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Abstract

The feasibility, speed, and economy-wide impact of the energy transition from fossil

fuels to clean energy sources depend crucially on the rate and nature of technological

change. This paper presents a model of directed technical change to study the interaction

between innovation and the energy transition from a non-renewable resource to a back-

stop technology. We find that resource-saving technical change erodes the incentives to

implement the backstop technology. Conversely, the anticipation of the backstop being

implemented in future diminishes the incentives to invest in resource-saving technology.

As a result, two dynamic equilibria may arise, one with a transition to the backstop

and low resource efficiency, and one without backstop deployment and fast efficiency

improvements. Expectations determine which equilibrium arises in the decentralized

market equilibrium. We characterize the transition paths and implications for economic

growth.
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1 Introduction

Policy debates during the last decades have witnessed a growing interest in reducing the

share of fossil fuels in energy generation. The increasing attention for the sources of energy

on which the economy relies is mainly driven by the challenge of combating climate change and

the global concern about the sustainability of current living standards. Part of the solution

to both the climate change and the sustainability problem may be a phasing out of non-

renewable natural resources like fossil fuels and the implementation of backstop technologies

that provide renewable substitutes. A more incremental solution would arise from improving

resource efficiency and slowing depletion of fossil resources. The question arises how market

parties respond to the challenges and which incentives arise over time to invest in resource

saving and energy transition. We argue that the energy future of a growing economy is

crucially shaped by a two-way interaction between innovation decisions and energy supply

decisions. Prospects about future energy generation technologies may affect the time path

of fossil fuel consumption, but also the pace and direction of technical progress. Conversely,

the speed and direction of technical progress are crucial for the transition from fossil fuels to

backstop technologies.

Since our question concerns the structural dynamics in a growing economy, we naturally

frame our analysis in a growth model with natural resources and endogenous technical change.

Our starting point is the Dasgupta-Heal-Solow-Stiglitz (DHSS) model1 in which a scarce non-

renewable resource (fossil) is an essential input in production. We allow the fossil energy to

be replaced by non-scarce energy that can be generated at a constant cost, the so-called

backstop technology (cf. Nordhaus, 1973). As is well known, in the DHSS model growth

cannot be sustained unless resource-augmenting technological change offsets the negative

growth impact of declining availability of the non-renewable resources. At the same time,

labor-augmenting technical change fuels growth and boosts the demand for energy. Energy

demand thus results from the balance between two types of innovation, resource-augmenting

and labour-augmenting technical change. We incorporate both types in our analysis and

consider them as endogenous, i.e. allow profit incentives to guide innovators how much and

in which direction to innovate. Thus, we merge the DHSS model with a model of directed

1See Dasgupta and Heal (1974), Solow (1974a,b), Stiglitz (1974a,b), Van der Ploeg and Withagen (2013),
and Benchekroun and Withagen (2011).
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technical change.2

Our main finding is that the replacement of fossil resources might require a coordination

of expectations. If the costs of generating energy with the backstop technology is sufficiently

low, it is a viable alternative to fossil fuels in the long run. However, sufficient investment in

resource-saving technical change can make fossil effectively cheaper to use than the backstop.

Whether in equilibrium fossil is phased out or not then depends on the expectations of fossil

suppliers and innovators. A self-fulfilling prophecy arises since when it is expected that the

backstop will be implemented, the market for resource-saving inventions will be small and

innovations incentives will be eroded; this makes the backstop relatively more attractive

and thus justifies the expectation that the backstop will be implemented. Conversely, when

no future backstop deployment is expected, resource-saving technical change becomes more

profitable, thus making the resource relatively more attractive in the long run. Only when

the backstop cost is below a certain threshold, it will always be deployed in the long run.

We also find that different energy transition patterns can emerge that have markedly

different impacts on the economy. First, without a transition to the backstop, fossil use

typically peaks, i.e. resource use declines over time in later stages of the growth process.

However, with a transition to the backstop, resource use is typically rising for a long period.

Second, the pattern of innovation differs as well. With backstop resource-augmenting technical

change stops well before the backstop is introduced so that the economy displays energy-using

technical change in later stages of the transition. This is in contrast with the equilibrium

without backstop, in which growth goes together with resource-saving technical change.

