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Abstract

Economic damage from natural hazards can somebm@sevented and always miti-
gated. However, private individuals tend to undeest in disaster preparedness and
mitigation measures due to collective action, infation asymmetry and myopic be-
havior problems. Governments, which can in prireipbrrect these market failures,
also face incentives to under-invest in costly stisapreparedness policies and dam-
age mitigation regulations. Yet, disaster damagesayreatly across countries. We
argue that the larger a country’s propensity toeegmce frequent and strong natural
hazards, the more rational actors will invest iagarring for disasters and mitigating
damage. Accordingly, economic loss from an actualtgurring disaster will be
smaller the larger a country’s disaster propensitigolding everything else equal,
such as hazard magnitude, the country’s total Wesld per capita income. Even if
governments implement effective mitigation measudssnage is not entirely pre-
ventable and smaller losses tend to be randomglRehidisaster propensity will there-
fore have a more pronounced negative effect onigiesidamage at the top end of
the disaster damage distribution than at the bodnch We find empirical support for
our theory in a quantile regression analysis ofeadc loss from the three disaster
types causing the vast majority of damage worldwedethquakes, floods and tropi-

cal cyclones.



1. Introduction

With an estimated economic loss of between 82dhil(iKnapp et al. 2005), 125 bil-
lion (Munich Re 2010) and 150 billion US$ (BurtondaHicks 2005), hurricane
Katrina used to be the costliest natural disaster.eThen came the March 2011
earthquake and subsequent tsunami wave in Japah.eSiimates have grown over
time from 35 billion (LA Times, March 13) to betwed?22 billion and 235 billion
(World Bank, March 21), to 309 billion US$ accorglito economic and fiscal policy
minister Kaoru Yosano (Xinhua, March 23). Whatether final cost estimate, thesT
hoku quake will prove to be the most expensive naatlisaster of all times.

Should it be surprising that the two costliest stises were triggered by a hur-
ricane in the US and an earthquake in Japan? Oiewak the answer is clearly no.
Common sense tells us that economic damage ofabatisasters is the higher the
wealthier the affected country and the US and Japarmamong the wealthiest nations
in the world, though hurricane Katrina and thehdku quake struck relatively poor
areas of these countries.

Still, we argue in this article that exactly beaadke US and Japan are fre-
guently hit by strong tropical cyclones and quakhbs, predicted resulting economic
loss is systematicalliower than if cyclones and quakes of similar magnituideck
countries where such natural hazards generally tende less frequent and less
strong. Governments can reduce expected disasteaggaby implementing disaster
preparedness and mitigation policies such as askegproof construction regula-
tions or a network of dykes and dams, but theyraoee likely to invest in these
measures if the country has a history of frequent €trong hazards, i.e. if it faces a
higher disaster propensity. Propensity influencessidder damage because it deter-

mines the opportunity costs faced by governmentspaivate actors in undertaking



measures that will mitigate damage in case hazaikks. In this respect, the two
costliest disasters in human history are outli€hey were so costly because existing
safety measures were insufficient and failed, remtalnse the US and Japanese gov-
ernments irrationally abstained from taking anycprgionary measures in the face of
high tropical cyclone and earthquake propensitgpeetively. A safety device that
fails leads to the worst case scenario: If indigldurely on the functioning of, say, a
dam they will accumulate more wealth in areas latkine dam than they would have
in the absence of the dam, thereby exacerbatinditlaster effects.

In Keefer, Neumayer, and Plimper (2011), we deezop theoretical argu-
ment predicting that earthquake propensity redeeethquake mortality.Here, we
augment our analysis in two important way&rst, we move the focus of the analysis
from the death toll of disasters to the economik While there is a growing litera-
ture analyzing the determinants of disaster mayté.g., Kahn 2005; Anbarci et al.
2005; Escaleras et al. 2007; Neumayer and Plum@@r;2Plimper and Neumayer
2009, Keefer et al. 2011) as well as a nascematitee on the determinants of disaster
damage (e.g. Mendelsohn and Saher 2011; Schumactestrobl 2011) we are the

first to argue that the political economy of natutisaster damage predicts systemati-

Anbarci et al. (2005) and Escaleras et al. (2003lude a frequency of major earthquakes vari-
able in their estimations, but do not provide assaitive theoretical justification for the inclu-
sion of what is a control variable in their model.

Schumacher and Strobl (2011) find a positive @asion between disaster hazard (propensity)
and disaster damage per capita, but they do natatdar disaster magnitude. Our argument is
conditional on controlling for the magnitude of aagtual disaster as otherwise propensity will
simply pick up the effect of actual disaster magphit. In one set of regressions on quake dam-
age, they control for seismic energy released,theit sample only contains 59 observations

with positive damage, hence it cannot be repreteeta



cally lower damage in high disaster propensity ¢oes At the same time, previous
studies had to rely on publicly available datasetsich do not report damage esti-
mates for most events. In contrast, we can empitg tom a comprehensive data-
base assembled by Munich Re, the biggest re-inser@ompany in the worfd.
Whether the effect of disaster propensity on miytakrries over to economic dam-
age is not cleaa priori. For example, early warning systems, which camdtecally
reduce fatality for some disaster types if peopéeraoved out of harm’s way in time,
are less effective for preventing economic losteagporary measures can reduce the
hazard impact, but buildings and infrastructurencaitoe entirely moved out of harms
way before hazards strike. One consequence istlilea¢ are many more disaster
events with recorded economic loss than with residss of life.

Second, we extend the analysis to other typestafaladisasters, demonstrat-
ing that the systematic impact of disaster proggnsinot restricted to earthquakes,
but carries over to the other two major disastpesy tropical cyclones and floods.
Together with earthquakes, they account for rougtilypercent of total worldwide
economic damage from natural disasters.

In the next section, we develop a political econdhgory of natural disaster

preparedness and loss mitigation. We discuss theugreasons why private indi-

3 The Emergency Events Database (EM-DAT), mainthinethe WHO Collaborating Centre for
Research on the Epidemiology of Disasters (CREDjains 8,105 natural disaster entries over
the period 1980 to 2009, but only just below 3,00€hem record a loss estimate, even though it
is in the definition of a disaster adopted by EM-Dthat an economic loss must have occurred
in all events. By contrast, the database from Muile contains over 17,500 unique disaster en-
tries with positive recorded loss. There are manentry years with losses since some disasters
affect more than one country, in which case Murfkgh attributes the total disaster damage

across affected countries.



viduals under-invest in such measures. Governnaantsstep in to overcome collec-
tive action, information asymmetry and myopic bebaproblems, but they also suf-
fer from similar incentives to under-provide digagireparedness and loss mitigation.
We argue that private and public incentives to gregor disasters and mitigate loss-
es are a function of disaster propensity (the ebggefrequency and magnitude with
which hazards strike). In section 3, we describeevopirical research design in some
detail and report results from our empirical analyBue to the inherent imprecision
of natural disaster loss estimates, we undertadi®re Carlo analysis, in which we

test the robustness of our results to this measmearror.

2. Natural Disaster Preparedness and Damage Mitigation

For the longest time of its existence, mankind @e&ed natural disasters as acts of
gods that can — if at all — only be alleviated bicty abiding by religious rules or by
sacrificing goods, animals, or human beings. Thizges are over. Modern science has
identified the causes of natural hazards and hopréwent or mitigate their conse-
guences. Hazards are thus events triggered byahdtuces, but they only turn into
disasters if people are exposed to the hazard enda resilient to fully absorbing
the impact without damage to life or property (Sabvet al. 2007).

