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Abstract 

Economic damage from natural hazards can sometimes be prevented and always miti-

gated. However, private individuals tend to under-invest in disaster preparedness and 

mitigation measures due to collective action, information asymmetry and myopic be-

havior problems. Governments, which can in principle correct these market failures, 

also face incentives to under-invest in costly disaster preparedness policies and dam-

age mitigation regulations. Yet, disaster damage varies greatly across countries. We 

argue that the larger a country’s propensity to experience frequent and strong natural 

hazards, the more rational actors will invest in preparing for disasters and mitigating 

damage. Accordingly, economic loss from an actually occurring disaster will be 

smaller the larger a country’s disaster propensity – holding everything else equal, 

such as hazard magnitude, the country’s total wealth and per capita income. Even if 

governments implement effective mitigation measures, damage is not entirely pre-

ventable and smaller losses tend to be random. A higher disaster propensity will there-

fore have a more pronounced negative effect on predicted damage at the top end of 

the disaster damage distribution than at the bottom end. We find empirical support for 

our theory in a quantile regression analysis of economic loss from the three disaster 

types causing the vast majority of damage worldwide: earthquakes, floods and tropi-

cal cyclones. 
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1. Introduction 

With an estimated economic loss of between 82 billion (Knapp et al. 2005), 125 bil-

lion (Munich Re 2010) and 150 billion US$ (Burton and Hicks 2005), hurricane 

Katrina used to be the costliest natural disaster ever. Then came the March 2011 

earthquake and subsequent tsunami wave in Japan. Cost estimates have grown over 

time from 35 billion (LA Times, March 13) to between 122 billion and 235 billion 

(World Bank, March 21), to 309 billion US$ according to economic and fiscal policy 

minister Kaoru Yosano (Xinhua, March 23). Whatever the final cost estimate, the Tō-

hoku quake will prove to be the most expensive natural disaster of all times.  

Should it be surprising that the two costliest disasters were triggered by a hur-

ricane in the US and an earthquake in Japan? On one level, the answer is clearly no. 

Common sense tells us that economic damage of natural disasters is the higher the 

wealthier the affected country and the US and Japan are among the wealthiest nations 

in the world, though hurricane Katrina and the Tōhoku quake struck relatively poor 

areas of these countries.  

Still, we argue in this article that exactly because the US and Japan are fre-

quently hit by strong tropical cyclones and quakes, the predicted resulting economic 

loss is systematically lower than if cyclones and quakes of similar magnitude struck 

countries where such natural hazards generally tend to be less frequent and less 

strong. Governments can reduce expected disaster damage by implementing disaster 

preparedness and mitigation policies such as earthquake-proof construction regula-

tions or a network of dykes and dams, but they are more likely to invest in these 

measures if the country has a history of frequent and strong hazards, i.e. if it faces a 

higher disaster propensity. Propensity influences disaster damage because it deter-

mines the opportunity costs faced by governments and private actors in undertaking 
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measures that will mitigate damage in case hazard strikes. In this respect, the two 

costliest disasters in human history are outliers. They were so costly because existing 

safety measures were insufficient and failed, not because the US and Japanese gov-

ernments irrationally abstained from taking any precautionary measures in the face of 

high tropical cyclone and earthquake propensity, respectively. A safety device that 

fails leads to the worst case scenario: If individuals rely on the functioning of, say, a 

dam they will accumulate more wealth in areas behind the dam than they would have 

in the absence of the dam, thereby exacerbating the disaster effects.  

In Keefer, Neumayer, and Plümper (2011), we developed a theoretical argu-

ment predicting that earthquake propensity reduces earthquake mortality.1 Here, we 

augment our analysis in two important ways2. First, we move the focus of the analysis 

from the death toll of disasters to the economic toll. While there is a growing litera-

ture analyzing the determinants of disaster mortality (e.g., Kahn 2005; Anbarci et al. 

2005; Escaleras et al. 2007; Neumayer and Plümper 2007; Plümper and Neumayer 

2009, Keefer et al. 2011) as well as a nascent literature on the determinants of disaster 

damage (e.g. Mendelsohn and Saher 2011; Schumacher and Strobl 2011) we are the 

first to argue that the political economy of natural disaster damage predicts systemati-

                                                 
1  Anbarci et al. (2005) and Escaleras et al. (2007) include a frequency of major earthquakes vari-

able in their estimations, but do not provide a substantive theoretical justification for the inclu-

sion of what is a control variable in their model. 

2  Schumacher and Strobl (2011) find a positive association between disaster hazard (propensity) 

and disaster damage per capita, but they do not control for disaster magnitude. Our argument is 

conditional on controlling for the magnitude of any actual disaster as otherwise propensity will 

simply pick up the effect of actual disaster magnitude. In one set of regressions on quake dam-

age, they control for seismic energy released, but their sample only contains 59 observations 

with positive damage, hence it cannot be representative.  
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cally lower damage in high disaster propensity countries. At the same time, previous 

studies had to rely on publicly available datasets, which do not report damage esti-

mates for most events. In contrast, we can employ data from a comprehensive data-

base assembled by Munich Re, the biggest re-insurance company in the world.3 

Whether the effect of disaster propensity on mortality carries over to economic dam-

age is not clear a priori. For example, early warning systems, which can dramatically 

reduce fatality for some disaster types if people are moved out of harm’s way in time, 

are less effective for preventing economic loss as temporary measures can reduce the 

hazard impact, but buildings and infrastructure cannot be entirely moved out of harms 

way before hazards strike. One consequence is that there are many more disaster 

events with recorded economic loss than with recorded loss of life. 

Second, we extend the analysis to other types of natural disasters, demonstrat-

ing that the systematic impact of disaster propensity is not restricted to earthquakes, 

but carries over to the other two major disaster types, tropical cyclones and floods. 

Together with earthquakes, they account for roughly 70 percent of total worldwide 

economic damage from natural disasters.  

In the next section, we develop a political economy theory of natural disaster 

preparedness and loss mitigation. We discuss the various reasons why private indi-

                                                 
3  The Emergency Events Database (EM-DAT), maintained by the WHO Collaborating Centre for 

Research on the Epidemiology of Disasters (CRED) contains 8,105 natural disaster entries over 

the period 1980 to 2009, but only just below 3,000 of them record a loss estimate, even though it 

is in the definition of a disaster adopted by EM-DAT that an economic loss must have occurred 

in all events. By contrast, the database from Munich Re contains over 17,500 unique disaster en-

tries with positive recorded loss. There are more country years with losses since some disasters 

affect more than one country, in which case Munich Re attributes the total disaster damage 

across affected countries. 
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viduals under-invest in such measures. Governments can step in to overcome collec-

tive action, information asymmetry and myopic behavior problems, but they also suf-

fer from similar incentives to under-provide disaster preparedness and loss mitigation. 

We argue that private and public incentives to prepare for disasters and mitigate loss-

es are a function of disaster propensity (the expected frequency and magnitude with 

which hazards strike). In section 3, we describe our empirical research design in some 

detail and report results from our empirical analysis. Due to the inherent imprecision 

of natural disaster loss estimates, we undertake a Monte Carlo analysis, in which we 

test the robustness of our results to this measurement error. 

2. Natural Disaster Preparedness and Damage Mitigation 

For the longest time of its existence, mankind perceived natural disasters as acts of 

gods that can – if at all – only be alleviated by strictly abiding by religious rules or by 

sacrificing goods, animals, or human beings. Those days are over. Modern science has 

identified the causes of natural hazards and how to prevent or mitigate their conse-

quences. Hazards are thus events triggered by natural forces, but they only turn into 

disasters if people are exposed to the hazard and are not resilient to fully absorbing 

the impact without damage to life or property (Schwab et al. 2007). 