Our results imply that it might be hard to shift the economy away from the current depen-

dence on fossil fuels because the economy is“locked into fossil” (cf. Unruh, 2000). Lock-in is

studied in the literature in several settings.3 In the context of energy use, Acemoglu, Aghion,

Bursztyn, and Hemous (2012) study lock-in that arises from initial conditions or“history”, viz.

innovation in pollution/energy-intensive sectors in the past. Our analysis is complementary

to theirs in that we focus on lock-in that arises from expectations rather than history.4

Moreover, we adopt a different view of technical change in which society has to choose

2The literature on induced innovations was introduced by Hicks (1932) and more recently formalized in the
directed technical change models of Acemoglu (1998; 2002; 2003) and Kiley (1999). We choose for investment
in knowledge instead of in physical capital to orient our analysis towards the long run, when technical change
rather than capital accumulation is the determinant of output growth.

3Arthur (1989) and David (1985) introduced the notion of lock-in into economics.
4Krugman (1991) formalized the distinction between history and expectations as driving force of lock-in.
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between incremental change that cannot make scarce resource inputs redundant (because

of poor substitution) and radical change in the form of the transition to the backstop. Also in

the context of energy use, Cheikbossian and Ricci (2013) consider a game between a resource

owner and an R&D firm and show that depending on expectations one out of two equilibria is

selected, one with high R&D and slow depletion, and one with low R&D and high depletion.

Their two-period framework cannot explicitly address the link to economic growth and ignores

the possibility of a radical technology change in the form of a backstop, which is the focus of

our study. In a growth context, existing studies of self-fulfilling expectations and technology

choice are restricted to a one-factor setting and thus abstract from directed technical change

(e.g. Chen and Shimomura, 1998; Cozzi, 2007).

Directed technical change has been studied in the context of energy scarcity in several

studies, with Smulders and de Nooij (2003) as an early example. A key question in this

literature concerns the role of resource-augmenting technical change relative to other types

of technical change. With resource inputs growing at a lower rate than other inputs and

poor substitution, resource-augmenting technical change dominates along a balanced growth

path, as shown in e.g. André and Smulders (2012). With good substitution, however, the

resources are not essential for growth and growth can be sustained without technical change

in the resource sector, as in Acemoglu, Aghion, Bursztyn, and Hemous (2012). In the model

of Di Maria and Valente (2008), in which a non-renewable resource and physical capital

are both essential for production, there may be capital-augmenting technical progress in the

short run, but technical change will be purely resource-augmenting along any balanced growth

path. Pittel and Bretschger (2010) find that technical change is biased towards the resource-

intensive sector at the balanced growth equilibrium of their model economy in which sectors

are heterogenous with respect to the intensity of natural resource use. We complement these

studies by allowing for a regime shift in energy usage after which the value of accumulated

knowledge in the resource sector vanishes.

In our endogenous growth model the final output is produced with labor and energy

services according to a constant elasticity of substitution (CES) production function. In

line with the empirical evidence in Koetse, de Groot, and Florax (2008) and van der Werf

(2008), energy and man-made factors of production are poor substitutes, i.e. the elasticity

of substitution between them is smaller than unity. Labor services are produced with labor
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and a set of specific intermediate goods. Energy services are either derived from the resource

combined with another set of intermediate goods, or generated by the backstop technology.

The economy is endowed with a finite stock of the non-renewable resource, which can be

extracted without costs. The production of intermediate goods and energy generation with

the backstop technology both use final output. Technological progress is driven by labor

allocated to R&D, which is undertaken by the firms in the two intermediate goods sectors to

improve the quality of their products. As a result, there are two types of technical change

in the model: labor-augmenting and resource-augmenting technical change. Investment in

both types of technical change is driven by profit incentives so that both the rate and the

direction of technical progress are endogenously determined. Although the model has three

predetermined state variables, we can analyze the dynamics and regime switches by using

phase diagrams. To quantify the results, we calibrate the model and perform a simulation

analysis.

The remainder of the paper is structured as follows. Section 2 describes the model. Sub-

sequently, the solution procedure is provided in Section 3. Section 4 discusses the transitional

dynamics and regime shifts. Section 5 determines the initial resource extraction to complete

the solution to the model. Section 6 provides a numerical analysis to quantify the results.

Finally, Section 7 concludes.

2 The Model

The model describes a closed economy with two primary factors of production, labor and a

non-renewable resource. The productivity of these primary factors of production depends on

the quality of complementary intermediate goods, as in Acemoglu (1998). By investing in in-

house R&D, firms can increase the quality of the intermediates that they produce. Infinitely

lived households derive utility from consumption. They own the resource stock and the firms.