Three major, commonly accepted, factors determisester damage. First and
foremost, the size of economic loss depends ommignitude of the natural hazard
event triggering the disaster. All other things &ga stronger earthquake, for exam-
ple, will cause more damage than a more moderaend below a certain threshold
a quake can hardly be felt, let alone cause muofada. Second, the economic toll is
higher the wealthier the area hit by the naturalaha (Pielke et al. 1999, 2008; Neu-
mayer and Barthel 2011; Bouwer 2011). While humeimds cannot prevent natural

hazards or reduce their strengths, they massivdlyeince the level of wealth ex-



posed to the forces of nature. There is also athak anthropogenic greenhouse gas
emissions might increase the occurrence or thengitieof weather-related natural
hazard events (Min et al. 2011; Pall et al. 2011).

Of course, the likely geographic location of disastis more easily predictable
for some disaster types (e.g., volcanoes) thanroifeeg., earthquakes) and for some
hardly at all (e.g., hail storm). However, peoptewanulate wealth in areas known to
be prone to, say, flooding or hurricane landfalkaown to be near frequent move-
ments of tectonic plates. And third, people detaenthe resistance of the exposed
wealth stock to the hazard impact. Better constdidiuildings and infrastructure,
even if they were not explicitly built with naturabzards in mind, can more easily
withstand ground shaking and high-speed windsexample, than more poorly con-
structed ones.

A theory of disaster damage, however, has to gormyhis functionalist log-
ic and also explain why some private individuald governments specifically invest
in disaster preparedness and damage mitigatiorevaliiers do not or not as much.
We argue that investment incentives depend on ttbieapility and expected magni-
tude of natural hazards, what we call disaster gmepy. Where propensity is high,
individuals have higher incentives to privatelyesvin disaster preparedness and pol-
icy-makers are more likely to enact and enforcegaiion measures than where pro-
pensity is low. We start with private individual®oth households and profit-
maximizing firms), for which we argue that due tarket failures they tend to under-
invest in disaster preparedness and damage mitngagven if disaster propensity is
large. We then turn to governments, which can vetee to correct these market fail-

ures.



2.1 Private Under-investment in Disaster Preparesdnand Loss Mitigation

Private individuals can adopt two main strateg@séducing expected disaster costs.
They can refrain from settling or economically aigrg in high-risk areas or they
can construct buildings and infrastructure in a \&ayo minimize the probability that
they will become damaged or even destroyed if ahdnna hazard strikes. Neither
strategy is particularly popular. High-risk areasls as coastlines or flood plains are
often places that provide large economic and amypeaiues to those settling or oper-
ating there — so long as nothing happens. Strohgaléhazards tend to be rare, and
the time of their occurrence as well as their exacation essentially unpredictable,
prompting individuals to neglect or ignore the riskving on a faultline, for example,
merely implies that an earthquake will strike wétlmon-zero, somewhat vague prob-
ability, but no one knows when an earthquake virlke or with what magnitude or
where its epicenter will be.

The second strategy is costly and thus unpopuwar, Earthquake-proof con-
structions increase building costs by at least é&&gnt (Kenny 2009), solidly con-
structed dwellings that can withstand high top wapdeds are more expensive than
light-weight wood constructions that can easilybb@vn away, and so on. Individual
solutions to floods are even more expensive, wigciwhy the Dutch water boards,

some of which stem from the ®&entury, can be regarded as one of the earlidst pu

Susan Hough (2010: 222) concludes from her stfdgarthquake predictions: “[Gliven the
state of earthquake science at the present timihgeakes are unpredictable. (...) The odds are
that, whenever the San Andreas fault (...) is abouét loose, the only heads up we can hope
for is a foreshock or a foreshock sequence. Even, ithe odds are that the foreshock sequence
won't look any different from the small earthquakbat pop off (...) on a fairly regular basis.”
In other words, despite all progress in the natac&nces, seismologists depend on crude in-

duction to “predict” earthquakes.



licly provided good. Compared to the opportunitgtcof not settling or operating in
high-risk areas, the costs of disaster-proofinglesaents are typically smaller. Yet,
individuals often ignore potential impacts that eowmith very small probability, un-
known size and unknown timing (Camerer and Kunreutt989; Kunreuther 1996)
and therefore fail to sufficiently protect theioperty against natural hazarts.

Even if individuals are willing to invest in disastproofing buildings, they
face the additional uncertainty that whether adig will in fact be able to withstand
the full force of a natural hazard is unknown et@ithe owner. It is exacting on the
prospective owner to supervise the constructiorrgs® in order to verify the quality
of the materials used and of the constructionfitsgtile disaster-proofness is diffi-
cult to verifyex posti.e. after construction. These information asyinnieg generate
disincentives for voluntary private investment isater-proof construction. As Aker-
lof (1970) has argued, an information gap betweslersand buyer leads to a situa-
tion in which sellers do not sell high quality pumts and buyers assume that goods
sold on this market are of low standard. Appliedhi® disaster-proofness of buildings
this means investors will find it difficult to gathigher price for high-quality disaster-
proof constructions, which in turn discourages stweent in such constructions in the
first place.

To make things worse, even constructors do noy tutow the exact hazard

strength up to which a construction can withstdrelhazard’s destructive foréd=or

° A laboratory experiment in the US concluded timaist individuals are unwilling to pay any-
thing for insurance against very low probabilityeats, even if the cost of the event is high
(McClelland et al., 1993).

6 REIDsteel, a company that sells “earthquake-groaildings, acknowledges on its website:
“Nothing can be guaranteed to be fully resistanany possible earthquake, but buildings and

structures like the ones proposed here by REIDsteald have the best possible chance of sur-



those constructing a building and willing to investdisaster-proofness, the worst
case scenario is to invest marginally too litttewihich case the costs of construction
rise, but the building still does not withstand tiezard if it occurs. To be on the safe
side, investors would thus have to invest signifitamore than the highest expected
level of hazard strength requires. This rendersirtkestment even more expensive
than on average necessary.

Another reason why private actors tend to undeeshvn disaster prepared-
ness and damage mitigation is that they can cdvemselves against the low-
probability risk of natural disaster loss by purgihg insurance. Certain disaster types
will be covered by general insurance policies, dthers individuals or businesses
need to buy special policies. However, sometimsgramce companies outright refu-
se to sell specific insurance policies in partidyldigh risk areas or set premia so
high that few wish to buy themEven if private individuals buy insurance, thisedo
not reduce the total economic toll of natural disess unless the insurance policies are
tied to certain requirements that can prevent dgigate natural disaster loss and that
the insured need to demonstrate to have enactadén to receive pay-out. Often, the

exact opposite may be the case: insured individoay exert less effort at pre-

vival.” www.reidsteel.com/information/earthquake_resistbailding.htm (last accessed 30

August 2011).

In the US, for example, the Federal Emergency ddament Agency, a subdivision of the De-
partment of Homeland Security, publishes risk nfap$loods, hurricanes, general disasters and
communities. In the UK, the Environmental Agencaras its flood maps with insurance com-
panies. The Environmental Agency reassures citiflemisthis practice may actually reduce the
cost of buying flood insurance (Environmental Age@011). However, many insurers refuse to
insure property in high-risk areas or charge ridkepiate premia that many potential clients will

perceive as too expensive.



emptively reducing natural disaster loss in thevldedge that they will be insured in
the event the hazard strikes, a phenomenon wellskras moral hazard.

