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Abstract 

This article introduces a new methodology to estimate climate exposure at the 

household's level with the standardized precipitation evapotranspiration index (SPEI) 

as its building block. As the probability distribution of the SPEI is known, one can 

easily recover the marginal probability distribution of expected consumption. 

Furthermore, the approach is simple enough to accommodate quantile regressions and 

hence offer the opportunity to broaden the scope of the analysis to different categories 

of the population. I illustrate the methodology with a case study on Ethiopia. I find 

notably that while poor households in the most remote villages are almost as resilient 

to a 10-year return period drought as poor households living in the vicinity of a town 

(up to 20 km), the contrary is true for richer households: the ones living in remote 

parts of Ethiopia are much more at risk than their suburban counterparts. 
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I. Introduction 

The seminal paper of Sandmo (1971) showing that risk leads to underinvestment and 

underproduction contributed to establishing the economics of production under 

uncertainty, with agriculture as one of its favourite case studies, as an important 

research stream in economics. If production risk is a major topic in the agricultural 

economics literature, it is probably because “the most singular aspect of agricultural 

production is its randomness”(Chambers and Quiggin 1998). The main framework for 

production risk estimation is based on the stochastic production analysis of Just and 

Pope (1978) and Antle (1983). These models, and their later extensions to skewness 

and efficiency analysis (Di Falco and Chavas 2006; Kumbhakar and Tveterås 2003), 

have been the backbone of hundreds of studies. They have been applied to the 

estimation of risk preferences, and efficiency (e.g. Antle 1987; Koundouri et al. 2009; 

Love and Buccola 1991), to estimate the role of biodiversity as a risk mitigating 

option (e.g. Di Falco and Chavas 2006; Di Falco and Chavas 2009; Smale et al. 1998) 

and to water resource management(e.g. Groom et al. 2008). See Antti Saastamoinen 

(2013) for an recent and synthetic literature review. 

Although the existing estimation framework is appropriate for estimating short-term 

production risk, the estimation of climate exposure is more elusive: climate risk in the 

classical framework is lumped into the larger category of production risk; a catch-all 

term covering plant and animal diseases, pests, mushrooms, damages caused by 

animals as well as droughts and floods. Two main reasons can explain this gap in the 

literature. First, when the foundations of the stochastic production analysis 

framework were laid, i.e. the beginning of the 1980s, climate change was not yet on 

the political agenda. Second, weather data were not widely available in the 1980s 

and geographical information system (GIS) software was still the realm of a few 

specialists. 

The emergence of climate change and climate adaptation as a main national and 

international policy challenge following the Rio Declaration on Environment and 

Development (1992) has made the estimation of household climate exposure more 

necessary. Furthermore, anyone can nowadays access daily satellite and weather 

station precipitation and temperature data over several decades and link them easily 



with microeconomic data thanks to GIS software (e.g. Quantum GIS
2
, R

3
). Hence, a 

new methodology utilizing this climate data bonanza and answering policy needs is 

required.  

So far, the focus has been on estimating the production risk of the average 

household. Indeed, the main tool to investigate changes in other part of a population 

distribution, i.e. quantile regression analysis (Koenker and Bassett 1978), was still a 

novelty at the time of the pioneering work of Just and Pope (1978). It is, however, of 

interest to know how climate exposure varies between poor and rich households or 

if a particular development policy is effective at decreasing climate exposure among 

poorer parts of a population. Standard quantile regressions’ routines are now widely 

available on common statistical software (e.g. STATA) and their extensions to panel 

data, still an active field of research, are readily available via the R CRAN project, for 

instance. The new methodology should hence be simple enough to accommodate 

quantile regressions in order to distinguish climate exposure in different categories 

of the population. 

The methodology proposed in the present article is built on the use of standardized 

measures of weather. The standardized precipitation index (SPI), first introduced by 

McKee et al.(McKee et al. 1993, 1995), is a locally and frequency based 

characterization of precipitation levels. Guttman (Guttman 1998, 1999) widely 

contributed to its popularisation by showing some of its key advantages over the 

Palmer Drought Severity Index (Palmer, 1965), the index of choice at the time4. The 

SPI allows the comparison of hydrological conditions across space and time(Hayes et 

al. 1999), is flexible enough to consider different kind of droughts (e.g. hydrological 

conditions at months’ scale affecting agriculture or at years’ scale affecting large-
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scale water management), simple and tractable, and parsimonious in terms of data 

requirement.  

Note that climate change affects both changes in precipitation and temperature. 

Vincente-Serrano et al. (2010) have proposed the standardized precipitation 

evapotranspiration index (SPEI) in order to take into account the influence of 

temperature on hydrological conditions. Its statistical concept and properties are 

essentially the same as the SPI, although here it is the difference between precipitation 

and potential evapotranspiration, i.e. the net balance of water, which is standardized.  

As both temperature and precipitation have an impact on agricultural production and 

the livelihood of rural populations and as the SPEI is more sensible in the context of 

Climate change, we settle for the SPEI index as our standardized measure of weather. 

The use of the SPEI offers the opportunity to easily characterize average production 

or consumption under locally and frequency-defined weather scenarios. As the 

framework is very simple, it can easily be extended to quantile regressions in order 

to broaden the scope of analysis to households at different quantiles of the 

population distribution. In order to control for unobserved heterogeneity, we rely on 

penalized quantile fixed effects quantile regressions proposed by Koenker (2004). 

Once the climate risk exposure has been estimated, a vulnerability index is needed 

to summarize the information. We rely on three indices: (1) poverty risk, (2) 

expected shortfall and (3) relative risk premium. We apply the proposed 

methodology to the consumption level of rural households in Ethiopia with data 

from the Ethiopian rural household survey
5
, a panel dataset with seven rounds 

conducted between 1989 and 2009, including more than 1,200 households. The 

climate data come from the African Rainfall Climatology Version 2 dataset and the 

Climate Prediction Center Global Land Surface Air Temperature Analysis 
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(GHCN+CAMS) dataset. All datasets used in the present study are freely available 

online. In Section 2.3, we introduce methodology after a brief discussion of the 

classical estimation framework; in Section 2.3, the data is presented; in Section 2.4, 

the results are set out and we conclude in Section 2.5. 

