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Abstract

There are many examples in policy-making, investment and day-
to-day life where the set of contingencies the decision-maker is aware of
does not resolve all uncertainty about the consequences of actions. In
such circumstances, the decision-maker may nevertheless reason that
there exist certain aspects of the `full' state space of which she is un-
aware, that is, she may think it is possible she is unaware of some-
thing. We call this type of belief conscious unawareness and claim
that its presence may lead to a violation of Savage's Sure Thing Prin-
ciple for reasons parallel to those at play in the Ellsberg examples, but
di�erently motivated. We then specify a choice setting in which the
primary domain of choice is a set of actions stated naturally in English,
but where the decision-maker also has preferences on the set of deriva-
tive actions. A derivative action maps from the set of permutations �
the product space of the set of contingencies she can conceive of (her
subjective state space) and the set of payo� assignments to the actions
� to a space of consequences. We obtain a representation result that
makes choice, in cases where conscious unawareness is a major concern,
tractable by means of some of the standard analytical tools of risk and
ambiguity analysis (in particular, those developed in light of Klibano�,
Marinacci, and Mukerji's (2005) model). The representation allows us
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to characterise the decision-maker's attitude towards perceived pay-
o� uncertainty arising from factors she is unaware of; in particular, we
characterise ignorance aversion. Using the same framework, we are also
able to state a more general representation that allows us to capture
source preference in examples where the decision-maker is consciously
unaware.

Keywords: Unawareness, Ignorance, Conscious Unawareness, Am-
biguity, Uncertainty, Ignorance Aversion, Ambiguity Aversion, Non Ex-
pected Utility, Source Preference, �Small Worlds�, Climate Change Pol-
icy

JEL Classi�cation Numbers: D81

1 Introduction

?'s (?) theory of subjective expected utility (SEU) posits a decision-maker

(DM) with ready access to a full state space, comprising all possible �descrip-

tions of reality, leaving no relevant feature undescribed�. The contingencies

that make up the full state space are so �nely described that, whatever action

the DM takes, any uncertainty about what consequence that action might

lead to is resolved by the state that transpires and, furthermore, the DM

knows this to be the case.

There are, however, many examples in policy-making, investment and day-

to-day life where the contingencies the DM takes into account do not resolve

all payo� uncertainty in this manner. Consider, for example, a trader spec-

ulating on the price of oil. Given the large number of factors that determine

the price of oil and the complicated manner in which they interact, it seems

highly doubtful that the trader would be able to describe all of the states

relevant to her payo� as required by Savage's framework. Rather, it is likely

that the set of contingencies the trader does take into account � what we

call her subjective state space � omits certain relevant details or distinctions

and thus does not resolve all of the payo� uncertainty faced. Where this is

so, we say the trader is unaware of the full state space.

It is widely accepted that unawareness is a pervasive feature of decision

problems and for this reason, it is also commonplace for DMs to reason

about the possibility that there exist relevant considerations of which they

are unaware. We describe a DM who believes she may be unaware of the

full state space � and hence who regards her own subjective state space as

o�ering a possibly incomplete account of the payo�-relevant uncertainty she

faces � as consciously unaware.

Savage's theory was evidently not designed for consciously unaware agents

and in our view such agents may be justi�ed in violating SEU. In particular,

we believe that allowing for conscious unawareness calls into question the

Sure Thing Principle (STP), a necessary condition for Savage's representa-

2



tion. The following example illustrates our point.

Example 1: Suppose the oil trader has the opportunity to perform the

action a, given as �Spend $1 million on six-month oil futures contracts

at $100 per barrel�. She knows that a's payo� will be determined by the

oil price in six months' time, p, but can only imagine two contingencies

that might have a bearing on this. These are s1, �peace holds in the

Middle East�, or s2, �war breaks out in the Middle East�. If s1 occurs,
she thinks p could take any value between $70 and $115, while if s2
occurs, she thinks it could be anything between $85 and $130.

She may also take herself to the races, where she will be able to gamble

on the performance of the horse �Mighty Monty� in a race. The payo�s

from these gambles depend on whether or not Mighty Monty wins and,

once again, she can think of two contingencies that could in�uence

this. These are s3, �Mighty Monty has fully recovered from a bout of

tendinitis� � in which case she believes he is bound to win his race

� and s4, �Mighty Monty has not fully recovered from tendinitis� � in

which case she thinks he is sure to lose. Suppose the only contingencies

she ever takes into account when evaluating di�erent actions is given

by the product space, S := {s1, s2} × {s3, s4}.
The trader recognises that S does not resolve all payo� uncertainty she

faces � in particular, any state in S seems consistent with a returning

a wide range of payo�s. She is therefore consciously unaware, but

this does not a�ect all of her choice set in the same way. For, in her

view, while there is no state in S that resolves the payo� uncertainty

pertaining to a, every state resolves the payo� uncertainty pertaining

to gambles on Mighty Monty. We will say that she thus understands

gambling on Mighty Monty, but not purchasing oil futures.

Our theory allows this asymmetry to be re�ected in preferences in a

manner that is inconsistent with SEU. To see this, suppose the trader

is presented with a choice between the following �derivative� action:

c1 =
If a pays out more than $1.1 million

receive $100, otherwise receive $0

and the gamble c′ given as follows:

c2 =
If Mighty Monty wins the race

receive $100, otherwise receive $0

and imagine the trader reports a strict preference for c2 over c1. Where

x− b refers to a prospect that yields $100 less whatever the prospect b
pays out, suppose the trader is then asked to choose between 100− c1
to 100− c2. The payo� structures of the four prospects a′, a∗, 100− c,
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and 100− c′ are illustrated in the table below where MM refers to the

contingency �Mighty Monty wins�.

Dollar payo� in case

MM MM ¬MM ¬MM
p > 110 p ≤ 110 p > 110 p ≤ 110

c1 100 0 100 0

c2 100 100 0 0

100− c1 0 100 0 100

100− c2 0 0 100 100

Given her preference for c2 ahead of c1, Savage's STP requires the

trader to prefer 100−c1 to 100−c2. This is typically justi�ed along the

following lines: c1 and c2 o�er identical payo�s in the �rst and fourth

columns of Table 1, so strict preference for c2 over c1 should imply

strict conditional preference for c2 over c1 given �MM and p ≤ 110�
or �¬MM and p > 110�. But this means that 100 − c1 must be

conditionally preferred to 100 − c2 given the same information (the

two prospects' respective conditional payo� structures are identical to

those of c2 and c1). And since 100 − c1 and 100 − c2 o�er the same

payo�s under any other contingency, this conditional preference should

dictate the trader's unconditional preference for 100− c1 over 100− c2.
However, we wish allow the trader to strictly prefer c2 to c1 and 100−c2
to 100 − c1, in violation of the STP and hence of SEU. The trader

may reason that she has a general preference for taking on actions

she understands, and thus that a relevant feature of the two decision

problems � overlooked by the argument above � is that she understands

c2 and 100−c2, but not c1 and 100−c1. She might therefore reject the

claim that preferring c2 to c1 commits her to a conditional preference

for c2 over c1 given �MM and p ≤ 110� or �¬MM and p > 110�,
arguing instead that it re�ects her aversion to actions she does not

understand. This gives her grounds to reject the the STP in this case

and choose 100− c2 ahead of 100− c1.