The remainder of this section describes the different production sectors, energy generation, the

process of research and development, and the household sector in more detail. Mathematical

derivations can be found in the Appendix.
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2.1 Production

2.1.1 Final Output

Final output Y is produced using labor services YL and energy services YE according to the

following constant elasticity of substitution (CES) specification:5

Y =

[
γY

σ−1
σ

L + (1− γ)Y
σ−1
σ

E

] σ
σ−1

, (1)

where γ regulates the relative productivity of the inputs and σ ∈ (0, 1) denotes the elas-

ticity of substitution between labor and energy services. Profit maximization under perfect

competition gives rise to the following relative factor demand function:

γ

1− γ

(
YL
YE

)− 1
σ

=
pY L
pY E

, (2)

where pY L and pY E are the prices of labor and energy services, respectively.

2.1.2 Energy Generation

Energy can be derived from resource services YR or generated by the backstop technology

sector YH : YE = YR + YH . The generation of energy by the backstop technology requires the

final good as input, according to YH = ηH, where η > 1 is a productivity parameter and H

denotes the input of the final good.

2.1.3 Service Sector

Labor and resource services are produced according to the following Cobb-Douglas specifica-

tion:

Yi = Zβi

∫ 1

0
qikx

1−β
ik dk, (3)

where i = {L,R}, and ZL = L and ZR = R denote the inputs of labor and the resource,

respectively. The amount and quality of intermediate good variety k used in sector i are

indicated by xik and qik, respectively, and the mass of different intermediate goods varieties

5Time arguments are omitted if there is no possibility of confusion.
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in each sector is normalized to unity. The resource can be extracted from the initial resource

stock S0, without extraction costs:

Ṡ = −R, R ≥ 0,

∫ ∞
0

R(t)dt ≤ S0. (4)

Producers in the perfectly competitive service sectors take factor remunerations wi and

intermediate goods prices pxik as given. Their resulting demand for primary inputs and

intermediate goods follows from

pY i
∂Yi
∂Zi

= wi, (5a)

pY i
∂Yi
∂xik

= pxik. (5b)

2.1.4 Intermediate Goods Sector

Each firm in the monopolistically competitive intermediate goods sector produces a unique

variety and faces a demand function from the service sector, according to (5b). Per unit

production costs are equal to qik units of the final good, so that production costs increase

proportionally with quality. Firms invest in R&D to increase the quality of their products,

according to the following specification:6

˙qik = ξiQiDik, (6)

where ξi is a productivity parameter, Qi ≡
∫ 1

0 qikdk is the aggregate quality level in sector

i, and Dik is labor allocated to R&D at unit cost wD. The producer of each variety chooses

how much to produce and how much to spend on in-house R&D in order to maximize the net

present value of its profits, giving rise to the following optimality conditions:

pxik =
qikpY
1− β

, (7a)

λikξiQi 5 wD with equality if Dik > 0, (7b)

β

1− β
xikpY = − λ̇ik + rλik, (7c)

6Dots above a variable denote time derivatives, i.e. ẋ = dx/dt, and hats denote growth rates, i.e. x̂ = dx/dt
x

.
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where pY denotes the price of the final good, r is the nominal interest rate, and the λi’s

are shadow prices of quality in sector i. Price setting equation (7a) shows that firms charge

a mark-up over marginal costs. Condition (7b) requires that, at an interior solution, the

marginal revenue of improving quality is equal to its marginal costs. Equation (7c) describes

the evolution of the shadow prices of quality. We combine the supply function (7a) with the

demand for intermediate goods varieties (5b) and the production function (3) to find

xik = xi =
θiY (1− β)2

Qi
, (8)

where i = {L,R}, and the θi’s denote the incomes shares of labor and resource services:

θi ≡ pY iYi/(pY Y ). This expression implies that all intermediate goods producers within the

same sector produce the same output level xi. Combining (7b) with (7c) and (8), we get:

r = β(1− β)ξiθi
Y pY
wD

+ ŵD − Q̂i, if Dik > 0. (9)

Equation (9) can be interpreted as a no-arbitrage condition that requires firms to earn the

market interest rate on investment in quality improvements. This return depends positively

on the relevant income shares θi (price effect: quality improvements of relatively scarce factors

are more valuable) and on the rate of change in the cost of quality improvements ŵD − Q̂i