 

II. Estimation framework 

The classical risk estimation methodology was developed when climate and weather 

data were not widely available. The emphasis was hence on production risk, a catch 

term for drought, flood, pest and animal diseases. In other words, it was viewed as all 

factors affecting production which are not under the farmer’s control, oscillating 

randomly from year to year and not related to market risk (e.g. inputs and outputs 

price volatility); resources risk (e.g. fertilizers, seeds and labour supply shocks), 

institutional risk (e.g. changes in policy), financial risk (e.g. changes in the interest 

rates charged on the debt of the farm), personal risk (e.g. health issues, accidents), and 

asset risks (thefts or fire damages to buildings, machinery and livestock)(Hardaker et 

al. 2004; Hazell 1992). Note that financial risk, personal risk, and asset risk are rarely 

controlled for in applied studies and hence are lumped into production risk.  

Furthermore, the framework was designed to disentangle the impact of different 

inputs on production risk exposure. The impact of weather risk on the production 

process was hence not the main concern. Most studies in the literature on poverty trap 

have addressed the question of weather’s shocks and weather risk impact on 

consumption either by including a dummy variable equal to one if the household was 

exposed to extreme events or used another weather risk index. In the latter case, the 

most popular weather risk measure has been rainfall variability, captured by the 

variance or the intra-year coefficient of variation. However, such measures are likely 

to introduce unobserved heterogeneity bias if the sample overlaps different weather 

regimes. For instance, a great level of intra-year variation might be a characteristic of 

a particular weather regime and hence should not count as risk, while in another 

weather regime such variation would indeed imply erratic rainfalls. Dercon and 

Christansen (2011) use lower quantiles of the sample’s rain distribution to 

characterize weather shocks. This approach is the closest to the one introduced in the 



present paper. Its limitation is that it considers the entire sample’s rainfall distribution 

when computing the quantile instead of focusing on localized weather conditions. 

The goal of risk estimation has been to estimate the different central moments of the 

probability distribution of production. The first central moment is the mean, i.e. the 

expected output or yield. The second moment, i.e. the variance, is a measure of the 

dispersion of the possible production levels. For instance, a farmer expecting a yield 

between 200 kg/ha and 4,000 kg/ha would have a higher variance than a farmer 

expecting a yield between 1,800 kg/ha and 2,200 kg/ha. Variance has hence been one 

of the first measures of risk. The third moment, summarized by the skewness, is a 

measure of the asymmetry of possible yields. Negative skewness implies that 

expected yield is lower than the most likely one and that if bad and good harvests with 

the same probability are compared, the bad harvest will cost more than the bumpy one 

could have yield. It is hence often interpreted as a measure of downside risk. The 

fourth moment, summarized by the kurtosis, is a measure of the peakedness of the 

distribution. For a mono-modal distribution, a high kurtosis implies that most yield 

levels away from the mode are almost equally likely. This indecision between 

probabilities is close to the original definition of Knightian uncertainties: a situation in 

which the agent cannot assign probabilities to the set of possible events.  

The key insight of Just and Pope (1978) was to split the production function into a 

deterministic part and a stochastic part, allowing inputs to be risk-increasing, risk-

neutral or risk-decreasing. The production, , is specified as follows: 

 
(1)  

where  is the deterministic production function,  is a set of inputs,  a set of 

parameters to be estimated,  is the risk function, with parameters  to be 

estimated, and  is a random noise identically and independently distributed (iid) 

according to a standard normal distribution. Given the latter property, the mean of the 

distribution is: 

 

 

(2) 

Therefore,  is the mean production function, introduced above as the 

deterministic part of production. As the error term, , is iid, the variance of the 

production function can be calculated as:  



 

 

 

 

(3)  

and the marginal impact of a given input x on variance is: 

 

(4)  

Input x can be risk-increasing ( ), risk-decreasing ( ) or risk-neutral 

( ). Chavas and Di Falco (2006)extended the model to the third moment, 

allowing the computation of the marginal effects of inputs on skewness, i.e. on 

downside risk. Production might hence not only exhibit conditional 

heteroskedasticity, but also conditional heteroskewness and, more generally, all 

moments can be function of the inputs. 

Antle (1983) showed that although input effects on variance are not determined by 

their effects on the mean, the Just and Pope approach restricts the effect of inputs 

across variance and higher moments. He proposed the so-called ‘moments based 

approach’ where the central probability moments (i.e. mean, variance etc.) are directly 

specified: 

 (5)  

 

(6)  

where  relates the input  to the moment . This approach relaxes any cross-

moments restrictions: the inputs’ elasticity with respect to variance does not restrict 

their elasticity with respect to higher moments. The different moments can be 

estimated using a feasible generalized least square estimator (FGLS). The first step is 

hence to estimate a classical production function with FGLS, the residuals of which 

are then put to the square and to the cube to estimate the variance and skewness 

function. The predicted values of this set of three regressions are respectively the 



mean, variance and skewness of the conditional distribution of each farmer’s 

production.  

A limitation of these approaches is that they are highly parametric. Indeed, 

specification errors in the first moment, respectively Equations (1) and (5), cascade 

across the whole model, directly affecting the estimation of the higher moments. A 

popular solution is to choose a flexible functional form such as the translog function, 

which corresponds to a second order Taylor approximation around the mean of the 

true production function (e.g. Greene 2003). Although mathematically appealing, the 

translog functions are notoriously hard to estimate with a sample of a few hundred 

observations (the usual sample size of rural household surveys): the set of covariates 

enters the function multiple times - in level, square and through the series of 

interaction terms - giving rise to important multicollinearity issues6. It is hence 

difficult to obtain statistically significant estimates and no test provides an objective 

criterion to select which covariates to retain. Full information maximum likelihood 

estimation and general method of moments provide more efficient results, although 

issues persist. As Kumbhakar and Tveteras (2003) note: “[t]he idea of dropping 

insignificant variables is not pursued […] due to several problems. First, it destroys 

the flexibility of the mean output function. Second, dropping one insignificant 

variable caused other insignificant (significant) variables to be significant 

(insignificant) due to high multicollinearity (which is always present in flexible 

functions) and the use of a system approach. Furthermore, we found no natural order 

to select variables for exclusion in the present model”. Therefore, although the 

conditional expectation might fit well on average, marginal effects are difficult to 

ascertain. 

Recently, quantile regressions started to attract interest in the microeconomics of risk 

literature (as across most applied statistical disciplines). The first author to mention the 

possible application of quantile regressions to production risk analysis is probably Charles B. 

Moss (2010), and the first to propose an estimation framework of production risk based on 

quantile regressions were Chavas et al. (forthcoming).  