Disaster insurance coverage remains surprisinglydeen in high-risk areas.
In California, for example, a state which is likebyexperience within the near future
a major earthquake, potentially coupled with a &) only about 12 percent of resi-
dents have their property insured against earthegi@ikational Association of Profes-
sional Insurance Agents 2011). While such low cagerrates are probably due to the
fact that insurance policies are more expensiv@gh-risk areas than in low-risk ar-
eas, the under-provision may also result from emt& rational expectation that gov-
ernments will compensate victims from disastersdaiiig a large number of people
(and voters). Yet, by compensating people affebiedisasters, governments amplify
the moral hazard problem by creating a so-calleatithhazard problem (Raschky
and Weck-Hannemann 200%).

Also, buildings and infrastructure can be madeetsist the forces of some
types of natural hazards such as earthquakes andames, but not others. It would
be prohibitively expensive for individuals to bufldod-proof or fire-proof construc-
tions. No construction can withstand the lava floem the eruption of a volcano. For
these disaster types, either individuals resistéhgptation to settle and economically
operate in high-risk areas, which as argued al®uelikely, or the government needs
to step in with regulations and other policies preing or reducing settlement or or-

ganizing joint and collective investments such yeed or flood management schemes

To minimize charity hazard effects of public mention, the US Federal Emergency Manage-
ment Agency limits individual compensation to $3M0for those who qualify (California

Earthquake Authority 2011).
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protecting buildings and infrastructure that canhetrendered disaster-proof indi-
vidually.

Finally, private individuals will under-invest insé&ster mitigation policies be-
cause some of the economic damage in the formdafeict losses will be felt not by
individuals directly affected, but by others in tivder sub-national region or even
the entire country. Large-scale disasters causefisignt collateral damage and mac-
roeconomic distortions that impact the wider popata(Lall and Deichmann 2010;
Hallegatte and Przysluski 2011). Only governmemis mternalize these costs that

private individuals will ignore and we now turnttee role of public policy.

2.2 Under-provision of Public Disaster Damage Mitiign Policies

Governments exert a strong influence on disasteiscdo start with, many buildings
and the vast majority of a country’s infrastructateh as roads, ports, airports, power
lines etc. are built for public ownership, in folt in part. Governments can thus di-
rectly impact the quality of these constructionsit Bhe influence of governments
reaches much further. With private investment digaster preparedness and loss mit-
igation riddled by market failures caused by cdilexaction problems, information
asymmetries and myopic behavior of economic actggernments could step in to
correct these failures. They can discourage or &aensettlement or business opera-
tions in particularly high-risk areas. They cangasad strictly enforce disaster-proof
building standards. They can overcome the collectetion problem and provide
public goods in the form of dam constructions, lananagement schemes, fire fight-
ing facilities and the like.

Not unlike their citizens, however, governments enancentives to under-
invest in such policies. They face the followindgedima. On the one hand, they can

engage in transfer payments for the benefit of faivgroups with political influence
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or in projects which promise to increase short-tpottical support, but are entirely
irrelevant for preventing or mitigating disastemdage. On the other hand, they can
invest in disaster-proof infrastructure and corettam, which will only increase po-
litical support in the relatively unlikely event afsevere disaster and is costly both in
terms of direct and opportunity costs. Not surpgdy, many governments prefer
short-term political support. This is consistentwthe findings of Gasper and Reeves
(2011) who show that citizens pay greater attenteopost-disaster policies than to
pre-disaster prevention and mitigation measurese@onents, though they perfectly
know that a certain amount of long-term investmémtisaster preparedness and mit-
igation is in the social interest, decide in faebrtheir short-term incentives and in-
vest too little. lllustrative of such incentivestist no one seems to have followed the
example of the mayor of the small city of Fudaitbe North-East coast of Japan who
in the 1960s built a sixteen meter high concreté against tsunami waves, which
protected Fudai's 3000 inhabitants from the tsunaaves following the March 2011
earthquake. In his days, mayor Wamura was accuseaha ridiculed for wasting
public money, even though the construction wasthyréacilitated by mountains on
both sides of the dam such that the constructioriyneeeded to close a gap between
mountains. Other villages in the vicinity built much smalldams, if at all, which
were simply washed over by the March 2011 tsunaavies.

Likewise, in the knowledge that discouraging orriag settlement and busi-
ness operations in high-risk areas is politicaliypopular unless a natural disaster oc-
curs, governments will under-engage in such pdiciehe same applies for passing

and enforcing building standards, which will beqagved as an additional burden on

o http://www.dailymail.co.uk/news/article-1386978/Thapanese-mayor-laughed-building-huge-

sea-wall--village-left-untouched-tsunami.ht(tdst accessed 30 August 2011).
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private individuals that serves little purpose lie absence of disaster. Governments
are thus likely to under-invest in disaster pregaess and damage mitigation (Healy
and Malhotra 2009). Yet, they clearly vary in theeat to which they under-invest
and our aim is to understand why.

We argue that these incentives are largely infladrzy the likelihood and ex-
pected strength of potential future hazard evétisugh neither probability nor mag-
nitude can be known with certainty, areas diffethair propensity to experience fre-
guent and strong natural hazards. For simplicity,call this disaster propensity even
though it is strictly speaking hazard propensityha propensity to experienpeten-
tial disasters that matters. Disaster propensity caappeoximately known by gov-
ernments and the public either via receiving expdvice from scientists or simply by
inference from a country’s past history of evelisaster propensity in turn also af-
fects tax-payers’ willingness to pay for costly gargotive measures implemented by
the government. Thus, the degree to which a govenhhoeses political support from
voters and organized interests depends on wheitieens perceive disaster prepar-
edness and damage mitigation measures as resgogei@rnment action or wasteful
over-reaction. Governments that invest more théimecis are willing to accept lose
support. Accordingly, when the expected damage pbtential disaster increases,
governments are incentivized to invest more inddesgpreparedness and damage mit-
igation. Put differently, a high disaster propensiwvers the political costs to govern-
ments of investing in preparedness and mitigatvanje a low disaster propensity
increases these costs. Governments in countriésanitigh disaster propensity will
thus invest more in disaster preparedness and damdgation policies than gov-

ernments in countries with a low disaster propgnsit
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Does this mean that governments in high propertyntries can entirely
prevent disaster damage? This is unlikely to bectme for most hazards. Quake-
proofing buildings, for example, can avert theillajse, but cannot entirely prevent
property damage within buildings from the shakifghe ground transmitted into the
shaking of buildings. Infrastructure and buildirtbat withstand collapse may still be
damaged as the quake causes cracks and otheedeifgs that require repair. Worse
still, earthquakes can also trigger tsunamis, leshels and fires, which are much more
difficult to mitigate, let alone prevent. It is liely that a significant portion of the
damage of Japan’s two costliest earthquakes —388& Kobe quake and the 201&-T
hoku quake — was caused not by the ground shalgelf, ibut by the ensuing fire and
tsunami waves, respectively. Likewise, better amesed buildings and infrastructure
can escape collapse from very high wind speedsyimatows may still be smashed if
a tropical cyclone passes through. Some damagebwiltaused by debris dragged
along by the storm, while the associated rainfadlyncause local flooding. In the
worst case scenario (e.g. hurricane Katrina), tfeeng winds cause a storm surge that
breaks the protective dam system. Flood damagenigady difficult to eliminate.
Such damage occurs because the rainfall in anex@zeds the intake capacity of the
ground and, where existent, of the drainage sysierbecause strong rainfall lets
creeks and rivers swell and eventually leave teaeambed. Well-built and well-
placed dykes and dams can channel the excesslirainfhavert the worst, but it is
very difficult to prevent local flooding damage eyswhere altogether.

Two conclusions follow from our reasoning. Firsglipies enacted by gov-
ernments in high disaster propensity countriesclfyi cannot fully prevent natural
disaster damage. Small-scale damage is often wteMei and essentially random.