Three major, commonly accepted, factors determine disaster damage. First and 

foremost, the size of economic loss depends on the magnitude of the natural hazard 

event triggering the disaster. All other things equal, a stronger earthquake, for exam-

ple, will cause more damage than a more moderate one and below a certain threshold 

a quake can hardly be felt, let alone cause much damage. Second, the economic toll is 

higher the wealthier the area hit by the natural hazard (Pielke et al. 1999, 2008; Neu-

mayer and Barthel 2011; Bouwer 2011). While human beings cannot prevent natural 

hazards or reduce their strengths, they massively influence the level of wealth ex-
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posed to the forces of nature. There is also a risk that anthropogenic greenhouse gas 

emissions might increase the occurrence or the strength of weather-related natural 

hazard events (Min et al. 2011; Pall et al. 2011). 

Of course, the likely geographic location of disasters is more easily predictable 

for some disaster types (e.g., volcanoes) than others (e.g., earthquakes) and for some 

hardly at all (e.g., hail storm). However, people accumulate wealth in areas known to 

be prone to, say, flooding or hurricane landfall or known to be near frequent move-

ments of tectonic plates. And third, people determine the resistance of the exposed 

wealth stock to the hazard impact. Better constructed buildings and infrastructure, 

even if they were not explicitly built with natural hazards in mind, can more easily 

withstand ground shaking and high-speed winds, for example, than more poorly con-

structed ones.  

A theory of disaster damage, however, has to go beyond this functionalist log-

ic and also explain why some private individuals and governments specifically invest 

in disaster preparedness and damage mitigation while others do not or not as much. 

We argue that investment incentives depend on the probability and expected magni-

tude of natural hazards, what we call disaster propensity. Where propensity is high, 

individuals have higher incentives to privately invest in disaster preparedness and pol-

icy-makers are more likely to enact and enforce mitigation measures than where pro-

pensity is low. We start with private individuals (both households and profit-

maximizing firms), for which we argue that due to market failures they tend to under-

invest in disaster preparedness and damage mitigation, even if disaster propensity is 

large. We then turn to governments, which can intervene to correct these market fail-

ures. 
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2.1 Private Under-investment in Disaster Preparedness and Loss Mitigation 

Private individuals can adopt two main strategies for reducing expected disaster costs. 

They can refrain from settling or economically operating in high-risk areas or they 

can construct buildings and infrastructure in a way as to minimize the probability that 

they will become damaged or even destroyed if and when a hazard strikes. Neither 

strategy is particularly popular. High-risk areas such as coastlines or flood plains are 

often places that provide large economic and amenity values to those settling or oper-

ating there – so long as nothing happens. Strong natural hazards tend to be rare, and 

the time of their occurrence as well as their exact location essentially unpredictable, 

prompting individuals to neglect or ignore the risk. Living on a faultline, for example, 

merely implies that an earthquake will strike with a non-zero, somewhat vague prob-

ability, but no one knows when an earthquake will strike or with what magnitude or 

where its epicenter will be.4 

The second strategy is costly and thus unpopular, too. Earthquake-proof con-

structions increase building costs by at least 10 percent (Kenny 2009), solidly con-

structed dwellings that can withstand high top wind speeds are more expensive than 

light-weight wood constructions that can easily be blown away, and so on. Individual 

solutions to floods are even more expensive, which is why the Dutch water boards, 

some of which stem from the 13th century, can be regarded as one of the earliest pub-

                                                 
4  Susan Hough (2010: 222) concludes from her study of earthquake predictions: “[G]iven the 

state of earthquake science at the present time, earthquakes are unpredictable. (…) The odds are 

that, whenever the San Andreas fault (…) is about to let loose, the only heads up we can hope 

for is a foreshock or a foreshock sequence. Even then, the odds are that the foreshock sequence 

won’t look any different from the small earthquakes that pop off (…) on a fairly regular basis.” 

In other words, despite all progress in the natural sciences, seismologists depend on crude in-

duction to “predict” earthquakes.  
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licly provided good. Compared to the opportunity cost of not settling or operating in 

high-risk areas, the costs of disaster-proofing settlements are typically smaller. Yet, 

individuals often ignore potential impacts that come with very small probability, un-

known size and unknown timing (Camerer and Kunreuther 1989; Kunreuther 1996) 

and therefore fail to sufficiently protect their property against natural hazards.5 

Even if individuals are willing to invest in disaster-proofing buildings, they 

face the additional uncertainty that whether a building will in fact be able to withstand 

the full force of a natural hazard is unknown even to the owner. It is exacting on the 

prospective owner to supervise the construction process in order to verify the quality 

of the materials used and of the construction itself, while disaster-proofness is diffi-

cult to verify ex post, i.e. after construction. These information asymmetries generate 

disincentives for voluntary private investment in disaster-proof construction. As Aker-

lof (1970) has argued, an information gap between seller and buyer leads to a situa-

tion in which sellers do not sell high quality products and buyers assume that goods 

sold on this market are of low standard. Applied to the disaster-proofness of buildings 

this means investors will find it difficult to get a higher price for high-quality disaster-

proof constructions, which in turn discourages investment in such constructions in the 

first place.  

To make things worse, even constructors do not fully know the exact hazard 

strength up to which a construction can withstand the hazard’s destructive force.6 For 

                                                 
5  A laboratory experiment in the US concluded that most individuals are unwilling to pay any-

thing for insurance against very low probability events, even if the cost of the event is high 

(McClelland et al., 1993). 

6  REIDsteel, a company that sells “earthquake-proof” buildings, acknowledges on its website: 

“Nothing can be guaranteed to be fully resistant to any possible earthquake, but buildings and 

structures like the ones proposed here by REIDsteel would have the best possible chance of sur-
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those constructing a building and willing to invest in disaster-proofness, the worst 

case scenario is to invest marginally too little, in which case the costs of construction 

rise, but the building still does not withstand the hazard if it occurs. To be on the safe 

side, investors would thus have to invest significantly more than the highest expected 

level of hazard strength requires. This renders the investment even more expensive 

than on average necessary. 

Another reason why private actors tend to under-invest in disaster prepared-

ness and damage mitigation is that they can cover themselves against the low-

probability risk of natural disaster loss by purchasing insurance. Certain disaster types 

will be covered by general insurance policies, for others individuals or businesses 

need to buy special policies. However, sometimes insurance companies outright refu-

se to sell specific insurance policies in particularly high risk areas or set premia so 

high that few wish to buy them.7 Even if private individuals buy insurance, this does 

not reduce the total economic toll of natural disasters, unless the insurance policies are 

tied to certain requirements that can prevent or mitigate natural disaster loss and that 

the insured need to demonstrate to have enacted in order to receive pay-out. Often, the 

exact opposite may be the case: insured individuals may exert less effort at pre-

                                                                                                                                            
vival.” www.reidsteel.com/information/earthquake_resistant_building.htm (last accessed 30 

August 2011).  

7  In the US, for example, the Federal Emergency Management Agency, a subdivision of the De-

partment of Homeland Security, publishes risk maps for floods, hurricanes, general disasters and 

communities. In the UK, the Environmental Agency shares its flood maps with insurance com-

panies. The Environmental Agency reassures citizens that this practice may actually reduce the 

cost of buying flood insurance (Environmental Agency 2011). However, many insurers refuse to 

insure property in high-risk areas or charge risk-adequate premia that many potential clients will 

perceive as too expensive. 
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emptively reducing natural disaster loss in the knowledge that they will be insured in 

the event the hazard strikes, a phenomenon well-known as moral hazard. 

Disaster insurance coverage remains surprisingly low even in high-risk areas. 