Climate exposure as the marginal distribution of consumption on SPEI 
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capital, implies fourteen parameters to estimate. 



Meteorologists have struggled to give a definition of drought general enough to be 

comparable across areas and time: light rains in the middle of the rainy season might be the 

first sign of an incoming drought in a given area, while the same level of precipitation can be 

considered as totally normal at other times of the year or in another area. The standardized 

precipitation index (SPI) addresses precisely these kind of issues. The SPI is a localized and 

statistical measure of precipitation. It offers a comparable index across times and regions. 

Indeed, it is based indeed on local frequency: given a series of cumulative local monthly 

precipitation over an extended period (30 years is deemed acceptable), probability functions 

are fitted on each monthly distribution and then standardized. Most commonly, a gamma 

distribution is fitted with a maximum likelihood estimator.  

The SPI is symmetrically distributed around zero, a value of zero representing normal 

conditions, whilst below and above zero values represent dry and wet conditions 

respectively, with values between -0.5 and 0.5 considered as nearly normal. Although the SPI 

is theoretically unbounded, values below -3 and above 3 are extremely rare as they occur 

with a probability of 0.1%. Assuming that weather events are identically and independently 

distributed, catastrophic droughts and floods can be defined as SPI values above and below 

 2.3, i.e. a drought or flood with a return period of 100 years (Guttmann 1999). Values 

above and below  1.9 can also be considered as extreme events as they have a return 

period of 35 years, that is  more than one generation.  

Recently, Vincente-Serrano et al. (2010) have proposed focusing on the 

evapotranspiration index (SPEI) in order to take Climate change into account. The 

intuition is the same, the only change being that it is not precipitation, but the 

evapotranspiration index that is standardized. There are several evapotranspiration 

indices, but they are all based on the same logic, namely the difference between 

precipitation and potential evapotranspiration. The simplest potential 

evapotranspiration index in terms of data requirement is the Thornton index. The only 

data needed are the latitude and the temperature. The detailed derivation of the SPEI 

can be found in Vincente-Serrano et al. (2010). 

The great advantage of using the SPEI (or the SPI) is knowing that it is distributed as 

a standard normal distribution. Hence, once we have estimated the conditional 

expectation of production as a function of SPEI, we can easily reconstruct the 

marginal distribution of the expected production of the average household. We call 



this marginal distribution the average climate exposure in contrast to the short-term, 

or running-season, production risk exposure estimated in the classical framework. We 

can safely interpret it as the climate exposure given the time scale on which the SPEI 

is calculated. 

Let’s formalize the argument. The first step is to estimate the conditional expectation 

of production on the SPEI variable with an ordinary least square (OLS) regression: 

 

where  is production,  is the SPEI,  is the expectation of  conditional on  

values and parameterized by , and  is an identically and independently distributed 

error term. In order to recover the marginal probability density function of , we 

simply need to compute the marginal distribution of , which is known since  

follows a standard normal distribution. Hence, we can compute the marginal density 

of :  

 

where  is the marginal density of : 

 

Production is hence characterized under a complete set of local weather scenarios, e.g. 

from normal conditions to droughts and floods with 100 years’ return periods. The 

marginal distribution, , can be summarized in different ways. We can simply 

provide the estimate of its mean, variance, skewness or kurtosis or compute the three 

indices mentioned in the introduction: poverty risk, expected shortfall or relative risk 

premium. 

Let us illustrate the idea with a simulation exercise. We assume that production 

reaches a maximum in conditions slightly moister than normal and decreases both 

with positive and negative values so that the conditional mean has a quadratic form: 

 

Letting   and , we compute  according to a SPEI 

sequence of 1,000 equally-spaced values on the range  (Figure 1 (a)). We 

superimpose in grey the density function of the SPEI (right axis). We then compute 

the marginal distribution of  and plot it on Figure 1 (b) with the plain black 

line. 



 

The intercept parameter has only a location shift effect on the distribution: increasing 

 would increase expected consumption vertically on the Figure 1 (a) and shift  

to the right on Figure 2.1 (b) (not represented). By contrast,  and  have higher 

order effects. For a given , the greater is , the greater is the mode of . 

However, it comes at the cost of greater downside risk as represented by the blue 

dotted line crossing above the plain black line at 90. For a given level of , an 

increase in , implies a greater variance and more downside risk. We illustrate it by 

setting  (instead of -2) and drawing on Figure 1 (b) the marginal density of  

in red. To sum-up, the parameters  and  characterize the climate sensitivity of the 

average household, while the marginal distribution  gives the climate exposure of 

the average household. We can summarize climate exposure in different vulnerability 

indices.  

Poverty risk is easily obtained by deriving from  the probability of falling below 

the poverty line. The expected shortfall, also known as the conditional values-at-risk, 

is a standard risk metric in the finance literature (e.g. Engel and Manganelli, 1999). It 

is obtained by defining first a probabilistic threshold, for instance a bad event with a 

probability of occurrence of 5%, and then by computing the difference between the 

mean under the threshold and the threshold. We modify it slightly by focusing on the 

shortfall between the poverty line and the lower partial mean under the chosen 

probabilistically defined threshold: 

 

where  is the poverty line and  is defined in terms of the return period of the event 

of interest. For instance, for a 35 years return period drought,  equals -1.9 and the 



expected shortfall measures the average cost of bringing back a household to the 

poverty line in the case of a 35 years return period drought.  

Lastly, we can compute the relative risk premium with (e.g. Antle 1987; Chavas and 

Holt 1996):  

 

where  is the ith central moment, AP is the coefficient of absolute risk aversion 

(Pratt) for mean-preserving spread aversion, DS is the coefficient of downside risk 

aversion (Menezes et al. 1980), for mean-spread-preserving skewness preferences and 

FT is the coefficient of kurtosis aversion (Rubinstein et al. 2006) for mean-spread-

skewness preserving kurtosis aversion. We specify the utility function as follows: 

 

where  is the coefficient of relative risk aversion and is set equal to 2 (Ligon and 

Schechter 2003). 

