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Abstract

We investigate two assumptions that theoretical economic analyses of climate
policies commonly impose, either explicitly or implicitly: that damages are
linked directly to carbon stocks, and that climate evolves either deterministi-
cally or via a relatively simple stochastic process. It has recently been argued
that climate, as proxied by temperature, is related to carbon stocks via a differ-
ential equation (so that climate is not directly linked to carbon stocks). Since
changes in carbon stocks are linked to emission levels, current emissions map
into temperatures via a second-order differential equation; this yields subtler,
but ultimately more pronounced, impacts over time. With respect to the evo-
lution of climate, we present evidence that a more complicated process than
Brownian motion is appropriate. Implications for optimal policy are discussed,
with particular relation to the recent interest within the literature regarding ”fat
tails” in the distribution over climate profiles.
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1 Introduction

Perhaps the most pressing issue currently facing environmental economists is the poten-

tial large-scale damages that might obtain from climate change. This problem has been

investigated from a variety of perspectives, from purely theoretical analyses to detailed and

sophisticated econometric investigations highly stylized numerical simulations. Many of

these inquiries employ two important simplifying assumptions, namely that carbon stocks

map directly into damages and that the system evolves more or less deterministically. Re-

cent work in both the physical sciences and in economics calls these assumptions into

question.

With respect to modeling damages, it seems clear that the principal causal factor will

be the climate itself, perhaps proxied by some measure of temperature (e.g., global mean

temperature). Carbon stocks only matter to the extent they influence the evolution of cli-

mate. But the science here also seems clear: changes in, not levels of, global temperatures

are impacted by radiative forcing, which in turn is linked to carbon stock. In turn, changes

in carbon stocks are linked to current emissions. In fact, the relation here is fairly com-

plex, with impacts from current emissions potentially showing up in decades or centuries.

Recognizing these facts, one must go beyond a simple one-state-variable model, allow-

ing instead for (at least) two state variables—temperature and carbon stocks. Related to

this concern, the vast majority of economic analyses assume a simple exponential decay

of carbon stocks. Such decay is motivated by natural uptake into carbon sinks, such as

land, forests and oceans. It seems worth noting the analogy between the exponential de-
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cay model and the exponential growth scenario employed by fisheries economists many

decades ago. In both cases, there is the potential for virtually limitless growth (of the fish

stock in the one case, and of natural sequestration in the other). Some time ago, fisheries

economists recognized there were limits to natural stock growth; these limits were linked to

the so-called carrying capacity of the resource. Likewise, there is finiteness to the potential

uptake of carbon into natural sinks such as the oceans. An implication of this finiteness

is that one cannot expect uptake to be linearly related to current stocks; either uptake is a

non-linear (presumably concave) function, or else carbon stocks must be split into multiple

categories, with one category decaying from the atmosphere so slowly as to be essentially

non-decaying (at least from the temporal perspective of humankind).

The second important point is that uncertainty abounds. Recognizing this point, Weitz-

man (2009b) has argued that we need to pay close attention to the relative size of the tails in

whatever probability distribution is deemed to characterize the salient uncertainty. While

his central logic is sound, the underlying casual empiricism that he uses to sketch out this

uncertainty is less so. In particular, the “distribution” he presents is based on a sample of

22 published studies, and it is not clear these represent independent draws. How one might

try to organize this data, taking into account the possible correlation, is hard to see.

We suggest an alternative approach. Readily available data on carbon stocks, global

emissions, and global temperatures can be used to evaluate the relations underpinnings

economic analyses. These data allow one to ask such questions as: Do carbon stocks decay

in a relatively simple fashion? and What is the stochastic nature of temperatures? The data
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we employ is relatively recent, having been tabulated only since the 1950s, but it does shed

some light. Based on this data we proposed an econometric methodology that asks whether

temperature changes follow a simple stochastic process such as Brownian motion (yielding

a Normal distribution over temperatures), or something more involved, such as geometric

Brownian motion (yielding a log-Normal distribution) or perhaps a distribution including

“jumps.”

One might imagine jumps resulting from sun flares, minor incongruities in the Earth’s

orbit or the like. Such effects are transitory in nature, in the sense that they come and

go in a relatively short period of time. But to the extent there is inertia in the global

climactic system these impacts might influence temperatures, and hence damages, for a

rather longer period of time. While not likely to lead to runaway climactic disasters, they

provide a vignette of the potential impacts of climate change. And they also contribute to

the potential for “fat tails” in temperature distributions.

