population. g(i) = T +(i) − T −(i) results from an average over 2 × 104 different distributions and 10
different scale-free interaction structures.

ratio N/Z the higher the perception of risk needed to achieve cooperation. In order to show such a striking dependence
of cooperation on the scale at which agreements are tried, in Fig. 2 we resort to a useful quantity which can be used to
compare our results directly with experimental observation, and that we can easily compute. To this end we start by
computing the fraction of groups that succeed in overcoming the collective coordination problem for each behavioral
configuration i, which we denote by aG(i). Since the stationary distribution p̄i gives the pervasiveness in time of each
possible behavioral composition of the population, the computation of the average fraction of groups that successfully
produce (or maintain) the public good – a quantity we designate as “group achievement”, ηG – can now be trivially
determined from these two quantities:

ηG =
∑

i

p̄iaG(i). (6)

The results shown in Fig. 2 indicate that Cooperation is better dealt with within small groups, contrary to world’s
most common attempts to solve the climate change problem. This trend remains valid both when the coordination
threshold npg is constant and when it increases linearly with the group size [33].

5. Networks of overlapping agreements

In the previous section, we highlighted the importance of self-organized cooperation among multiple groups instead
of aiming at a single successful agreement including the entire population. Yet, this result begs the question of how in
fact these groups should be organized. One may easily anticipate that a few collective endeavors will involve a large
number of participants, while many will involve just a few. Similarly, diversity in geographical positions, together
with the complexity of political configurations, means that some players may face a larger number of collective
action challenges than others. The overall number and size of the dilemmas faced by each player may be seen as a
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result of a complex interaction network, where nodes represent individuals, and links represent exchanges, collective
investments or shared interests [52]. This idea is sketched in Fig. 3a, where each neighborhood of such a structure
may represent a group of a size given by the connectivity of the focal individual (plus the focal individual). Given that,
in reality, interaction structures are mostly heterogeneous, here we investigate the effect of such heterogeneity [52] in
the problem at stake, using as a base reference the evolutionary dynamics in a homogeneous, well-mixed (WM) finite
population, and the respective gradient of selection shown in the left panel of Fig. 1. For the heterogeneous case, we
adopt the ubiquitous power law distribution of group sizes, resulting from a scale-free interaction network of contacts,
assembled via growth and preferential attachment [53].

In Fig. 3b, we show the result of the gradient of selection g(i) for both homogeneous and heterogeneous structures,
showing that the existence of a heterogeneous distribution of group sizes further increases the chances of success
in coordinating towards a collective good [33], by significantly raising (at high risk) the fraction of Cs at which
co-existence occurs. This favorable effect of diversity is widespread, extending to other cooperation dilemmas [52,
54]. In this case, the benefit results from the different nature of the games played in different sites. Because for fixed
npg coordination is better achieved in large groups, highly connected players (hubs) at the group centers will acquire
a larger fitness. Whenever hubs happen to be occupied by Cs [52], they will influence the participants of small groups
(the majority) to cooperate, hence enabling small groups to overcome their more stringent coordination requirements.
This positive feedback vanishes, however, for lower levels of collective risk, indicating once again how the risk of
collective failure constitutes one of most important variables whenever the emergence of cooperation is at stake in
public goods games.

6. The role and scale of sanctioning institutions

Another issue often associated with the limited success of existing attempts to reach global cooperation is the lack
of sanctioning institutions and mechanisms to deal with those who do not contribute to the welfare of the planet. In
this section, we investigate the impact of two distinct types of institutions in deterring non-cooperative behaviors, in
particular when those institutions may be most needed, i.e., when the overall perception of risk is low.

As shown in the previous section, to let the entire population form a single group engaging in the threshold PGG
is detrimental to cooperation [33] and, hence, it is much better to establish smaller groups. Thus, it is in a scenario of
variable (and preferentially small) group size that one should assess the role of sanctioning institutions in the presence
of risk [27]. Individual decisions, which evolve in time according to the standard model, should also evolve regarding
the behavior towards the existence and maintenance of sanctioning institution(s).