These three vulnerability indices give different perspectives on the climate exposure 

of households. The poverty risk is probably the best index for evaluating long term 

development needs as it is mostly affected by the location of the marginal distribution 

of consumption. For instance, a policy maker interested in having the greatest impact 

on average poverty should look at the poverty risk indicator and target the population 

category with the highest poverty risk. The expected shortfall index captures 

downside risk and is likely to be the most useful for contingency planning, e.g. for the 

management of emergency food stocks by humanitarian organisations or for 

designing a safety net programme. Lastly, the relative risk premium emphasizes the 

trade-off between expected profit and risk and could be used for targeting the roll-out 

of private agricultural insurance policies such as weather index insurance. Indeed, the 

relative risk premium, also known as the implicit cost of risk bearing, is an estimate of 

household willingness to pay for risk reduction.     

Note that this simple framework can be extended in several directions. First, we can 

include other control variables such as inputs and regional dummies in order to 

estimate how climate exposure varies according to input mixes and regional 

specificities. In the example above, this would correspond to shifting the parameter 

. We can also interact these variables with SPEI to investigate the presence of 

higher order effects. For instance, the interaction term between  and an input 



deemed to make farmers more climate resilient should be positive, i.e. should 

decrease climate exposure.  

Second, instead of focusing on the marginal distribution of expected production, , 

we can look at the marginal distribution of  at other quantiles of the  sample 

distribution. It is likely that poorer farmers might be more exposed to climate because 

of a lack of ex-ante and ex-post risk-mitigating options such as irrigated plots, liquid 

assets (e.g. bullocks  and gold ornaments), off-farm jobs, savings and affluent social 

networks (e.g. relatives working in the nearby big town). We can therefore expand the 

analysis from the climate exposure of the average household to the climate exposure 

at different quantiles: 

 

where  is the conditional quantile of consumption as a function of 

SPEI. Panel econometrics methods for quantile regression have been developed by 

Koenker (2004) and Abrevia and Dahl (2008). They have recently been applied by 

Bache et. al (2013) to the impact of prenatal maternal smoking on the dispersion of 

birthweights and by Dahl et al. (2013) to the impact of the decentralization of wage 

bargaining on wage dispersion. As in the classical mean regression panel methods, 

they allow for the control of unobserved heterogeneity within the sample. 

It is interesting to note that there has been some confusion between risk and inequality in 

the literature using quantile regressions. A clear example of the ambiguity surrounding 

quantile regressions’ estimates is the twin papers of Peirera and Martins (2002, 2004) on the 

impact of education on wages. In a first version of the paper published in Economics Letters 

in 2002, the authors apply quantile regressions at each decile of the wage distribution with 

education as an explicative variable. Their goal is to estimate the impact of education on 

wage uncertainty across sixteen European countries. They interpret their results as follows: 

“[I]f there is a large difference in the estimated coefficients between the first and last decile, 

meaning that the return is much higher at the upper than at the lower decile, the individual 

faces a high risk, as the individual can end up at the lower decile. If the difference is small, 

there is almost no risk”(Telhado Pereira and Silva Martins 2002). Other studies based on the 

risk interpretation of quantile estimates have followed, both in the banking sector and the 

literature examining the impact of education on wage . 



 A second version of the paper, with exactly the same set of data, econometric analysis, 

results and published by the same authors one year later in Labour Economics, is entitled 

“Does education reduce wage inequality?”. In the latter paper, the authors give the 

inequality interpretation of quantile regressions, i.e. a positive difference between higher 

and lower quantiles estimates implies that education increases inequality: their “findings 

imply that schooling may have a positive impact upon within-group wage inequality, as the 

spread of returns increases for higher educational levels”(Martins and Pereira 2004). The 

rationale behind this is that “the earnings increment associated to schooling is higher for 

those individuals whose unobservable characteristics place them at the top of the 

conditional wage distribution”.  

It is hence akin to the latent effect interpretation of quantile regression: inequality in 

conditional wage outcomes is the result of differences in innate ability revealed by quantile 

regressions (Koenker 2005). Note that this interpretation is, in turn (and quite paradoxically), 

related to a special case of Kanbur’s model (1979) where risk is represented by the ability 

risk that an entrepreneur faces when starting a business for the first time, i.e. the 

uncertainty about his own capacity to run it. Other earlier works (e.g. Friedman 1953) have 

drawn the link between risk and inequality. It also echoes the concept of ‘veil of ignorance’ 

used in thought experiments by political philosophers to apprehend social contracts and 

redistribution (e.g. Rawls 1971).   

We propose to cut the Gordian knot by defining inequality as the between-sample variation 

captured by quantile regression of consumption and by defining risk as the marginal 

distribution of consumption before by exploiting the properties of the SPEI. Climate 

exposure will be summarized in three indices: poverty risk, expected shortfall and the risk 

premium. 

III. Data 

The Ethiopian Rural Household Survey (ERHS) is probably the longest running 

household survey available on development economics, conducted from 1989 to 2009 

in seven rounds, with a staggeringly low level of attrition (see Dercon and Kirshan, 

1998, for the sample frame design).  On top of being freely available on the 

International Food Policy Research Institute website, it comes with a great amount of 

documentation and videos on the data collection process and data issues. For this 

paper, we use the data files on consumption and community level information.  



There are large seasonal fluctuations in consumption as documented by Dercon and 

Krishnan (2000). As the surveys haven’t been conducted exactly at the same period of 

the year over the rounds, we follow Dercon et al. (2012) and drop data from rounds 2, 

3 and 4. Indeed, rounds 2 and 4’s data were collected in most villages just after 

harvest, when a household’s consumption is expected to be at its maximum. Round 3 

is removed in order to have an equally spaced panel (1994, 1999, 2004, 2009) and 

avoid hence inconsistent estimates due to heterogeneous frequency (Dercon et al., 

2012). The other rounds have been performed, on average, 6 to 9 months after 

harvest.  

Ethiopia changed in many aspects between 1989 and 2009. The country’s population 

increased from 50 m to 83 m between 1992 and 2009 (FAO statistics). Meanwhile, 

the share of the rural population is quite stable although we do observe a slow and 

constant decline from 88% in 1989 to 83% in 2009. Lastly, the road network almost 

doubled between 1997 and 2007, although the share of paved roads did not follow suit 

(from 15% to 13.7%). GDP per capita had been oscillating around 2005 USD 140 

until 2003 before experiencing a steep rise, reaching 2005 USD $ 213 in 2009, i.e. a 

52% increase in 6 years for an average GDP growth of 11% (World Development 

Indicators, The World Bank, 2014). The domestic food price index grew from 1.6 in 

1990 to 1.9 in 2009. Hence it is not clear, a priori, if the food security of the rural 

population has increased or not over time.  