We propose an alternative to SEU that is consistent with cases such as this.

In our framework, the DM is endowed with a subjective state space, S, and
knows that any action she might carry out will lead to a consequence within

a given space X. The choice set of primary interest is then a set of actions,

A, given as sentences in English describing things to do such as �Spend $1

million on six-month oil futures at $100 per barrel�.

To reveal how the DM conceives of the members of A, we suppose she has
preferences over prospects akin to the �derivative� actions described in Ex-

ample 1. These are de�ned by introducing, for each s ∈ S, the set Ws
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consisting of all maps from A to X. Ws is interpreted as the list of every

possible pro�le of payo�s A might induce if the subjective state s were to

occur: it is the set of permutations under s. If the DM did not think state s
resolved all of the payo� uncertainty pertaining to action a � what we term

not understanding action a � then she would be willing to gamble on mul-

tiple permutations in Ws that assigned di�erent payo�s to a. We interpret

the DM's willingness to gamble on a permutation in Ws as the same as her

regarding the payo� pro�le it stands for as possible if s occurs.

Our representation is obtained by applying familiar regularity conditions

over various choice sets. First, we assume that her preferences over the set

of Anscombe-Aumann acts de�ned on S are consistent with SEU and thus

encode a unique subjective prior on S, π, and a utility function, v, that
represents her attitude to risky gambles on X. This implies that the DM's

choices are consistent with SEU over the set of actions she understands.

Second, we assume the DM has conditional preferences on maps from Ws to

X for every s. Imposing well-known assumptions, we can obtain a subjective

prior, µs, on each Ws and a utility function φ on X, such that we �nd action

a is preferred to a′ if and only if:∑
s∈S

π(s)u

(ˆ
Ws

φ(w(a))dµs

)
≥

∑
s∈S

π(s)u

(ˆ
Ws

φ(w(a′))dµs

)
(1)

where u := v ◦φ−1 and we write w(a) for the consequence action a produces
in the payo� pro�le w.

The form of the representation in (1) and the way we derive it from our

assumptions are familiar from ?'s (KMM, ?) smooth model of decision under

ambiguity, but the motivation and structural setting underpinning our result

is quite di�erent. Our DM does not depart from SEU because she faces

ambiguity over the true probability density function (pdf) over the state

space; rather, our DM believes that the subjective state space she has in mind

is insu�ciently rich to identify every action's payo� and hence that there are

actions in her choice set that she does not understand. When choosing from

a choice set that includes some actions she understands and some that she

does not, she may wish to exercise particular caution (or recklessness) over

the actions she does not understand, and hence violate SEU. We discuss the

connection between this sort of behaviour and ambiguity aversion below.

We hope that our representation will be particularly helpful in various policy

settings where the fact that there is unawareness is a major concern. One

such domain is policy on climate change. Here, the state of scienti�c knowl-

edge about the links between emissions of greenhouse gases and changes to

physical climate variables such as temperature, precipitation and sea level

is recognised to be far from exhaustive (?; ?), and our understanding of the

interface between the climate and the economy is thought to be similarly
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incomplete (e.g. ?; ?; ?). Under such circumstances, some of the states we

envisage � even described at the most minute level of detail we can conceive

of � seem consistent with almost any payo�, no matter what climate policy

we pursue. This means not only that (in our view) conscious unawareness

should be a signi�cant consideration in climate policy, but also that the

problem is very di�cult to analyse using existing decision models (includ-

ing those that can accommodate conscious unawareness). Our theory makes

choice problems such as these analytically tractable.

To illustrate, suppose that a policy-maker's subjective state space consists

of the contingencies s and s′, where:

s =
�Global temperature depends sensitively on the atmospheric

concentration of greenhouse gases�

s′ =
�Global temperature does not depend sensitively on the

atmospheric concentration of greenhouse gases�

and that she has a choice between the following actions:

a = �Cut greenhouse gas emissions by 50% by 2050�

a′ = �Cut greenhouse gas emissions by 30% by 2050�

Consider the task of conducting an economic evaluation of these climate-

policy actions (i.e. a cost-bene�t analysis), in which the set of consequences

is just a range of possible monetary outcomes. Given our degree of under-

standing of the problem, it seems reasonable to allow that both a and a′

could pay out any amount in X under both s and s′. Other representations
of choice under conscious unawareness (for example ?, ?) do not allow the

DM to hold beliefs about the relative likelihood of either action paying any

given consequence under either of the states. They therefore require the pol-

icy maker to regard a and a′ as equally good in both states and, given any

action, that she is indi�erent between which of the two states does transpire.

Yet it seems obvious that the policy maker would regard state s as �bad news�
under either action and that, given s, the policy maker would prefer to carry

out a over a′. Such preferences are consistent with our theory and would

imply that Eµs [φ(w(a))] > Eµs [φ(w(a′))] and Eµs′ [φ(w(a))] > Eµs [φ(w(a))].

Another advantage of allowing beliefs overWs andWs′ is that we can capture

DMs' aversion (or predilection) towards less well-understood actions in a

familiar fashion. Consider two ways to reduce the atmospheric concentration

of greenhouse gases. The �rst, b, involves the replacement of fossil-fuel power

plants with renewables, such as onshore wind farms. The second, b′, involves
the use of a `geo-engineering' technique, whereby iron is poured into the

oceans, in order to stimulate blooms of phytoplankton, which remove carbon

dioxide from the atmosphere. Suppose that under the policy-maker's µs,
the expected net monetary bene�ts of b are equal to b′, but that the pdf
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on X entailed by b′ and µs is a mean-preserving spread of that entailed

by b and µs. One might say that the policy-maker �better understands� b
than b′ given the occurrence of state s. Always preferring actions over less

well understood alternatives with the same expected payo� � what we call

ignorance aversion � is equivalent to the concavity of the function φ in our

framework. This mirrors exactly the characterization of risk aversion in SEU

theory and ambiguity aversion in KMM's approach.

