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Abstract

An open puzzle for climate-policy analysis is how policies could be made sensi-

tive to climate change impacts spanning over centuries while keeping the shorter-

term macroeconomic policies connected to the descriptive facts. We develop a

tractable general-equilibrium model for climate-economy interactions with time-

declining pure discounting. The model resolves the puzzle: preferences over long-

term climate outcomes can be expressed without sacrificing the description of the

economy. The optimal carbon price shows a striking departure from the externality

cost obtained from the economy’s aggregate statistics — the equilibrium carbon

price exceeds the imputed externality cost by multiple factors.
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1 Introduction

The essence of climate policy is a price for carbon, following from an evaluation of social

costs arising from climate change. The unusual feature of climate change is the arrival

delay of impacts, with persistent consequences spanning over centuries or possibly mil-

lennia into the future.1 But the applied climate-economy models, commonly used to

evaluate the carbon price, ignore the majority of climate externalities when discount-

ing time as needed to describe shorter-term macroeconomic choices.2 This fundamental

puzzle of the climate-policy analysis has been fiercely debated, some emphasizing that

discounting and thus policies should respect the shorter-term time preferences consis-

tent with historical consumption choices (Nordhaus, 2007) while others put more weight

on longer-term climate outcomes (Stern, 2006). The carbon tax recommendations can

depart by a factor of ten. The discussion on how policies could be made sensitive to

climate outcomes while keeping shorter-term economic decisions realistic has been in-

conclusive and confrontational.3 Are we forced to either ignore the climate impacts or

disconnect from the descriptive facts? Perhaps surprisingly, there has been no attempt

to incorporate both views, high discounting for shorter-term macroeconomic decisions

and lower discounting for longer-term trade-offs, in an equilibrium framework. We de-

velop a tractable climate-economy model with such discounting to show that there is

no climate-policy puzzle in general equilibrium: any description of the economy that is

deemed realistic can be reconciled with carbon pricing policies that are sensitive to the

climate outcomes.

There is evidence for treating the far-distant future differently from the short term.

Layton and Brown (2000) surveyed 376 subjects and found no difference in their will-

ingness to pay to prevent future ecosystem losses if these appeared after 60, or after 150

years. Weitzman (2001) surveyed 2,160 economists for their best estimate of the appro-

priate real discount rate to be used for evaluating environmental projects over a long

time horizon, and used the data to argue that the policy maker should use a discount

rate that declines over time — coming close to zero after 300 years.

1The impacts involve an intricate delay structure for atmospheric and ocean carbon dioxide diffusion,

and land surface and ocean temperature adjustments. See, for example, Maier-Reimer and Hasselmann

(1987), and Hooss, Voss, Hasselmann, Maier-Reimer, Joos (2001)
2The climate-economy models are commonly called integrated assessment models (IAMs) put forward

by Peck and Teisberg (1992), Nordhaus (1993), and Manne and Richels (1995).
3For constructive contributions to the debate, see, e.g., Nordhaus (2007), Weitzman (2007), Dasgupta

(2008).
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While the relevance of time-declining pure discounting for climate policy evaluations

has been long recognized, the general-equilibrium implications of such discounting have

gone unnoticed. We derive a tractable general-equilibrium carbon price formula build-

ing on an explicit carbon cycle representation for climate impacts and the equilibrium

implications of hyperbolic discounting. The formula allows a transparent quantitative

assessment, and shows that the hyperbolic-discounting carbon price deviates from the

standard Pigouvian principle: the current optimal carbon price exceeds the net present

value of the future externality costs of emissions by multiple factors in our quantitative

assessment. Apart from the time structure of preferences and our explicit carbon cycle for

climate impacts, the framework for quantitative analysis is a general-equilibrium growth

framework, following the Nordhaus’ approach and its recent gearing towards the macro

traditions by Golosov, Hassler, Krusell, and Tsyvinsky (2011).

Table 1 contains the gist of the quantitative assessment. The technology parameters

are calibrated to 25 per cent gross savings, when both the short- and long-term annual

time discount rate is 2 per cent. This is consistent with the Nordhaus’ DICE 2007 baseline

scenario (Nordhaus, 2007), giving 8.4 Euros per ton of CO2 as the optimal carbon price

in the year 2010 (i.e., 40 Dollars per ton C). When the longer-term receives a higher

weight (roughly consistent with Weitzman’s survey results), the shorter-term preferences

can be matched so that the model remains observationally equivalent to Nordhaus in

terms of macroeconomic performance, savings in particular. But carbon prices increase:

for very low long-term discounting, carbon prices ultimately approach those suggested

by Stern (2006).4

discount rate

short-term long-term savings carbon price

“Nordhaus” .02 .02 .25 8.4

Equilibrium .026 .001 .25 116.4

“Stern” .001 .001 .30 151.8

Table 1: Equilibrium carbon prices in EUR/tCO2 year 2010.

The aggregate statistics of the macroeconomy become distorted under hyperbolic dis-

counting: there is a shortage of future savings leading to higher capital returns than what

4Under “Stern” the capital-share of output is fully saved (30 per cent); increasing the capital-share

leads to unrealistic savings as discussed, e.g., in Weitzman 2007 and Dasgupta 2008.
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the current policy maker would like to see.5 As is well-known in cost-benefit analysis,

a distorted capital return is not the social rate of return for public investments.6 Our

carbon price formula gives the optimal current policy, given the return distortions in

the economy. Note that such distortions cannot be avoided with time-changing discount

rates since policy decisions are de facto made in the order of appearance of policy makers

in the time line.

The carbon price under hyperbolic discounting comes from a Markov equilibrium

where each generation sets its self-interested savings and climate policies understanding

how the future generations respond to current choices — time-changing discounting leads

to a policy game between generations even when the current and all future policy makers

internalize all climate impacts of emissions. Distortions arise from the lack of commit-

ment to actions that we would like to implement in the future, as the future decision

makers control their own capital savings and emissions but discount differently. But the

future decision makers face the same dilemma — they value future savings and emis-

sion reductions, after their time, relatively more than the subsequent actual polluters.

Therefore, also the future policy makers would value commitment to long-run actions.

The extreme persistence of climate impacts provides commitment: the current climate

policies alter directly the utilities of future agents. Also, future agents have no reason

to undermine past climate investments as they value the climate capital for the same

reason. The mechanism is similar to that delivering value for commitment devices in

self-control problems (Laibson, 1997);7 it explains why actions in climate protection are

valued above the level implied by the pure Pigouvian externality pricing.

The quantitative significance of the commitment value follows from the unusual delays

of the consequences of climate change. We develop and calibrate a novel representation of

the carbon cycle, with the peak impact lagging 60-70 years behind the date of emissions.

The analytics allows us to decompose the contribution of the different layers of the

climate system to the carbon price: ignoring the delay of impacts — as in Golosov et

al. (2011) — misses the correct price levels by a factor of 2, even when preferences are

consistent. Getting the carbon price right is not merely an academic exercise; such prices

are increasingly factored into the policy decisions, for example, into those that favor

5This distortion is the same as in Barro (1999); and Krusell, Kuruscu, and Smith (2002)
6See Lind (1982), or, e.g., Dasgupta (2008).
7However, self-control at the individual level is not the interpretation of the “behavioral bias” in our

economy; we think of decision makers as generations as in Phelps and Pollak (1968). In this setting, the

appropriate interpretation of hyperbolic discounting is that each generation has a social welfare function

that expresses altruism towards long-term beneficaries (see also Saez-Marti and Weibull, 2005).
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particular electricity generation technologies.8

The relevance of time-declining pure discounting for climate policy evaluations has

been recognized before. Nordhaus (1999) and Mastrandrea and Schneider (2001) include

hyperbolic discounting in an integrated-assessment model assuming that the current deci-

sion makers can choose also the future policies; they do not analyze how optimal policies

evolve in an economy where future generations’ policies cannot be dictated today. As a

result, these papers show that decreasing discount rates lead to more aggressive climate

policies as savings and climate policy are both targeted to long-term preferences; this

way, the description of the shorter-term decisions becomes unrealistic, leading back to

the climate-policy puzzle. Karp (2005), Fujii and Karp (2008) and Karp and Tsur (2011)

consider Markov equilibrium climate policies under hyperbolic discounting without com-

mitment to future actions, but these studies employ a very stylized setting without a

model for intertemporal consumption choices. None of the above models can answer the

question how optimal climate policy should be designed when concerns for long-term out-

comes imply a preference for deep emission reductions, but when shorter-term macroeco-

nomic choices should also be respected. Our tractable general-equilibrium model features

a joint inclusion of macro and climate policy decisions. The key features of our model

are hyperbolic time preferences, an equilibrium structure for consumption-climate pol-

icy decisions, and a solid carbon cycle description — these features are all essential for

addressing the carbon price-discount rate puzzle.