For example, the average estimated damage of reamtinquakes — smaller than 6.0
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on the Richter scale — in the low quake propenstyntries of Spain (.19 million
US$), Germany (10.6 million US$) and the UK (16.Rlion US$) varies for no ap-
parent reason and is not much different from theraxye damage of 3.9 million US$
caused by minor quakes in Japan with its extrenakejypropensity (all values de-
flated to 2009 prices). Where disaster preparedsiessld have its strongest effect is
in the mitigation and prevention of large-scale dgm Japan is plagued by frequent
large quakes. Yet only eleven quakes over the geir880 to 2009 inflicted damage
in excess of 500 million US$, only five in exce$oe billion US$ and only two in
excess of 30 billion US$. Compare this to Italyhwits much lower quake propensity,
where a rare earthquake of magnitude 6.3 on thiet&iscale struck close to the town
of L’Aquila in Central Italy in April 2009, leavinglmost 300 people dead and caus-
ing an estimated damage of 2.5 billion US$. In st the worst damage any quake
of magnitude 6.3 (or lower) ever caused in Japah 586 million US$.

The second conclusion following from our reasonisghat while govern-
ments in high disaster propensity countries havime@entive to enact policies that can
mitigate large-scale damage for most of the titney &lso have a higher likelihood of
experiencing an outlier disaster event with extrefamage. Exactly because a high
disaster propensity means that the country is &etiy hit by strong natural hazards,
the likelihood increases that one of these evextsasls the disaster preparedness ca-
pacity that otherwise prevents large-scale damidgeicane Katrina caused damage
that is about four times larger than the next ndesbhaging hurricane during the 1980
to 2011 period and at least one order of magnitadsger than average damage for
similarly strong tropical cyclones. The 1995 Koh&ke and the 20116hoku quake
caused about three and ten times higher damagegcatesely, than the third most

damaging quake from 2004 in @su as well as damage far in excess of average
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damage for even large Japanese quakes. Largelyeg@diamage from strong disaster
events can thus go hand in hand with extreme darfrtage extreme outlier events.
Both follow logically from our argument that govemants in countries with high dis-
aster propensity have an incentive to invest inatgrmitigation policies, but that all
governments, including the ones in high propensdyntries, have an incentive to

under-invest relative to the social optimum.

3. Resear ch Design

In this section, we test the hypothesis that foldvem our discussion of the political
economy of natural disaster damage, namely thattdea with higher disaster pro-
pensity experience lower damage for a hazard ofgargn strength and that the effect
of disaster propensity is more pronounced at thpeeupnd of the disaster damage dis-
tribution. This renders ordinary least squares (P8 standard workhorse of econ-
ometric analysis, ill-suited for two reasons. Firstis vulnerable to the existence of
outliers, which as argued above are bound to eXextond, it fails to take into account
that disaster propensity is likely to have strongféects at the top end of the disaster
damage distribution than at its lower end. In castirquantile regression, our chosen
estimation technique, is more robust to the preserfcoutliers and allows us to go
“beyond models for the conditional mean” (Koenked adallock 2001: 151) by esti-
mating different effects of the explanatory vareabht different points of the disaster
damage distribution, thus providing a fuller pietwf the impact of the explanatory
variables than just the conditional mean given WySOIt is also more suitable for
heteroskedastic data (Cameron and Trivedi 2009). 20/ use quantile regression
with bootstrapped standard errors with 100 samplepetitions. We report detailed

results for five quantiles, namely the .05, .25(fedian), .75 and .95 quantiles, but
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for the effect of disaster propensity we also pmeggaphs, which show its changing
effect as one continuously moves in .05 intervaisfthe .5 to the .95 quanti@.

Analysis of disaster damage is hampered by thetlfi@ttnone of the publicly
available disaster datasets provide comprehensioroenic loss estimates. This pa-
per’'s analysis benefits from the authors havinghbgranted access to a unique data-
set compiled by Munich Re (2011), the biggest seiance company in the world.
The NatCatSERVICE database provides a very hightgusaurce for economic loss
data worldwide since the re-insurance company ia privileged position to collect
these data, has done so for many years and hasedvauch time, money and effort
in the data collection. The database is of coucdgarfect. For example, smaller dis-
asters are somewhat under-reported especiallyeiednly periods. Likewise, data on
disasters in developing countries appear to berldgdble than data on events in de-
veloped countries. Still, with more than 20,000riestof country years with recorded
disaster damage over the period 1980 to 2009y iar the most comprehensive ex-
isting global database on natural disaster darfiage.

In order to maintain the database, several anabyatser information about
natural disaster events. Information on econonseds is collected from a variety of
sources including government representatives fretganizations and research facili-
ties, but also based on information of insuran@®@ations and insurance services as
well as on claims made by Munich Re’s customeilifalimeports on losses, which are

usually available in the immediate aftermath oisaster, are often highly unreliable.

10 A quantile (or percentile) is defined such thay proportions of the values of the dependent

variable fall below and (&) proportions fall above.
11

The database reaches further back in time, butithuRe acknowledges that before 1980 the

data become increasingly unreliable and incomplete.
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To deal with these problems, data is updated coatisly as more accurate informa-
tion becomes available, which might be even yeties ¢he disaster event. Munich
Re groups natural disasters into one of 24 typ®¥e study the three types that cause
the largest economic damage: earthquakes, tropycébnes and general floods. To-
gether, these account for roughly 70 percent @l tdisaster damage in the Munich
Re dataset, with the rest scattered over the rengafl types. Of the estimated sum
of disaster damage worldwide over the period 18982009 of more than 2.8 trillion
USS$ (in prices of 2009), 28.8 percent were causedeneral floods, 22.8 percent by
tropical cyclones and 17.6 percent by earthquakks.average damage is 212, 363
and 224 million US$, respectively, but damage ghhyi skewed with most disasters
causing relatively small damage and relatively thsasters causing relatively large
damage. Of the almost 3,900 country years with iggrflood events, 448 caused
damage above 100 million US$ and 98 resulted inadgmabove 1 billion US$. For
the roughly 1,800 country years with tropical cydoand the 2,200 country years
with quake events, the relevant numbers are, régpb; 394 and 101 for cyclones
and 117 and 40 for quakes.

To appropriately test the predictions derived froor theory, we require
measures of hazard strength or magnitude, bothdardo control for strength itself
but also to construct a proxy for the latent disaptopensity variable (see the discus-
sion below). The Munich Re database contains Riddale and top wind speed in-

formation for the vast majority of quake and tr@picyclone events. It holds no com-

12 These are avalanche, blizzard/snow storm, drodigish flood, cold wave/frost, general flood,

ground shaking/earthquake, hail storm, heat waghtring, landslide, local windstorm, sand-
storm, storm surge, subsidence, tropical cycloempest/severe storm, tornado, tsunami, rock-
fall, volcano, winter damage, wildfire, winter stor Where events involve multiple disaster

types, the event is classified according to whyglethas the most significant hazardous impact.
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prehensive and consistent information on precipiafor floods. However, because
almost without exception the geographical locabbrthe disaster center is given by
degree latitude and longitude, we combine inforamatirom the NatCatSERVICE
database with precipitation measures taken fromnvgtt and Matsuura (2011). We
acknowledge that the Richter scale is not the oelgvant magnitude variable for
guakes (see Keefer et al. 2011), nor are top wieed and precipitation the only rel-
evant magnitude variables for tropical cyclones #oods. However, these measures
capture the main destructive forces of the respedtazard events and offer the best
available proxy since other relevant magnitude aldeis (such as focal depth for
guakes or the melting of snow in mountains feedliig upstream rivers for floods)
are either not reported for the majority of relevdisaster events or entirely unavail-
able.