Source Preference here!

The rest of this paper is organised as follows. First, we introduce the ele-

ments of the choice setting and the DM's preferences, before setting out our

assumptions and result. Then we give behavioural characterisations of �igno-

rance aversion� and �more ignorance averse�, showing that these are formally

equivalent to concavity properties of the function φ. In Section 4 we set out

a somewhat generalised version of our representation that can accommodate

�source preference�, before ending with a discussion of our assumptions and

the connection between this work and that on ambiguity. All proofs are in

the Appendix.

2 Subjective State Spaces and Choice

In Savage's classic framework, a DM's preferences are given over a set of maps

from states of the world to consequences called Savage acts. Every element

of Savage's state space encodes all relevant information about the state of

the world in which consequences are received, while each consequence gives

a full account of all the things that matter to the DM. Conceptualising the

choice set is therefore a trivial exercise for the DM: for any choice, the set

of contingencies her payo� depends on and the payo� received under each

contingency is given explicitly.

We wish to allow for cases, such as that of Example 1, where the DM may

have di�culty understanding the choice set in the way Savage's framework

presupposes. We thus model the DM as choosing from a set of actions

composed of simple descriptions of things to do in English such as �Spend

$1 million on six-month oil futures at $100 per barrel� or �Purchase a ¿10

bet on Mighty Monty�. Clearly, it is possible for a DM to choose from these

kinds of prospects without knowing what the payo�-relevant contingencies

are.

How might a DM faced with such a choice set formulate her decision? We

o�er one account here to help the reader interpret the formal setting and

restrictions of the next section. This is intended only to be suggestive and

we emphasise that alternative accounts may be applicable.

Suppose the DM knows that any consequence she might receive has some ex
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ante monetary equivalent on a bounded interval, X, and she knows that, for

every action, there exists a �correct� description of it as a map from states

of the world to X (that is, as a Savage act). This correct characterisation

could be the way a hypothetical omniscient analyst would think of the action.

Furthermore, the DM knows that, if only she could describe the set of payo�-

relevant contingencies in su�cient detail, she would understand all of the

actions in the choice set in this correct fashion. We can think of this level of

detail as corresponding to a set of propositions, P , that are assigned truth

or falsehood in every state and refer to the set of states described in this way

as the full state space, Ω.

Our decision maker only considers things at a certain level of detail � in

other words, she takes a limited set of propositions, Q, into account when

formulating her decision. She knows this to be the case and might further

suspect that the level of detail is less than that of the full state space (that is,

she might suppose that Q ⊂ P without having any idea of the composition of

P\Q). But she nonetheless thinks there are some actions she does understand

in the following sense. She believes there is a collection of propositions that

she takes into account, Q′ ⊆ Q, and a set of contingencies described at the

level of detail of Q′, SQ′ , such that, under their respective truth assignments

to Q′ and P , each member of SQ′ implies some subset of Ω and each member

of Ω implies precisely one member of SQ′ . She then believes she understands

a if, whenever a � in its �correct� rendering as a Savage act � pays out x ∈ X
in state ω ∈ Ω, she is certain that a pays out x in sQ′ ∈ SQ′ where sQ′ is
implied by ω. Where this is so we say that the DM understands a under Q′.

Let A∗ refer to the set of actions the DM understands under any Q′ and, for
every a ∈ A∗, write Qa for the ⊇-maximal set of propositions under which

the DM understands a. De�ne Q∗ as
⋃
a∈A∗ Qa and make the assumption

that the DM understands every a ∈ A∗ under Q∗. We call SQ∗ � henceforth

denoted S � the DM's subjective state space1 and say Q∗ is the set of propo-
sitions she is aware of. If the DM does not believe she understands every

action � that is, if A∗ does not encompass the full set of actions � then we

describe the DM as being consciously unaware.

It follows from this that if the DM is consciously unaware and a is an action

she believes she does not understand, she cannot be certain what a pays

out under all members of S. That is, there must be some s ∈ S and an

x ∈ X such that she'd pay money for a token entitling her to $100 in case,

conditional on s, a yielded at least x and she'd pay money for a token that

paid $100 if, conditional on s, a yielded less than x. Our framework reveals

the DM's conscious unawareness in precisely this way by considering her

1We make a number of non-trivial technical steps here: why is A∗ non-empty? why
should the ⊇-maximal set of propositions under which the DM understands a exist? why
should the DM understand every a ∈ A∗ under Q∗? For more detail on these points see
?.
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preferences over a choice set made up of bets on the payo� performance of

the actions conditional on subjective states. These bets are what we call

derivative actions.

One possible objection to this story concerns its applicability to our moti-

vating example. In Example 1 the oil trader knows that the payo� of action

c1 is determined by the realisation of p: it might thus be countered that the

DM in this case can understand c1 as a Savage act � namely one that maps

from the value of p to X � and that she is therefore not consciously unaware

in the sense set out in this section. The DM, however, may reason as follows:

although it is clear what payo� c1 would deliver conditional on any value of

p, it is not clear that every p is possible in a logically consistent state of

a�airs; therefore it need not be the case that a simple map from p to X is

consistent with c1's correct characterisation as a Savage act (which uses only

logically consistent states of the world). Put another way, the DM regards

the statement �p = 110� as just another way of saying �Action c pays out
$1.1 million�, rather than a description of a member of the full state space.

On this basis the DM may harbour reasonable doubts over whether she does

understand c1 and thus be consciously unaware in the example.

A second objection is more general. We state above that the DM believes

that there is a set of propositions, P , with the property that awareness

of them implies the ability to understand the full action set correctly, but

one may question whether mere awareness of all relevant considerations is

su�cient for this. Could it not be the case, for example, that the DM was

aware of every member of P but was unable to correctly process the logical

connections that hold between the members of P and the sets of actions and

payo�s, and hence unable to understand all of the actions correctly? There

are two ways of countering this objection. First, we may insist that part

of what it is to be aware of a set of propositions (or actions and payo�s) is

to perceive correctly all logical connections between them: thus awareness

of P would commit the DM to knowledge of what each action pays out in

every state, as this information is implied by all consistent truth assignments

to P . This is the approach adopted in much of the literature on modelling

unawareness (for example, ?, ?, ?), where it corresponds to the assumption

of awareness generated by primitive propositions. An alternative response is

to follow ? in allowing the DM's ability to establish these connections to

be dependent on her degree of awareness; in this case our account embeds

the assumption that full awareness corresponds to a full ability to perceive

logical connections between propositions, actions, and payo�s.