In California, for example, a state which is likely to experience within the near future 

a major earthquake, potentially coupled with a tsunami, only about 12 percent of resi-

dents have their property insured against earthquakes (National Association of Profes-

sional Insurance Agents 2011). While such low coverage rates are probably due to the 

fact that insurance policies are more expensive in high-risk areas than in low-risk ar-

eas, the under-provision may also result from citizens’ rational expectation that gov-

ernments will compensate victims from disasters affecting a large number of people 

(and voters). Yet, by compensating people affected by disasters, governments amplify 

the moral hazard problem by creating a so-called charity hazard problem (Raschky 

and Weck-Hannemann 2007).8 

Also, buildings and infrastructure can be made to resist the forces of some 

types of natural hazards such as earthquakes and hurricanes, but not others. It would 

be prohibitively expensive for individuals to build flood-proof or fire-proof construc-

tions. No construction can withstand the lava flow from the eruption of a volcano. For 

these disaster types, either individuals resist the temptation to settle and economically 

operate in high-risk areas, which as argued above is unlikely, or the government needs 

to step in with regulations and other policies preventing or reducing settlement or or-

ganizing joint and collective investments such as dykes or flood management schemes 

                                                 
8  To minimize charity hazard effects of public intervention, the US Federal Emergency Manage-

ment Agency limits individual compensation to $30,000 for those who qualify (California 

Earthquake Authority 2011).  
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protecting buildings and infrastructure that cannot be rendered disaster-proof indi-

vidually. 

Finally, private individuals will under-invest in disaster mitigation policies be-

cause some of the economic damage in the form of indirect losses will be felt not by 

individuals directly affected, but by others in the wider sub-national region or even 

the entire country. Large-scale disasters cause significant collateral damage and mac-

roeconomic distortions that impact the wider population (Lall and Deichmann 2010; 

Hallegatte and Przysluski 2011). Only governments can internalize these costs that 

private individuals will ignore and we now turn to the role of public policy. 

2.2 Under-provision of Public Disaster Damage Mitigation Policies 

Governments exert a strong influence on disaster costs. To start with, many buildings 

and the vast majority of a country’s infrastructure such as roads, ports, airports, power 

lines etc. are built for public ownership, in full or in part. Governments can thus di-

rectly impact the quality of these constructions. But the influence of governments 

reaches much further. With private investment into disaster preparedness and loss mit-

igation riddled by market failures caused by collective action problems, information 

asymmetries and myopic behavior of economic actors, governments could step in to 

correct these failures. They can discourage or even ban settlement or business opera-

tions in particularly high-risk areas. They can pass and strictly enforce disaster-proof 

building standards. They can overcome the collective action problem and provide 

public goods in the form of dam constructions, flood management schemes, fire fight-

ing facilities and the like. 

Not unlike their citizens, however, governments have incentives to under-

invest in such policies. They face the following dilemma. On the one hand, they can 

engage in transfer payments for the benefit of pivotal groups with political influence 
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or in projects which promise to increase short-term political support, but are entirely 

irrelevant for preventing or mitigating disaster damage. On the other hand, they can 

invest in disaster-proof infrastructure and construction, which will only increase po-

litical support in the relatively unlikely event of a severe disaster and is costly both in 

terms of direct and opportunity costs. Not surprisingly, many governments prefer 

short-term political support. This is consistent with the findings of Gasper and Reeves 

(2011) who show that citizens pay greater attention to post-disaster policies than to 

pre-disaster prevention and mitigation measures. Governments, though they perfectly 

know that a certain amount of long-term investments in disaster preparedness and mit-

igation is in the social interest, decide in favor of their short-term incentives and in-

vest too little. Illustrative of such incentives is that no one seems to have followed the 

example of the mayor of the small city of Fudai on the North-East coast of Japan who 

in the 1960s built a sixteen meter high concrete wall against tsunami waves, which 

protected Fudai’s 3000 inhabitants from the tsunami waves following the March 2011 

earthquake. In his days, mayor Wamura was accused of and ridiculed for wasting 

public money, even though the construction was greatly facilitated by mountains on 

both sides of the dam such that the construction merely needed to close a gap between 

mountains.9 Other villages in the vicinity built much smaller dams, if at all, which 

were simply washed over by the March 2011 tsunami waves. 

Likewise, in the knowledge that discouraging or banning settlement and busi-

ness operations in high-risk areas is politically unpopular unless a natural disaster oc-

curs, governments will under-engage in such policies. The same applies for passing 

and enforcing building standards, which will be perceived as an additional burden on 

                                                 
9  http://www.dailymail.co.uk/news/article-1386978/The-Japanese-mayor-laughed-building-huge-

sea-wall--village-left-untouched-tsunami.html (last accessed 30 August 2011). 



 

13 

private individuals that serves little purpose in the absence of disaster. Governments 

are thus likely to under-invest in disaster preparedness and damage mitigation (Healy 

and Malhotra 2009). Yet, they clearly vary in the extent to which they under-invest 

and our aim is to understand why. 

We argue that these incentives are largely influenced by the likelihood and ex-

pected strength of potential future hazard events. Though neither probability nor mag-

nitude can be known with certainty, areas differ in their propensity to experience fre-

quent and strong natural hazards. For simplicity, we call this disaster propensity even 

though it is strictly speaking hazard propensity or the propensity to experience poten-

tial disasters that matters. Disaster propensity can be approximately known by gov-

ernments and the public either via receiving expert advice from scientists or simply by 

inference from a country’s past history of events. Disaster propensity in turn also af-

fects tax-payers’ willingness to pay for costly preemptive measures implemented by 

the government. Thus, the degree to which a government loses political support from 

voters and organized interests depends on whether citizens perceive disaster prepar-

edness and damage mitigation measures as responsible government action or wasteful 

over-reaction. Governments that invest more than citizens are willing to accept lose 

support. Accordingly, when the expected damage of a potential disaster increases, 

governments are incentivized to invest more in disaster preparedness and damage mit-

igation. Put differently, a high disaster propensity lowers the political costs to govern-

ments of investing in preparedness and mitigation, while a low disaster propensity 

increases these costs. Governments in countries with a high disaster propensity will 

thus invest more in disaster preparedness and damage mitigation policies than gov-

ernments in countries with a low disaster propensity.  
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Does this mean that governments in high propensity countries can entirely 

prevent disaster damage? This is unlikely to be the case for most hazards. Quake-

proofing buildings, for example, can avert their collapse, but cannot entirely prevent 

property damage within buildings from the shaking of the ground transmitted into the 

shaking of buildings. Infrastructure and buildings that withstand collapse may still be 

damaged as the quake causes cracks and other deficiencies that require repair. Worse 

still, earthquakes can also trigger tsunamis, landslides and fires, which are much more 

difficult to mitigate, let alone prevent. It is telling that a significant portion of the 

damage of Japan’s two costliest earthquakes – the 1995 Kobe quake and the 2011 Tō-

hoku quake – was caused not by the ground shaking itself, but by the ensuing fire and 

tsunami waves, respectively. Likewise, better constructed buildings and infrastructure 

can escape collapse from very high wind speeds, but windows may still be smashed if 

a tropical cyclone passes through. Some damage will be caused by debris dragged 

along by the storm, while the associated rainfall may cause local flooding. In the 

worst case scenario (e.g. hurricane Katrina), the strong winds cause a storm surge that 

breaks the protective dam system. Flood damage is similarly difficult to eliminate. 

Such damage occurs because the rainfall in an area exceeds the intake capacity of the 

ground and, where existent, of the drainage system or because strong rainfall lets 

creeks and rivers swell and eventually leave their streambed. Well-built and well-

placed dykes and dams can channel the excess rainfall and avert the worst, but it is 

very difficult to prevent local flooding damage everywhere altogether. 