Weitzman (2010a) recently conducted a simple analysis based on three ‘prototype’ dis-

tributions: the Normal (which he regards as thin-tailed), the Pareto (which he regards as

fat-tailed) and the log-Normal (which he regards as intermediate). Analogously, one can

think of our analysis as looking at varying degrees of tail-fatness, with Brownian motion

corresponding to thin tails, geometric Brownian motion as relating to the intermediate case,

and geometric Brownian motion with jumps as relating to fat tails. Our results are some-

what mixed: on the one hand, it seems clear that the thin-tailed Brownian motion model

does not do well in organizing the data. Indeed, the geometric Brownian motion model
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appears to perform best, in a classical statistical sense. But geometric Brownian motion

with jumps also performs better than simple Brownian motion. If one believes the costs

associated with forming policy based on a climate model that underestimates the signifi-

cance of jumps are larger than the costs associated with forming policy based on a climate

model that overestimates the significance of jumps, the case for employing the jump model

would be fairly strong. Given the highly non-linear damages that have been ascribed to

climatological impacts, such an asymmetric ”loss function” seems reasonable.

2 Deterministic Underpinnings

A number of authors have investigated the dynamic optimization problem associated with

climate change. By and large, the typical investigation models damages as based on carbon

stocks, and often assumes these damages are quadratic. While such a model is certainly

more easier to analyze, and relatively transparent, it incorporates two essential elements

that are clearly wrong: damages are linked to temperatures, not carbon stocks (Weitzman,

2009a, 2010b), and marginal damages are not likely to be linear (Schlenker and Roberts,

2009). The linkage to carbon stocks would make sense if temperatures were directly related

to carbon stocks, but they are not: carbon stocks induce changes in temperatures, not levels

(Allen et al., 2009; Weitzman, 2010b). Taking note of this fact, the dynamic optimization

problem associated with framing optimal climate policy would need to include at least two

state variable, temperatures and carbon stocks.

A model that pays attention to these facts can be constructed starting from Weitzman
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(2010b). Let T (t) represent a measure of temperature – such as global mean temperature –

at time t, and denote the stock of atmospheric carbon by C(t). The equation of motion for

temperature can then be written as (Allen et al., 2009; Weitzman, 2010b)

Ṫ = αln(C/C0)−βT, (1)

where C0 measures pre-industrial atmospheric levels of CO2. To complete this part of the

model, one then needs to describe the evolution of carbon stocks; this evolution will be

linked to anthropogenic contributions.

A fully detailed physical model, such as the one described in Allen et al. (2009), is

based on multiple carbon stocks, relating different time scales. For example, writing long-

term equilibrium carbon stocks as C3 and deviations away from those stocks as C2, the

system satisfies

Ċ2 = a0E−b2C2;

Ċ3 = b3C3;

where E is unabated (e.g., unsequestered) emissions. The important point is that some

carbon stays in the atmosphere for a very long time (Solomon et al., n.d.), so assuming

exponential decay of the (complete) carbon stock is not appropriate. An alternative sce-

nario, that does not require the introduction of an extra state variable, would be to allow
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for non-linear decay.1 Such a construct can be regarded as analogous to the logistic growth

component in modern fisheries models. Following this tack, we write

Ċ = a1E−C(b0−b1C); (2)

At a point in time t payoffs are (π(E)−D(T ))e−ρt , where π is interpreted as net benefits

from unabated emissions, D is temperature-related damages, and ρ is the discount rate

(i.e., payoffs are denominated in terms of period 0). One could think of π as representing

GDP, net of sequestration and abatement costs. It is natural to assume this payoff function

is increasing at small levels of E and globally concave; one particular example that has

received significant attention in the literature is the iso-elastic form

π(E) = AEθ+1,

where θ is the elasticity of marginal net benefits with respect to net emissions, π′(E)
Eπ′′(E) .

The solution to this problem is described by Pontryagin’s maximum principle: we first

define the current-value Hamiltonian

H = π(E)−D(T )+µ[a1E−C(b0−b1C)]+ν[αln(C/C0)−βT ],

where µ and ν refer to the co-state variables (i.e., shadow values) associated with the state

1 There is the additional point that empirically identifying the different carbon stocks is not feasible,
more or less by definition.
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variables C and T , respectively. The optimal values of the controls maximize the Hamilto-

nian at each point in time; assuming interior solutions, we therefore have

π
′(E∗)+a1µ = 0, (3)

where the asterisk signifies that the net emissions level has been chosen optimally. The

solution also requires the co-state variables follow the equations of motion

µ̇ = ρµ−∂H /∂C;

ν̇ = ρν−∂H /∂T.