INSERT CITATION TO MUKERJI SOMEWHERE
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3 The Representation

The DM chooses from a set of actions, denoted A with typical members

written a, a′. Her preferences over A are represented by the binary relation

�∗ on A with respective asymmetric and symmetric components �∗ and ∼∗.
�∗ is the preference relation of primary interest to us, but we arrive at our

representation indirectly by placing restrictions on the DM's preferences over

di�erent sets to A and then requiring �∗ to be consistent with these other

relations in a particular way.

To introduce these additional choice sets, �rst let there be a consequence

space X with generic elements x, x′, equal to some bounded interval on

the real line, and use B to denote the Borel σ-algebra of X. One way

to interpret X is as encompassing all the ex ante monetary valuations the

DM might attribute to the result of an action as in Section 2 above. Such

an interpretation would be consistent with investment choices, for example.

Second, we assume our DM is endowed with a �nite space, S � called her

subjective state space with typical members s, s′ � that is composed of every

contingency she can conceive of. Write E for 2S , the subjective event space.

Now de�ne G := XA with typical elements g, g′. Endowing G with the topol-

ogy of pointwise convergence, let W be the product space G × S containing

typical members w, w′. W is interpreted as the set of permutations that

might arise: that is, it comprises every possible state combined with every

possible payo� pro�le over A. A permutation resolves all uncertainty over

what member of S obtains and all payo� uncertainty pertaining to A: so

w = {s, g} represents the permutation where s occurs and each action a pays
out g(a). For each s ∈ S, de�ne Ws : s×G, the subspace of permutations in
which s obtains, and let Bs be the Borel σ-algebra generated by the relative

topology on Ws.

Using this, we can introduce a further choice set, dubbed the space of deriva-

tive actions and denoted C. C is de�ned as the set of B-measurable functions

from W to X, with typical members of C called derivative actions and writ-

ten c, c′ etc. A derivative action is interpreted as a prospect that pays out

some amount depending on what permutation obtains: that it, it is a bet

whose payo� is determined by the realisation of the subjective state and the

payo�s of all actions. If the subjective state s occurs and the payo� pro-

�le over A turns out to be g, then derivative action c pays out c(w) where

w = {s, g}. For clarity, we show how this formal structure could be used to

describe the choice setting in Example 1.

Example 1, continued. We have the subjective state space S and an in-

terval of possible monetary payo�s, X. For notational consistency, let

a′ be an action described just as c2 is in the example and suppose the

space of actions is just {a, a′},W{s1,s3} is the set of permutations where

10



{s1, s3} obtains. For instance, �{s1, s3} is true, a pays out x, and a′

pays out y� belongs to W{s1,s3} for any x, y ∈ X. Where g(a) = x and

g(a′) = y, we use the compact notation {{s1, s3}, g} for this permuta-
tion.

c1 is thus a derivative action in this framework: under all permutations

where a pays out more than $1.1 million, it delivers $1,000; in all others

it pays nothing. Thus, where s can be any member of S, we have

c(w) = $1, 000 for w ∈ {{s, g} : g(a) > $1, 100, 000} and c(w) = $0 for

all other w.

We suppose the DM is endowed with a preference relation � over C with

respective asymmetric and symmetric components � and ∼.
Our �rst restriction on � is a familiar independence condition. To state it,

we use the notation {c, s; c′} to refer to the derivative action c′′ that satis�es
c′′(w) = c(w) if w = {s, g} for any g ∈ G and c′′ = c′(w) otherwise. In words,

c′′ pays out the same as c whenever s occurs and the same as c′ under any
other subjective state. The restriction is then as follows:

Axiom 1 (Monotonicity) For any c, c′, c′′ ∈ C, c � {c′, s; c} i� {c, s; c′′} �
{c′, s; c′′}.

Given Monotonicity, we can de�ne a conditional preference �s for each s ∈ S
as c �s c′ i� {c, s; c′′} � {c′, s; c′′} for any c′′ ∈ C. We say state s is null

whenever c ∼s c′ for all c, c′ ∈ C.
We call the next restriction on � an �Assumption� rather than an �Ax-

iom� because its behavioural content is not immediate. More primitive be-

havioural conditions that are equivalent to it have been described by ?.

Assumption 1 (Derivative-SEU) Every s ∈ S is either null or such that

there exists a bounded, continuous, strictly increasing function φs : X → R
and a probability measure on Bs, denoted µs, such that:

c �s c′ ⇐⇒
ˆ
Ws

φs(c(w))dµs ≥
ˆ
Ws

φs(c
′(w))dµs (2)

for all c, c′ ∈ C, and there is at least one non-null s for which there exists an

E ∈ Bs with 1 > µs(E) > 0.

The restriction that for one s there is some E ∈ Bs such that 1 > µs(E) > 0
implies that the DM does not regard the payo� of all actions as certain

conditional on all non-null states. In the narrative of Section 2, this is the

essence of conscious unawareness. It corresponds to ?'s (?) characterisation

of �the DM believes that if s occurs she may be unaware of something� as
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her willingness to gamble on multiple mutually inconsistent payo� pro�les

conditional on state s.

A striking feature of Derivative-SEU is that it requires �s to satisfy Savage's
STP for all s. Even in conjunction with our other restrictions, this does

not imply that � satis�es the principle, something we argued against in

Example 1. One may nonetheless wonder whether similar examples may be

constructed that call Derivative-SEU into question. To allay such fears, we

note that Example 1 �works� because the DM understands c2 and 100 − c2
but not c1 and 100 − c1; a parallel example would thus require the DM to

understand {c, E; c′′} and {c′, E; c′′′} but not {c, E; c′′′} and {c′, E; c′′} for
some c, c′, c′′, c′′′ ∈ C and E ∈ Bs and hence report {c, E; c′′} �s {c′, E; c′′}
but {c′, E; c′′′} �s {c, E, c′′′}. However, it is easy to verify that this can only

hold if there is an E′ ∈ Bs with µs(E′|E) = 1 such that either c(w) > c′(w)
for all w ∈ E′ or c′(w) > c(w) for all w ∈ E′: the reported preferences would

thus violate a minimal form of monotonicity as well as the STP.

As indicated in the Introduction, we wish to interpret each of the φs func-
tions as re�ecting the DM's inherent attitude towards actions she does not

understand. To make this more tenable, we impose a further assumption on

� that has the e�ect of allowing us to set φs = φs′ for every s, s
′ ∈ S. Write

θs,c for the probability measure on B de�ned as θs,c(Z) = µs{w : c(w) ∈ Z}
(note this is well-de�ned as derivative actions are B-measurable).