(capital gain effect: increasing research costs make current improvements more valuable in the

future). The transversality conditions associated with the problem of firms in the intermediate

goods sector are:

lim
z→∞

λL(z)QL(z)e−
∫ z
0 r(s)ds = 0, (10a)

λR(T ∗)QR(T ∗)e−
∫ T∗
0 r(s)ds = 0⇒ λR(T ∗) = 0, (10b)

where T ∗ denotes the time at which the economy switches from using the non-renewable

resource to using the backstop technology. Transversality condition (10a) requires that the

shadow price of quality in the labor service sector vanishes if time goes to infinity, and (10b)

requires the shadow price of quality in the resource service sector to be zero at the moment

the economy switches from the resource to the backstop.
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2.2 Goods and Factor Market Equilibrium

The goods market equilibrium condition is given by:

Y = C +

∫ 1

0
qLkxLkdk +

∫ 1

0
qRkxRkdk +H =

C +H

1− [1− θEωH ](1− β)2
, (11)

where θE ≡ pY EYE/(pY Y ), ωH ≡ pY HYH/(pY EYE), and the second equality uses (8). Labor

market equilibrium requires that labor supply LS equals labor demand from the labor service

sector and from R&D:

LS = ZL +D, (12)

where D ≡ DL + DR and Di ≡
∫ 1

0 Dikdk is aggregate research effort in sector i. Labor

is perfectly mobile between the production and the research sector, which gives rise to a

uniform wage rate in equilibrium: wD = wL. By using the income share definitions, labor

market equilibrium implies:

L = βθL
Y

wL/pY
(13)

2.3 Households

The representative household lives forever, derives utility from consumption of the final good,

and inelastically supplies LS units of labor at each moment. It owns the resource stock with

value wRS and all equity in intermediate goods firms with value λLQL+λRQR. The household

maximizes lifetime utility U(t) =
∫∞
t lnC(z)e−ρ(z−t)dz, subject to its flow budget constraint

V̇ = r(V−wRS)+ẇRS+wLS−pY C, and a transversality condition: limz→∞ λV (z)V (z)e−ρz =

0, where ρ denotes the pure rate of time preference, V total wealth, and λV the shadow price

of wealth. Optimizing behavior of the households gives rise to the following two familiar

conditions:

Ĉ = r − p̂Y − ρ, (14a)

ŵR = r. (14b)
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Condition (14a) is the Ramsey rule, which relates the growth rate of consumption to the

difference between the real interest rate and the pure rate of time preference. Condition

(14b) is the Hotelling rule, which requires the resource price to grow at the interest rate so

that resource owners are indifferent between extracting and conserving an additional unit of

the resource.

3 Solving the Model

In this section, we show that the economy may experience different regimes of technical change

and energy generation. Our solution procedure consists of three steps. First, we describe the

dynamic behavior of the economy during each regime. Second, we link the three regimes

together by using a set of continuity conditions. Finally, we show under which conditions the

economy actually shifts from one regime to the other.

3.1 Regime 1: Resource Use, Mixed Technical Change

Definition 1 Regime 1 is defined as a situation in which energy generation relies completely

on the non-renewable resource (i.e., YE = YR) and in which there occurs both labor- and

resource-augmenting technical progress (i.e., DL > 0 ,DR > 0).

By combining (3), (5a), and (8), and imposing ωH = YH = 0 we rewrite the relative factor

demand from the final good sector (2) in regime 1 as

θE
1− θE

=

(
wR
wL

QL
QR

)1−ν (1− γ
γ

)σ
, (15)

where ν ≡ 1 − β(1 − σ) so that ν ∈ (0, 1) because σ ∈ (0, 1). Converting (15) into growth

rates and using the Hotelling rule (14b), we obtain:

θ̂E = (1− ν)(1− θE)
[
r − ŵL + Q̂L − Q̂R

]
. (16)

Equation (16) implies that the energy income share increases if, after correcting for relative

productivity changes, the natural resource price grows faster than the wage rate. Using (9)
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for both sectors, we can derive an expression for the endogenous bias in technological change:

Q̂R − Q̂L = β(1− β)
Y

wL/pY
[θEξR − θLξL] . (17)

The bias in technological progress depends on the energy income share: if the resource is

scarce and therefore the energy income share is large, technological change will be relatively

resource-augmenting and vice versa. Aggregating (6) over all firms in the sector, we find