We aggregate the data from the individual disastent to the country-year
level, principally because with a string of eveots particular disaster type the des-
ignation of economic loss to each single evenbmewhat arbitrary and does not of-
fer much additional informatiol¥. For 56.4 percent of our country-years only one
event of a specific disaster type had occutfetio arrive at country-year values in
years with more than one event of a specific dsagpe in a given country, we use
the sum of values in a year in a country.

We transform the raw hazard magnitude variableacicordance with what

can be known about their likely non-linear impaatezonomic loss. Given the Rich-

13 Another pragmatic reason for aggregation to thentry year level is that we can, upon publica-

tion, provide other researchers with access torepiication data at this level of country years,
but would not be allowed to make available the arftial event level data.
14

For general floods, the share is 57.0 percentedothquakes 54.9 percent and for tropical cy-

clones 56.8 percent.
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ter scale is a base-32 logarithmic scale in terinth® amount of energy set free,
which implies that small increases on the scalelrés very large increases in un-
leashed energy (our proxy for hazard strength)traresform the Richter scale magni-
tude according to the formula 32*(Richter magnijusie that the transformed scale
measures the energy actually unleashed by thege@ite™ Wind speed is typically
seen as causing damage as a function of its cubgditude (Emanuel 2005; Schmidt
et al. 2009)"° We thus take the cube of top wind speeds as oasune. For precipita-
tion we know of no suggestions on how to accountafy potential non-linearity.
Monthly data on precipitation on a 0.5 degreeudgtand 0.5 degree longitude spatial
resolution is provided by Willmott and Matsuura 120 and we use the absolute pre-
cipitation during the flood disaster period frone thearest measurement point to the
disaster centre, implicitly assuming that flood @a is a linear function of precipita-
tion.’

Compared to the transformed Richter scale as garxguake hazard strength,

our hazard magnitude variables for tropical cyctomed floods suffer from larger

15 In Keefer et al. (2011), we took 10”(Richter mitigde) as our proxy for hazard strength. While

such a transformation reflects well the so-callethlified maximum ground motion, the un-

leashed energy is arguably a more accurate descdpthe devastating force of an earthquake.
16 In recent research, Nordhaus (2010) finds tHait-power transformation of top wind speed fits
US hurricane damage data best, while Bouwer andeBo2011) find a best fit for arff'$ower
transformation. Both sets of authors acknowledge tteir estimated best fit power transforma-
tions are well above what other studies suggestumglobal sample, such high power trans-
formations fit the data very poorly, which corroltas our decision to stick to the cubic trans-
formation suggested by the more established litezat
1 Ideally, one would like to have data on dailinfall, but such information is not available. In-

stead, we attribute monthly rainfall equally acrdags; longer lasting floods are attributed more

rainfall by summing up “daily” rainfall over the ped of the disaster.
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measurement error. What matters for tropical cyesoare wind speeds sustained over
some pre-defined short time period rather tharmtoq speeds as such, which might
occur for only a few seconds without being sustifee longer. Unfortunately, the
database only records top wind speeds, which wilcdrrelated with maximum sus-
tained wind speeds, but less than perfectly so.fléods, our precipitation measure
similarly measures true hazard magnitude only wahsiderable, probably even lar-
ger, measurement error. Floods need not be exelyspaused by local rainfall. Ra-
ther, they can be caused by rainfall or the meltihgnow in far-away regions where
the excess run-off water is carried by rivers ddvaasn causing a flood there. Unfor-
tunately, we have no way of capturing for eachhef 1,662 general flood events in
our sample the relevant area, from which the exegger originates. Extending the
number of relevant measurement points away fronméagest one to the disaster cen-
ter would not only increase the likelihood that eapture potentially relevant rainfall
in remote places, but also the likelihood that \aptare irrelevant rainfall that, for
topographical reasons, could never reach the difeated by the disaster. These
measurement errors will lead to attenuation biathethazard magnitude and disaster
propensity variables toward zero and will thus enidl less likely that we find evi-
dence for our hypothesi8.

We use the same sources of information for constigiour central explana-
tory variabledisaster propensity- a latent variable. To approximate disaster prepe
sity, we sum over the entire period 1980 to 2008ha transformed hazard magni-
tudes separately for each of the three specifiastiés events occurring in a country.

This variable has two desirable properties: ityisteamatically higher the more fre-

18 To see why the disaster propensity variablesal® affected, see the description of these vari-

ables further below.
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guent a country experiences hazards of a certg® &nd the stronger these hazard
events are. For example, the proxy for earthquakpemsity takes very high values
for Japan and Indonesia given very large quakeiggtis high for Iran, medium for
New Zealand and low for Germany or Spain with theiv quake activity? It might
appear problematic to use a value that covers rthieeeestimation period when this
value can only be truly known to individuals andrgmments at the very end of the
period. However, note that these measures proxiatent and next to time-invariant
disaster propensity of countries, such that thaesélom 1980 to 2008, for which we
have data, should be very highly correlated with\thlues from, say, 1900 to 1979 or
from the entire 18 century, for which we do not have dafa.

As control variables we include a country’s totabgs domestic product
(GDP), with data taken from World Bank (2010). Ather things equal, countries of
larger economic size will have more wealth potdiytidestroyable and are therefore
expected to experience larger losses. Similarlgnemic growth leads to a rise in po-
tentially destroyable wealth and disaster lossey meaen grow faster than wealth

(Hallegatte 2011§* We have no information on wealth as such, but @B&iPfunction

19 While the disaster-specific propensity variatdes of course positively correlated with the haz-

ard strength variables, the correlation valuesatereen .49 and .55 and thus well below values
that would generate problems with multicollinearity
20 We do not include country fixed effects since theory makes predictions about the cross-
country variation of disaster propensity — a vdaahat does not change in the short term.
A Alternatively, one could “normalize” disaster dage by GDP growth along the lines suggested
by Pielke et al. (1999, 2008). Such “normalizatiamplicitly assumes that the elasticity of dis-
aster damage with respect to the measure of wésadtie: GDP) is unitary. Estimating this elas-

ticity rather than constraining it to be equal teeagepresents a more flexible approach appropri-

ate for a structural model of disaster damagedikes.
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as a proxy. While wealth is a stock and GDP iow flwealth and income (GDP) are
highly correlated with each other. From the samerc® comes information on a
country’s income per capita. All other things eqgaadl controlling for total wealth in
particular, richer countries should experience low@amages. Buildings and infra-
structure tend to be better constructed in ricloeintries and thus more likely to with-
stand the forces of natural hazards than in poowantries. Also, disaster prepared-
ness and damage mitigation measures are costlpathdprivate actors and govern-
ments should find it easier to finance such measurecher than in poorer countries.
The sample size depends on whether an economiofasspecific disaster
type is recorded for a country year in the Muniah databas& Country years with
no known damage are excluded from the sample. grieisupposes that the database
captures all relevant natural hazard events of egiakopical cyclones and floods — an
assumption that can be questioned on various geowsaine hazard events will not
have caused damage because of successful prevenéiasures, smaller disasters
from the early years of data collection might hageaped Munich Re’s attention, and
disaster events in the developing world are likelyoe under-reported. As argued in
the previous section, hazard events are boundusecsome positive damage despite
the best mitigation measures in place. This willgagticularly true for quakes and
tropical cyclones. For floods, on the other handcessful disaster mitigation meas-
ures, e.g. in the form of dams, might sometimesgeany recorded damage, such
that the estimation results for floods might sufiemm selection bias: some country

years of damage zero should be in the sample adresisuccessfully withstood the

= Further sample size restrictions stem from mgssiata on the explanatory variables, but these

are small since we have an almost complete seazdrid magnitude variables and only include

economic size and regime type as control variables.
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hazard event, but are not included in the sampleesno economic loss occurred. The
sample selection makes it less likely that we gnapirical support for our hypothesis.
The relative under-representation of smaller desash the early periods of our study
does not seem to be severe since in non-reporctreess tests we found neither a
linear year variable to be statistically significaror did we find a trend in year-
specific period dummy variables. The relative uaggresentation of damage in the
developing world should also not represent a prabfer our estimations since,
firstly, we control for total economic size in cduas and, secondly, any sample se-
lection effect is unlikely to be systematically egated with disaster strength and dis-
aster propensity as these are not systematicailyehior lower in developing coun-
tries. The appendix lists the countries includedach of the respective natural disas-
ter event type samples.