To this end, we introduce a new behavioral strategy – the Punishers (P). Like Cs, Ps contribute to the public good;
unlike Cs, Ps also contribute with a punishment tax (πtax) to an institution which, whenever endowed with enough
funding (npπtax) will effectively punish Ds by fining them by an amount πfine. Hence, establishing a sanctioning
institution stands as a new, “second-order” public good [19,55], which is only achieved when a certain threshold
number of contributors np [11] is reached. The payoff of Ps and the modified Payoffs of Cs and Ds are now given by

P C(jC, jP ) = −cb + bΘ(jC + jP − npg) + (1 − r)b
(
1 − Θ(jC + jP − npg)

)
,

P P (jC, jP ) = P C(jC, jP ) − πt ,

P D(jC, jP ) = P C(jC, jP ) + cb − �scale, (7)

where �scale is given by �local
scale = πfineΘ(jP − np) whenever local institutions are being considered, and by �

global
scale =

πfineΘ(iP − np) whenever global institutions are at stake.
The fact that both public goods dilemmas contain thresholds implies that contributors may pay a cost in vain,

thus increasing the realism (and the inherent complexity) of the decision process modeled here. Also, the institution
need not be global (such as the United Nations) – supported by all Ps – that overviews all group-interactions in the
population. Institutions may also be local – created by Ps within each group – to enforce cooperation in that group. In
what follows we shall consider both cases computing, in all of them, the “group achievement”, ηG (see Eq. (6)).

Empirical results (in the absence of any sanctioning) show that group achievement increases with the value of
risk [13], correlating nicely with the dependence shown in Fig. 4 with a black dotted line. Indeed, Fig. 4 shows the
behavior of ηG as a function of risk in the absence of any institutions (black dotted line), under one global institution
(red dashed line) and under local institutions (blue solid line). Comparison between the three curves shows that global
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Fig. 4. Group achievement. Group achievement −ηG (average fraction of groups that are able to attain the public good) is shown as a function of
risk (r). The red dashed line corresponds to sanctions that are enacted by a global, population-wide institution, responsible for fining all those who
do not contribute to the pubic goods game. The blue line shows results obtained from local institutions, responsible for fining those (in the group)
who do not contribute. The black dotted line can be used as reference, corresponding to the results obtained in absence of any kind of institution.
Global institutions provide at best marginal improvements of overall cooperation. The coordination threshold (npg ) is set to 75% of the group size,
whereas local (global) institutions are created whenever 25% of the group (population) contributes to its establishment (np ). Punishment tax is
πtax = 0.03, whereas the punishment fine for defecting is πfine = 0.3. Other parameters: Z = 100, N = 4, c/b = 0.1, μ = 1/Z = 0.01 in (a) and
(c), and r = 0.3 in (b) and (d). See detailed definitions in main text. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

institutions may provide a marginal improvement compared to no institutions at all, a scenario akin to most climate
agreements attempts [16,37,47]. On the contrary, under local, group-wide, sanctioning institutions, group achievement
is substantially enhanced, in particular for low values of the perception of risk and whenever individuals face stringent
requirements (high npg) to avoid a collective disaster [27], a feature that we predict will remain valid for all values of
risk and group sizes.

The success of local institutions is closely connected with their resilience. Local institutions prevail for longer
periods than a (single) global one, promoting systematically more widespread cooperation than global ones. The
efficiency of both kinds of institutions is also enhanced in those situations in which participants change their decisions
more frequently [27]. This scenario may be relevant, given the multitude of (often conflicting) factors that contribute to
the process of decision-making [17,23,27]. Nonetheless, we find that neither local nor global institutions are robust to
free riding, a result which has been recently confirmed experimentally [56]. Finally, behavioral mutations enhance the
incidence of population configurations in which a diversity of strategies coexist, which in turn increases the chances
of having enough Ps to establish institutions and cooperation. Thus, whenever perception of risk of collective disaster,
alone, is not enough to ensure global cooperation, better conditions both for cooperation to thrive and for ensuring the
maintenance of such institutions can be achieved by a decentralized, polycentric, bottom-up approach [15], involving
multiple institutions instead of a single global one.