Q̂i = ξiDi. Combining this expression with (9) and D = DL + DR, and using the Ramsey

rule (14a), we obtain an expression that relates output growth to aggregate research effort:

Ŷ − (ŵL − p̂Y ) = r − ŵL − ρ = ψ−1

[
β(1− β)

Y

wL/pY
−D

]
− ρ, (18)

where we have defined ψ ≡ ξ−1
R +ξ−1

L . By using (5a) and imposing ωH = 0, resource extraction

growth can be expressed as:

R̂ = θ̂E − ρ. (19)

Converting the labor market equilibrium condition (13) into growth rates and using the

Ramsey rule (14a), we find:

L̂ = θ̂L + r − ŵL − ρ, (20)

The results in this subsection together give rise to the dynamic system described in Proposition

1.

Proposition 1 The dynamics of regime 1 are described by the following two-dimensional

system of first-order nonlinear differential equations in θE and D:

θ̇E = θE(1− ν)(1− β)

[(
LS

ψ
− D

ψ

)
(1− ψ [θEξR − (1− θE)ξL])− 1− θE

1− β
D

ψ

]
, (21a)

Ḋ =
LS −D
1− θE

1

ψ

{
ρψ(1− θE)− [1− (1− ν)θE ]

[
(1− β)(LS −D)− (1− θE)D

]
−

θE(1− ν)(1− β)ψ[θEξR − (1− θE)ξL](LS −D)
}
. (21b)
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Proof. Substitution of (13), (17), and (18) into (16) gives (21a), which proves the first part.

The second part of the proof follows immediately from substituting (12), (13), (17), (18), and

(21a) into (20). �

Figure 1: Phase diagram in (θE , D) space: Regime 1 without backstop

•
•

•

0Eθ =�
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0R =�

0R <�

0R >�
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O
Eθ
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*
Eθ(0)Eθ

Notes: The solid black and gray lines represent the research and income share isoclines, respectively. The dotted line is
the extraction isocline. The dashed arrow represents the saddle path that leads to point B.

Figure 1 shows the phase diagram of regime 1 in (θE , D)-space. The figure contains three

isoclines that we will discuss in turn. First, the income share isocline θ̇E = 0, derived from

(21a), gives combinations of θE and D for which the income shares are constant. Prices of

energy and labor services, corrected for productivity changes, grow at the same rate along

the income share isocline. For all points below the income share isocline, the relative price

of the resource and with it the energy income share increase over time and vice versa. The

θ̇E = 0 line is downward sloping, because an increase in θE induces technological change to

become relatively more resource saving, which puts downward pressure on the energy income

share. To counteract this effect, aggregate research must fall to increase the growth rate of the

relative price and the income share of the resource. The income share isocline has a vertical

asymptote at θE = θ̄E > 0, to the left of which it tends to minus infinity. The dynamic
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behavior of θE is illustrated by the horizontal arrows in the phase diagram.

Second, the research isocline, derived from (21b), gives combinations of θE and D for

which aggregate research effort is constant over time. At points below the research isocline,

output growth is relatively large compared to the growth rate of the real wage. As a result,

labor demand L tends to increase over time, which leads to declining employment in research

over time. Although the figure shows a monotonically upward sloping research isocline, this

is not necessarily the case. For low values of the energy income share, the locus may be

downward-sloping.7

Third, the extraction isocline, derived from (19), gives combinations of θE and D for which

resource extraction is constant over time.8 At points below the isocline, the energy income

share grows relatively fast, so that resource extraction increases over time. The extraction

isocline has a negative slope, because an increase in θE induces technological change to become

relatively more resource-saving, which puts downward pressure on resource extraction. To

counteract this effect, aggregate research must fall. Like the income share isocline, the

extraction isocline has a vertical asymptote at θE = θ̄E > 0, to the left of which it tends

to minus infinity.

Because it will affect the dynamic behavior of the economy, it is important to determine

the relative positions of the isoclines in the phase diagram. In Appendix A.6-A.7, we show that

the income share and research isoclines intersect once in the relevant plane with D ∈ [0, LS ]

and θ ∈ [0, 1], that the vertical intercept of the income share isocline is located above those of

the research and extraction isoclines, and that the vertical intercept of the extraction isocline

tends to minus infinity if the elasticity of substitution between labor and resource services,

σ, goes to unity.