Two conclusions follow from our reasoning. First, policies enacted by gov-

ernments in high disaster propensity countries typically cannot fully prevent natural 

disaster damage. Small-scale damage is often unavoidable and essentially random. 

For example, the average estimated damage of minor earthquakes – smaller than 6.0 



 

15 

on the Richter scale – in the low quake propensity countries of Spain (.19 million 

US$), Germany (10.6 million US$) and the UK (16.2 million US$) varies for no ap-

parent reason and is not much different from the average damage of 3.9 million US$ 

caused by minor quakes in Japan with its extreme quake propensity (all values de-

flated to 2009 prices). Where disaster preparedness should have its strongest effect is 

in the mitigation and prevention of large-scale damage. Japan is plagued by frequent 

large quakes. Yet only eleven quakes over the period 1980 to 2009 inflicted damage 

in excess of 500 million US$, only five in excess of one billion US$ and only two in 

excess of 30 billion US$. Compare this to Italy with its much lower quake propensity, 

where a rare earthquake of magnitude 6.3 on the Richter scale struck close to the town 

of L’Aquila in Central Italy in April 2009, leaving almost 300 people dead and caus-

ing an estimated damage of 2.5 billion US$. In contrast, the worst damage any quake 

of magnitude 6.3 (or lower) ever caused in Japan was 586 million US$. 

The second conclusion following from our reasoning is that while govern-

ments in high disaster propensity countries have an incentive to enact policies that can 

mitigate large-scale damage for most of the time, they also have a higher likelihood of 

experiencing an outlier disaster event with extreme damage. Exactly because a high 

disaster propensity means that the country is frequently hit by strong natural hazards, 

the likelihood increases that one of these events exceeds the disaster preparedness ca-

pacity that otherwise prevents large-scale damage. Hurricane Katrina caused damage 

that is about four times larger than the next most damaging hurricane during the 1980 

to 2011 period and at least one order of magnitude larger than average damage for 

similarly strong tropical cyclones. The 1995 Kobe quake and the 2011 Tōhoku quake 

caused about three and ten times higher damage, respectively, than the third most 

damaging quake from 2004 in Chūetsu as well as damage far in excess of average 
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damage for even large Japanese quakes. Largely reduced damage from strong disaster 

events can thus go hand in hand with extreme damage from extreme outlier events. 

Both follow logically from our argument that governments in countries with high dis-

aster propensity have an incentive to invest in damage mitigation policies, but that all 

governments, including the ones in high propensity countries, have an incentive to 

under-invest relative to the social optimum. 

3. Research Design  

In this section, we test the hypothesis that follows from our discussion of the political 

economy of natural disaster damage, namely that countries with higher disaster pro-

pensity experience lower damage for a hazard of any given strength and that the effect 

of disaster propensity is more pronounced at the upper end of the disaster damage dis-

tribution. This renders ordinary least squares (OLS), the standard workhorse of econ-

ometric analysis, ill-suited for two reasons. First, it is vulnerable to the existence of 

outliers, which as argued above are bound to exist. Second, it fails to take into account 

that disaster propensity is likely to have stronger effects at the top end of the disaster 

damage distribution than at its lower end. In contrast, quantile regression, our chosen 

estimation technique, is more robust to the presence of outliers and allows us to go 

“beyond models for the conditional mean” (Koenker and Hallock 2001: 151) by esti-

mating different effects of the explanatory variables at different points of the disaster 

damage distribution, thus providing a fuller picture of the impact of the explanatory 

variables than just the conditional mean given by OLS. It is also more suitable for 

heteroskedastic data (Cameron and Trivedi 2009: 205). We use quantile regression 

with bootstrapped standard errors with 100 sampling repetitions. We report detailed 

results for five quantiles, namely the .05, .25, .5 (median), .75 and .95 quantiles, but 
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for the effect of disaster propensity we also present graphs, which show its changing 

effect as one continuously moves in .05 intervals from the .5 to the .95 quantile.10 

Analysis of disaster damage is hampered by the fact that none of the publicly 

available disaster datasets provide comprehensive economic loss estimates. This pa-

per’s analysis benefits from the authors having been granted access to a unique data-

set compiled by Munich Re (2011), the biggest re-insurance company in the world. 

The NatCatSERVICE database provides a very high quality source for economic loss 

data worldwide since the re-insurance company is in a privileged position to collect 

these data, has done so for many years and has invested much time, money and effort 

in the data collection. The database is of course not perfect. For example, smaller dis-

asters are somewhat under-reported especially in the early periods. Likewise, data on 

disasters in developing countries appear to be less reliable than data on events in de-

veloped countries. Still, with more than 20,000 entries of country years with recorded 

disaster damage over the period 1980 to 2009, it is by far the most comprehensive ex-

isting global database on natural disaster damage.11 

In order to maintain the database, several analysts gather information about 

natural disaster events. Information on economic losses is collected from a variety of 

sources including government representatives, relief organizations and research facili-

ties, but also based on information of insurance associations and insurance services as 

well as on claims made by Munich Re’s customers. Initial reports on losses, which are 

usually available in the immediate aftermath of a disaster, are often highly unreliable. 

                                                 
10  A quantile (or percentile) q is defined such that q proportions of the values of the dependent 

variable fall below and (1-q) proportions fall above. 

11  The database reaches further back in time, but Munich Re acknowledges that before 1980 the 

data become increasingly unreliable and incomplete.  
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To deal with these problems, data is updated continuously as more accurate informa-

tion becomes available, which might be even years after the disaster event. Munich 

Re groups natural disasters into one of 24 types.12 We study the three types that cause 

the largest economic damage: earthquakes, tropical cyclones and general floods. To-

gether, these account for roughly 70 percent of total disaster damage in the Munich 

Re dataset, with the rest scattered over the remaining 21 types. Of the estimated sum 

of disaster damage worldwide over the period 1980 to 2009 of more than 2.8 trillion 

US$ (in prices of 2009), 28.8 percent were caused by general floods, 22.8 percent by 

tropical cyclones and 17.6 percent by earthquakes. The average damage is 212, 363 

and 224 million US$, respectively, but damage is highly skewed with most disasters 

causing relatively small damage and relatively few disasters causing relatively large 

damage. Of the almost 3,900 country years with general flood events, 448 caused 

damage above 100 million US$ and 98 resulted in damage above 1 billion US$. For 

the roughly 1,800 country years with tropical cyclone and the 2,200 country years 

with quake events, the relevant numbers are, respectively, 394 and 101 for cyclones 

and 117 and 40 for quakes. 

To appropriately test the predictions derived from our theory, we require 

measures of hazard strength or magnitude, both in order to control for strength itself 

but also to construct a proxy for the latent disaster propensity variable (see the discus-

sion below). The Munich Re database contains Richter scale and top wind speed in-

formation for the vast majority of quake and tropical cyclone events. It holds no com-

                                                 
12  These are avalanche, blizzard/snow storm, drought, flash flood, cold wave/frost, general flood, 

ground shaking/earthquake, hail storm, heat wave, lightning, landslide, local windstorm, sand-

storm, storm surge, subsidence, tropical cyclone, tempest/severe storm, tornado, tsunami, rock-

fall, volcano, winter damage, wildfire, winter storm. Where events involve multiple disaster 

types, the event is classified according to which type has the most significant hazardous impact. 
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prehensive and consistent information on precipitation for floods. However, because 

almost without exception the geographical location of the disaster center is given by 

degree latitude and longitude, we combine information from the NatCatSERVICE 

database with precipitation measures taken from Willmott and Matsuura (2011). We 

acknowledge that the Richter scale is not the only relevant magnitude variable for 

quakes (see Keefer et al. 2011), nor are top wind speed and precipitation the only rel-

evant magnitude variables for tropical cyclones and floods. However, these measures 

capture the main destructive forces of the respective hazard events and offer the best 

available proxy since other relevant magnitude variables (such as focal depth for 

quakes or the melting of snow in mountains feeding into upstream rivers for floods) 

are either not reported for the majority of relevant disaster events or entirely unavail-

able.  