We convert the nominal economic loss, GDP and irecper capita data into
constant US$ of 1995 using the US GDP deflatorafiey damage is a highly skewed
variable with the vast majority of events causietatively little damage and only a
small minority of events causing very large damagereduce skewness, we take the
natural log of disaster damage and, as MendelsantrSaher (2011) have done be-
fore us, estimate log-log models. This allows ipteting the estimated coefficients as
elasticities. Our analysis starts in 1980, the yfemm which onwards damage esti-
mates were comprehensively collected in the datalza®d ends in 2008, since more

recent cases are not yet fully closed (Munich Resg@nal communication).

4, Analysis

Table 1 presents estimation results on the detammsnof economic damage from
earthquakes. Each column presents estimated diastiat one of the five quantiles

looked at, moving from the .05 quantile on the tefthe .95 quantile on the right.
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Results for the lowest quantile at .05 corroboratie contention that very
small damages tend to be random. With the excemticuake magnitude, none of
the explanatory variables is statistically sigrfic and the pseudo?Ralue is very
low. The explanatory power of the estimation madeteases for higher quantiles. As
can be seen, disaster damage is higher the strdr@gguake magnitude, as one would
expect. Its effect increases at higher quantilesanimg that for higher damages the
same increase in unleashed energy results in arlargrease in damage. The esti-
mated elasticity of a country’s GDP is smaller thamtary. This is consistent with
Mendelsohn and Saher (2011) who similarly find meoelasticities below one in
their log-log estimation models, using EM-DAT a thource for disaster damage.
What this implies is that quake damage increassstlen proportionally with a coun-
try's GDP as a proxy for the stock of potentiallgstroyable wealth. Per capita in-
come has no consistent effect on expected quakagiBnbeing statistically signifi-
cantly negative for only one quantile, the .75 one.

Quake propensity, our central explanatory variaklestimated to have a neg-
ative effect on quake damage throughout, albetissitally indistinguishable from
zero at the bottom quantile. The estimated eldigtscincrease for higher quantiles
and become statistically significant. All otherrips equal, the effect of quake pro-
pensity on expected quake damage is almost fowstiarger at the .95 quantile than
at the .25 quantile. At the .95 quantile, a terceet increase in quake propensity low-
ers expected damage by 2.5 percent, whereas the isanease in quake propensity
lowers expected damage by only .8 percent at theu2ntile. In other words, a very
high quake propensity is much more conducive fdueeng very large damages than
it is for reducing relatively small quake damag&s.F-test rejects the hypothesis that

the estimated coefficients at the five quantilesexjual at p<0.0004, while another F-
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test rejects the hypothesis that the coefficienthea25 quantile (i.e., in the middle of
the lower half of the distribution) and at the dttantile (i.e., in the middle of the up-
per half of the distribution) are equal at p<0.00Bigure 1 illustrates how the elastic-
ity of quake propensity increases in absolute az®ne moves in .05 intervals from
the .05 to the .95 quantile.

Table 2 presents estimation results for econominadge from tropical cy-
clones. As with earthquakes, the explanatory paféne regression model increases,
if less strongly, moving from lower to higher quéed, and damage increases with
higher tropical cyclone hazard magnitude. Also Eimio earthquakes, damage in-
creases less than unitarily with a country’s laynomic size and per capita income
has no consistent effect on expected tropical eycldamages. In fact, at the largest
guantile per capita income even has a statisticgitipificant positive effect. This
could be because of the larger potentially desbigyavealth in richer countries,
which might not be fully captured by a country’saldGDP. As concerns tropical cy-
clone propensity, it has no statistically significaffect at the lower quantiles of the
cyclone damage distribution, but it becomes sigaiit at roughly the median of the
distribution. An F-test rejects the hypothesis that estimated coefficients at the five
guantiles are equal at p<0.0055, while anothersE+gects the hypothesis that the
coefficients at the specific .25 and .75 quantdes equal at p<0.0098. Figure 2
graphically summarizes the changing effect of ayelpropensity on expected dam-
age. After an initial unexpected upward spike & fuantiles, it continuously falls
(that is, becomes stronger in absolute terms) fabout the .15 quantile onward, but
levels off at about the .7 quantile. At high qukestiof the damage distribution cy-
clone propensity has a stronger effect on expedéadage than at low quantiles, but

at very high quantiles the effect is not strongp@ntat high quantiles. At the .75 quan-
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tile, a ten percent increase in tropical cycloneppnsity lowers expected cyclone
damage by about five percent.

Finally, table 3 presents estimation results foodl damage. The estimated
elasticities for flood hazard magnitude increasdéigher quantiles. As with quakes
and tropical cyclones, the estimated elasticitg cbuntry’s GDP is less than unitary,
but somewhat higher than for these two other desagpes. Apparently, flood dam-
age increases almost proportionally with a cousttgtal economic size. Richer coun-
tries experience lower expected damage, an effiatti$ statistically distinguishable
from zero at the lower quantiles up to the medfeconcerns flood propensity, simi-
lar to the other disaster types there is no sigaifi effect at the lowest quantile
looked at. A negative effect starts at the .25 tjlearthe effect becomes more nega-
tive and statistically significant at the mediarmaqtile, decreases in absolute size as
well as becoming statistically indistinguishablenfr zero at the .75 quantile, but in-
creases again in absolute size at the .95 quawfilere it is again statistically distin-
guishable from zero. An F-test rejects the hyposhémat the estimated coefficients at
the five quantiles are equal at p<0.0751. A sinfld@est cannot reject the hypothesis
that the coefficients at the .25 and .75 quantlesequal, but rejects the hypothesis
that the coefficients at the .05 and .95 quantikesequal at p<0.0165. Figure 3 sum-
marizes the effect of flood propensity at continslgwarying .05 intervals of quan-
tiles of the flood damage distribution. Note thia¢ 90 percent confidence interval
around the estimated elasticities as representédebghaded area is relatively larger
than it was for tropical cyclones propensity, whigre confidence interval in turn was
larger than was the case for quake propensity. iBhie be expected, given, as dis-
cussed above, the likely larger measurement eaothfe cyclone and even larger

measurement error for the flood propensity measamesthe fact that the flood sam-
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ple might suffer from sample selection as well. esthis larger measurement error,
which renders it less likely that we find statiatlg significant evidence for our hy-
pothesis, on the whole it remains true that a hifloed propensity has no effect on
avoiding smaller flood damages, but higher proggnsedicts lower damage at high-
er quantiles of the damage distribution. At mediaod damage, a ten percent in-
crease in flood propensity lowers predicted daniggen estimated 1.8 percent, while
at the .95 quantile, the same flood propensityease lowers predicted damage by 2.3

percent.