If the economy would stay in regime 1 forever, it would converge along the stable manifold

from point A to point B in Figure 1.9 Along the stable manifold, two counteracting forces

affect the energy income share. On the one hand, increasing physical scarcity of the resource

puts upward pressure on the energy income share. On the other hand, the income share

7Appendix A.6 shows that the research isocline must be upward sloping at θE = 1 and may be downward
sloping at θE = 0.

8By substituting (16), (17), and (18) into (19), one obtains a differential equation for R in terms of θE and
D.

9The determination of point A will be discussed in Section 5.
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is negatively affected by induced resource-augmenting technical change.10 These opposing

effects exactly offset each other in the steady state equilibrium, resulting in a constant energy

income share. In case the stable manifold starts out below the extraction isocline, the economy

necessarily crosses the extraction isocline before the steady state is reached. As a result,

resource extraction can only increase temporarily and peaks when the economy crosses point

P in Figure 1.

However, the economy does not necessarily stay in regime 1 forever. Section 3.4 discusses

under which conditions the economy eventually shifts to another regime. In case of a regime

shift, the economy does no longer converge to point B in the phase diagram. Sections 4 and

5 discuss the determination of the begin and end point of regime 1 in this case.

3.2 Regime 2: Resource Use, Labor-Augmenting Technical Change

Definition 2 Regime 2 is defined as a situation in which energy generation relies completely

on the non-renewable resource (i.e., YE = YR), but in which the shadow price of resource-

augmenting technology is strictly lower than the marginal cost of investment in quality im-

provement of resource complementing intermediates. Therefore, regime 2 is characterized by

purely labor-augmenting technical progress (i.e., DR = 0, DL = D).

Expressions for the return to quality improvements and income share growth in regime 2 are

easily obtained by imposing Q̂R = 0 in (9) and (16), respectively:

r = β(1− β)ξL(1− θE)
Y

w/pY
+ ŵL − Q̂L, (22a)

θ̂E = (1− ν)(1− θE)
[
r − ŵL + Q̂L

]
. (22b)

The growth rate of resource extraction is still described by (19). By using the goods market

equilibrium condition (11), the Ramsey rule (14a), and (22a), output growth can be written

as

Ŷ = r − p̂Y − ρ = ξL(1− β)(1− θE)(LS −D)− ρ. (23)

10We focus on a relatively high initial resource stock, so that the economy is located on the part of the stable
manifold below the income share isocline, where the energy income share increases because the scarcity effect
dominates the induced technical change effect.
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Given that DL = D, (6) implies Q̂L = ξLD. Combining this expression with (13) and

(22a)-(22b), we obtain the dynamic system described in Proposition 2.

Proposition 2 The dynamics of regime 2 at an interior solution (i.e., with D > 0) are de-

scribed by the following two-dimensional system of first-order nonlinear differential equations

in θE and D:

θ̇E = θE(1− ν)(1− θE)ξL(1− β)(LS −D), (24a)

Ḋ = (LS −D)
{
ρ− [1− θE(1− ν)] ξL(1− β)(LS −D) + ξLD

}
. (24b)

Proof. Substitution of (6), (12), (13), and (22a), into (22b) gives (24a). Combining (6),

(12), (22a) and (22b) with (20) results in (24b). �

Figure 2 shows the phase diagram of regime 2 in (θE , D)-space. We will discuss the income

share, research, and extraction isoclines in turn. The income share isocline θ̇E = 0 is derived

from (24a) and gives combinations of θE and D for which the income shares are constant

over time. There is a unique research level associated with constant income shares, so that

the income share isocline is horizontal at this specific value of D. The growth rate of the

prices of resource and labor services are equal along the θ̇E = 0 isocline. At points below the

isocline, the price of resource service increases relative to that of labor services, resulting in

an increasing energy income share over time and vice versa. The dynamic behavior of θE is

illustrated by the horizontal arrows in the phase diagram.

The research isocline Ḋ = 0 is derived from (24b) and gives combinations of θE and D for

which research is constant over time. It is represented by a downward sloping line, because an

increase in θE leads to a lower real interest rate and therefore slower output growth (see (23)).