We aggregate the data from the individual disaster event to the country-year 

level, principally because with a string of events of a particular disaster type the des-

ignation of economic loss to each single event is somewhat arbitrary and does not of-

fer much additional information.13 For 56.4 percent of our country-years only one 

event of a specific disaster type had occurred.14 To arrive at country-year values in 

years with more than one event of a specific disaster type in a given country, we use 

the sum of values in a year in a country. 

We transform the raw hazard magnitude variables in accordance with what 

can be known about their likely non-linear impact on economic loss. Given the Rich-

                                                 
13  Another pragmatic reason for aggregation to the country year level is that we can, upon publica-

tion, provide other researchers with access to our replication data at this level of country years, 

but would not be allowed to make available the confidential event level data.  

14  For general floods, the share is 57.0 percent, for earthquakes 54.9 percent and for tropical cy-

clones 56.8 percent. 
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ter scale is a base-32 logarithmic scale in terms of the amount of energy set free, 

which implies that small increases on the scale result in very large increases in un-

leashed energy (our proxy for hazard strength), we transform the Richter scale magni-

tude according to the formula 32^(Richter magnitude) so that the transformed scale 

measures the energy actually unleashed by the earthquake.15 Wind speed is typically 

seen as causing damage as a function of its cubed magnitude (Emanuel 2005; Schmidt 

et al. 2009).16 We thus take the cube of top wind speeds as our measure. For precipita-

tion we know of no suggestions on how to account for any potential non-linearity. 

Monthly data on precipitation on a 0.5 degree latitude and 0.5 degree longitude spatial 

resolution is provided by Willmott and Matsuura (2011) and we use the absolute pre-

cipitation during the flood disaster period from the nearest measurement point to the 

disaster centre, implicitly assuming that flood damage is a linear function of precipita-

tion.17 

Compared to the transformed Richter scale as proxy for quake hazard strength, 

our hazard magnitude variables for tropical cyclones and floods suffer from larger 

                                                 
15   In Keefer et al. (2011), we took 10^(Richter magnitude) as our proxy for hazard strength. While 

such a transformation reflects well the so-called amplified maximum ground motion, the un-

leashed energy is arguably a more accurate descriptor of the devastating force of an earthquake. 

16  In recent research, Nordhaus (2010) finds that a 9th-power transformation of top wind speed fits 

US hurricane damage data best, while Bouwer and Botzen (2011) find a best fit for an 8th-power 

transformation. Both sets of authors acknowledge that their estimated best fit power transforma-

tions are well above what other studies suggest. In our global sample, such high power trans-

formations fit the data very poorly, which corroborates our decision to stick to the cubic trans-

formation suggested by the more established literature. 

17   Ideally, one would like to have data on daily rainfall, but such information is not available. In-

stead, we attribute monthly rainfall equally across days; longer lasting floods are attributed more 

rainfall by summing up “daily” rainfall over the period of the disaster. 
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measurement error. What matters for tropical cyclones are wind speeds sustained over 

some pre-defined short time period rather than top wind speeds as such, which might 

occur for only a few seconds without being sustained for longer. Unfortunately, the 

database only records top wind speeds, which will be correlated with maximum sus-

tained wind speeds, but less than perfectly so. For floods, our precipitation measure 

similarly measures true hazard magnitude only with considerable, probably even lar-

ger, measurement error. Floods need not be exclusively caused by local rainfall. Ra-

ther, they can be caused by rainfall or the melting of snow in far-away regions where 

the excess run-off water is carried by rivers downstream causing a flood there. Unfor-

tunately, we have no way of capturing for each of the 1,662 general flood events in 

our sample the relevant area, from which the excess water originates. Extending the 

number of relevant measurement points away from the nearest one to the disaster cen-

ter would not only increase the likelihood that we capture potentially relevant rainfall 

in remote places, but also the likelihood that we capture irrelevant rainfall that, for 

topographical reasons, could never reach the area affected by the disaster. These 

measurement errors will lead to attenuation bias of the hazard magnitude and disaster 

propensity variables toward zero and will thus render it less likely that we find evi-

dence for our hypothesis.18 

We use the same sources of information for constructing our central explana-

tory variable disaster propensity – a latent variable. To approximate disaster propen-

sity, we sum over the entire period 1980 to 2008 all the transformed hazard magni-

tudes separately for each of the three specific disaster events occurring in a country. 

This variable has two desirable properties: it is systematically higher the more fre-

                                                 
18  To see why the disaster propensity variables are also affected, see the description of these vari-

ables further below. 
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quent a country experiences hazards of a certain type and the stronger these hazard 

events are. For example, the proxy for earthquake propensity takes very high values 

for Japan and Indonesia given very large quake activity, is high for Iran, medium for 

New Zealand and low for Germany or Spain with their low quake activity.19 It might 

appear problematic to use a value that covers the entire estimation period when this 

value can only be truly known to individuals and governments at the very end of the 

period. However, note that these measures proxy for latent and next to time-invariant 

disaster propensity of countries, such that the value from 1980 to 2008, for which we 

have data, should be very highly correlated with the values from, say, 1900 to 1979 or 

from the entire 19th century, for which we do not have data.20 

As control variables we include a country’s total gross domestic product 

(GDP), with data taken from World Bank (2010). All other things equal, countries of 

larger economic size will have more wealth potentially destroyable and are therefore 

expected to experience larger losses. Similarly, economic growth leads to a rise in po-

tentially destroyable wealth and disaster losses may even grow faster than wealth 

(Hallegatte 2011).21 We have no information on wealth as such, but GDP can function 

                                                 
19  While the disaster-specific propensity variables are of course positively correlated with the haz-

ard strength variables, the correlation values are between .49 and .55 and thus well below values 

that would generate problems with multicollinearity. 

20  We do not include country fixed effects since our theory makes predictions about the cross-

country variation of disaster propensity – a variable that does not change in the short term. 

21  Alternatively, one could “normalize” disaster damage by GDP growth along the lines suggested 

by Pielke et al. (1999, 2008). Such “normalization” implicitly assumes that the elasticity of dis-

aster damage with respect to the measure of wealth (here: GDP) is unitary. Estimating this elas-

ticity rather than constraining it to be equal to one represents a more flexible approach appropri-

ate for a structural model of disaster damage like ours. 
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as a proxy. While wealth is a stock and GDP is a flow, wealth and income (GDP) are 

highly correlated with each other. From the same source comes information on a 

country’s income per capita. All other things equal and controlling for total wealth in 

particular, richer countries should experience lower damages. Buildings and infra-

structure tend to be better constructed in richer countries and thus more likely to with-

stand the forces of natural hazards than in poorer countries. Also, disaster prepared-

ness and damage mitigation measures are costly and both private actors and govern-

ments should find it easier to finance such measures in richer than in poorer countries. 