Assumption 2 (State Independence) If s, s′ are non-null, θs,c = θs′,c′ ,
and θs,c′′ = θs′,c′′′ then:

c �s c′′ ⇐⇒ c′ �s′ c′′′

It is clear that we could obtain a �state dependent� version of Theorem 1

below if we were to drop Assumption 2. We do not pursue this project here.

We now introduce a further choice set. Denote the set of countably additive

probability measures on B using ∆(X). The set of Anscombe-Aumann acts,

F , is then the set of all mappings from S to ∆(X), with typical elements

f, f ′. Any f is interpreted as a prospect that pays out a lottery with payo�

distribution f(s) in the event of any subjective state s, just as in ?, except

with S taking the place of an objective state space. We write f(s)(E) for

the probability of E ∈ B under measure f(s). The DM's preferences over

Anscombe-Aumann acts are given by the relation �AA on F with �AA and

∼AA denoting the respective asymmetric and symmetric components of �AA
as usual.

We require �AA to be consistent with the following.

Assumption 3 (AA-EU) There exists a bounded, continuous, strictly in-

creasing function v : X → R and a unique probability measure on B, denoted
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π, such that:

f �AA f ′ ⇐⇒
∑
s∈S

π(s)Ef(s)[v(x)] ≥
∑
s∈S

π(s)Ef ′(s)[v(x)] (3)

for all f, f ′ ∈ F .

As with Assumption 1, AA EU can be generated from more basic conditions

on �AA. These are described in ?

There is a sense in which the set of derivative actions and the set of Anscombe-

Aumann acts intersects, and the next restriction implies that �AA and �
are isomorphic over this intersection. To see this, write x for the degenerate

lottery that pays out x, and de�ne Fδ as the set of Anscombe-Aumann acts

such that for every s ∈ S, f(s) = x for some x. Then de�ne Cδ as the

set of derivative actions that satisfy c({s, g}) = c({s, g′}) for all s ∈ S and

any g, g′ ∈ G. Clearly, for any c ∈ Cδ there exists some f ∈ Fδ such that

f(s) = x i� c(s, g) = x for all s, and for any f ∈ Fδ there is a c ∈ Cδ with
the property c(s, g) = x i� f(s) = x for all s. Where f ∈ Fδ, use cf to refer

to the member of Cδ that yields the same payo� in each state as f does.

In a similar way, we may also connect the set of actions with the space of

derivative actions. For each action a, use ca for the derivative action that

satis�es ca(s, g) = g(a) for all s and note that ca pays out x if and only if a
turns out to yield x.

Our �nal restriction connects the three preference relations as follows.

Axiom 2 (Reduction) The relations �∗, �AA, and � are mutually con-

sistent insofar as:

a. For any a, a′ ∈ A∗, a �∗ a′ if and only if ca � ca′.

b. For any f, f ′ ∈ Fδ, f � f ′ if and only if cf �AA c′f .

One way of interpreting Reduction is as the requirement that the DM regards

the pairs a and ca, and c and fc as identical prospects. This only makes sense

if the DM thinks of S as an exhaustive account of what might happen � that

is, if E ⊂ S does not occur, S \ E must � and that she knows that all

possible consequences of the actions lie within X. Since it is always possible

to imagine a catch-all contingency (�none of the above occurs�), requiring

the DM to reason in this way does not seem overly demanding (it is implicit

in the account of our framework presented in Section 2). And for many

economic problems such as investment or policy decisions, it would be taken

for granted that the set of consequences is known (for example, X might be

a set of monetary quantities, measured in equivalent terms).

We are now ready to state our �rst representation theorem.

13



Theorem 1 The following two claims are equivalent:

1. �∗, �, �AA satisfy Monotonicity, Reduction, Derivative-SEU, State

Independence, and AA-EU.

2. There exist bounded, continuous, strictly increasing real maps u and φ,
and a set of probability measures on each of {Bs}s∈S, {µs}s∈S and on

E, such that for every a, a′ ∈ A:

a �∗ a′ if and only if∑
s∈S

π(s)u

(ˆ
Ws

φ(ca(w))dµs

)
≥

∑
s∈S

π(s)u

(ˆ
Ws

φ(ca(w)dµs

)
(4)

And, furthermore, π is unique, the measures µs are unique whenever

s is non-null, φ is unique up to a positive a�ne transformation, and

whenever φ̃ = αφ+ β, the corresponding ũ satis�es ũ(αx+ β) = u(x)
for all x ∈ φ(X).

4 Ignorance Aversion

In Example 1, we explained the DM's violation of SEU by appeal to a general

preference for actions she better understood over those she did not. We called

this general tendency ignorance aversion. In this section we provide a formal

behavioural de�nition of what it is for a DM to be ignorance averse and

conditions under which one DM may be said to be more ignorance averse

than another. We show that, under the representation of Theorem 1, these

have neat mathematical characterisations in terms of the convexity of the u
function.

To de�ne ignorance aversion formally, we need to introduce some more ter-

minology. Begin by noting that, under the representation, for every f ∈ F
there is a unique f ′ ∈ Fδ such that f ′(s) = f ′(s′) for all s, s′ ∈ S and

f ′ ∼AA f . In other words, for any f ∈ F there is an f ′ ∈ F that yields

the same certain payo� in each state and is such that the DM is indi�erent

between it and f . We refer to cf ′ � f
′ relabelled as a derivative action � the

certainty equivalent of f and denote it ce(f).

Now de�ne a φ-risk free derivative action as any c ∈ C such that
´
Ws

φ(c(w))dµs =´
Ws

φ(c(w))dµs′ for all non-null s, s
′ ∈ S. That is, c is φ-risk free whenever

it pays out the same � in terms of the expected value of φ � in every sub-

jective state. Of course, a φ-risk free derivative action may not be devoid of

payo� uncertainty, as it could be that the DM does not understand it and

thus considers multiple payo�s possible at various states. We call this sort

of uncertainty unconceptualised uncertainty.
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The intuition behind our de�nition of ignorance aversion is as follows. Sup-

pose c is a φ-risk free derivative action and f is an Anscombe-Aumann act

that induces the same probability measure on B (given π and {µs}s∈S). f 's
payo� is uncertain in a way that the DM understands (it depends only on

the realisation of the subjective state and the outcome of a lottery), while

any uncertainty over c's payo� is unconceptualised. Since each of c and f
o�ers the same distribution over payo�s, a DM who prefers to gamble on un-

certainty she understands � that is, an ignorance averse DM � should prefer

f to c and hence report ce(f) � c.
To state our de�ntion, we thus need to characterise the probability measures

on B induced by any f and c given the subjective probabilities in the rep-

resentation. For any Anscombe-Aumann act, f , de�ne ηf as the probability

measure on B satisfying:

ηf (E) =
∑
s∈S

π(s)f(s)(E)

for all E ∈ B. Similarly, for any c ∈ C, let ηc be the probability measure on

B such that:

ηc(E) =
∑
s∈S

µs
(
c−1(E) ∩Ws

)
for all E ∈ B. Observe that since derivative actions are B-measurable, ηc(E)
is de�ned for all E ∈ B.
We may now de�ne ignorance aversion formally as follows.