Upon inspecting of the current-value Hamiltonian, it is evident that these last equations

may be written as

µ̇ = (ρ+b0)µ−2b1Cµ− α

C
ν; (4)

ν̇ = (ρ+β)ν+D′(T ). (5)

To make additional headway, time-differentiate equation (3) to obtain

π
′′(E∗)Ė∗+a1µ̇ = 0, or

π
′′(E∗)Ė∗+a1[(ρ+b0)µ−2b1Cµ− α

C
ν] = 0. (6)
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Combining terms and invoking equation (3) then yields

Ė∗ = (ρ+b0−2b1C)
π′(E∗)
π′′(E∗)

− a1α

π′′(E∗)C
ν. (7)

The key points to be gleaned from equations (3) and (7) is that damages only exert an

indirect effect on optimal emissions, in that they influence changes in – but not levels of –

E∗. That is, the role played by climate change in determining optimal policy at a point in

time is far subtler than would be suggested by a simpler model that regards damages as the

result of the stock of greenhouse gases.

Before moving on to a discussion of the empirical evidence, we detour briefly for a

discussion of a more traditional version of the model, in which damages are tied to carbon

stocks. For purposes of comparison, we retain the representation of damages as based on

temperatures, but replace the state equation for temperatures with a simplified form:

T (t) = φ(C(t)).

Based on this representation, damages can be expressed as d(C)≡D(φ(C)). Using such an

approach, the state equation on temperatures becomes irrelevant to the dynamic optimiza-

tion problem. The optimality condition governing emissions is still given by eq. (3),but

now the equation of motion for the (lone remaining) co-state variable is

µ̇ = (ρ+b0)µ−2b1Cµ+d′(C). (8)
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With this version of the problem, then, the differential equation governing the path of opti-

mal emissions would be

Ė∗ = (ρ+b0−2b1C)
π′(E∗)
π′′(E∗)

− a1d′(C)

π′′(E∗)
. (9)

Comparing against eq. (7), we see that the implication of assuming that carbon stocks

directly impact temperatures, as opposed to impacting the change in temperatures, is to

replace the component αν/C with d′(C). In light of the evolution of the shadow value ν,

this substitution is likely to lead to mis-adjustments that change over time.

3 Stochastic Temperatures

While instructive, this deterministic model omits a key ingredient. To the extent that

marginal damages are non-linear, and there is uncertainty related to temperatures, the na-

ture of this uncertainty becomes important. In particular, tail-thickness becomes a relevant

concern.2 In this section, we explore the empirical evidence to see what can be learned

from the available data.

Data on global mean temperatures and atmospheric carbon is readily available on the

Internet. 3 Carbon stocks are measured at a number of locations. We use observations from

Mauna Loa, which represent the longest time series of atmospheric carbon observations.

2 Compare the results in Weitzman (2010a), who finds little difference in the impact of tail thickness
when damages are quadratic, but potentially large differences when marginal damage is highly non-linear.

3 Atmospheric carbon data are available at http://cdiac.esd.ornl.gov/trends/co2/sio-keel.html. Global
mean temperature data are available at http://data.giss.nasa.gov/gistemp/tabledata/GLB.Ts+dSST.txt.
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Data on both global mean temperature and carbon stocks are available at the monthly level

from March 1958 to March 2011, which yields 642 observations.

Using this data, we investigate eq. (1). The regression equation of interest could equally

well be viewed as one where the left-side variable is current temperature, in which case one

of the regressors is the lagged value of the left-side variable. This fact poses no difficul-

ties if the residual term is serially uncorrelated, but that seems suspect in the case at hand.

Because temperatures evolve slowly, the potential for shocks in one month to exert an in-

fluence on temperatures in the next month would seem to be very real. Accordingly, we

proceed on the assumption that we have serial correlation as well as a lagged left-side vari-

able in the regression equation. Addressing this complication requires the procurement of

a consistent estimate of the serial correlation parameter; we follow the approach suggested

by Hamilton (1994, p. 226).4

Results from this approach are presented in the second column of Table 1 (labeled ‘Re-

gression 1’). We note that both lagged temperature (measured in degrees Centigrade) and

the natural log of atmospheric carbon stocks (measured in parts per million) are strongly

statistically significant, and take the anticipated sign. We also note that there is much resid-

ual uncertainty, as indicated by the modest R-squared value. An alternative regression, that

allows for the possible influence of the change in carbon stocks upon the change in tem-