We take the time-structure of preferences as given and focus on their general equi-

librium climate policy implications, but multiple recent arguments can justify the devi-

ation from geometric discounting. First, if we accept that the difficulty of distinguishing

long-run outcomes describes well the climate-policy decision problem, then our decision

procedure can imply a lower long-term discount factor than that for the short-term de-

cisions (see Rubinstein 2003 for the procedural argument). Second, climate investments

are public decisions requiring aggregation over heterogenous individual time-preferences,

leading again to a non-stationary aggregate time-preference pattern, typically declining

with the length of the horizon, for the group of agents considered (Gollier and Zeckhauser

2005; Jackson and Yariv 2011). We can also interpret Weitzman’s (2001) study based on

the survey of experts’ opinions on discount rates as an aggregation of persistent views.

Third, the long-term valuations must by definition look beyond the welfare of the imme-

8See Muller, Mendelsohn, and Nordhaus (2011) for the dramatic effect that carbon prices can have

for the value-added evaluation of the US electricity sector. Greenstone, Kopits, and Wolverton (2011) is

an overview of the values and estimates for the social cost of carbon used in the US federal rulemakings.
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diate next generation; any pure altruism expressed towards the long-term beneficiaries

implies changing utility-weighting over time (Phelps and Pollak 1968 & Saez-Marti and

Weibull 2005).

The paper is organized as follows. The next section introduces the infinite-horizon

climate-economy model, and develops the main results. Section 3 provides the quantita-

tive assessment of the conceptual results. To obtain sharp results in a field dominated by

simulation models, we make specific functional assumptions. Section 4 discusses those

assumptions, and some robustness analysis as well as extensions to uncertainty and learn-

ing. Section 5 concludes.

2 An infinite horizon climate-economy model

2.1 Technologies and preferences: general setting

Consider a sequence of periods t ∈ {1, 2, ...}. The economy’s production possibilities,

captured by function ft(kt, lt, zt, st), depend on capital kt, labour lt, current fossil-fuel

use zt, and the emission history (i.e., past fossil-fuel use),

st = (z1, z2, ..., zt−2, zt−1).

History st enters in production for two reasons. First, climate-change that follows from

historical emissions changes production possibilities, as usual in climate-economy models.

Second, the current fuel use is linked to historical fuel use through energy resources whose

availability and the cost of use depends on the past usage. In the specific model that

we detail below, we abstract from the latter type of history dependence, because the

scarcity of conventional fossil-fuel resources is not binding when the climate policies are

in place. The economy has one final good. The closed-form solutions require that capital

depreciates in one period, leading to the following budget accounting equation between

period t and t+ 1:

ct + kt+1 = yt = ft(kt, lt, zt, st), (1)

where ct is the total consumption, kt+1 is capital built for the next period, and yt is gross

output. In each period, the representative consumer makes the consumption, fuel use,

and investment decisions. Let per-period utility be ut and define generation t welfare

generated by sequence {ct, zt, kt}∞t=1 as

wt = ut + β
∑∞

τ=t+1
δτ−tuτ (2)
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where 0 < δ < 1 is the long-term discount factor, and 0 < β. As, for example, in Krusell

et al. 2002, this β, δ –formulation implies that when β < 1, decision-makers use lower

discount rates for long- than for short-term evaluations.9 Furthermore, this increasing pa-

tience implies altruistic weights on future generations’ welfare levels; see Saez-Marti and

Weibull (2005) for the explicit derivation for the generation-specific welfare functionals.10

2.2 The specific climate-economy model

Golosov et al. (2011) marks a deviation from the Nordhaus’ approach (e.g., 1993) to

climate-economy modeling: abatement does not enter as a separate decision but is implied

by the energy input choices. We follow this approach but our modeling of the climate

dynamics, in addition to preferences, departs substantially from both Golosov et al. and

Nordhaus. We pull together the production structure as follows:

yt = kαt At(ly,t, et)ω(st) (3)

et = Et(zt, le,t) (4)

ly,t + le,t = lt (5)

ω(st) = exp(−∆yDt), (6)

Dt =
∑∞

τ=1
θτzt−τ (7)

Production. The gross production consists of: (i) the Cobb-Douglas capital contri-

bution kαt with 0 < α < 1; (ii) function At(ly,t, et) for the energy-labour composite in

the final-good production with ly,t denoting labor input and et the total energy use in

the economy; (iii) total energy et = Et(zt, le,t) using fossil fuels zt and labour le,t, and

(iv) the damage part given by function ω(st) capturing the output loss of production

depending on the history of emissions from the fossil-fuel use. The functional forms for

the capital contribution and damages allow a Markov structure for policies, and thus the

determination of the currently optimal policies as function of the state of the economy,

say, at year 2010. Our quantitative assessment focuses on the currently optimal policies,

and therefore we leave the detailed elaboration of functions At and Et to our longer

9The formal analysis is not restricted to this quasi-hyperbolic setting. For interpretations, the quasi-

hyperbolic case is the most natural to keep in mind, but we will state explicitly the formal results that

require β < 1. Moreover, in Section 3 we discuss how the analysis extends to an arbitrary sequence of

discount factors.
10These preferences are specific for generation t, and in that sense, wt is different from the generation-

independent social welfare function (SWF) as discussed, e.g., in Goulder and Williams (2012) and Kaplow

et al. (2010).
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working paper Gerlagh&Liski (2012).11 Historical emissions, zt for t < 1, affect future

damages. We assume that the final-good and energy-sector outputs are differentiable and

increasing in labor, energy, and carbon inputs.

Damages and carbon cycle. Equations (6)-(7) show that climate damages are

interpreted as reduced output, and depend on the history of emissions through the state

variable Dt that measures the global mean temperature increase; below, with slight

abuse of terminology, we refer to Dt as damages. The exponential form for output losses

combined with linear dependence on the past emissions is the same as in Golosov et al.

(2011). But the specification of the parameters θτ in our model is very different: in the

Appendix, we develop a closed-form representation for the global carbon-climate cycle,

allowing a transparent and detailed calibration. The pattern of the temperature anomaly

that follows from this representation shows a delay between the cause (emissions) and the

effect (output losses); the pattern that results from our calibration is qualitatively similar

to that in DICE (Nordhaus, 2007). The delay pattern has substantial implications for

policies; we contrasting our calibrated emissions-damage response with both Nordhaus

and Golosov et al. (2011) below.

The weighting of past emissions in (7) is obtained from a model for the global carbon

cycle that refers to a diffusion process of carbon between various reservoirs of the at-

mosphere, oceans and biosphere (Maier-Reimer and Hasselman 1987). In the Appendix

we describe this diffusion as a Markov process. Emissions zt enter the atmospheric CO2

reservoir, and slowly diffuse to the other reservoirs. The deep ocean is the largest reser-

voir, and acts as the major sink of atmospheric CO2. We calibrate this reservoir system,

and, for ease of analysis, by linear transformation obtain an isomorphic decoupled system

of “atmospheric boxes” where the diffusion pattern between the boxes is eliminated. We

describe the carbon cycle in terms of such a system of independent atmospheric boxes.

Let I denote the set of boxes, with share 0 < ai < 0 of annual emissions entering each

box i ∈ I, and ηi < 1 its carbon depreciation factor. A three-box representation will be

sufficiently rich to capture the analytical essence of the carbon cycle dynamics.