De�nition 1 (Ignorance Aversion) The DM is ignorance averse i� for

any φ-risk free derivative action c and Anscombe-Aumann act fsuch that

ηf = ηc, ce(f) � c.

In Assumptions 1 and 2 we characterised the DM's attitude to unconceptu-

alised uncertainty using φ, while in Assumption 3 we characterised the DM's

attitude to uncertainty she does understand � which we require to be the

same as her attitude to risk � using the function v. In the proof of Theorem

2 below we show that the two attitudes are related by v = u ◦ φ. It is well
known that aversion to risk is equivalent to the concavity of the function v
and in the Appendix we show that aversion to unconceptualised uncertainty

is equivalent to the concavity of φ under our representation. It should not,

therefore, be surprising that ignorance aversion � which means greater aver-

sion to unconceptualised uncertainty than risk � is equivalent to φ being a

concave transform of v, that is, to u being convex. This is precisely what

our next result establishes.

Proposition 1 The DM is ignorance averse i� the function u is convex.
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In light of Proposition 1, we may say that u represents the DM's attitude

towards ignorance.

Suppose now there are two DMs, A and B, and we wish to compare their

attitudes towards ignorance. Denote A's preferences over C by �A and B's by

�B. If their beliefs and risk preferences are the same and A prefers some φ-
risk free derivative action c (which she might not understand) to the certainty

equivalent of an Anscombe-Aumann act f (which she does understand), then,
if she is more ignorance averse than B, B must also prefer c to f . This is the
content of the following de�nition, where we use πA and µAs to refer to the

DM A's beliefs under the representation and vA for DM A's attitude to risk.

De�nition 2 (�More Ignorance Averse�) DM A is more ignorance averse

than DM B i� πA = πB, µAs = µBs for all non-null s, vA = vB and, for any

φ-risk free derivative action c and Anscombe-Aumann action f :

c �A ce(f) =⇒ c �B ce(f)

Our next result shows that A's being more ignorance averse than B has a

mathematical characterisation that is analogous to that of her being more

risk averse in SEU or more ambiguity averse in KMM's representation.

Proposition 2 Suppose A and B are two DMs whose preferences are repre-

sented as in Theorem 1, with uA and uB representing their respective attitude

towards ignorance. Then A is more ignorance averse than B i� there exists

some strictly increasing convex function ψ, such that uA = ψ ◦ uB.

As noted by KMM when stating a parallel result, Proposition 2 implies that

if uA and uB are twice continuously di�erentiable, then A is more ignorance

averse than B i�:

u′′A(x)

u′A(x)
≥

u′′B(x)

u′B(x)

Thus, provided the di�erentiability conditions are satis�ed, one might refer

to u′′A(x)/u′(x) as the coe�cient of absolute ignorance aversion.

NOTE: check this back against KMM. (1) Do we have an i�? (2) Need some

quali�cation over the domain of x for which this holds.

5 Extension to Source Preference

It has been argued (for example, in ? and ?) that DMs' choices between

uncertain prospects may hinge on the source of uncertainty these prospects'
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payo�s depend on, where a source may be thought of as a distinct algebra of

events. Such decision-making may be irreconcilable with the representation

of Theorem 1, as the following example shows.

Example 2: Imagine the oil trader from Example 1 is presented with a

choice set that includes c1 and the action c3 = �Invest $1 million on

the NASDAQ index, liquidating the position in 6 months' time�. For

simplicity, suppose her subjective state space is now made up of only

the states s1 and s2, which concern whether war breaks out in the

Middle East, as in Example 1. She thinks that if s1 occurs, c3 might

yield anything between $700,000 and $1.3 million.

She is then o�ered to choose between the derivative actions c′1, c
′′
1, c
′
3,

and c′′3 below:

c′1 =
�If c1 pays out more than $1.1 million and s1 occurs,
receive $100, otherwise receive $0�

c′′1 = �If c′1 pays out $100, receive $0, otherwise receive $100�

c′3 =
�If c3 pays out more than $1.2 million and s1 occurs,
receive $100, otherwise receive $0�

c′′3 = �If c′3 pays out $100, receive $0, otherwise receive $100�

The trader reports strict preferences for c′1 over c
′
3 and for c

′′
1 over c

′′
3. It

is straightforward to verify that this is inconsistent with Monotonicity

and Derivative-SEU.

However, the DM may rationalise her preferences as follows. She does

not understand any of the members of the choice set and regards the

events of c′1 and c′3 paying out $100 as roughly equally likely. But

whereas the payo�s from c′1 and c
′′
1 depend on a �source of uncertainty�

� namely the payo�s resulting from c1 � about which she, as an oil

trader, considers herself an expert, those from c′3 and c′′3 depend on

a source she feels less comfortable speculating on. This is consistent

with ?'s (?) �competence hypothesis�.

Preferences such as those described in Example 2 may be accommodated in

a generalised version of Theorem 1.

To show this, we want to di�erentiate between sources of uncertainty in

terms of actions, so, for any A ⊆ A, let CA ⊆ C be the set of A-derivatives,
de�ned as {c : g(a) = g′(a) for all a ∈ A implies c({s, g}) = c({s, g′})}.
A-derivatives are derivative actions whose payo� depends only on the true

subjective state and the payo�-pro�le generated by the actions in A. De�ne
WA,s as the �nest partition of Ws with the property that g(a) = g′(a) for all
a ∈ A implies {s, g} and {s, g′} belong to the same element of WA,s. Then

let BA,s be the Borel σ-algebra generated by the relative topology on WA,s.
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Once again we assume that � satis�es Independence so that the preference

relation �s is de�ned for every s ∈ S. This allows us to de�ne a source as

follows:

De�nition 3 {BA,s}s∈S forms a source if and only if, it satis�es:

i. For all non-null s, there exists a bounded, continuous, strictly increas-

ing function φA,s : X → R and a probability measure on BA,s, denoted
µA,s, such that for all c, c′ ∈ CA:

c �s c′ ⇐⇒
ˆ
WA,s

φA,s (c(w)) dµA,s ≥
ˆ
WA,s

φA,s
(
c′(w)

)
dµA,s(5)

and for at least one non-null s, there is a E ∈ BA,s such that 1 >
µA,s(E) > 0.

ii. There is no A′ ⊃ A such that
{
Bs,A′

}
s∈S satis�es part (i).