The sample size depends on whether an economic loss of a specific disaster 

type is recorded for a country year in the Munich Re database.22 Country years with 

no known damage are excluded from the sample. This presupposes that the database 

captures all relevant natural hazard events of quakes, tropical cyclones and floods – an 

assumption that can be questioned on various grounds: some hazard events will not 

have caused damage because of successful prevention measures, smaller disasters 

from the early years of data collection might have escaped Munich Re’s attention, and 

disaster events in the developing world are likely to be under-reported. As argued in 

the previous section, hazard events are bound to cause some positive damage despite 

the best mitigation measures in place. This will be particularly true for quakes and 

tropical cyclones. For floods, on the other hand, successful disaster mitigation meas-

ures, e.g. in the form of dams, might sometimes prevent any recorded damage, such 

that the estimation results for floods might suffer from selection bias: some country 

years of damage zero should be in the sample as countries successfully withstood the 

                                                 
22  Further sample size restrictions stem from missing data on the explanatory variables, but these 

are small since we have an almost complete set of hazard magnitude variables and only include 

economic size and regime type as control variables. 
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hazard event, but are not included in the sample since no economic loss occurred. The 

sample selection makes it less likely that we find empirical support for our hypothesis. 

The relative under-representation of smaller disasters in the early periods of our study 

does not seem to be severe since in non-reported robustness tests we found neither a 

linear year variable to be statistically significant nor did we find a trend in year-

specific period dummy variables. The relative under-representation of damage in the 

developing world should also not represent a problem for our estimations since, 

firstly, we control for total economic size in countries and, secondly, any sample se-

lection effect is unlikely to be systematically correlated with disaster strength and dis-

aster propensity as these are not systematically higher or lower in developing coun-

tries. The appendix lists the countries included in each of the respective natural disas-

ter event type samples. 

We convert the nominal economic loss, GDP and income per capita data into 

constant US$ of 1995 using the US GDP deflator. Disaster damage is a highly skewed 

variable with the vast majority of events causing relatively little damage and only a 

small minority of events causing very large damage. To reduce skewness, we take the 

natural log of disaster damage and, as Mendelssohn and Saher (2011) have done be-

fore us, estimate log-log models. This allows interpreting the estimated coefficients as 

elasticities. Our analysis starts in 1980, the year from which onwards damage esti-

mates were comprehensively collected in the database, and ends in 2008, since more 

recent cases are not yet fully closed (Munich Re, personal communication). 

4. Analysis 

Table 1 presents estimation results on the determinants of economic damage from 

earthquakes. Each column presents estimated elasticities at one of the five quantiles 

looked at, moving from the .05 quantile on the left to the .95 quantile on the right.  
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Results for the lowest quantile at .05 corroborate our contention that very 

small damages tend to be random. With the exception of quake magnitude, none of 

the explanatory variables is statistically significant and the pseudo-R2 value is very 

low. The explanatory power of the estimation model increases for higher quantiles. As 

can be seen, disaster damage is higher the stronger the quake magnitude, as one would 

expect. Its effect increases at higher quantiles, meaning that for higher damages the 

same increase in unleashed energy results in a larger increase in damage. The esti-

mated elasticity of a country’s GDP is smaller than unitary. This is consistent with 

Mendelsohn and Saher (2011) who similarly find income elasticities below one in 

their log-log estimation models, using EM-DAT as the source for disaster damage. 

What this implies is that quake damage increases less than proportionally with a coun-

try’s GDP as a proxy for the stock of potentially destroyable wealth. Per capita in-

come has no consistent effect on expected quake damage, being statistically signifi-

cantly negative for only one quantile, the .75 one.  

Quake propensity, our central explanatory variable, is estimated to have a neg-

ative effect on quake damage throughout, albeit statistically indistinguishable from 

zero at the bottom quantile. The estimated elasticities increase for higher quantiles 

and become statistically significant. All other things equal, the effect of quake pro-

pensity on expected quake damage is almost four times larger at the .95 quantile than 

at the .25 quantile. At the .95 quantile, a ten percent increase in quake propensity low-

ers expected damage by 2.5 percent, whereas the same increase in quake propensity 

lowers expected damage by only .8 percent at the .25 quantile. In other words, a very 

high quake propensity is much more conducive for reducing very large damages than 

it is for reducing relatively small quake damages. An F-test rejects the hypothesis that 

the estimated coefficients at the five quantiles are equal at p<0.0004, while another F-
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test rejects the hypothesis that the coefficients at the.25 quantile (i.e., in the middle of 

the lower half of the distribution) and at the .75 quantile (i.e., in the middle of the up-

per half of the distribution) are equal at p<0.0037. Figure 1 illustrates how the elastic-

ity of quake propensity increases in absolute size as one moves in .05 intervals from 

the .05 to the .95 quantile.  

Table 2 presents estimation results for economic damage from tropical cy-

clones. As with earthquakes, the explanatory power of the regression model increases, 

if less strongly, moving from lower to higher quantiles, and damage increases with 

higher tropical cyclone hazard magnitude. Also similar to earthquakes, damage in-

creases less than unitarily with a country’s larger economic size and per capita income 

has no consistent effect on expected tropical cyclone damages. In fact, at the largest 

quantile per capita income even has a statistically significant positive effect. This 

could be because of the larger potentially destroyable wealth in richer countries, 

which might not be fully captured by a country’s total GDP. As concerns tropical cy-

clone propensity, it has no statistically significant effect at the lower quantiles of the 

cyclone damage distribution, but it becomes significant at roughly the median of the 

distribution. An F-test rejects the hypothesis that the estimated coefficients at the five 

quantiles are equal at p<0.0055, while another F-test rejects the hypothesis that the 

coefficients at the specific .25 and .75 quantiles are equal at p<0.0098. Figure 2 

graphically summarizes the changing effect of cyclone propensity on expected dam-

age. After an initial unexpected upward spike at low quantiles, it continuously falls 

(that is, becomes stronger in absolute terms) from about the .15 quantile onward, but 

levels off at about the .7 quantile. At high quantiles of the damage distribution cy-

clone propensity has a stronger effect on expected damage than at low quantiles, but 

at very high quantiles the effect is not stronger than at high quantiles. At the .75 quan-
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tile, a ten percent increase in tropical cyclone propensity lowers expected cyclone 

damage by about five percent. 

Finally, table 3 presents estimation results for flood damage. The estimated 

elasticities for flood hazard magnitude increase at higher quantiles. As with quakes 

and tropical cyclones, the estimated elasticity of a country’s GDP is less than unitary, 

but somewhat higher than for these two other disaster types. Apparently, flood dam-

age increases almost proportionally with a country’s total economic size. Richer coun-

tries experience lower expected damage, an effect that is statistically distinguishable 

from zero at the lower quantiles up to the median. As concerns flood propensity, simi-

lar to the other disaster types there is no significant effect at the lowest quantile 

looked at. A negative effect starts at the .25 quantile, the effect becomes more nega-

tive and statistically significant at the median quantile, decreases in absolute size as 

well as becoming statistically indistinguishable from zero at the .75 quantile, but in-

creases again in absolute size at the .95 quantile, where it is again statistically distin-

guishable from zero. An F-test rejects the hypothesis that the estimated coefficients at 

the five quantiles are equal at p<0.0751. A similar F-test cannot reject the hypothesis 

that the coefficients at the .25 and .75 quantiles are equal, but rejects the hypothesis 

that the coefficients at the .05 and .95 quantiles are equal at p<0.0165. Figure 3 sum-

marizes the effect of flood propensity at continuously varying .05 intervals of quan-

tiles of the flood damage distribution. Note that the 90 percent confidence interval 

around the estimated elasticities as represented by the shaded area is relatively larger 

than it was for tropical cyclones propensity, where the confidence interval in turn was 

larger than was the case for quake propensity. This is to be expected, given, as dis-

cussed above, the likely larger measurement error for the cyclone and even larger 

measurement error for the flood propensity measures and the fact that the flood sam-
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ple might suffer from sample selection as well. Despite this larger measurement error, 

which renders it less likely that we find statistically significant evidence for our hy-

pothesis, on the whole it remains true that a higher flood propensity has no effect on 

avoiding smaller flood damages, but higher propensity predicts lower damage at high-

er quantiles of the damage distribution. At median flood damage, a ten percent in-

crease in flood propensity lowers predicted damage by an estimated 1.8 percent, while 

at the .95 quantile, the same flood propensity increase lowers predicted damage by 2.3 

percent. 