As a result, L tends to decrease over time, which induces a flow of labor from the production to

the research sector, causing the innovation rate to rise over time. To counteract this effect, D

must decrease thereby increasing the growth rate of labor demand as a result of its combined

effect on output growth (through the real interest rate) and the productivity of the factors

of production. At points above of the innovation locus, the real interest rate and output

growth are lower than in steady state equilibrium, so that L declines and the innovation rate

increases over time and vice versa. The dynamic behavior of D is illustrated by the vertical

14



arrows in the phase diagram.

Figure 2: Phase diagram in (θE , D) space: Regime 2 without backstop
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Notes: The solid black and gray lines represent the research and income share isoclines, respectively. The dotted line is
the extraction isocline. The dashed arrow represents the saddle path that leads to point B.

The extraction isocline Ṙ = 0 is derived from (19) and gives combinations of θE and D

for which resource extraction is constant over time.11 The Ṙ = 0 line is downward sloping,

because an increase in θE leads to a lower return to research and therefore a lower real interest

rate in equilibrium. As a result, the growth rates of output and resource demand go down. To

counteract this effect, D must decrease to enhance the growth of resource demand through its

combined effect on the real interest rate and the efficiency of resource extraction. At points

above the extraction isocline, the real interest rate and therefore output growth are lower

than required for constant extraction, so that extraction growth becomes negative and vice

versa.

In Appendix A.9-A.10, we show that the income share isocline is always located above

the research and extraction isoclines, and that the vertical intercept of the extraction isocline

tends to minus infinity if the elasticity of substitution between labor and resource services,

11By substituting (13), (6), and (22a) into (19), one obtains a differential equation for R in terms of θE and
D.
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σ, goes to unity.

The dynamics in Figure 2 describe the behavior of the economy in regime 2. If the

economy would stay in regime 2 forever, it would converge along the dashed equilibrium path

towards point B: increasing resource scarcity drives up the energy income share and depresses

labor-augmenting technical change over time. However, as shown in Section 3.4, regime 2

cannot last forever and the economy will shift to another regime. The implied begin and end

point in the phase diagram of regime 2 are determined in Sections 4 and 5.

3.3 Regime 3: Backstop Use, Labor-Augmenting Technical Change

Definition 3 Regime 3 is defined as a situation in which the resource stock will be depleted

and the backstop technology is used instead (i.e., S = 0, YE = YH). As a result, only pure

labor-augmenting technological progress is possible (i.e., DR = 0, DL = D).

Final good production in regime 3 is given by:

Y =

[
γY

σ−1
σ

L + (1− γ)Y
σ−1
σ

H

] σ
σ−1

,

where YH denotes energy generation by the backstop technology. Perfect competition implies

that the price of energy generated with the backstop technology is equal to its marginal

production cost: pY H = η−1pY . Using this equality and the income share definitions in

pY H = pY ∂Y/∂YH , we obtain

θE = (1− γ)σησ−1. (25)

Hence, the energy income share is constant over time. Substitution of θ̂E = 0, (13), and (22a)

into (20) gives rise to the following differential equation for research:

Ḋ = (LS −D)
{
ρ− ξL

[
(1− β)(LS −D)−D

]}
. (26)

Proposition 3 summarizes the behavior of the economy in regime 3.
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Proposition 3 The dynamic system of regime 3 gives rise to a constant θE and D, given by:

θE = (1− γ)σησ−1, (27a)

D =
(1− β)LS − ρ

ξL

2− β
. (27b)

Proof. The first part has already been derived in the text. The second part follows because

the differential equation (26) is unstable in D, so that the economy immediately settles at its

steady state level of research, given by (27b). �

3.4 Sequence of Regimes

Assuming that DL > 0 always holds, the three regimes discussed so far provide an exhaustive

list of situations that may occur.12 Which regime actually prevails at a certain moment

in time depends crucially on whether condition (7b) with i = R is satisfied with equality or

inequality. In case of inequality, the marginal revenue of quality improvements in the resource

sector is lower than its marginal cost, so that there will be no resource-augmenting technical

change and the dynamics are described by regime 2. This is either possible if the resource

stock is large and therefore the resource income share is small (see (7c) and (5b)) or if the

stock is small and a shift from using fossil fuels to the backstop technology is imminent (see

(10b)). In between, there may be an interval for which the condition (7b) with i = R holds

with equality, so that the dynamics are described by regime 1. We assume that this actually

is the case, by choosing ξR sufficiently large. Hence, with a sufficiently large resource stock,

the economy will start in regime 2 and then move to regime 1. Subsequently, if the backstop

will eventually be introduced, the economy shifts back to regime 2 and finally moves to regime

3. However, if the backstop technology will not be implemented, the economy will remain in

regime 1 forever. Section 4 discusses whether or not the backstop technology will eventually

be implemented.