After an emissions impulse, carbon concentrations rise but temperatures and thus

11Emissions can decline through energy savings, obtained by substituting labor ly,t for total energy

et. Emissions can also decline through “de-carbonization” that involves substituting non-carbon inputs

for carbon energy inputs zt in energy production; de-carbonization is obtained by allocating the total

energy labor le,t further between carbon and non-carbon energy sectors. Typically, the climate-economy

adjustment paths feature early emissions reductions through energy savings, whereas de-carbonization

is necessary for achieving long-term reduction targets. See Gerlagh&Liski (2012).
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damages increase with delay. We assume a linear relationship between concentrations

and damages. We describe the sensitivity of the damages to increases in atmospheric CO2

stocks by parameter π: one-unit increase in the steady-state atmospheric CO2 stock leads

to π-unit increase in the steady-state Dt.

Outside steady state, there is delay in the effect from concentrations to damages, and

this delay is captured by parameter 0 < ε < 1: one-unit increase in emissions increases

next period concentrations one-to-one but damages only επ -units. This description leads

to a closed-form for an emissions-damages response (see the Appendix for the derivation):

the impact of emissions at time t on damages at time t+ τ is

dDt+τ

dzt
= θτ =

∑
i∈I

aiπε
(1− ηi)τ − (1− ε)τ

ε− ηi
> 0,

where the geometric terms (1 − ηi)
τ and (1 − ε)τ characterize the delays in carbon

concentration and temperature adjustments; ηi is the calibrated carbon depreciation in

each climate box.

Function θτ , when calibrated, is hump-shaped with a peak around 60-70 years after

emissions. The essence of the response is very intuitive. Parameter ηi captures, for

example, the carbon uptake from the atmosphere by forests and other biomass, and

oceans. The term (1−ηi)τ measures how much of carbon zt still lives in box i, and the term

−(1 − ε)τ captures the slow temperature adjustment in the earth system. The limiting

cases are revealing. Consider one CO2 box, so that the share parameters are a = 1. If

atmospheric carbon-dioxide does not depreciate at all, η = 0, then the temperature slowly

converges at speed θτ = π[1 − (1 − ε)τ ] to the long-run equilibrium damage sensitivity

π. If atmospheric carbon-dioxide depreciates fully, η = 1, the temperature immediately

adjusts to πε, and then slowly converges to zero, θτ = πε(1 − ε)τ−1. If temperature

adjustment is immediate, ε = 1, then the temperature response function directly follows

the carbon-dioxide depreciation θτ = π(1 − η)τ−1. If temperature adjustment is very

slow, ε = 0, there is no response, θτ = 0.

The physical data on carbon emissions, stocks in various boxes, and the observed

concentration developments are used to calibrate a 3-box carbon cycle representation

leading to the following emission shares and depreciation factors per decade:12

a = (.163, .184, .449)

η = (0, .074, .470).

12Some fraction of emissions enters the ocean and biomass within a decade, so the shares ai do not

sum to unity.
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Thus, about 16 per cent of carbon emissions does not depreciate while about 45 per cent

has a half-time of one decade. For a climate sensitivity of 3K (Kelvin), we proxy its

value at about 4.25 [K2/GtCO2]. We assume ε = .183 per decade, implying a global

temperature adjustment speed of 2 per cent per year. These choices are within the ranges

of scientific evidence (Solomon et al. 2007).

Figure 1: Emissions-Damage responses.

Figure 1 shows the life path of damages (percentage of total output) caused by insert-

ing one TtonC in the first period, and then contrasting the impact with a counterfactual

path without the carbon impulse.13 Golosov et al.’s (2011) specification can be under-

stood as one where the temperature adjustment is immediate: ε = 1 so that an emission

impulse leads to an immediate temperature shock that slowly decays. The specification

following Golosov et al. produces an immediate peak but a fat tail, while the DICE

model shows an emissions-damage peak after 60 years with a thinner tail. Our model,

that we calibrate with data from the natural sciences literature, produces a combination

of the effects: a peak in the emission-damage response function after about 60 years and

13One TtonC equals about 50 years of global CO2 emissions at current levels (40 GtCO2/yr.) At

current growth rates, it is about what we expect to emit between 2010 and 2050. See Appendix for the

details of the experiment.
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a fat tail; about 16 per cent of emissions do not depreciate within the horizon of thousand

years.14 We note that the reduced-form model above can be calibrated very precisely to

approximate the DICE model (Nordhaus 2007).

Periodic utility. We assume that the utility function is logarithmic, and through

a separable linear term we also include the possibility of intangible damages associated

with climate change:

ut = ln(
ct
lt

)−∆uDt. (8)

The utility loss ∆uDt is not necessary for the substance matter of this paper, but it

proves useful to explicate how it enters the carbon price formulas. In calibration, we

let ∆u = 0 to maintain an easy comparison with the previous studies.15 Note that we

consider average utility in our analysis.16

Strategies. Our focus is the symmetric and stationary Markov equilibrium.17 Sym-

metry means that all generations use the same policy functions — even though there

can be technological change and population growth, the form of the objective in (8)

ensures that there will be an equilibrium where the same policy rule will be used for

all t. The Markov restriction means that the policy does not condition on the history

of past behavior: strategies are identical in states where the continuation payoffs are

identical (see Maskin and Tirole, 2001).18 In equilibrium, the policy will take the form

kt+1 = gt(kt,Θt), zt = ht(kt,Θt), where Θt collects the vector of climate state variables.

14The main reason for the deviation from DICE is that DICE assumes an almost full CO2 storage

capacity for the deep oceans, while large-scale ocean circulation models point to a reduced deep-ocean

overturning running parallel with climate change (Maier-Reimer and Hasselman 1987). The positive

feedback from temperature rise to atmospheric CO2 through the ocean release is essential to explain the

large variability observed in ice cores in atmospheric CO2 concentrations.
15See Tol (2009) for a review of the existing damage estimates. While the estimates for intangible

damages are mostly missing, our carbon pricing formulas can help to transform output losses into

equivalent intangible losses to gauge the relative magnitudes of such losses that can be associated with

a given carbon price level.
16Alternatively, we can write aggregate utility within a period by multiplying utility with population

size, ut = lt ln(ct/lt)− lt∆uDt. The latter approach is feasible but it leads to considerable complications

in the formulas below. Scaling the objective with labor rules out stationary strategies — they become

dependent on future population dynamics —, and also impedes a clear interpretation of inconsistencies

in discounting. While the formulas in the Lemmas depend on the use of an average utility variable, the

substance of the Propositions is not altered. The expressions for this case are available on request
17We describe an equilibrium in symmetric but non-stationary strategies in Gerlagh&Liski (2012) too

see the implications for carbon pricing; the differences are not large.
18We will construct a natural Markov equilibrium where policies have the same functional form as

when β = 1. For multiplicity of equilibria in this setting, see Krusell and Smith (2003) and Karp (2007).
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However, since the climate affects the continuations payoffs only through the weighted

sum of past emissions, as expressed in (7), we will replace Θt by history st below, treating

it as a state variable.

Structure of equilibria. Given policies gt(kt, st) and ht(kt, st), we can write welfare

in (2) as follows

wt = ut + βδWt+1(kt+1, st+1),

Wt(kt, st) = ut + δWt+1(kt+1, st+1)

where Wt+1(kt+1, st+1) is the (auxiliary) value function. All equilibria considered in this

paper will be of the form where a constant share 0 < g < 1 of the gross output is invested,

kt+1 = gyt, (9)

whereas the climate policy defines emissions through a constant h that defines the carbon

policies through

ft,z = h(1− g)yt, (10)

where ft,z is the marginal product of fossil fuel use, the carbon price. Equilibrium policies

will be characterized simply by a pair of constants (g, h). That a constant fraction

of output is saved should not be surprising, given the log utility and Cobb-Douglas

contribution of capital in production.19 Condition (10) implies that the marginal carbon

price per consumption is a constant, h = ft,z/ct where ct = (1 − g)yt. This may seem

surprising given the complicated delay structure (7), and changing productivities in (3)-

(7), and preference inconsistencies.20

Postponing the verification that the policies actually take the above form, it proves

useful to state the properties of the value function implied by (g, h) policies (the proofs,

unless helpful in the text, are in the Appendix).