The poverty head count ratio at USD $ 1.25 PPP declined from 60% to less than 40% 

between 1995 and 2005 (the only available period in the World Bank data bank). 

Although the share of agriculture in the GDP declined from 61% to 47% over the 

period 1989-2009, cereal yields and production much increased. The yield hovered 

around 1,180 kg/ha until 2004 before reaching 1,650 kg/ha in 2009, while production 

had started its climb up already by the beginning of the 1990s thanks to a large 

increase in land under cereal production. In the 2000s’, the increase in production is 

due, in equal proportion, to the increases in yield and area farmed (Tafesse, 2011). In 

2007, 96% of the cultivated land dedicated to the main crops (cereals, pulses, oilseeds, 

vegetables, roots crops, fruits and cash crops) was still farmed by smallholders and 

their harvest in the main production season (Meher), represents 93% of the Ethiopian 

cereal production (idem). It is hence of primary concern to better assess smallholders’ 

exposure to climate shocks.  



We used two sets of data for the computation of the standardized precipitation 

evapotranspiration index (SPEI) thanks to the R package SPEI (Beguería and Vicente-

Serrano, 2013) with the Thornton evapotranspiration index. The precipitation data 

come from the African Rainfall Climatology Version 2 dataset (ARC2, Novella and 

Thiaw 2012), providing daily estimates at a resolution of 0.1 decimal degree from 

1983 to the present, and are based on a combination of gauge and satellite data. The 

dataset has been developed as a key input of the Famine Early Warning System 

Network (FEWSNET), one of the main indicators used by international humanitarian 

agencies to monitor food security. The temperature data comes from the Climate 

Prediction Center Global Land Surface Air Temperature Analysis (GHCN+CAMS, 

NOAA 2001). They come as monthly mean surface air temperatures at a 0.5 decimal 

degree resolution over the period from 1948 to the present. One of its recommended 

uses is precisely the computation of evapotranspiration indices. Both ARC2 and 

GHCN+CAMS datasets are matched with the ERHS thanks to ward level (kebele) 

administrative boundaries shapefile (Ethiopian Statistical Agency, 2007 census).   

The kebele, or Peasant Associations (PA) in the rural part of the countries, were 

founded by the Coordinating Committee of the Armed Forces, Police, and Territorial 

Army of Ethiopia, also known as the Derg, after the fall of Emperor Haile Selassie in 

1974. They are the lowest administrative unit. We have chosen as matching 

coordinates the centre of each PA computed with centroids of Voronoi. Note that the 

median area of the EHRS PAs is smaller (50 km2) than the median ARC2 and 

GHCN+CAMS cells (120 km2 and 3,025km2 on average respectively); they hence 

constitute a matching metric precise enough for the climate data resolution7. 

There are three main weather regimes in Ethiopia: the northern part has a bi-modal 

regime with a long rainy season from June to September and a short rainy season from 

March to May (regime A); the western part of the country has a mono-modal regime 

with rainfall from June to September (regime B); and the southern and eastern part 

has a mono-modal weather regime with rains from February to May (regime C) 

(NMSA 1996, cited in Abebe, 2010). The approximate hand-drawn partition of the 

country between weather regimes, according to a map of the Ethiopian National 

Meteorological Agency (1996) reproduced in Abebe (2010), is mapped with long 

                                                 
7
 Area weighted precipitation and temperature means would also have been an option for PAs at the 

junction of multiple cells, but given the spatial definition of the climate datasets, it would not have 

affected the results much. 



dashed lines in Figure 2 (a). Note that according to the ARC2 rainfall data for each 

PA, the partition is slightly different (dotted line)8.  

 
Figures 2: On the left, the long dashed lines are the approximate partition of the 
country between weather regimes according to a 1996 map of reproduced in Dawit 
Abebe (2010) and the dotted lines represent an alternative partition matching the 
ARC2 data at Pas’ locations. The map on the right is the average annual precipitation 
over the period 1990 to 2013. Although it is clear that precipitation concentrated on 
reliefs because of convective rain, there are great differences in precipitation between 
PAs located at similar altitudes: Geblen receives less than 320mm on average while 
Yetmen, in the same agro-ecological zone, receives twice as much. 

Note that the cumulative level of rainfall varies a lot between PAs in regime A (fig. 

2b): normal annual precipitation9 for Geblen and Harresaw (Tigray region, top North) 

is only 270 mm while it is 680 mm in Yetmen (Amhara, central North). The PAs 

located in weather regime C have a maximum amount of cumulative rainfall in March 

while those located in weather regime A have their maximum in August. We plot in 

Figure 3 the annual precipitation profile for Geblen (regime A), Doma (regime C) and 

Yetmen (regime A). We use the climate data for the peak months in the analysis.  

Figure 1: Monthly Precipitation 

                                                 
8
 Although the ARC2 dataset would allow estimating the boundaries between weather regimes with 

more precision, it is outside of the scope of the present paper. 
9
 Normal computed on 1994 to 2013, Hoefsloot 2013, LEAP software. 



 

We use as our dependent variable real consumption per capita as provided in the 

ERHS. The explicative variables are the 3 months smoothed SPEI at peak rainfall 

month, the agro-ecological zones, the quality of the road leading to the next town, the 

distance to the nearest bank, the number of extension agents within the PA and the 

presence of a non-governmental organisation (NGO) in the PA. Summary statistics 

are presented in Table 1. 

Table1: Summary Statistics 

Mean Median 

Stand. 

Dev. Min. Max. 

Real consumption per capita 

(birr) 

77.63 56.79 74.17 0.88 1,109.39 

3-SPEI at peak precipitation 

month 

0.22 0.21 0.91 -1.56 2.21 

Remote from a bank (22 km) 0.42 0 0.49 0 1 

NGO in the PA 0.16 0 0.36 0 1 

Extension agent in the PA 0.76 1 0.43 0 1 

Road improvement 0.59 1 0.49 0 1 

  

Although the national figures brush a rather positive picture for recent years, micro 

level evidence from the ERHS warrants some caution. While the poverty rate hovers 

between 45% and 50% until 1995 in the ERHS sample, it decreases to 30% in the next 

3 rounds (1997, 1999, 2004) before rising again, above 50% in 2009 (Dercon et al 

2012). The average consumption is 78 birr per month (circa USD 18) if one focuses 



on the 1994, 1999, 2004 and 2009 rounds. There are some substantial variations 

across years: the 1989, 1994 and 1995 average consumption is around 70 birr; the 

1997, 1999 and 2004 average consumption increases to 90 birr while 2009 sees a 34% 

drop in consumption to 60 birr per month. Consumption per capita includes 

household-produced food and hence is directly impacted by weather conditions. 