7. Collective action under threshold uncertainty

A potentially unavoidable issue in climate negotiations is the role played by uncertainties associated with incom-
plete information regarding what targets must be met to tame the planet’s climate [7,57]. Such threshold uncertainties,
which are not directly related to the overall risk perception dealt with already, have been shown in recent experiments
to play a very important role [7]. Indeed, for big enough uncertainties, and in the language of the standard model
introduced here, the game can change from a N -person coordination game into a N -person Prisoner’s Dilemma.

In what follows, we introduce threshold uncertainty by replacing the sharp threshold npg defined previously by a
“fuzzy” threshold which, at any time, is drawn from a uniform probability distribution over [npg − δ,npg + δ]. This
is the simplest possible assumption, although the results for other possible profiles of the probability distribution will
not change the qualitative nature of the conclusions that will be drawn here. The larger is δ, the larger the uncertainty
associated with the threshold. Fig. 5a shows how this uncertainty induces the regime shift described above. This shift
leads, in turn, to a radical change in the profile of the stationary distribution, shown in Fig. 5b, with corresponding
impact in the likelihood of group achievement ηG(r), shown in Fig. 5c. As stated above, the precise shape of the
threshold uncertainty profile is of little importance in what concerns the main message stemming from its effect:
Threshold uncertainty may lead to a sudden regime shift, as observed experimentally [7].
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Fig. 5. Threshold uncertainty effect. Panel (a) shows the gradient of selection, while (b) shows the stationary distribution, that is, the fraction of
time the population spends in each population composition specified by the fraction of cooperators. Panel (c) shows the fraction of groups that are
successful in overcoming the threshold as a function of the risk r . The black lines provide results for no threshold uncertainty (δ = 0) whereas the
red dashed lines show results for δ = 2.75. Other parameters are: Z = 200, N = 8, M = 4, c = 0.1, b = 1.0, β = 6.0, μ = 1/Z and r = 0.6. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

8. Conclusions

When modeling decision-making processes associated with environmental sustainability one cannot overlook the
uncertainty associated with the process of attempted collective action. This uncertainty can be understood both in
terms of the risk of failure to comply with the challenge at stake, or in terms of the uncertainty associated with
incomplete information on what targets must be met to tame the Planet’s Climate. Here we propose a simple way of
modeling these two types of uncertainty, which not only agrees with the limited data compiled in recent experiments
[13,33], but also largely extends the range of conditions in which to search for solutions to the problem, allowing us
to make several concrete predictions. We do so in the framework of N -person evolutionary game theory, a dynamical
systems framework of modeling (e.g., political) decision-making, combined with tools from many body stochastic
processes of non-equilibrium statistical mechanics. We use a N -person game where the risk of collective failure is
explicitly introduced on top of a “simple” collective coordination dilemma. Moreover, instead of resorting to complex
and rational planning or rules, combined with inductive reasoning, individuals revise their behavior by peer-influence,
creating a complex dynamics akin to many evolutionary and ecological systems. This framework allowed us to address
the impact of risk and different types of sanctioning in several configurations, from large to small groups, from
deterministic to stochastic behavioral dynamics and from well-mixed to networked populations. The same framework
was further extended to investigate the role of threshold uncertainty in risky public goods games.

Overall, we have shown how the emerging dynamics depends on the perception of risk. The larger the overall
perception of risk, the easier it is to successfully coordinate for the global good. Large threshold uncertainties, in
turn, can overshadow the somewhat bright message stemming from a pure risky world without them. Clearly, in the
framework adopted here, agreements to be sought are necessarily short-term, giving individuals the opportunity to
revise their strategy frequently. This, is turn, may contribute to minimize threshold uncertainty, since short-term goals
are easier to define than long-term ones.

Our model clearly predicts that a decentralized, polycentric, bottom-up approach [15], involving multiple institu-
tions instead of a single, global one, provides better conditions both for cooperation to thrive and for ensuring the
maintenance of such supervising institutions.

Altogether, these results call for a reassessment of policies towards the promotion of public endeavors. Global
institutions, such as the UN, do not increase the odds of overcoming the climate change problem. On the other hand,
decentralized agreements between smaller groups (small N ), possibly focused on region-specific issues, where risk
is high and goal achievement involves tough requirements (large relative npg), are prone to significantly raise the
probability of success in coordinating to tame the planet’s climate. Thus, collective cooperation is easier to achieve
in a distributed way, eventually involving regions, cities [58], NGOs and, ultimately, all groups of citizens. Moreover,
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by promoting regional or sectorial agreements, we are opening the door to the diversity of economic and political
structure of all parties, which, as shown, can be beneficial to cooperation.