5. Measurement Error in Damage Estimates

All data on natural disaster damage are based tonatss, which carry considerable
uncertainty with them. In the opening paragrapkhdaf article, we referred to cost es-
timates for hurricane Katrina that vary from a loiv82 billion US$ (Knapp and
Brown 2005) to a high of 150 billion US$ (Burtondahlicks 2005); similarly wide
cost estimate intervals will almost inevitably riedar the vast majority of other dis-
aster events. We therefore conducted a Monte Gauldy, similar to what Plimper
and Neumayer (2009) do for mortality from faminesjch aims at exploring the ef-
fect of measurement error. Specifically, we rereated all models 100 times. In each
re-estimation, we injected a random measurement efrup to £30 percent on all
observations. By reporting the full range of caméfints from the Monte Carlo study
(minimum to maximum) in table 4 rather than merd#lg mean, we report the full
range of vulnerability of our estimates to measwgenerror, not just average vulner-
ability. Measurement error will only be random oreiage, but it is correlated with
the covariates in almost all individual iteratioBgy. looking at the range of the Monte

Carlo estimates, we thus also take some non-ramdeasurement error into account.
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We focus on estimates for disaster propensity, camtral explanatory vari-
able. As one would expect, the minimum of the Mo@&lo estimates suggest a
stronger effect of disaster propensity, while theximum suggests a weaker effect
than the mean of the Monte Carlo estimates, whidhrn is close to our main estima-
tion results without induced measurement error.drigmtly, however, results are ful-
ly robust for all disaster types in the sense thatsign of the maximum of the Monte
Carlo estimates is always consistent with the sigthhe mean estimate, which in turn
is consistent with the results from the main estamavithout measurement error in-
jected into the observatioASIn other words, whenever our main estimations esgg
a negative effect of disaster propensity this i$ cantradicted by either random
(mean estimate) or partially non-random measurement (minimum to maximum)

accounted for in the Monte Carlo analysis.

6. Conclusion

Economic damage caused by natural hazards cantigated, if typically not entirely
prevented. In this article, we studied why indivatkiand governments often fail to do
so. Given individuals face collective action, myofiehavior and asymmetric in-
formation problems, successful disaster preparedaed damage mitigation in im-
portant respects depend on government policieglaggns and interventions. We
have argued that the incentive to enact both miead public disaster damage miti-
gation measures strongly depends on the propenghywhich a country experiences
frequent and strong natural hazards. Where propeisshigh, the incentive is high
and vice versa where propensity is low. Naturabstisrs thus cause more damage

when a relatively strong outlier hazard hits araasbere the population and the gov-

s Also, the confidence intervals overlap (not showtable).
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ernment are unprepared because historically hazemadts are infrequent or tend to be
of low strength.

We have also argued that the effect of disastgrgmsity on predicted damage
is stronger toward the top end of the damage Higion than toward the bottom end
since smaller losses are often unpreventable ardltte be random. We found evi-
dence for this hypothesis in our quantile regressiof damage from earthquakes,
tropical cyclones and floods, which together makenearly three quarter of global
economic damage from natural disasters over theg &880 to 2008.

Yet, even where disaster propensity is high, ingestto under-invest can still
prevail. For example, dams will be built, but budb low to withstand the forces of
extreme events. Ironically, the existence of a dykeencourage settlement and in-
vestment in high-risk areas so that when the dagaksr fatalities and damage mas-
sively increase relative to the counter-factualiaibn of no dyke. As a result, ex-
pected damage for hazard events of “normal” magdeitis much lower, but damage
will be larger if an exceptionally strong outlieazard event hits that nullifies the pre-
ventive measures. Both hurricane Katrina and thkoKu earthquake demonstrate
that extreme economic losses and fatalities arsilplesdespite considerable public
awareness and preparedn®st New Orleans, the levees were just “not built fo
worst case events” (Handwerk 2005). In Japan, #st majority of people were not
killed and the greatest damage was not causedebgdtithquake itself, for which Ja-

pan is well prepared, but by the ensuing tsunaomiwhich it is not. It would have

2 While natural disasters normally kill few peopieany, in high-income countries, these two

disasters killed thousands of individuals and nthan any other disaster recorded in the US

and Japan.
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been possible but extremely expensive to protguarda coastline against waves of
such height.

The March 2011 tsunami was not Japan’s first ooewill it be the country’s
last one. The North-Eastern coastline of Japaittésdd with so-called tsunami stones
that Japanese ancestors have set up, warning peipleords carved into the stones
not to build below a certain elevation becausenefrisk of tsunamis (IHT 2011). But
large-wave tsunamis are too infrequent even condptreé'normal” earthquakes to
provide strong incentives for individuals to hebéd tdvice of their ancestors or for

policy-makers to invest in extremely expensive talagdefenses.
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Table 1. Economic loss from earthquakes.

Quantile: .05 .25 .5 .75 .95

In quake hazard magnitude 0.0818**  0.302***  0.452*0.640*** (Q.702***
(0.0380) (0.0341)  (0.0441) (0.0416) (0.0801)

In quake propensity -0.00755 -0.0725***0.108*** -0.207*** -0.242**
(0.0197) (0.0259)  (0.0343) (0.0461) (0.103)

In per capita income of country 0.0387 -0.0332 60.1 -0.404** 0.0204

(0.0542) (0.0859) (0.118) (0.176) (0.236)
In Gross Domestic Product of country 0.0722 0.369***  0.502*** 0.753*** 0.633***
(0.0540) (0.0528) (0.0831) (0.0875) (0.130)

Constant -8.000***  -15.80*** -18.69*** -22.07*** -19.60***
(1.545) (1.132) (1.497) (2.577) (3.720)
Observations 847 847 847 847 847
Countries 117 117 117 117 117
R-squared 0.02 0.12 0.19 0.25 0.24

Note: Dependent variable is the natural log of stesaloss. Bootstrapped standard
errors in parentheses, based on 100 iterations.

** gignificant at .05 level *** at .01 level.
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Table 2. Economic loss from tropical cyclones.

Quantile: .05 .25 .5 .75 .95
In tropical cyclone hazard magnitude  1.459** 1420 1.607** 1.468** (.917***
(0.373) (0.217) (0.159) (0.187) (0.172)

In tropical cyclone propensity 0.242 0.240 -0.420%0.524**  -0.370*
(0.206) (0.244) (0.233) (0.166) (0.199)
In per capita income of country -0.301 -0.0938 73%2 0.0728 0.202**

(0.200) (0.170) (0.111) (0.114) (0.102)
In Gross Domestic Product of country0.278**  0.457***  0.740*** 0.489***  (0.345***
(0.129) (0.131) (0.0822) (0.0727) (0.0772)

Constant -31.72*%* -33.87*** -28.67*** -19.61*** -9.898***
(5.950) (2.889) (2.749) (2.312) (2.637)
Observations 428 428 428 428 428
Countries 62 62 62 62 62
R-squared 0.18 0.22 0.27 0.22 0.27

Note: Dependent variable is the natural log of stesaloss. Bootstrapped standard
errors in parentheses, based on 100 iterations.

* significant at .1 level ** at .05 level *** ai01 level.
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Table 3. Economic loss from general floods.