5. Measurement Error in Damage Estimates 

All data on natural disaster damage are based on estimates, which carry considerable 

uncertainty with them. In the opening paragraph of this article, we referred to cost es-

timates for hurricane Katrina that vary from a low of 82 billion US$ (Knapp and 

Brown 2005) to a high of 150 billion US$ (Burton and Hicks 2005); similarly wide 

cost estimate intervals will almost inevitably result for the vast majority of other dis-

aster events. We therefore conducted a Monte Carlo study, similar to what Plümper 

and Neumayer (2009) do for mortality from famines, which aims at exploring the ef-

fect of measurement error. Specifically, we re-estimated all models 100 times. In each 

re-estimation, we injected a random measurement error of up to ±30 percent on all 

observations. By reporting the full range of coefficients from the Monte Carlo study 

(minimum to maximum) in table 4 rather than merely the mean, we report the full 

range of vulnerability of our estimates to measurement error, not just average vulner-

ability. Measurement error will only be random on average, but it is correlated with 

the covariates in almost all individual iterations. By looking at the range of the Monte 

Carlo estimates, we thus also take some non-random measurement error into account. 
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We focus on estimates for disaster propensity, our central explanatory vari-

able. As one would expect, the minimum of the Monte Carlo estimates suggest a 

stronger effect of disaster propensity, while the maximum suggests a weaker effect 

than the mean of the Monte Carlo estimates, which in turn is close to our main estima-

tion results without induced measurement error. Importantly, however, results are ful-

ly robust for all disaster types in the sense that the sign of the maximum of the Monte 

Carlo estimates is always consistent with the sign of the mean estimate, which in turn 

is consistent with the results from the main estimates without measurement error in-

jected into the observations.23 In other words, whenever our main estimations suggest 

a negative effect of disaster propensity this is not contradicted by either random 

(mean estimate) or partially non-random measurement error (minimum to maximum) 

accounted for in the Monte Carlo analysis. 

6. Conclusion 

Economic damage caused by natural hazards can be mitigated, if typically not entirely 

prevented. In this article, we studied why individuals and governments often fail to do 

so. Given individuals face collective action, myopic behavior and asymmetric in-

formation problems, successful disaster preparedness and damage mitigation in im-

portant respects depend on government policies, regulations and interventions. We 

have argued that the incentive to enact both private and public disaster damage miti-

gation measures strongly depends on the propensity with which a country experiences 

frequent and strong natural hazards. Where propensity is high, the incentive is high 

and vice versa where propensity is low. Natural disasters thus cause more damage 

when a relatively strong outlier hazard hits an area where the population and the gov-

                                                 
23  Also, the confidence intervals overlap (not shown in table). 
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ernment are unprepared because historically hazard events are infrequent or tend to be 

of low strength. 

We have also argued that the effect of disaster propensity on predicted damage 

is stronger toward the top end of the damage distribution than toward the bottom end 

since smaller losses are often unpreventable and tend to be random. We found evi-

dence for this hypothesis in our quantile regressions of damage from earthquakes, 

tropical cyclones and floods, which together make up nearly three quarter of global 

economic damage from natural disasters over the period 1980 to 2008. 

Yet, even where disaster propensity is high, incentives to under-invest can still 

prevail. For example, dams will be built, but built too low to withstand the forces of 

extreme events. Ironically, the existence of a dyke will encourage settlement and in-

vestment in high-risk areas so that when the dam breaks fatalities and damage mas-

sively increase relative to the counter-factual situation of no dyke. As a result, ex-

pected damage for hazard events of “normal” magnitude is much lower, but damage 

will be larger if an exceptionally strong outlier hazard event hits that nullifies the pre-

ventive measures. Both hurricane Katrina and the Tōhoku earthquake demonstrate 

that extreme economic losses and fatalities are possible despite considerable public 

awareness and preparedness.24 In New Orleans, the levees were just “not built for 

worst case events” (Handwerk 2005). In Japan, the vast majority of people were not 

killed and the greatest damage was not caused by the earthquake itself, for which Ja-

pan is well prepared, but by the ensuing tsunami, for which it is not. It would have 

                                                 
24  While natural disasters normally kill few people, if any, in high-income countries, these two 

disasters killed thousands of individuals and more than any other disaster recorded in the US 

and Japan. 
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been possible but extremely expensive to protect Japan’s coastline against waves of 

such height.  

The March 2011 tsunami was not Japan’s first one, nor will it be the country’s 

last one. The North-Eastern coastline of Japan is littered with so-called tsunami stones 

that Japanese ancestors have set up, warning people with words carved into the stones 

not to build below a certain elevation because of the risk of tsunamis (IHT 2011). But 

large-wave tsunamis are too infrequent even compared to “normal” earthquakes to 

provide strong incentives for individuals to heed the advice of their ancestors or for 

policy-makers to invest in extremely expensive coastal defenses. 
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Table 1. Economic loss from earthquakes. 

 

Quantile: .05 .25 .5 .75 .95 
ln quake hazard magnitude 0.0818** 0.302*** 0.452*** 0.640*** 0.702*** 
 (0.0380) (0.0341) (0.0441) (0.0416) (0.0801) 
ln quake propensity -0.00755 -0.0725*** -0.108*** -0.207*** -0.242** 
 (0.0197) (0.0259) (0.0343) (0.0461) (0.103) 
ln per capita income of country 0.0387 -0.0332 -0.164 -0.404** 0.0204 
 (0.0542) (0.0859) (0.118) (0.176) (0.236) 
ln Gross Domestic Product of country 0.0722 0.369*** 0.502*** 0.753*** 0.633*** 
 (0.0540) (0.0528) (0.0831) (0.0875) (0.130) 
Constant -8.000*** -15.80*** -18.69*** -22.07*** -19.60*** 
 (1.545) (1.132) (1.497) (1.577) (3.720) 
Observations 847 847 847 847 847 
Countries 117 117 117 117 117 
R-squared 0.02 0.12 0.19 0.25 0.24 
 

Note: Dependent variable is the natural log of disaster loss. Bootstrapped standard 

errors in parentheses, based on 100 iterations. 

** significant at .05 level  *** at .01 level. 
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Table 2. Economic loss from tropical cyclones. 

 

Quantile: .05 .25 .5 .75 .95 
ln tropical cyclone hazard magnitude 1.459*** 1.420*** 1.607*** 1.468*** 0.917*** 
 (0.373) (0.217) (0.159) (0.187) (0.172) 
ln tropical cyclone propensity 0.242 0.240 -0.420* -0.524*** -0.370* 
 (0.206) (0.244) (0.233) (0.166) (0.199) 
ln per capita income of country -0.301 -0.0938 -0.273** 0.0728 0.202** 
 (0.200) (0.170) (0.111) (0.114) (0.102) 
ln Gross Domestic Product of country 0.278** 0.457*** 0.740*** 0.489*** 0.345*** 
 (0.129) (0.131) (0.0822) (0.0727) (0.0772) 
Constant -31.72*** -33.87*** -28.67*** -19.61*** -9.898*** 
 (5.950) (2.889) (2.749) (2.312) (2.637) 
Observations 428 428 428 428 428 
Countries 62 62 62 62 62 
R-squared 0.18 0.22 0.27 0.22 0.27 
 

Note: Dependent variable is the natural log of disaster loss. Bootstrapped standard 

errors in parentheses, based on 100 iterations. 