4 The idea is to run a regression that adds lagged values of the original regressors, and then form the
negative of the ratio of the point estimates on current and lagged values of the exogenous variable (the natural
log of carbon stock). This point estimate is a consistent estimator of the true underlying serial correlation
parameter. We then transform the variables by subtracting the product of this estimate with teh lagged value
of the variable, for each of our variables. The point estimates reported below are derived from such a trans-
formation. Because this approach requires dropping the first two observations, the regressions emply 640
observations.
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peratures, is reported in the third column (‘Regression 2’). We note that the coefficients on

the three variables form Regression 1 (lagged temperature, the natural log of atmospheric

carbon stocks, and a constant) change very little, while the coefficient on the new variable

appears insignificant, both numerically and statistically. By contrast, dropping the natural

log of carbon stocks, as we do in the fourth column (1Regression 3’) yields a noticeable

drop in explanatory power (as measured by the sharp reduction in the R2 statistic), a no-

ticeable change in the coefficient on lagged temperature, and a sign change in the constant.

This third regression corresponds to a model in which there is a direct relation between

levels of carbon stock and levels of temperatures, as is implied in a number of extant the-

oretical analyses. In our view, the regression results reported in Table 1 strongly support

the physical model described in eq. (1) — where carbon stocks influence changes in tem-

peratures — and cast serious doubt on a model that posits a direct relation between carbon

stocks and temperatures.

Proceeding on the basis of Regression 1, we formed the fitted residuals, which are

plotted in Figure 1. Our primary interest here regards the distribution of these residuals,

particularly the relative thickness of the tails associated with these residuals. If the data

were Normally distributed, one would expect .5% of the observations to be further than

2.575 standard deviations from the mean; with 640 observations, that would yield roughly

3 observations in either tail. By contrast, we see 6 observations in the lower tail and 8 ob-

servations in the upper tail. Similarly, 4 observations lie more than 2.81 standard deviations

below the mean and 4 lie more than 2.81 standard deviations above the mean; were these
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residuals Normally distributed, these numbers would be each be roughly 1.5. On balance,

then, it seems the tails are roughly twice as heavy as would be predicted. This sense is

corroborated by Figure 2, which compares the cumulative distribution against a cumulative

normal (using a logarithmic scale). Where the residuals normally distributed this compari-

son would yield a straight line; instead, we see marked departures in both tails. Moreover,

the positive outliers appear to be somewhat more important. This visual evidence suggests

the presence of relatively fat tails.5

If outliers are important, as the previous discussion suggests, then one would expect to

pick this up by including a dummy variable that captures any observations associated with

outliers. To address this possibility, we included two dummy variables, one for observations

that were more than 2.575 standard deviations below the mean (Djump2 50) and one for

observations that were more than 2.575 standard deviations above the mean (Djump2 51).

The results in the fifth column of Table 1 provide such a regression. The key point here

is that including dummy variables for these unusual observations generates statistical sig-

nificant estimates for both dummies, with a marked improvement in the regression results.

Moreover, the average effect associated with these anomalies yields a change of roughly

.1 degrees Centigrade. To put this in context, the average monthly change in temperatures,

measured in degrees Celsius, is .0007; evidently, these observations yield important effects.

Since temperatures are subject to considerable inertia, the implication is that effects tied to

these observations tend to last for several months. Ultimately, it appears that these outliers

5 The sample estimate of kurtosis is 4.285; if the residuals were normally distributed we would expect
an estimated value of 3. The probability that a value of 4.285 would obtain if the data were truly normally
distributed is less than 1%, reinforcing the conjectured presence of fat tails.
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exert a meaningful effect in this data, and seem likely to result in abnormally fat tails.

One concern within this setting is the potential for temperatures to influence carbon

stocks. While such a result seems remote in principle, the fact we are using a measure-

ment at a specific location to measure global carbon stocks raises the specter of errors-

in-variables. To address this concern, we ran an instrumental variables regression using

obervation on carbon stocks fromthe preceding year as an instrument for current readings;

the one-year lagged stock is certainly not caused by current temperatures, while the slow

evolution of carbon stocks suggests a reasoably strong correlation with current stocks. We

therefore expect one-year lagged stocks to perform well as an instrument for current stock.

The results from this instrumental variables regression are reported in the sixth column. We

see here that the coefficients on lagged temperature and the natural log of carbon stocks are

quiote similar to those described above, suggesting the potential endogeneity of the carbon

stock variable is likley of minimal concern.