Quantile: .05 .25 5 .75 .95

In flood hazard magnitude 0.272**  0.540** 0.733** 0.751** (0.714***
(0.0609) (0.0698) (0.0475) (0.0651) (0.0813)

In flood propensity 0.0672 -0.122 -0.177* -0.0870 0.233*
(0.0802) (0.105) (0.101) (0.117) (0.0947)

In per capita income of country -0.334**  -0.403*** -0.205** -0.107 -0.0997

(0.0973) (0.104) (0.101) (0.0976) (0.127)
In Gross Domestic Product of country).537***  0.812***  0.892*** (0.812***  0.709***
(0.0605) (0.0812) (0.0759) (0.0761)  (0.0988)

Constant -15.66%**  -19.18*** -20.92*** -18.41*** -12.22%**
(1.076) (1.272) (1.108) (1.218) (2.331)
Observations 1,662 1,662 1,662 1,662 1,662
Countries 161 161 161 161 161
R-squared 0.07 0.13 0.20 0.23 0.22

Note: Dependent variable is the natural log of stesaloss. Bootstrapped standard
errors in parentheses, based on 100 iterations.

* significant at .1 level ** at .05 level *** ai01 level.
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Table 4. Summary Statistics of Monte Carlo Analysisting the Robustness of Re-

sults toward Measurement Error.

Mean Std. Dev. Min Max
Quake propensity
at .05 quantile -0.0135 0.0096 -0.0364 0.0113
at .25 quantile -0.2349 0.0285 -0.3442 -0.1827
at .5 quantile -0.1038 0.0091 -0.1267 -0.0870
at .75 quantile -0.2090 0.0115 -0.2364 -0.1795
at .95 quantile -0.2368 0.0278 -0.3109 -0.1806
Tropical cyclone propensity
at .05 quantile 0.2424 0.0501 0.1252 0.3580
at .25 quantile 0.2455 0.0486 0.1473 0.3528
at .5 quantile -0.4347 0.0425 -0.5453 -0.3388
at .75 quantile -0.5513 0.0455 -0.6488 -0.4297
at .95 quantile -0.3377 0.0751 -0.4842 -0.1602
Flood propensity
at .05 quantile 0.0633 0.0335 -0.0063 0.1422
at .25 quantile -0.1065 0.0215 -0.1566 -0.0610
at .5 quantile -0.1664 0.0218 -0.2241 -0.1234
at .75 quantile -0.0765 0.0220 -0.1182 -0.0036
at .95 quantile -0.2420 0.0297 -0.3002 -0.1572

Note: Random measurement error of up to £30 pelioggdted into all observations.

Based on 100 iterations.
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Figure 1. The effect of quake propensity for vagygdamage quantiles.
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90 percent confidence interval around it.
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Figure 2. The effect of tropical cyclone propensityvarying damage quantiles.
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Figure 3. The effect of flood propensity for varyidamage quantiles.
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Appendix. Countries included in the respective dasip

Earthquakes:

Afghanistan, Albania, Algeria, Argentina, Armenidystralia, Austria, Azerbaijan,
Bangladesh, Barbados, Belgium, Bhutan, Bolivia, iB®sand Herzegovina, Brazil,
Bulgaria, Burundi, Canada, Chile, China, Colomkiango (DRC), Costa Rica, Croa-
tia, Cuba, Cyprus, Czech Republic, Djibouti, Doro&iDominican Republic, Ecua-
dor, Egypt, El Salvador, Ethiopia, Fiji, France,oB8ga, Germany, Ghana, Greece,
Guatemala, Guyana, Haiti, Honduras, Hungary, leglémdia, Indonesia, Iran, Israel,
Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenyagy® Republic, Lao PDR, Leba-
non, Macedonia, Madagascar, Malawi, Malaysia, Maglj Mexico, Moldova, Mon-
golia, Morocco, Mozambique, Nepal, Netherlands, N&saland, Nicaragua, Paki-
stan, Panama, Papua New Guinea, Paraguay, Peligpileis, Poland, Portugal,
Puerto Rico, Romania, Russian Federation, Rwandao8, Saudi Arabia, Sey-
chelles, Slovenia, Solomon Islands, Somalia, Séditita, Spain, Sri Lanka, St. Lu-
cia, St. Vincent and the Grenadines, Sudan, Sweslerizerland, Tajikistan, Tanza-
nia, Thailand, Tonga, Trinidad and Tobago, Tuni$iakey, Turkmenistan, Uganda,
United Kingdom, United States, Uzbekistan, Vanuatenezuela, Vietham, Yemen,
Zambia, Zimbabwe.

Floods:

Afghanistan, Albania, Algeria, Angola, Argentina;sndenia, Australia, Austria, Azer-
baijan, Bahamas, Bahrain, Bangladesh, Belarus,ielgBelize, Benin, Bhutan, Bo-
livia, Bosnia and Herzegovina, Botswana, BrazilJgaua, Burkina Faso, Burundi,
Cambodia, Cameroon, Canada, Central African Repufilhad, Chile, China, Co-
lombia, Congo (DRC), Congo (Rep.), Costa Rica, Gbiteire, Croatia, Cuba, Cy-

prus, Czech Republic, Denmark, Djibouti, DominiPmminican Republic, Ecuador,
Egypt, El Salvador, Eritrea, Estonia, Ethiopiaj,Fjnland, France, Gabon, Gambia,
The, Georgia, Germany, Ghana, Greece, Greenlandie@®ala, Guinea, Guinea-
Bissau, Guyana, Haiti, Honduras, Hungary, Iceldndia, Indonesia, Iran, Ireland,
Israel, Italy, Jamaica, Japan, Jordan, Kazakh#tanya, Kuwait, Kyrgyz Republic,

Lao PDR, Latvia, Lebanon, Lesotho, Liberia, Liedstein, Luxembourg, Mace-
donia, Madagascar, Malawi, Malaysia, Mali, MaurigarMexico, Moldova, Mongo-

lia, Morocco, Mozambique, Namibia, Nepal, NethedsenNew Zealand, Nicaragua,
Niger, Nigeria, Norway, Oman, Pakistan, Panama,uRagdew Guinea, Paraguay,
Peru, Philippines, Poland, Portugal, Puerto RicomBnia, Russian Federation,
Rwanda, Saudi Arabia, Senegal, Sierra Leone, Sargaflovak Republic, Slovenia,
Somalia, South Africa, South Korea, Spain, Sri lagr&t. Lucia, St. Vincent and the
Grenadines, Sudan, Suriname, Swaziland, Swedenzeland, Syrian Arab Repub-
lic, Tajikistan, Tanzania, Thailand, Timor-Lest&gDb, Trinidad and Tobago, Tunisia,
Turkey, Turkmenistan, Uganda, Ukraine, United Aimirates, United Kingdom,

United States, Uruguay, Uzbekistan, Vanuatu, Veelaz\ietnam, Yemen, Zambia,
Zimbabwe.
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Tropical Cyclones:

Antigua and Barbuda, Australia, Bahamas, Banglad@sitbados, Belize, Brazil,
Cambodia, Canada, China, Colombia, Costa Rica, Dbminica, Dominican Re-
public, ElI Salvador, Fiji, French Polynesia, Grema@uatemala, Haiti, Honduras, In-
dia, Indonesia, Iran, Jamaica, Japan, Madagascagysla, Mauritius, Mexico, Mi-
cronesia, Morocco, Mozambique, New Caledonia, Nealahd, Nicaragua, Oman,
Pakistan, Papua New Guinea, Philippines, Portiyarto Rico, Russian Federation,
Samoa, Seychelles, Solomon Islands, South AfricatifSKorea, Spain, Sri Lanka,
St. Kitts and Nevis, St. Lucia, St. Vincent and Geenadines, Swaziland, Thailand,
Tonga, Trinidad and Tobago, United States, Vanu&tngzuela, Vietnam.
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