Lemma 1 (separability) Given the model (3)–(8), assuming that future policies gτ (·) and

hτ (·) for τ = t + 1, t + 2, ... satisfy (9) and (10), then the value function is separable in

capital and historical emissions

Wt+1(kt+1, st+1) = Vt+1(kt+1)− Ω(st+1).

19See, e.g., Barro 1999, for the analysis of the one-capital good case.
20Golosov et al. find emission policies that have the same features; our policies exploit the same

functional assumptions, despite the added complexity.
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with parametric form

Vt+1(kt+1) = ξ ln(kt+1) + Ãt+1

Ω(st+1) =
t−1∑
τ=1

ζτzt+1−τ ,

where ξ = α
1−αδ , ζ1 = ∆

∑
i∈I

aiπε
[1−δ(1−ηi)][1−δ(1−ε)]

, ∆ = ( ∆y

1−αδ + ∆u) and Ãt+1 is indepen-

dent of kt+1 and st+1.

The result that the value of savings kt+1 and the costs from fossil-fuel use zt can

be obtained separately hinges on the strong functional assumptions; we discuss these in

detail in Section 3.

2.3 The Markov equilibrium policies

The functional forms and the capital depreciation assumption imply that the consumption

choice model is effectively Brock-Mirman (1972). Krusell et al. (2002) describe the

savings policies for this model with quasi-hyperbolic preferences. Each generation takes

the future policies, captured by constants (g, h) in (9)-(10), as given and chooses its

current savings to satisfy

u′t = βδV ′t+1(kt+1),

where u′t denotes marginal consumption utility and function V (·) from Lemma 1 captures

the continuation value implied by the equilibrium policy.

Lemma 2 (savings) The equilibrium investment share g = kt+1/yt is

g∗ =
αβδ

1 + αδ(β − 1)
. (11)

The proof of the Lemma is a straightforward verification exercise following from the

first-order condition. If future savings could be dictated today, then gβ=1 = αδ for future

decision-makers would maximize the wealth as captured by Wt+1(kt+1, st+1); however,

equilibrium g∗ with β < 1 falls short of gβ=1 = αδ because each generation has an

incentive to deviate from this long-term plan due to higher impatience in the short run

(Krusell et al., 2002).

Consider then the equilibrium carbon price ft,z, that is, the marginal product of the

fossil-fuel use zt, satisfying

u′tft,z = βδ
∂Ω(st+1)

∂zt
,
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where function Ω(.) gives the future costs of emissions implied by the equilibrium policy.

The optimal policy thus equates the marginal current utility gain from fuel use with the

change in equilibrium costs on future agents. Given Lemma 1, the equilibrium carbon

price and the fossil-fuel use can be obtained:

Proposition 1 Equilibrium emissions zt = z∗t depend only on the current technology at

period t as captured through At(.) and Et(.). The equilibrium carbon price is

MCPt = ft,z = h∗(1− g)yt (12)

h∗ = ∆
∑

i∈I
βδaiπε

[1− δ(1− ηi)][1− δ(1− ε)]
. (13)

When yt is known, say yt=2010, the carbon policy for t = 2010 can be obtained from

(13), by reducing fossil-fuel use to the point where the marginal product of z equals the

consumption-weighted externality cost of carbon, as expressed in (13). For the functional

form of policy h∗, note that ∆ is the total damage, measured in utility, per unit of increase

in Dt at time t. To obtain the carbon price intuitively, that is, the social cost of carbon

emissions zt as seen by the current generation, consider the effect of emissions at t on

period t+ τ utility:21

dut+τ
dzt

= ∆
dDt+τ

dzt
= ∆

∑
i∈I

aiπε
(1− ηi)τ − (1− ε)τ

ε− ηi
.

Summing over all future periods and discounting with factor 0 < β, δ < 1 gives the

present-value utility cost of emissions:

β
∑∞

τ=1 δ
τ dut+τ
dzt

= ∆
∑

i∈I

βaiπε

ε− ηi
∑∞

τ=1 δ
τ (1− ηi)τ − δτ (1− εj)τ

= ∆
∑

i∈I

βδπaiε

[1− δ(1− ηi)][1− δ(1− ε)]
.

This is exactly the value of h∗.

The Markov equilibrium carbon price, as indicated by (13) and Lemma 1, depends

on the delay structure in the carbon cycle captured by parameters ηi and ε. Carbon

prices increase with the damage sensitivity (∂h/∂π > 0), slower carbon depreciation

(∂h/∂ηi < 0), and faster temperature adjustment (∂h/∂ε > 0). Higher short- and long-

term discount rates both decrease the carbon price (∂h/∂β > 0; ∂h/∂δ > 0). The carbon

price rises sharply if the discount factor comes close to one, δ → 1, and if some box the

21 Recall that ∆ = (
∆y

1−αδ + ∆u). The adjustment of the output loss ∆y by (1 − αδ)−1 is to account

for the decrease in the future capital stock caused by a current drop in output.
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depreciation is low, ηi → 0. If carbon depreciates quickly, ηi > 0, then the carbon price

will be less sensitive to the discount factor δ.22

2.4 The imputed Pigouvian tax

The equilibrium defines a utility-discount factor 0 < γ < 1 for consumption that is

obtained from

u′t = γu′t+1Rt,t+1

where Rt,t+1 is the capital return between t and t+ 1. Thus,

γ =
u′t

u′t+1Rt,t+1

=
ct+1

ctRt,t+1

=
ct+1

ct

kt+1

αyt+1

=
g

α
. (14)

In the Markov equilibrium where g = g∗, we have

γ∗ =
βδ

1 + αδ(β − 1)
. (15)

This is the geometric utility discount factor that is consistent with the efficiency of the

equilibrium consumption stream: a fictitious planner who has consistent preferences and

discounts with γ∗ would find the equilibrium policy g optimal. We can also find the social

cost of carbon for a planner who discounts with γ∗. Since this defines the full externality

cost of equilibrium actions for such a planner, we arrive at the definition of the Pigouvian

tax imputed to the consistent preferences discounting γ∗.23

Proposition 2 (Imputed Pigouvian tax) The net present value of marginal damages of

emissions τ γt , discounted with γ = γ∗, is given by

τ γt = hγ(1− g)yt (16)

hγ = ∆γ
∑

i∈I
γπaiε

[1− γ(1− ηi)][1− γ(1− ε)]
(17)

∆γ =
∆y

1− αγ
+ ∆u.

22This feature explains the finding by Fujii and Karp (2008) who conclude that the mitigation level is

not very sensitive to the discount rate. Their representation of climate change can be interpreted as one

in which CO2 depreciates at more than 25% per decade, well above the estimates in the natural sciences

literature.
23The adjustment of the output loss ∆y by (1 − αγ)−1 is to account for the decrease in the future

capital stock caused by a current drop in output for the planner show discounts with γ and thus has

g = αγ; see also footnote 21
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We have now two definitions for the social cost of carbon. The one in Proposition 1

is the current best response to future policies; it foresees the distortions in the economy,

from the current preferences perspective. The other carbon price in Proposition 2 uses

the aggregate statistics of the economy to measure the costs imposed on future agents

from increases in current emissions. If the current carbon price does not equal the

imputed Pigouvian tax, it is possible to strictly increase consumption (i.e., utility) in one

period, without decreasing consumption in another period. However, it is not immediate

that there are gains to be obtained by imposing the imputed carbon pricing rule on the

economy — this latter exercise is artificial but useful as it reveals whether institutions

that enforce Pigouvian carbon pricing based on the aggregate statistics only should be

established.

We address first the conditions when the two carbon prices differ:

Proposition 3 For quasi-hyperbolic preferences, β < 1, the equilibrium carbon price

strictly exceeds the imputed Pigouvian tax if climate change delays are sufficiently long.