Present day local initiatives, such as the WCI (Western Climate Initiative [7]), have started with a small group of
US-states. With time, the WCI group-size has grown to include additional Canadian and Mexican provinces. Recently,
the emergence of similar initiatives involving Central and East-Coast US-states (and, again, Canadian provinces) has
fostered the appearance of the America 2050 initiative, providing an example of a hierarchical bottom-up approach
in dealing with Climate Change issues. Such a hierarchical aggregation, already envisioned theoretically [15] may
be able to overcome the fact that larger groups are clearly more difficult to coordinate (at once) into widespread
cooperation (see Sections 4 and 6).

We believe that the insights provided by our standard model of climate change provide important clues, whose
causes are easy to trace, in what regards devising agreements towards a sustainable planet. We believe that the motto
“think globally, act locally” nicely encapsulates the conclusions in this work.

Naturally, we are aware of the many limitations of a bare model such as ours, in which the complexity of Human
interactions has been overlooked. From higher levels of information [59] and reactive behaviors [60], to non-binary
investments, additional layers of realism can be added to our model. We believe the introduction of wealth inequality
[59,61] is an important ingredient that is not included in this work (see also Ref. [62]). These add-ons, in turn, may
render analytical treatments such as those employed here, impossible, leading one to resort to agent-based computa-
tional models [63–65]. The present results, however, settle the conditions under which successful negotiations may
arise in the absence of all these refinements. Clearly, the simplicity of the dilemma introduced here constitutes both
the strength and the weakness of the present model. For instance, Humans have devised ingenious ways of cooperat-
ing and defecting which extend beyond the unconditional strategies modeled here [55]. We believe that the solution
of the threshold uncertainty problem (circumventing also the difficulties that humans generally face, at present, to
deal with uncertainty) may precisely lie in the possibility of employing more complex strategies, such as conditional
cooperation [60]. Work along these lines is in progress. Notwithstanding, and when combined with the existing ar-
senal of tools that Humans have successfully developed throughout their history to coordinate into cooperation, our
decentralized, bottom-up approach, provides reasons of hope to win the “game that concerns all of us, and we cannot
afford to lose” [28]. Last but not least, similar dynamical situations, in which cooperation nucleating in a small group
expands into a larger and larger group, provide a plethora of problems to which tools such as those here unfolded may
apply. In this sense, the impact of these results may go well beyond decision-making towards global warming.
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Appendix A. KM coefficients and gradient of selection

A stochastic, Markov, birth-death process i(t) follows the Master-Equation, Eq. (2). Here we show how to obtain
the gradient of selection, g (Drift vector field), by performing a Kramers–Moyal (KM) expansion of the right side of
Eq. (2) in powers of 1/Z (we shall make use of definitions introduced in Section 2.2).

We start by rewriting in terms of the fraction of individuals in the population, x = i/Z, all transition probabilities
and statistical properties defined in the main text as functions of the number of individuals using different strategies, i.
Thus, the discrete stochastic process x will become a continuous process as Z → +∞:

xk ≡ ik/Z, δ ≡ �/Z,

pi(t) → p(x, t)

T �
i → T δ(x)

ρ(x, t) ≡ Zdp(x, t). (i)
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T δ(x) now represents a transition from configuration x to configuration x′ = x + δ, in the direction δ. Rewriting the
Master-Equation we get

ρ(x, t + τ) − ρ(x, t) =
∑
δ �=0

(
T −δ(x + δ)ρ(x + δ, t) − T δ(x)ρ(x, t)

)
. (ii)

We expand the terms T −δ(x + δ)ρ(x + δ, t) on right hand side in powers of δ (which scales with 1/Z, see Eq. (i)).
We obtain:

T −δ(x + δ)ρ(x + δ, t) = T −δ(x)ρ(x, t) +
+∞∑
n=1

1

n!
d∑

k1,...,kn

[
n∏

m=1

δkm

∂

∂xkm

]
T −δ(x)ρ(x, t). (iii)