? give minimal conditions on which a source may be distinguished by the

DM's preferences; ? then gives behavioural axioms under which part (i) of

the de�nition may be satis�ed. Abusing terminology, we say action a belongs
to source {BA,s}s∈S whenever a ∈ A.
Our generalised version of Theorem 1 weakens Derivative-SEU to the follow-

ing.

Assumption 4 (Source Dependence) Every action in A belongs to a

source.

For any source, we wish to ensure that φA,s = φA,s′ from (5) for all s, s′ ∈ S.
As before, this will make it possible to talk of the DM's ignorance attitude

with respect to a certain source of uncertainty. To achieve this we need to

impose a somewhat weaker form of State Independence to that in Section 3.

Assumption 5 (State Independence∗) If s, s′ are non-null, c, c′, c′′, c′′′

belong to CA for some source A, θs,c = θs′,c′ and θs,c′′ = θs′,c′′′ then:

c �s c′′ ⇐⇒ c′ �s′ c′′′

Once again, a �state dependent� rendering of Theorem 2 below would be

possible in the absence of Assumption 5.

A �nal behavioural condition, which is implied by Assumption 1 but not

by Assumption 4, is that the set of all A-derivatives for all any source A is

linearly ordered by �.

Axiom 3 (Ordering) Let A be the set of all sources. � is transitive and

complete on
⋃
A∈A CA.
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Note that Ordering allows for substantial incompleteness of � over C. If one
thinks of the derivative actions whose payo�s depend on the full payo� pro�le

over A as being the �most complicated� derivative actions in C, Ordering
means that the DM only needs to form preferences over the most complicated

derivative actions in case there is a source to which every action belongs.

Given Source Dependence, we say the DM understands action a if and only

if a ∈ A and, for all non-null s, µA,s(E) = 1 where E ⊆ {{s, g} : g(a) = x}
for some x. That is, the DM understands a if she believes that S resolves

all payo� uncertainty pertaining to a.

Theorem 2 The following two claims are equivalent:

1. �∗, �, �AA satisfy Reduction, Monotonicity, Ordering, Source Depen-

dence, State Independence∗, and AA-EU.

2. Every action a belongs to a source A(a); there is a bounded, continuous,
strictly increasing real map u and a probability measure π on E; for each
A(a) there is a bounded, continuous, strictly increasing map φA(a) and
a set of probability measures on each of

{
BA(a),s

}
s∈S,

{
µA(a),s

}
s∈S;

and for any a, a′ ∈ A:

a �∗ a′if and only if∑
s∈S

π(s)uA(a)

(ˆ
WA(a),s

φA(a) (ca(w)) dµA(a),s

)

≥
∑
s∈S

π(s)uA(a′)

(ˆ
WA(a′),s

φA(a′) (ca′(w)) dµA(a′),s

)

And, furthermore: π is unique; µA(a),s is unique for all A(a) and non-

null s; φA is unique up to an a�ne transformation, and if φ̃A = αφA+
β, the associated ũA is such that is such that ũA(αx+ β) = uA(x) for

x ∈ φ(X); and for all a, A(a) is unique i� the DM does not understand

a, and a ∈ A(a′) for all a′ ∈ A otherwise.

The uniqueness part of Theorem 2 implies that the set of all actions the DM

does not understand may be partitioned according to the source they belong

to. Thus, it is only possible for a pair of actions to belong to di�erent sets

of sources if the DM understands neither of them.

6 Discussion and Other Literature

TBW
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A Appendix

A.1 Proof of Theorem 1

Observe that Derivative-SEU implies that all actions belong to a single

source, in which case State Independence∗ and State Independence are equiv-
alent. Therefore the result follows from Theorem 2. �

A.2 Lemma A.1

We note the following result (reported as Lemma 6 in KMM), which is in-

voked in the proofs below.

Lemma A.1 If φ : X → R is a continuous function and X ⊆ R is convex,

then φ is concave i� there exists a λ ∈ (0, 1) such that for all x, y ∈ X where

x 6= y:

φ(λx+ (1− λ)y) ≥ λφ(x) + (1− λ)φ(y)

A.3 Proof of Proposition 1

Suppose ηc = ηf for some φ-risk free c and f ∈ F . Then we have:∑
s∈S

π(s)Ef(s)[φ(x)] =

ˆ
Ws′

φ(c(w))dµs′

where s′ is non-null. Under the representation, we have:∑
s∈S

π(s)Ef(s)[u ◦ φ(x)] = u ◦ φ(ce(f)) (6)

If u is convex, then it follows from Jensen's inequality that:

∑
s∈S

π(s)Ef(s)[u ◦ φ(x)] ≥ u

(ˆ
Ws′

φ(c(w))dµs′

)

which, under the Representation and given (6), implies that ce(f) � c.
Hence, the DM is comparative ignorance averse.

Working in the other direction, let s be such that there exists an E ∈ Bs
with 0 < µs(E) < 1. (By Assumption 1, there is such an s). Take any

x, y ∈ φ(X) and de�ne the derivative action, c, with the property that

c(w) = x if w ∈ E, c(w) = y if w ∈ Ws \ E, and c(w) = z for all other w
where z := φ−1 (µs(E)φ(x) + (1− µs(E))φ(y)). Now de�ne the A-A act, f ,
such that f(s) = l where l is a lottery that assigns a probability of µs(E) to

20



consequence x and (1−µs(E)) to consequence y, and f(s′) = z for all other
s′ ∈ S.
Observe that c is φ-risk free and that ηc = ηf , so if the DM is comparative

ignorance averse it must be that ce(f) � c. Using parallel reasoning to that

behind (6), it follows that:∑
s∈S

π(s)Ef(s)[u ◦ φ(x)] ≥
∑
s∈S

π(s)u

(ˆ
Ws

φ(w(s))dµs

)
and hence, by construction, that:

µs(E)(u ◦ φ(x))) + (1− µs(E))(u ◦ φ(y)) ≥ u (µs(E)φ(x) + (1− µs(E))φ(y)) (7)

And as (7) holds for any x, y in the convex set φ(X), Lemma A.1 implies

that u is convex. �

A.4 Proof of Proposition 2

For any risk-free derivative action c, write ceA(c) for φ−1
(´

Ws
φ(c(w))dµs

)
(where s is non-null). Under the representation we have:

c �A x ⇐⇒ uA (φA(ceA(c))) ≥ uA (φA(x))

Which, since uA and φA are strictly increasing, holds i� ceA(c) ≥ x. If

φA = ψ ◦ φB for a concave ψ then by Jensen's inequality we have ceB(c) ≥
ceA(c) for any risk-free c, from which it follows immediately that A is more

ignorance averse than B.