Details of the real consumption per capita calculation can be found in Deron and 

Krishnan (1998). We follow Dercon and Krishnan (1998) in setting the poverty line at 

the income level required to buy 2,400 calories per day, i.e. 50 birr. The vulnerability 

indices are hence linked to climate related food insecurity. 

According to the weather regimes identified above, we focus on precipitation in the 

months of March and August for villages in weather regimes C and A respectively. As                                                                   

we are interested in the hydrological conditions affecting agriculture production, we 

select the three month smoothed SPEI values. We use one year lagged SPEI values as 

the surveys have been conducted in pre-harvest periods, i.e. when real consumption 

is still determined by the previous year’s harvest. The average SPEI is 0.21, i.e. 

conditions were on average slightly wetter than normal. The minimum and 

maximum are respectively -1.57 (2009, in Imdibir) and 2.2 (1994, in Trirufe 

Ketchema), i.e. dry conditions with a 20 years return periods and wet conditions 

close to a 100 year return period. Note that consumption prediction conditional on 

values outside the sample range will have to be treated with caution and can only 

represent high bound estimates, as it is likely that consumption collapses at higher 

(lower) SPEI values than the one observed.  

The community-level data capture some of the classical development policies. Indeed, 

road improvement allows better market linkages with the rest of the country and 

hence offers better marketing opportunities, larger and more stable sets of products for 

buying, better price smoothing when local production is adversely hit and allows 

households to enter into new profitable activities (Dercon, 2012). Extension agents 

remain a key development mechanism whereby civil servants are dispatched among 

rural communities to offer farm management advice and increase the adoption of best 

farming practices. We express it as a dummy variable equal to one if there is at least 

one extension agent in the PA. Over time, all PAs got an extension agent. The 

distance to the nearest bank is also of interest as they are a key channel in providing a 

saving mechanism, as ex-ante risk management and credit for adopting more capital 



intensive inputs. Furthermore, the distance to the nearest bank serves as a proxy of the 

remoteness or secludedness of a particular PA as banks are likely to establish 

branches in local economic centres. We express it as dummy equal to one if the PA is 

located at more than 22 km from any bank, the latter value being the median sample 

distance. The presence of an NGO or a development agency might not only have an 

impact on their sectorial activity, be it education, health or micro-credit; but they can 

also be an important provider of jobs for the local community. Furthermore, in case of 

an adverse climatic shock, an NGO might be able to scale up its activity and to act as 

a safety net for the local community. Dercon and Krishnan (2003) showed that food 

aid provided an insurance mechanism.   

IV. Results 

We start by investigating the functional shape of the relationship between real 

consumption per capita and the standardized precipitation evapotranspiration index 

with localized polynomial regressions. The smoothing fit is plotted in Figure 4 along 

the 95% confidence intervals computed by performing 1,000 bootstraps with 

replacements. The relationship is clearly u-shaped, with a maximum at 0.8, i.e. 

conditions slightly wetter than normal. 

 

We start hence the analysis with a simple pooled OLS quadratic regression of 

consumption on SPEI in order to get an idea of the average climate exposure in the 

sample:  

 

where  is the real consumption per capita of household  at time ,  is the 3-

months smoothed SPEI at peak rainfall months and , , are parameters to be 



estimated. Note that the intercept, , is the expected consumption under normal 

conditions, i.e. when the SPEI equals 0. As the consumption values are very skewed, 

we apply logarithmic transformation on consumption and compute robust standard 

errors.  Results are presented in Table 2, column 1. 

All parameters are statistically significant (p-value <0.001). The low R2 shouldn’t be a 

concern as many other factors explain the between variation in the sample distribution 

of consumption (the size of the land holding, the size of the herd, etc). Nevertheless, a 

clear pattern emerges from this simple regression: consumption has an inverted U 

shape in SPEI and reaches its maximum at a SPEI value of 0.7, i.e. in conditions 

slightly moister than normal, and decreases sharply in dries conditions, crossing the 

poverty/hunger line at a SPEI value of -1.4, i.e. in severely dry conditions occurring 

on average every 12 years. Consumption can also fall under the poverty line for 

extreme precipitation levels, i.e. a SPEI of 2.8 consisting in an extreme flood event. 

However, such events have only a 0.2% chance of occurrence and hence weight less 

in farmers’ exposure to climate risk. Note, however, that the observed SPEI values in 

the sample are limited to -1.48 to 2.21, hence predictions outside the sample range 

have to be considered with care.  

Figure 1: Real Consumption per Capita (a) and Climate Exposure (b) 

 

The graph in Figure 5 (a) is the fitted consumption line as a function of SPEI. The 

probability function of the SPEI is superimposed in grey in order to get a better sense 

of the likelihood of each SPEI value. The area coloured in orange in Figure 5 (b) is 



the probability mass of falling below the hunger line, i.e. 11% in the present case.  We 

also represent the expected shortfall with a 35 years return-period drought (blue 

arrow, 20 birr). A ‘back of the envelope’ calculation indicates that a 10 years return 

period drought hitting a region with 100,000 inhabitants would cost a humanitarian 

agency on average 800,000 birr (circa USD 192,000) per month in cash 

vouchers/transfers to ensure that the basic food requirements are met. 