Formally, the ratio of the equilibrium carbon price and the efficient carbon price, ft,z/τ
γ
t ,

is continuous in parameters β, δ, ηi, εj, ai, bj, and γ. Evaluating at γ = γ∗, β < 1,

ηi = εj = 0,

ft,z > τ γt .

If preferences are quasi-hyperbolic and the climate system is sufficiently persistent,

then the current generation uses the climate asset as a commitment device to transfer

wealth to future generations, and therefore it values the external climate costs above

the imputed Pigouvian level. It is well known that when β < 1 the future equilibrium

savings are lower than preferred from the current generation’s point of view (Laibson

1997; Krusell et al. 2002). There is thus a capital market distortion, implying higher

future capital returns than what the current generation would like to see. The imputed

Pigouvian tax uses those distorted returns to obtain the present value of climate impacts,

and thus identifies a wrong cost-benefit ratio for the current emissions; this links with

the well-know result in cost-benefit analysis that the distorted capital returns do not

identify the correct social returns for public investments (Lind, 1982; Dasgupta, 2008).

The true return on climate policies is higher if the climate asset is sufficiently persistent;

the equilibrium carbon price formula incorporates the social value of this persistence.

We ask next if there are potential gains to be achieved from enforcing the pricing

rule in Proposition 2 as an institutional constraint. Strong welfare conclusions can be

obtained for this model, if we treat agents in different periods as distinct generations (as
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in Phelps and Pollak, 1968). Then, the multi-generation Pareto optimality is a natural

welfare concept (as, e.g., in Caplin and Leahy, 2004) for considering whether policy

measures can improve welfare above that in the Markov equilibrium.24 We provide such

a comprehensive welfare analysis for an equivalent model in Gerlagh&Liski (2011); here

we bring the essence of the welfare impacts.25

The requirement that emissions should follow the rule ft,z = τ γt has a seemingly

clear justification: it implements efficiency. Only if carbon prices imputed to consistent

preferences decisions with discounting γ = γ∗ are imposed, it is not possible to increase

utility at any t without decreasing utility at some t′ 6= t.26 Yet such a carbon price rule

does not imply Pareto optimality; not even a Pareto improvement can be achieved as

we will now demonstrate.27 Note that from the perspective of the current generation,

future savings and emission levels are optimal if they are consistent with the long-term

time preference δ, that is, if g = αδ and hγ=δ where hγ is defined in Proposition 2; then

future agents would behave as if they were consistent with present long-term preferences.

This thought-experiment gives a clear benchmark against which we can test how policy

proposals affect current welfare through future policies.

Lemma 3 For β 6= 1 and τ > t,

∂wt
∂gτ

> 0 iff gτ < αδ

∂wt
∂hτ

> 0 iff hτ < hδ.

Since the equilibrium policies depart from those optimal for the long-run preference

δ, any policy that manages to take the decision variables closer to the long-run optimal

levels increases current welfare. It turns out that imposing the stand-alone Pigouvian

carbon tax principle implies a correction in the wrong direction.

24See Bernheim and Rangel (2009) for an alternative concept, and its relationship to the Pareto

criterion. The Pareto criterion may not be reasonable when the focus is on the behavioral anomalies at

the individual level.
25For completeness, these results are reproduced for the current climate-economy model in our longer

working paper version Gerlagh&Liski (2012).
26It is interesting to note that while in the Markov equilibrium the decision-makers internalize all future

impacts of current actions, the equilibrium is observationally distinct from any planner’s optimum, unless

the Pigouvian rule is imposed exogenously. This contrasts Barro (1999) where observational equivalence

with an allocation chosen by a fictitious planner follows without restrictions on the actions of the decision-

makers with hyperbolic preferences. This shows that when there is more than one capital-good the

observational-equivalence does not hold in general. See Gerlagh&Liski (2011).
27In a different context, Bernheim and Ray (1987) also show that, in the presence of altruism, efficiency

does not imply Pareto optimality.
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Proposition 4 For slow climate change, implementing ft,z = τ γt in Proposition 3 from

period t onwards implies a welfare loss for generation t vis-a-vis the Markov equilibrium.

Proof. By Lemma 1, the change to the imputed Pigouvian price does not affect

policy g; thus, we can focus on the change in current welfare wt due to the effect of

future carbon prices. Let β < 1 so that βδ < γ < δ, and let climate change be a slow

process such that τ δt > ft,z > τ γt ; see Proposition 3. Imposing the imputed carbon price

will then decrease the future carbon price, taking it further away from τ δt , decreasing

current welfare as shown in Lemma 3. The same mechanism applies for β > 1, when we

have τ δt < ft,z < τ γt . Moreover, imposing the imputed carbon prices on current policies

implies a deviation from the current best response, so the present welfare decreases due

to changes both in today’s and future’s actions.

The remarkable feature of the above proposition is that the carbon pricing policy

guided by the economy’s aggregate statistics strictly decreases welfare, not as a second-

order effect, but as a first-order effect.28

2.5 Quantitative assessment

To evaluate the quantitative significance of the conceptual results, we exploit the closed-

form price formulas — given the Markov structure for policies, the initial carbon price

level is a function of the income level and the carbon cycle parameters. Reasonable

choices for the climate-economy parameters and consistent preferences (β = 1) can re-

produce the carbon price levels of the more comprehensive climate-economy models such

as DICE (Nordhaus, 2007).29 We then introduce a difference between short- and long-

term discounting, β < 1, while keeping savings decisions unaltered. The exercise shows

how the sensitivity to climate outcomes can be reconciled with a positive description of

the macroeconomy.

The model is decadal (10-year periods),30 and year ’2010’ corresponds to period 2006-

2015. We calibrate the damage parameter ∆y = 0.003 so that 2.7 per cent of output

28Lemma 3 suggests that we can achieve self-enforcing and welfare-improving policies in the infinite

horizon setting. Such advanced policies are based on non-stationary strategies; see our working paper

Gerlagh&Liski (2012).
29We can also reproduce the carbon tax time path of DICE when the energy sector of our model is

specified and calibrated in detail; see our working paper Gerlagh&Liski (2012).
30The period length could be longer, e.g., 20-30 years to better reflect the idea that the long-term

discounting starts after one period for each generation. We have these results available on request.
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loss follows at a temperature rise of 3 Kelvin, as in Nordhaus (2001).31 We set ∆u = 0.

Population in 2010 is set at 6.9 [billion]. We take the Gross Global Product as 600 Trillion

Euro [Teuro] for the first decade, 2006-2015 (World Bank, using PPP). The capital

elasticity α follows from the assumed time-preference structure β and δ, and observed

historic gross savings g. As a base-case, we consider net savings of 25% (g = .25),

and a 2 per cent annual pure rate of time preference (β = 1,δ = 0.817), resulting in

α = g/ρ = 0.306.

These parameter choices together with our carbon cycle result in a consistent-preferences

Pigouvian, i.e., efficient carbon price, of 8.4 Euro/tCO2, equivalent to 40 USD/tC, for

2010.32 This number is very close to the level found by Nordhaus.33 Consider then the

determinants of this number in detail.

We can decompose the carbon price (13) into three contributing parts. First, consider

the one-time costs if damages were immediate (ID) but only for one period,

ID = ∆π(1− g)yt,

This value is multiplied by a factor to correct for the persistence of climate change, the

persistence factor (PF ),

PF =
∑

i∈I
ai

[1− δ(1− ηi)]
,

which we then multiply by a factor to correct for the delay in the temperature adjustment,

the delay factor (DF ),

DF =
βδε

1− δ(1− ε)
.

Table 2 below presents the decomposition of the carbon tax for a set of short- and long-

term discount rates such that the economy’s macroeconomic statistics remain the same.