If temperature variations are subject to relatively fat tails, what might be the cause? One

possibility we explore is related to the notion of a jump stochastic process. Jump processes

are usually thought of as the result of exogenous effects; in the present case, that might be

because of sunspots or sun flares, or variations in the Earth’s orbit. Indeed, the observations

far from the mean observed in Figure 1 do seem indicative of jumps.

To allow for the presence for jumps, we assume jumps arrive with probability λ in any

particular period. The jump component is modeled as a Poisson-driven process denoted

q; the size of a jump, if it occurs, is distributed with mean θ and variance δ2. Estimation
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results based on such a model are given in Table 2. This table lists parameter estimates

for mean and variance of the residuals, along with the three key parameters associated

with the jump process:the probability of a jump (λ), the mean value of a jump (θ) and

the standard deviation of the magnitude of a jump (δ). The estimated coefficients from the

jump diffusion model are all statistically important. On the other hand, the restricted model

produces a relatively poor fit of the data; indeed, the likelihood ratio statistic is very large,

and is signifcant at better than the .01% level.

4 Conclusion

In this paper, we consider extensions to the traditional theoretical growth model associated

with climate policy, and consider related empirical evidence. There is evidence, albeit

weaker than one would like, based on conventional hypothesis tests, for relatively fat tails

associated with temperature changes. To the extent that temperature changes do exhibit

relatively heavy tails, the potential impact on optimal climate policy is non-trivial.

Using a stylized model based on a stripped down version of the underlying dynamic

system governing the Earth’s climate, Weitzman (2010a) argues that it could be worth

spending a considerable fraction of current global GDP to combat climate change. The

scenarios he investigates are, however,somewhat ad hoc, in that they contemplate quite

large levels of warming. That point noted, his results do indicate the potentially important

role that tail thickness could play: the fraction of global wealth that might optimally be

allocated is markedly larger with the thickest tailed distribution, and considerably smaller

14



with the Normal distribution. Our results cast doubt on the empirical saliency of Normally

distributed temperature variations, which in turn suggests it could be optimal to allocate

meaningful amounts of resources to insure against substantial temperature increases. If

temeratures are leptokurtotic, as our results indicate, then idiosyncratic shocks are likely

to map into meaningful changes in temperatures that persist for a period of time. In light

of the observation that the marginal damage associated with temperature increases is non-

linear (Schlenker and Roberts, 2009), the cost associated with falsely deciding such jumps

are insignificant has the potential to be considerably larger than the cost associated with

falsely deciding jumps are important.

On the other side of the coin, one could argue that taking actions in the near term

imposes a different sort of cost, and that before the major economies of the world decide

to undertake substantial climate policies (e.g., by devoting significant resource levels or by

imposing large carbon taxes) they need more compelling evidence than the potential for the

short-term results we resent.

While the philosophy that should win the day is something of a matter of interpretation,

we believe our results do point to the possibility for jumps to manifest themselves over

what climate scientists would regard as a fairly short time horizon; in turn, this would

seem to suggest a real potential for meaningfully fat tails in the distribution of temperature

changes going forward. At a minimum, this possibility would seem to suggest a potentially

important role for some sort of climate insurance policy.
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Figure 1: Residuals from climate regression

Figure 2: logarithmic plot of residuals vs. Normal distribution
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Table 1: Regression results: global mean temperatures

variable Regression 1 Regression 2 Regression 3 Regression 4 Regression 5

Tt−1 -.1634∗∗ -.1639∗∗ -.0403∗∗ -.1587∗∗ -.1647∗∗

(.0217) (.0219) (.0114) (.0196) (.0223)

ln(Ct) .5167∗∗ .5167∗∗ — .5058∗∗ .5361∗∗

(.0787) (.0789) — (.0711) (.0834)
Ct−Ct−1 —- .0029 .0308∗ — —

— (.0167) (.0135) — —
Dout0 — — — -.0957∗∗ —

— — — (.0019) —
Dout1 — — — .1075∗∗ —

— — — (.0019) —
constant -.9647∗∗ -.9560 .7767∗∗ 9699∗∗ -1.0943∗∗

( .3368) (.3394) (.2198) (.3038) (.3604)

R-squared .082 .082 .020 .256 .082

Dependent variable: Tt−Tt−1
number of observations = 640

Table 2: Jump analysis

coefficient estimate std. err. restricted estimate restricted std.err.
µ -.1209 .043 -.0001 .040
σ .4196∗∗ .049 .9206∗∗ .026
λ .5816 .069 — —
θ .2076∗ .089 — —
δ 1.0661∗∗ .060 — —

Chi-squared test statistic = 54.87
p-value < .0001
*: significant at 5% level
**: significant at 1% level
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