Table 1: Agro-ecological Zones 

Log (consumption 
per capita) 

Pooled 
OLS  

I  

Fixed 
effects 
OLS 

FE 
QR 
=0.25 

FE 
QR 
=0. 5 

FE 
QR 
=0. 
75 

SPEI 0.17***  
(0.01) 

0.13***  
(0.01) 

0.12***  
(0.02) 

0.14***  
(0.02) 

0.15***  
(0.02) 

SPEI2 -0.12***  
(0.01) 

-0.05***  
(0.01) 

-
0.08***  
(0.02) 

-0.05**  
(0.02) 

-0.05**  
(0.02) 

High altitude   0.05 
(0.03) 

0.09**  
(0.03) 

0.13***  
(0.04) 

Low altitude   -
0.21***  
(0.04) 

-
0.11***  
(0.03) 

-0.08+ 
(0.04) 

High 
altitude*SPEI 

 0.09**  
(0.03) 

0.21***  
(0.04) 

0.15***  
(0.03) 

0.11**  
(0.04) 

Low 
altitude*SPEI 

 0.02 
(0.05) 

-0.05 
(0.06) 

-0.08* 
(0.04) 

-0.05 
(0.04) 

High 
altitude*SPEI2 

 0.05+ 
(0.03) 

-0.01 
(0.03) 

-0.02 
(0.03) 

-0.03 
(0.03) 

Low 
altitude*SPEI2 

 -0.08* 
(0.04) 

-0.01 
(0.05) 

-0.1***  
(0.03) 

-
0.15***  
(0.04) 

Intercept 4.1***  

(0.01) 
 3.8***  

(0.02) 
4.07***  
(0.02) 

4.39***  
(0.03) 

Adjusted R2 0.04 0.41    
F-test <0.001 <0.001    

 

We then add a series of dummies for the agro-ecological zones, taking the mid-

altitude zone (Weyna-Dega) as base category, and we interact them with the SPEI 

variables: 

 

where  stands for the lowlands dummy and  for the highlands dummy. We test for 

the presence of unobserved heterogeneity with a Lagrange multiplier test (Breusch-

Pagan), an F-test of the model with fixed effects and against pooled OLS (p-value 



<0.001) and the Wooldridge test (2002). The null hypothesis is rejected in all cases 

with a high confidence level (more than 99.99%); we hence conclude that there are 

important unobserved effects.  We then compare the random effects model against 

fixed effects models with a Hausman test and reject the null hypothesis of convergent 

estimates, preferring the fixed (within) effects model. Lastly, we test for the presence 

of serial correlation threatening the strict exogeneity assumption of the fixed effects 

model with the Wooldridge test for serial correlation and fail to reject the null 

hypothesis of no serial correlation (p-value=0.32).  We choose, therefore, a fixed 

effects model to take into account the households’ unobserved heterogeneity. The 

results are reported in Table 2, column 2. 

As we see, and  decrease compared to Model I, implying that the climate 

sensitivity in the midlands (Weyna Dega) is lower than the average. Furthermore, it 

appears that the quadratic effect of SPEI is null in the highlands as , i.e. that 

expected consumption would only increase in SPEI values. This result has to be 

nevertheless treated with caution given the low level of statistical significance of . 

By contrast, the lowlands are much more sensitive than the Weyna Dega as  is 

negative, highly significant and of greater magnitude than . 

Computing the different indices for each region, the mid-altitude villages have, on 

average, a poverty risk of 1%, the highlands of 12% and the lowlands of 47%. In 

terms of expected shortfall, the average household in the midlands is found to be fully 

resilient even when confronted by a 35 years drought. By contrast, the lowlands have 

an expected shortfall of 24 birr. These results compare well with Deressa et al. (2009) 

who also found a greater vulnerability in the lowlands. 

We now present the results across a subset of quantiles of the populations estimated 

penalized quantile fixed effects quantile regressions (Koenker, 2004) and 

implemented with the package rqpd (Koenker and Bache, 2011). The results are 

reported in Table 2, columns 3 to 5. Climate sensitivity does not vary much between 

agro-ecological zones for the lower quartile in terms of the curvature of consumption. 

The only significant parameter among the interactions is the interaction of the SPEI 

expressed in level with the highlands dummy: poor households in high altitude 

villages reach a maximum consumption in conditions wetter than the rest of the 

sample. Comparing the interaction terms between the lowlands dummy and the SPEI2, 

we see that climate sensitivity increases for households as consumption per capita 



increases. It suggests, hence, an important trade-off in the lowlands between increase 

in consumption and decrease in climate sensitivity, the poorer households being stuck 

in a low risk-low consumption trap, a phenomenon described in the literature on the 

risk-induced poverty trap.  

We present in Figure 6 (a), (b) and (c) the 3 vulnerability indices across quantiles and 

agro-ecological zones10. In the lowlands, the lowest quartile is trapped in poverty as 

its poverty risk is 100%. Furthermore, the median households also face a risk of 

poverty close to 100% while the 3rd quartile is slightly above 40%. This contrasts with 

the results found with OLS where the average household had only a 47% risk of 

poverty. Hence, it is likely that the OLS poverty risk estimate was driven downward 

by the top percentiles of the population. In the midlands and the highlands, the 

poverty risk is quite low for households above the median although still substantial for 

the 1st quartile. 

The results in terms of the expected shortfall are presented in Figure 6 (b). Although 

the ranking of agro-ecological zones in terms of risk is respected, the differences are 

much smaller. Furthermore, the ranking within zones changes a lot, e.g. in the 

lowlands the median 35-year drought expected shortfall is higher than the lower 

quartile one. The relative risk premium (Figure 6 c), i.e. the implicit cost of risk, 

confirms the interpretation of a risk-induced poverty trap by showing that poor 

households have a smaller relative risk exposure, i.e. they have already reduced risk 

exposure to its maximum at the cost of a decrease in consumption.      

 

A policy maker interested in having the greatest impact on average poverty with, for 

instance, the provision of subsidized fertilizers, should look at the poverty risk 

indicator and target the lowlands. Interestingly, the expected shortfall shows that in 

                                                 
10 Note that the quantile regressions were run in level to compute the indices because it is a priori not 
clear how to deal with the residuals of exponential quantile regressions when computing the conditional 
quantiles.  



the case of a serious drought, it might not be the poorest quartile of the population 

which will require most help in the lowlands but instead the median households 

because the latter are more exposed to downside climate shocks. Lastly, the relative 

risk premium shows that the implicit cost of risk bearing is the highest among richer 

households, particularly in the lowlands. Hence, the higher quantile of the population 

manage to get higher consumption at the cost of a large increase in risk and should 

therefore be willing to swap part of this risk against some kind of consumption 

insurance, be it index based or of the traditional agricultural kind. 

Let’s turn now to characteristics which have evolved over time at the community 

level. The panel is shorter as the community level data are only available for rounds 4, 

6 and 7, i.e. 1997, 2004 and 2009. As noted in the data section, the 1997 round was 

conducted earlier in the season and hence might introduce some unobserved 

heterogeneity. We attempt to control for it by adding a year dummy for 1997. We 

focus on the presence of an improvement in the road leading to the next town, the 

number of extension agents within the PA and the distance to the nearest bank, and 

the presence of a non-governmental and/or international organization office in the PA. 

The results are presented in Table 3. 