The first row reproduces the efficient carbon price case assuming consistent preferences

when the annual utility discount rate is set at 2 per cent: this row presents the carbon

price under the same assumptions as in Nordhaus (2007). Keeping the equilibrium time-

preference rate at 2, thus maintaining the savings rate at a constant level (reported also

in Table 1 of the Introduction), we move to the Markov equilibrium by departing the

short- and long-term discount rates, presented in the first and second columns.34

31In Appendix, to obtain the linear relationship between damages and carbon concentrations, we

define Dt to be the global mean temperature squared (GMTS). Thus, when GMTS = 32 = 9 = Dt,

∆y = 0.003 implies about 2.7 per cent output loss.
32Note that 1 tCO2 = 3.67 tC, and 1 Euro is about 1.3 USD.
33Minor differences are caused by a correction for the price index, and a somewhat more persistent
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annual discount rate

short-term long-term equilibrium ID PF DF Carbon price

“Nordhaus/Pigou” .02 .02 .02 7.61 2.44 .45 8.4

Equilibrium .0235 .01 .02 7.89 3.70 .55 16.1

Equilibrium .0255 .005 .02 8.05 5.79 .63 29.5

Equilibrium .0271 .001 .02 8.19 19.55 .73 116.4

“Stern” .001 .001 .001 8.19 19.55 .95 151.8

Table 2: Decomposition of the carbon price, MCP [Euro/tCO2]. ID=immediate costs,

PF=persistence factor, DF=delay factor, MCP = ID × PF ×DF . Parameter values

in text.

We obtain a radical increase in the carbon price as the long-term discounting de-

creases, while savings remain unchanged from one set of preferences to the next. Note

that by construction the Nordhaus number 8.4 EUR/tCO2 becomes the imputed Pigou-

vian and thus the non-optimal tax for the hyperbolic discounting cases; because all

equilibria have the same equilibrium discount rate, the imputed tax remains constant.

The highest equilibrium carbon tax, 116.4 EUR/tCO2, corresponds to the case where

the long-run discounting is as proposed by Stern (2006); this case also best matches the

Weitzman’s values. For reference, we report the Stern case where the long-term dis-

counting holds throughout, the carbon price takes a value of 151.8 EUR/tCO2, and gross

savings cover about 30 per cent of income. Thus, the Markov equilibrium closes consid-

erably the gap between Stern’s and Nordhaus’ carbon prices, without having unrealistic

by-products for the macroeconomy.35

damage structure in our reduced model
34Weitzman’s (2001) survey led to discount rates declining from 4 per cent for the immediate future

(1-5 years) to 3 per cent for the near future (6-25 years), to 2 per cent for medium future (26-75 years),

to 1 per cent for distant future (76-300), and then close to zero for far-distant future. Roughly consistent

with Weitzman and our 10-year length of one period, we use the short-term discount rate close to 3 per

cent, and the long-term rate at or below 1 per cent. This still leaves degrees of freedom in choosing the

two rates βδ and δ; we choose them to match the savings rate of 25 per cent and thus the macroeconomic

performance in Nordhaus (2007). That is, we choose β and δ to maintain the equilibrium utility discount

factor at γ = 0.817 (2 per cent annual discount rate). Since the equilibrium utility discount rate remains

at 2 per cent, the macroeconomy remains observationally equivalent to that in Nordhaus (g = .25).
35The deviation between the Markov (thus Nordhaus) and Stern savings can be made extreme by

sufficiently increasing the capital share of the output that gives the upper bound for the fraction of yt

saved; close to all income is saved under Stern preferences as this share approaches unity (Weitzman,
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The decomposition shows that leaving out the time lag between CO2 concentrations

and the temperature rise amounts to replacing the column DF by βδ: abstracting from

the delay in temperature adjustments, as in Golosov et al. (2011), almost doubles the

efficient carbon price level. But, as expected, the persistence of impacts, capturing the

commitment value of climate policies, contributes most to the deviation between the

efficient and Markov equilibrium prices.

Table 2 quantifies the economic substance of appropriately accounting for the distor-

tions in the economy’s aggregate statistics: when the long-run discount rate declines, the

future equilibrium saving rate falls below the one the current generation would like to see.

The greater is this distortion, the larger is the gap between the equilibrium, currently

optimal, and the imputed Pigouvian tax.

3 Discussion

To obtain transparent analytical and quantitative results in a field that has been dom-

inated by simulation models, we exploit strong functional assumptions. First, building

on Golosov et al. (2011) we assume that income and substitution effects in consumption

choices over time cancel out, leading to policies for savings and carbon prices that are

separable. For more general functional forms, climate policies generate income effects

influencing future savings, thereby creating deeper linkages between the two policies.36

The quantitative importance of the interdependencies between the policies are probably

best analyzed using a numerical approach. But, while the quantitative significance de-

pends on the functional assumptions, the main observation is general: the optimal policy

should correct for the return distortions that arise from time-declining discount rates.

Second, quasi-hyperbolic discount factors are only rough approximations for the dis-

count rate paths estimated in the literature (e.g., Weitzman, 2001). It is possible to solve

this model for an arbitrary sequence of discount factors. Again, this will affect the quan-

titative evaluations but not the essence of the carbon pricing formulas; Iverson (2012)

partly builds on our setting to elaborate the implications of more flexible discounting.

Third, there is a concern that our linearized model for carbon diffusion might not well

describe the relevant dynamics when the system is far off the central path — that is, non-

linearities captured by more complicated climate simulation models may be important.

To address this concern, we devised a Monte Carlo experiment to test consistency of our

2007). However, with reasonable parameters such extreme savings do not occur, as in Table 2.
36We explicate these effects in the longer working paper version Gerlagh&Liski (2012, Section 2.2)
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closed-form carbon price with that predicted by a benchmark simulation model, DICE

2007. Drawing parameters from distributions for all key parameters in DICE, including

those that appear in our formula as well as those not in our formula, we found that

the formula explains 99% of the DICE variation in the carbon price. The deviation due

to the non-linearities of climate change is inconsequential compared to variation that is

captured by the formula.37

Fourth, our reduced-form carbon cycle and damage representations assume no un-

certainty, although great uncertainties describe both the climate system parameters as

well as the impacts of climate change on our economies. Golosov et al. (2011) show that

optimal polices are robust to impact uncertainty - rewriting the carbon price formula in

expected terms. Iverson (2012) shows robustness of the Markov equilibrium policy rules,

and of the gap between optimal carbon prices and efficient carbon prices, for a stochastic

Markov equilibrium with multiple stochastic parameters.

The tractable climate-economy models can prove very useful in the further analysis,

especially for addressing the consequences of uncertainty and learning. Since the closed-

form carbon price formula captures well the essence of computational climate-economy

models, it allows a transparent mapping from climate system and normative uncertainties

to carbon price distributions and, thereby, it potentially offers a sharp disentanglement

of subjective and objective determinants of carbon prices.

4 Concluding remarks

September 2011, the U.S. Environmental Protection Agency (EPA) sponsored a work-

shop to seek advice on how the benefits and costs of regulations should be discounted for

projects with long horizons; that is, for projects that affect future generations. The EPA

invited 12 academic economists to address the following overall question: “What princi-

ples should be used to determine the rates at which to discount the costs and benefits

of regulatory programs when costs and benefits extend over very long horizons?” In the

background document, the EPA prepared the panelists for the question as follows: “So-

cial discounting” in the context of policies with very long time horizons involving multiple

generations, such as those addressing climate change, is complicated by at least three fac-

tors: (1) the “investment horizon” is significantly longer than what is reflected in observed

37The online Appendix summarizes the experiment, and contains a note on the surprising prediction

power of the reduced form carbon pricing formula for the more comprehensive simulation model results.

See www.hse-econ.fi/liski/.
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interest rates that are used to guide private discounting decisions; (2) future generations

without a voice in the current policy process are affected; and (3) compared to shorter

time horizons, intergenerational investments involve greater uncertainty. Understanding

these issues and developing methodologies to address them is of great importance given

the potentially large impact they have on estimates of the total benefits of policies that

impact multiple generations.”