Summing all terms without derivatives leads to∑
δ �=0

(
T −δ(x)ρ(x, t) − T δ(x)ρ(x, t)

) =
∑
δ �=0

(
T δ(x) − T δ(x)

)
ρ(x, t) = 0. (iv)

The KM coefficients can be obtained by reorganizing the remaining terms:

∑
δ �=0

+∞∑
n=1

1

n!
d∑

k1,...,kn

[
n∏

m=1

δkm

∂

∂xkm

]
T −δ(x)ρ(x, t)

=
+∞∑
n=1

(−1)n
d∑

k1,...,kn

∑
δ �=0

[
n∏

m=1

δkm

n∏
l=1

∂

∂xkl

]
(−1)n

n! T −δ(x)ρ(x, t)

= 1

Z

+∞∑
n=1

(−1)n
d∑

k1,...,kn

n∏
l=1

∂

∂xkl

(
Z

(−1)n

n!
∑
δ �=0

[
n∏

m=1

δkm

]
T −δ(x)

)
ρ(x, t). (v)

Formally, they can be written

D
(n)
k1,...,kn

= Z
(−1)n

n!
∑
δ �=0

[
n∏

m=1

δkm

]
T −δ(x). (vi)

The gradient of selection is simply gk(x) = D
(1)
k (x), whereas the diffusion term is given by D

(2)
kl (x). Notice that the

n-th KM coefficient contains a factor which scales roughly as Z|δ|n, which shows that higher order terms in this KM
expansion are increasingly small. Moreover, it shows that the dynamics of infinite populations becomes deterministic,
since all coefficients but the first tend to zero and, therefore, its Langevin equation is no longer a stochastic differential
equation (see Eq. (x) and Eq. (xi)).

For the birth-death process with Fermi update we consider in the main text, we obtain for the gradient of selection:

gk = D
(1)
k = −Z

∑
δ �=0

δkT
−δ(x) = −Z

∑
δ: δk �=0

δkT
−δ(x)

= −Z

Z

( ∑
δ: δk �=1/Z

T −δ(x) −
∑

δ: δk �=−1/Z

T −δ(x)

)

= −
( ∑

δ: δk �=1/Z

T −δ(x) −
∑

δ: δk �=1/Z

T δ(x)

)

= T Sk+ − T Sk− (vii)

with

T Sk± =
∑

δ: δk �=1/Z

T ±δ(x). (viii)

Using the symmetry �SlSk
= −�SkSl

and the identity
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(
1 + exp(x)

)−1 − (
1 + exp(−x)

)−1 = tanh(−x/2)

we can write

T Sk+ − T Sk− =
s∑

l �=k

[
il

Z

(
ik

Z − 1

1 − μ

1 + exp(β�SlSk
)

+ μ

d

)
− ik

Z

(
il

Z − 1

1 − μ

1 + exp(β�SkSl
)

+ μ

d

)]

= 1 − μ

Z(Z − 1)
ik

s∑
l �=k

[
il tanh(β�SkSl

/2)
] + μ

dZ
(N − sik). (ix)

Taking into account the first two terms in this expansion, one is led to a Fokker–Planck equation which can be
transformed into the Langevin equation below

d(i/Z)

dt
= g(i) +

√
D(2)(i)Γ (t) (x)

where, in the Itô–Langevin interpretation, g(i) = D(1)(i), with
√

D(2)(i) a symbolic notation for a matrix that sat-

isfies
√

D(2)
√

D(2)
T = D(2). Γ (t), in turn, is a delta-correlated random variable with zero mean [46,66,67]. In one

dimension, i.e., considering only two strategies (d = s − 1 = 1), this equation reduces to

d(i/Z)

dt
= T +

i − T −
i + 1√

Z

√
T +

i + T −
i

2
Γ (t). (xi)

For large populations, the fluctuations in the fraction of individuals of a given strategy become increasingly small
compared to their actual value. Therefore, neglecting the stochastic term in Eq. (x), one finds a system of ordinary
differential equations, closely related to the famous replicator equation [68] of population dynamics – in fact, Eq. (xi)
leads to the replicator equation whenever an expansion to first order in β is carried out, which corresponds to the
weak-selection approximation, often combined with the infinite population approximation in many theoretical studies
of population dynamics.
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