Table 2: Community development factors 

 

Log (consumption per 

capita) 

Fixed effects 

OLS 

FE QR 

=0.25 

FE QR 

=0. 5 

FE QR 

=0. 75 

1997 dummy 0.12
*** 

(0.03) 

0.1
+
 

(0.05) 

0.18
***

 

(0.04) 

0.13
*
 

(0.05) 

Highlands  0.1
*
 

(0.04) 

0.05
+
 

(0.03) 

0.06 

(0.04) 

Lowlands  -0.06
+
 

(0.03) 

-0.08
***

 

(0.03) 

-0.08
*
 

(0.03) 

Distance to the bank 

(=1 if > 22 km) 

-0.21
***

 

(0.04) 

-0.27
***

 

(0.04) 

-0.32
***

 

(0.03) 

-0.31
***

 

(0.04) 

NGO office in the PA 0.31
***

 

(0.04) 

0.11
*
 

(0.04) 

0.14
***

 

(0.04) 

0.2
***

 

(0.05) 

Extension agent -0.08
+
 

(0.04) 

0.03 

(0.04) 

-0.02 

(0.04) 

-0.04 

(0.04) 

Road improvement 0.05
+
 

(0.03) 

0.05 

(0.03) 

0.1
**

 

(0.03) 

0.13
***

 

(0.04) 

SPEI 0.11
***

 

(0.02) 

0.19
***

 

(0.02) 

0.13
***

 

(0.02) 

0.17
***

 

(0.02) 

SPEI
2 

-0.08
***

 

(0.02) 

-0.12
***

 

(0.02) 

-0.13
***

 

(0.02) 

-0.13
***

 

(0.02) 



Intercept  

 

3.83
***

 

(0.05) 

4.19
***

 

(0.04) 

4.52
***

 

(0.05) 

Adjusted R
2 

0.7    

 

The 1997 dummy is positive, as expected, because the 1997 round was conducted 

earlier in the season when consumption is higher. The distance to the bank dummy, 

equal to one if the PA is located at more than 22 km from any bank, is strongly 

negative: the average household in such a PA has an expected consumption per capita 

21% lower than those in PAs closer to a centre with a more vibrant economy. Note 

that the effect is quite stable across quantiles of the population (although lower). By 

contrast, the presence of an NGO office in the PA benefits mostly the median 

household and above. This might be linked to the fact that jobs created by NGOs tend 

to benefit the better educated and wealthier households, or it might reveal the 

difficulty for NGOs to reach the poorest of the poor. Interestingly, road improvement 

seems again to be of greatest benefit to richer households as no consumption-

increasing effect linked to road improvement is found significant in the 1st quartile 

regression. Two specifications were tried for the extension agents: a dummy equal to 

1 if there is at least one extension agent (results presented above) and the number of 

extension agents (results available on request). Although extension agents are found 

to have a negative impact on expected consumption, it is only significant at a p-value 

of 0.054 and the effect disappears in the quantile regression, so that it is likely to be 

driven by outliers.  Furthermore, once specified in plain numbers, the effect of the 

extension agents is positive and significant: each additional extension agent increases 

expected consumption by 10% and has the most impact on the median of the 

distribution. 

 



We present in Figures 7 (a) and (b) the impact on poverty risk and on the expected 

shortfall (computed for a 10 years drought) of the variables found significant at 

different quantiles of the population. As expected, the greatest effect is clearly the 

bank dummy, capturing the effect of living close to an economic centre (not more 

than 20 km). This large effect might be due to more off-farm opportunities or to the 

support from relatives living in these economic centres. Note that, however, in the 

case of a 10-year drought, poor households living nearby economic centres are not 

much less exposed than their counterparts in more remote regions, as shown with the 

expected shortfall. By contrast, richer categories are much more exposed in remote 

parts compared to their counterparts living close to an economic centre. NGOs and 

road improvements have a similar effect on the risk of poverty and expected shortfall. 

Both are, incidentally, positively correlated and it is likely that logistical reasons 

favour the installation of NGOs in PAs with better road access. Again, we see this 

mirror relationship between poverty risk and expected shortfall: these are the poorest 

households who benefit the most in terms of poverty risk reduction but the richest 

ones in terms of reduction of downside risk.     

 

V. Conclusion 

This article introduces a new methodology to estimate climate exposure at the 

household level with the standardized precipitation evapotranspiration index (SPEI) as 

its building block. It is based on the combination of climate data and household 

microeconomic data. The main advantage of this approach is that it is based on locally 

and frequency based weather scenarios allowing different measures of climate 

vulnerability. Furthermore, as the SPEI is computed on several decades, it properly 

captures climate exposure rather the short-term, running-season production risk 

exposure estimated with classic microeconometric methods of production risk 

estimation. A limitation of the proposed methodology is that it is quite demanding in 

terms of its data requirements. Indeed, the estimation of the climate exposure rests on 

the assumption of observing a large range of SPEI values in the sample either thanks 

to a long panel or thanks to a large geographical spread. We note, however, that the 

number of microeconomic panel datasets keeps increasing so that this limitation is 

likely to fade in coming years.    



Another advantage of this approach is that it is very simple and hence is able to 

accommodate quantile regressions. Instead of being forced to think about the average 

household, one can broaden the analysis to other parts of the sample distribution. 

Several indices are proposed to summarize climate exposure. The more actionable 

from a policy standpoint is likely to be the expected shortfall, also known as the 

conditional value-at-risk.  

We illustrate the methodology with a case study on Ethiopia using the Ethiopian rural 

household survey and we combine it with SPEI values estimated with the African 

Rainfall Climatology Version 2 dataset and Climate Prediction Center Global Land 

Surface Air Temperature Analysis. Results show that the PAs located in the Kolla 

agro-ecological zone are the most exposed to climate. The results are in line with 

Deressa et. al(2009), although we do find greater differences between agro-ecological 

zones. Furthermore, we find that while poor households in the most remote PAs are 

almost as resilient to 10-year return period droughts as poor households living in the 

vicinity of town (20 km), the contrary is true for richer households: the ones living in 

remote parts of Ethiopia are much more at risk than their suburban counterparts. 

The present paper could be extended in several directions. First, variables on the farm 

inputs and output mixes could be added in the regressions. Second, the impact of 

climate adaptation farm strategies could be tested. Lastly, the distributional impact of 

climate could be better ascertained, either at a micro or macro scale. 
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