Suppose now that A is more ignorance averse than B and de�ne ψ := φA ◦
φ−1B , which must be strictly increasing under the representation. We proceed

as in the proof of Theorem 2 in KMM. Take a non-null s such that there

exists a E ∈ Bs such that 1 > µs(E) > 0 and any risk free c. ceB(c) ≥ ceA(c)
requires:

φ−1B

(ˆ
Ws

φB(c(w))dµs

)
≥ φ−1A

(´
Ws

φA(c(w))dµs

)
which, since φA = ψ ◦ φB, implies:

ψ

(ˆ
Ws

φB(c(w))dµs

)
≥
´
Ws

(ψ ◦ φB)(c(w))dµs (8)

For any x, y ∈ X with x 6= y, (8) holds for c such that c(w) = x if w ∈ E
and c(w) = y otherwise. Thus, one can invoke Lemma A.1 to establish that

ψ is concave. �
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A.5 Proof of Theorem 2

The proof follows a similar path to that for KMM's Theorem 1. We show

that the axioms imply the representation and uniqueness properties.

Under Monotonicity and Source Dependence, for source A there is at least

one non-null state s such that there exists an E ∈ Bs with µ(E) ∈ (0, 1).
By State Independence∗, whenever c, c′ ∈ CA, c �s c′ i� Eθs,c [φA,s′(x)] ≥
Eθs,c′ [φA,s′(x)] for all non-null s′ ∈ S. This implies that for any non-null

s′, s′′, φA,s′(x) = αφA,s′′(x) + β for some (α, β) ∈ R++ × R, and hence that

for any non-null s′ and c, c′ ∈ CA, c �s′ c′ i�
´
WA,s′

φA,s(c(w))dµA,s′ ≥´
WA,s′

φA,s(c
′(w))dµA,s′ . Now proceed setting φA = φA,s

Since φA is continuous and strictly increasing, for every c ∈ CA and every

non-null s ∈ S, there is some unique x ∈ X such that where c′ ∈ Cδ satis�es
c′({s, g}) = x for all g, {c′, s; c} ∼ c. For each c ∈ CA, let cδ be some

member of Cδ such that {cδ, s; c} ∼ c for all s. By iterated applications of

Independence, for any c, c′ ∈ CA it must be that c � c′ i� cδ � c′δ.
Reduction then requires that c � c′ i� fcδ � fc′δ , which by AA-EU is equiv-

alent to: ∑
S

π(s)v (cδ(s)) ≥
∑
S

π(s)v
(
c′δ(s)

)
Since φA and v are both strictly increasing and continuous, there exists some

strictly increasing and continuous uA such that v = uA ◦ φA. Hence c � c′

i�: ∑
S

π(s)uA(φA(cδ(s))) ≥
∑
S

π(s)uA(φA(c′δ(s))) (9)

Given Derivative-SEU we have:

{c, s; cδ} ∼s cδ ⇐⇒
ˆ
WA,s

φA(c(w))dµA,s = φA(cδ(s))

So by construction (9) implies that c � c′ i�:∑
S

π(s)uA

(ˆ
WA,s

φA(c(w))dµA,s

)
≥

∑
S

π(s)uA

(ˆ
WA,s

φA(c′(w))dµA,s

)
And then Reduction yields that for any a, a′ ∈ A, a �∗ a′ i� ca � ca′ .
Finally, consider any a, a′ ∈ A. Source Dependence implies that there exist

sources A(a) and A(a′) such that a ∈ A(a) and a′ ∈ A(a′). By Reduction,

Ordering, and the reasoning above, it must be that a � a′ i� (ca)δ � (ca′)δ
i� f(ca)δ � f(c′a)δ . The latter implies:∑

S

π(s)v ((ca)δ(s)) ≥
∑
S

π(s)v ((ca′)δ(s))
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Which as we have shown is equivalent to:

∑
S

π(s)uA(a)

(ˆ
WA(a),s

φA(a)(c(w))dµA(a),s

)
≥

∑
S

π(s)uA(a′)

(ˆ
WA(a′),s

φA(a′)(c
′(w))dµA(a′),s

)

as required.

AA-EU implies imply that π is unique and Derivative-SEU implies that

µA,s is unique for all non-null s; and it is obvious that if s is null, the

representation is valid for any arbitrary µA,s. By assumption, φA is unique

up to a positive a�ne transformation and v = uA ◦ φA, so it is immediate

that if φ̃A = αφ+β then the associated ũA satis�es ũA(αx+β) = uA(x) for
x ∈ φ(X).

Finally, suppose a ∈ A(a) ∩ A(a′) where A(a) 6= A(a′). We show that this

can only be the case where for all non-null s there is some x such that

µs ({{s, g} : g(a) = x}) = 1: that is, where the DM understands a. Clearly,
if the DM does understand a, then a belongs to all sources, so the uniqueness
claim follows from this.

Imagine that a ∈ A(a)∩A(a′) whereA(a) 6= A(a′) and that for some s there is
an x such that 1 > µs ({{s, g} : g(a) = x}) > 0. De�nition 3 implies A(a) 6⊆
A(a′) and A(a) 6⊇ A(a′), so there exists an a′′ ∈ A(a)\A(a′); since a′′ /∈ A(a′),
the DM does not understand a′′. The fact that the DM does not understand

a implies that whenever c �s c′ i�
´
Wa,s

φa(c(w))dµs ≥
´
Wa,s

φ(c′(w))dµs for

c, c′ ∈ Ca, φa is unique up to a positive a�ne transformation. Since the same

holds for a′′, it follows that c �s c′ i�
´
Wa,s

φa(c(w))dµs ≥
´
Wa,s

φ(c′(w))dµs

for all c, c′ ∈ Ca′′ and hence (given Ordering) that whatever sources a belongs
to, a′′ also belongs to, a contradiction. �
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