In this paper, we have developed a methodology for addressing the over-arching ques-

tion posed above and a quantitative evaluation. The resulting tool for policy purposes

is a carbon pricing formula that compresses the relevant elements of the climate and the

economy — while it is not a substitute for the comprehensive climate-economy models,

the formula identifies the contributions of the key elements to optimal carbon prices and

allows discussing them transparently. The formula incorporates the practical program

evaluation principle that the time-discounting rate should depend on the time horizon

considered. In general equilibrium, which is the approach needed for climate policy eval-

uations, time-changing discount rates distort the economy, stipulating a correction to

carbon pricing. The formula allows policy-makers to experiment with their prescriptive

views on longer-term discounting to see the effect on the optimal carbon tax. We used

discount factors from the literature to show that the equilibrium correction above the

standard efficient carbon tax is significant, and that this requires no loss of descriptive

realism regarding the economy.
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Appendix

Lemma 1

The proof is by induction. Assume that (9) and (10) hold for all future periods t+ 1, t+

2, .... , and that the lemma holds for t+ 2. We can thus construct the value function for

the next period, as

Wt+1(kt+1, st+1) = ut+1 + δWt+2(kt+2, st+2).

Substitution of the investment decision at time t+ 1, kt+2 = gyt+1 and emissions zt+1 =

z∗t+1 , gives

Wt+1(kt+1, st+1) = [ln(1− gt+1) + ln(At+1) + α ln(kt+1) + ln(ω(st+1))]−∆uDt+1

+δÃt+2 + δξ[ln(gt+1) + ln(At+1) + α ln(kt+1) + ln(ω(st+1))] + δΩ(st+2)

Collecting the coefficients that only depend on future policies gτ and zτ for τ > t, and

that do not depend on the next-period state variables kt+1 and st+1, we get the constant

part of Vt+1(kt+1):

Ãt+1 = ln(1− gt+1) + δξ ln(gt+1) + (1 + δξ) ln(At+1)− δζ1zt+1 + δÃt+2. (18)

Collecting the coefficients in front of ln(kt+1) yields the part of Vt+1(kt+1) depending kt+1

with the recursive determination of ξ,

ξ = α(1 + δξ).

so that ξ = α
1−αδ follows.

Collecting the terms with st+1 yields Ω(st+1) through

Ω(st+1) = ln(ω(st+1))(1 + δξ)−∆uDt+1 + δΩ(st+2).

where zt+1 = z∗t+1 appearing in st+2 = (z1, ...zt, zt+1) is independent of kt+1 and st+1

(by Lemma 1 that holds by the induction hypothesis) so that we only need to consider

the values for z1, ..., zt when evaluating Ω(st+1). The values for ζτ can be calculated by

collecting the terms in which zt+1−τ appear. Recall that ln(ω(st+1)) = −∆yDt+1 so that

ζτ = ((1 + δξ)∆y + ∆u)
∑

(i,j)
aibjπεj

(1− ηi)τ − (1− εj)τ

εj − ηi
+ δζτ+1

Substitution of the recursive formula, for all subsequent τ , gives

ζτ = (
∆y

1− αδ
+ ∆u)

∑
(i,j)

∑∞

t=τ
aibjπεjδ

t−τ (1− ηi)t − (1− εj)t

εj − ηi
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To derive the value of ζ1, we consider∑∞

t=1
δt−1 (1− ηi)t − (1− εj)t

εj − ηi

=

∑∞
t=1[δ(1− ηi)]t −

∑∞
t=1[δ(1− εj)]t

δ(εj − ηi)

=

δ(1−ηi)
1−δ(1−ηi)

− δ(1−εj)

1−δ(1−εj)

δ(εj − ηi)

=
1

[1− δ(1− ηi)][1− δ(1− εj)]

Finally, we notice that a careful examination shows that the final equation still holds

when ηi = εi, even though we then cannot follow the same derivation. Q.E.D.

Proposition 1

The first-order conditions for fossil-fuel use zt, and the labor allocations over the final

goods ly,t and the energy sectors le,t give:

u′t
∂yt
∂zt

= βδ
∂Ωt+1

∂st+1

∂st+1

∂zt
⇒ 1

1− g
1

At

∂At
∂et

∂Et
∂zt

= βδζ1 (19)

∂At
∂ly,t

=
∂At
∂et

∂Et
∂le,t

(20)

The second part of the Lemma follows immediately from (19):

∂yt
∂zt

= ft,z = βδζ1(1− g)yt.

The second equation equates the marginal product of labor in the final good sector

with the indirect marginal product of labor in energy production. We have thus four

equations, energy production (4), labour market clearance (5), and the above two first-

order conditions, that jointly determine four variables: zt, ly,t, le,t, et, only dependent on

technology at time t through At(ly,t, et) and Et(zt, le,t). Thus, zt = z∗t can be determined

independent of the state variables kt and st.Q.E.D.
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Proposition 2

To determine the efficient carbon tax as the net present value of marginal damages, note

that from the emissions-damage response function we have

dut+τ
dzt

= (
∆y

1− g
+ ∆u)

dDt+τ

dzt

= (
∆y

1− g
+ ∆u)

∑
i
aibjπεj

(1− ηi)τ − (1− εj)τ

εj − ηi
Furthermore, we note that the marginal rate of substitution for utility, between two

periods, in equilibrium, is γ, so that the net present value of future damages associated

with one extra unit of emissions, in current utility terms, hPig, is given by

hPig =
∑∞

τ=1 γ
τ dut+τ
dzt

= (
∆y

1− g
+ ∆u)

∑
i

aibjπεj
εj − ηi

∑∞
τ=1 γ

τ (1− ηi)τ − γτ (1− εj)τ

= (
∆y

1− g
+ ∆u)

∑
i
aibjπεjγ

∑∞
τ=0 γ

τ (1− ηi)τ − γτ (1− εj)τ

= (
∆y

1− g
+ ∆u)

∑
i

γπaibjεj
[1− γ(1− ηi)][1− γ(1− εj)]

= hγ

Q.E.D.

Proposition 3

We consider the ratio between the carbon price and the efficient carbon price for very

long climate change delays, ηi = εj = 0, and quasi-hyperbolic preferences, β < 1:

ft,z
τ γt

=
(1− γ)2

(1− δ)2

βδ

γ

=

(
1− βδ

1−αδ+αβδ

)2

(1− δ)2
(1− αδ + αβδ)

=
(1− δ(α + (1− α)β))2

(1− δ)2(1 + αδ(β − 1))
> 1

The first equality follows from substitution of ηi = εj = 0 in the equation for the

equilibrium carbon price and efficient carbon price. The second equality substitutes the

value for γ. The final inequality follows as for β < 1, we have that α+ (1−α)β < 1, and

thus the numerator exceeds 1− δ, while β < 1 also ensures that the second term in the

denominator falls short of 1. Q.E.D.
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Damages and carbon cycle

The carbon reservoirs contain physical carbon stocks measured in Teratons of carbon

dioxide [TtCO2]. These quantities are denoted by a n× 1 vector Lt = (L1,t, ..., Ln,t). In

each period, share bj of total emissions zt enters layer j, and the shares sum to 1. The

diffusion between the layers is described through a n × n matrix M that has real and

distinct eigenvalues λ1, ..., λn. Dynamics satisfy

Lt+1 = MLt + bzt.

No CO2 leaves the system, so that row elements of M sum to one. Using the eigen-

decomposition theorem of linear algebra, we can define the linear transformation of

co-ordinates Ht = Q−1Lt where Q = [ v1 ... vn ] is matrix of linearly independent

eigenvectors vλ such that

Q−1MQ = Λ = diag[λ1, ..., λn].

We obtain

Ht+1 = Q−1Lt+1 = Q−1MQHt + Q−1bzt

= ΛHt + Q−1bzt,

which enables us to write the (uncoupled) dynamics of the vector Ht as

Hi,t+1 = λiHi,t + cizt

where λi are the eigenvalues, and c = Q−1b. This defines the vector of climate units

(boxes) Ht that have independent dynamics but that can be reverted back to Lt to

obtain the original physical interpretation.