* significant at .1 level  ** at .05 level  *** at .01 level. 
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Table 3. Economic loss from general floods. 

 

Quantile: .05 .25 .5 .75 .95 
ln flood hazard magnitude 0.272*** 0.540*** 0.733*** 0.751*** 0.714*** 
 (0.0609) (0.0698) (0.0475) (0.0651) (0.0813) 
ln flood propensity 0.0672 -0.122 -0.177* -0.0870 -0.233* 
 (0.0802) (0.105) (0.101) (0.117) (0.0947) 
ln per capita income of country -0.334*** -0.403*** -0.205** -0.107 -0.0997 
 (0.0973) (0.104) (0.101) (0.0976) (0.127) 
ln Gross Domestic Product of country 0.537*** 0.812*** 0.892*** 0.812*** 0.709*** 
 (0.0605) (0.0812) (0.0759) (0.0761) (0.0988) 
Constant -15.66*** -19.18*** -20.92*** -18.41*** -12.22*** 
 (1.076) (1.272) (1.108) (1.218) (1.331) 
Observations 1,662 1,662 1,662 1,662 1,662 
Countries 161 161 161 161 161 
R-squared 0.07 0.13 0.20 0.23 0.22 
 

Note: Dependent variable is the natural log of disaster loss. Bootstrapped standard 

errors in parentheses, based on 100 iterations. 

* significant at .1 level  ** at .05 level  *** at .01 level. 
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Table 4. Summary Statistics of Monte Carlo Analysis testing the Robustness of Re-

sults toward Measurement Error. 

 

 Mean Std. Dev. Min Max 

Quake propensity     
    at .05 quantile  -0.0135 0.0096 -0.0364 0.0113 
    at .25 quantile -0.2349 0.0285 -0.3442 -0.1827 
    at .5 quantile -0.1038 0.0091 -0.1267 -0.0870 
    at .75 quantile -0.2090 0.0115 -0.2364 -0.1795 
    at .95 quantile -0.2368 0.0278 -0.3109 -0.1806 
     
Tropical cyclone propensity     
    at .05 quantile  0.2424 0.0501 0.1252 0.3580 
    at .25 quantile 0.2455 0.0486 0.1473 0.3528 
    at .5 quantile -0.4347 0.0425 -0.5453 -0.3388 
    at .75 quantile -0.5513 0.0455 -0.6488 -0.4297 
    at .95 quantile -0.3377 0.0751 -0.4842 -0.1602 
     
Flood propensity     
    at .05 quantile  0.0633 0.0335 -0.0063 0.1422 
    at .25 quantile -0.1065 0.0215 -0.1566 -0.0610 
    at .5 quantile -0.1664 0.0218 -0.2241 -0.1234 
    at .75 quantile -0.0765 0.0220 -0.1182 -0.0036 
    at .95 quantile -0.2420 0.0297 -0.3002 -0.1572 
 

Note: Random measurement error of up to ±30 percent injected into all observations. 

Based on 100 iterations. 
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Figure 1. The effect of quake propensity for varying damage quantiles. 
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Note: the solid line shows the estimated coefficient, while the grey area represents a 

90 percent confidence interval around it. 
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Figure 2. The effect of tropical cyclone propensity for varying damage quantiles. 
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Note: the solid line shows the estimated coefficient, while the grey area represents a 

90 percent confidence interval around it. 
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Figure 3. The effect of flood propensity for varying damage quantiles. 
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Note: the solid line shows the estimated coefficient, while the grey area represents a 

90 percent confidence interval around it. 

 



 

44 

Appendix. Countries included in the respective samples. 

Earthquakes: 

Afghanistan, Albania, Algeria, Argentina, Armenia, Australia, Austria, Azerbaijan, 
Bangladesh, Barbados, Belgium, Bhutan, Bolivia, Bosnia and Herzegovina, Brazil, 
Bulgaria, Burundi, Canada, Chile, China, Colombia, Congo (DRC), Costa Rica, Croa-
tia, Cuba, Cyprus, Czech Republic, Djibouti, Dominica, Dominican Republic, Ecua-
dor, Egypt, El Salvador, Ethiopia, Fiji, France, Georgia, Germany, Ghana, Greece, 
Guatemala, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Israel, 
Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kyrgyz Republic, Lao PDR, Leba-
non, Macedonia, Madagascar, Malawi, Malaysia, Maldives, Mexico, Moldova, Mon-
golia, Morocco, Mozambique, Nepal, Netherlands, New Zealand, Nicaragua, Paki-
stan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, 
Puerto Rico, Romania, Russian Federation, Rwanda, Samoa, Saudi Arabia, Sey-
chelles, Slovenia, Solomon Islands, Somalia, South Africa, Spain, Sri Lanka, St. Lu-
cia, St. Vincent and the Grenadines, Sudan, Sweden, Switzerland, Tajikistan, Tanza-
nia, Thailand, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, 
United Kingdom, United States, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, 
Zambia, Zimbabwe. 
 

Floods: 

Afghanistan, Albania, Algeria, Angola, Argentina, Armenia, Australia, Austria, Azer-
baijan, Bahamas, Bahrain, Bangladesh, Belarus, Belgium, Belize, Benin, Bhutan, Bo-
livia, Bosnia and Herzegovina, Botswana, Brazil, Bulgaria, Burkina Faso, Burundi, 
Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Co-
lombia, Congo (DRC), Congo (Rep.), Costa Rica, Cote d'Ivoire, Croatia, Cuba, Cy-
prus, Czech Republic, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, 
Egypt, El Salvador, Eritrea, Estonia, Ethiopia, Fiji, Finland, France, Gabon, Gambia, 
The, Georgia, Germany, Ghana, Greece, Greenland, Guatemala, Guinea, Guinea-
Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Ireland, 
Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyz Republic, 
Lao PDR, Latvia, Lebanon, Lesotho, Liberia, Liechtenstein, Luxembourg, Mace-
donia, Madagascar, Malawi, Malaysia, Mali, Mauritania, Mexico, Moldova, Mongo-
lia, Morocco, Mozambique, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, 
Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, 
Peru, Philippines, Poland, Portugal, Puerto Rico, Romania, Russian Federation, 
Rwanda, Saudi Arabia, Senegal, Sierra Leone, Singapore, Slovak Republic, Slovenia, 
Somalia, South Africa, South Korea, Spain, Sri Lanka, St. Lucia, St. Vincent and the 
Grenadines, Sudan, Suriname, Swaziland, Sweden, Switzerland, Syrian Arab Repub-
lic, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Trinidad and Tobago, Tunisia, 
Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, 
United States, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, 
Zimbabwe. 
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Tropical Cyclones: 

Antigua and Barbuda, Australia, Bahamas, Bangladesh, Barbados, Belize, Brazil, 
Cambodia, Canada, China, Colombia, Costa Rica, Cuba, Dominica, Dominican Re-
public, El Salvador, Fiji, French Polynesia, Grenada, Guatemala, Haiti, Honduras, In-
dia, Indonesia, Iran, Jamaica, Japan, Madagascar, Malaysia, Mauritius, Mexico, Mi-
cronesia, Morocco, Mozambique, New Caledonia, New Zealand, Nicaragua, Oman, 
Pakistan, Papua New Guinea, Philippines, Portugal, Puerto Rico, Russian Federation, 
Samoa, Seychelles, Solomon Islands, South Africa, South Korea, Spain, Sri Lanka, 
St. Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines, Swaziland, Thailand, 
Tonga, Trinidad and Tobago, United States, Vanuatu, Venezuela, Vietnam. 