For the calibration, we consider only three climate system layers: atmosphere and

upper ocean layer (L1,t), biomass (L2,t), and deep oceans (L3,t). For the greenhouse

effect, we are interested in the total atmospheric CO2 stock. Layer L1,t contains both

atmosphere and upper ocean carbon that almost perfectly mix within one period of ten

years; we can find the atmospheric stock by correcting for the amount that is stored in

the upper oceans. Let µ is the amount of CO2 stored in the upper ocean layer, relative

to the amount in the atmosphere. Then, the total the atmospheric CO2 stock is

St =
L1,t

1 + µ
.

31



Let
∑

i q1,i denote the first row of Q. Then, we can solve for the development of the

atmospheric CO2 as

St =

∑
i q1,iHi,t

1 + µ

This allows the following breakdown: Redefine Si,t =
q1,i
1+µ

Hi,t, a =
q1,i
1+µ

Q−1b, and ηi =

1− λi, to obtain

Si,t+1 = (1− ηi)Si,t + aizt

St =
∑

i∈I Si,t.

This is now a system of carbon stocks where depreciation factors are defined by eigen-

values of the original physical representation. Notice that we know one eigenvalue λ = 1,

as no carbon can leave the system. From this it follows that we have one box i with no

depreciation, ηi = 0.38

We follow Hooss et al (2001, table 2) and assume an asymptotic climate sensitivity

ϕ(St) function that describes the pressure on temperatures caused increases in concentra-

tions. Typically, the relationship between the asymptotic temperature sensitivity and the

atmospheric CO2 stock, ϕ(S) , is concave; the logarithmic form is frequently assumed.

Constant 0 < ε < 0 captures the adjustment speed in temperatures:

Tt = Tt−1 + ε(ϕ(St)− Tt−1)

In steady state, we have T = ϕ(S), but elsewhere temperature Tt changes depending on

the atmospheric CO2 stock. Damages, in turn, are a function of the temperature

Dt = ψ(Tt)

where ψ(T ) is convex. To be explicit we assume that ψ(T ) = T 2. It has been noted in

the literature that in the relevant domain of atmospheric CO2 concentrations between

400 and 1000 ppmv,39 the composition of the typical convex damage and concave climate

sensitivity functions returns an almost linear function through the origin:40

ψ(ϕ(St)) ≈ πSt

38Note also that if the model is run in almost continuous time, that is, with short periods so that most

of the emissions enter the atmosphere, b1 = 1, it follows that
∑
i ai = 1/(1 + µ). Otherwise, we have∑

i ai < 1/(1 + µ).
39ppmv=parts per million by volume.
40Indeed, the early calculations by Nordhaus (1991) based on local linearization, are surprisingly close

to later calculations based on his DICE model with a fully-fledged carbon-cycle temperature module,

apart from changes in parameter values based on new insights from the natural science literature.
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with π > 0, a constant sensitivity of damages to atmospheric CO2.41 Using the approxi-

mation, we can rewrite the damage dynamics directly as dependent on stocks:

Dt = Dt−1 + εj(πSt −Dt−1).

Given the two layers of climate variables — one for carbon stocks Si,t, and the other for

damages Dt — it is a straightforward matter of verification that future damages depend

on past emissions as follows:

Si,t = (1− ηi)t−1Si,1 +
∑t−1

τ=1
ai(1− ηi)τ−1zt−τ (21)

Dt = (1− ε)t−1D1 +
∑

i∈I
πε

(1− ηi)t − (1− ηi)(1− ε)t−1

ε− ηi
Si,1 + (22)∑

i∈I

∑t−1

τ=1
aiπε

(1− ηi)τ − (1− ε)τ

ε− ηi
zt−τ ,

where Si,1 and D1 are taken as given at t = 1, and then values for t > 1 are defined by

the expressions. The model can be applied to a situation where some climate change has

taken place at the start of time t = 1, so we write the system dependent on Si,1,D1 > 0

— however, interpreting t = 1 as the beginning of the industrial era, say 1850, we can

set Si,0 = D0 = 0. Collecting terms allows us to express Dt as in (7). This defines the

emissions-damage function θτ in the text.

For calibration, we take data from Houghton (2003) and Boden et al. (2011) for car-

bon emissions in 1751–2008; the data and calibration is available in the online Appendix

(www.hse-econ.fi/liski.fi). We calibrate the original multi-layer model parameters M, b,

µ, to minimize the error between the atmospheric concentration prediction from the 3-

layer model and the Mauna Loa observations under the constraint that CO2 stocks in the

various layers and flows between the layers should be consistent with scientific evidence

as reported in Fig 7.3 from the IPCC fourth assessment report from Working Group I

(Solomon et. al. 2007). There are 4 parameters we calibrate. We set b = (1, 0, 0) so that

emissions enter the first layer. The matrix M has 9 elements. The condition that the

rows sum to one removes 3 parameters. We assume no diffusion between the biosphere

and the deep ocean, removing 2 other parameters. We fix the steady state share of the

deep ocean at 4 times the atmospheric share. This leaves us with 3 elements of M to

be calibrated, plus µ. In words, we calibrate: (1) the CO2 absorption capacity of the

“atmosphere plus upper ocean”; (2) the CO2 absorption capacity of the biomass layer

41Multiplying the constants ∆y and π gives the damage sensitivity: the asymptotic percentage loss of

output per TtCO2 in the atmosphere. Inversely, 1/∆yπ is the amount of atmospheric CO2 that leads

to an asymptotic 63 per cent (e−1) loss of output.
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relative to the atmosphere, while we fix the relative size of the deep ocean layer at 4

times the atmophere, based on the IPCC special report on CCS, Fig 6.3 (Caldeira and

Akai, 2005); (3) the speed of CO2 exchange between the atmosphere and biomass, and

(4) between the atmosphere and the deep ocean.

We transform this annual 3-layer model into a decadal layer model adjusting the

exchange rates within a period between the layers and the shares of emissions that enter

the layers within the period of emissions. Then, we transform the decadal 3-layer model

into the decadal 3-box model, as described above. The transformed box model has

no direct physical meaning other than this: box 0 measures the amount of atmospheric

carbon that never depreciates; box 1 contains the atmospheric carbon with a depreciation

of about 7 per cent in a decade; while carbon in box 2 depreciates 50 per cent per

decade.42 About 20 per cent of emissions enter either the upper ocean layer, biomass, or

the deep ocean within the period of emissions. In the box representation, they do not

enter the atmospheric carbon stock, so that the shares ai sum to 0.8. Our procedure

provides an explicit mapping between the physical carbon cycle and the reduced-form

model for atmospheric carbon with varying deprecation rates; the Excel file available as

supplementary material contains these steps and allows easy experimentation with the

model parameters. The resulting boxes, their emission shares, and depreciation factors

are as reported in the text.

Comparison of climate response functions

We compare our response function for damages, as percentage of output, resulting from

emissions, with those in Nordhaus (2007) and Golosov et al. (2011). The GAMS source

code for the DICE model provides a large variety of scenarios with different policies

such as temperature stabilization, concentration stabilization, emission stabilization, the

Kyoto protocol, a cost-benefit optimal scenario, and delay scenarios. For each of these

scenarios we calculated the damage response function by simulating an alternative sce-

nario with equal emissions, apart from a the first period when we decreased emissions

by 1GtC. Comparison of the damages, in terms relative of output, then defines the re-

sponse function for that specific scenario. It turns out that the response functions are

very close, and we took the average over all scenarios. To interpret the response func-

tion in Nordhaus (2007), we notice that the average DICE carbon cycle and damage

42As explained above, the decay rates in the final model come from the eigenvalues of the original

model.
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response can very accurately be described by our reduced form using the parameters

a = (0.575, 0.395, 0.029), η = (0.310, 0.034, 0), which give a perfect fit for the carbon

cycle of DICE2007, and ε = 0.183, π = 4.09 for the temperature delay. That is, the

carbon-cycle in DICE (Nordhaus 2007) is characterized by a very large long-term up-

take of CO2 in the oceans. The reduced model in Golosov et al. is represented by

a = (0.2, 0.486, 0.314), η = (0, 0.206, 1), which implies a similar carbon cycle model to

ours, but Golosov et al. have no temperature delay structure, ε = 1. Figure 1 presents

the emissions damage responses.
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