12Appendix A.12 shows that there does not exist a regime of simultaneous use of the resource and the
backstop technology. Moreover, DL > 0 can be ensured by choosing xiL large enough.
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3.5 Linking the Regimes

We link the 3 regimes together by imposing 3 continuity conditions. First, optimal behavior

of the resource owners ensures that the resource price is equal to the backstop price at

the moment that the resource stock is depleted. This implies a continuous energy price

at the regime shift where the economy switches from using the resource to using the backstop

technology:

lim
t→↑T23

pY E(t) = lim
t→↓T23

pY E(t), (28)

where T23 denotes the time at which the economy shifts from regime 2 to regime 3. Second,

the Ramsey rule (14a) requires consumption to be continuous as long as the real interest rate

is finite, which constitutes our second continuity condition:

lim
t→↑Tij

C(t) = lim
t→↓Tij

C(t), (29)

where i, j ∈ N indicate the regimes and Tij denotes the time at which the economy shifts from

regime i to regime j. Third, the shadow price of quality in the service sectors λk should be

continuous at the regime shifts:

lim
t→↑Tij

λk(t) = lim
t→↓Tij

λk(t), (30)

where k = {R,L}. Intuitively, the condition requires that the marginal cost of improving

the quality of the intermediate variety at the very end of regime i equals the value of this

additional quality at the beginning of the consecutive regime.

4 Transitional Dynamics and Regime Shifts

This section implements the solution method described in Section 3. We first characterize

the solution to the model for the scenario in which the backstop technology will necessarily

become competitive eventually (Sections 4.1 and 4.2). Subsequently, Section 4.3 discusses

scenarios in which the transition to the backstop technology does not occur, or when the

eventual introduction of the backstop technology becomes a self-fulfilling prophecy. Which
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scenario actually prevails, depends crucially on the productivity of the backstop technology.

We use backward induction to determine the equilibrium path in (θE , D)-space that starts

in regime 1, runs through regime 2, and finally ends as a fixed point in regime 3.13 Starting

with the fixed point in regime 3, we can use the continuity conditions to find the end point

of regime 2. Subsequently, we use the transversality condition for the shadow price of quality

in the resource service sector to find the starting point of regime 2. Then, the continuity

conditions will give us the end point of regime 1, after which we close the model by solving

for the initial value of the energy income share that clears the non-renewable resource market.

4.1 Shift from Resource to Backstop

At the shift from regime 2 to regime 3, the economy switches from generating energy with the

non-renewable resource to producing energy with the backstop technology. Condition (29)

requires that consumption is continuous at this switching instant. Using the goods market

equilibrium condition (11), continuity of consumption requires14

Y −23 = (1− θ+
E3)Y +

3 , (31)

where we have imposed H = 0 and ωH = 0 on the left hand side, and ωH = 1 and H = θEY

on the right hand side. By using the income share definitions we rewrite output as:

Y = YL

[
γ + (1− γ)

(
θE

1− θE
pY L
pY E

)σ−1
σ

] σ
σ−1

.

Using the continuity of prices and income shares, a jump in Y must be proportional to a jump

in YL. Furthermore, it follows from (3) and (8) that a jump in YL is proportional to a jump

in L. Combining this with (31), the continuity condition becomes:

LS −D+
3

LS −D−23

=
1

1− θ+
E3

⇒ D−23 = D+
23(1− θ+

E3) + θ+
E3L

S . (32)

Both aggregate research and the energy income share are constant over time in regime 3,

so that D+
3 and θ+

E3 are given by the right-hand-sides of (27a) and (27b), respectively.

13We abstract from the first occurrence of regime 2 by choosing the initial resource stock small enough.
14We use the conventional shortcut notation x+ij ≡ limt↓Tij xj(t) and x−ij ≡ limt↑Tij xi(t).
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Substitution of (27b) into (32) gives the level of research at the very end of regime 2, such

that the corresponding upward jump in output is exactly high enough to keep consumption

continuous at the regime shift:

D−23 =
ξLL

S(1− β + θ+
E3)− ρ(1− θ+

E3)

ξL(2− β)
. (33)

The energy income share at the end of regime 2, θ−23, is pinned down by equation (27a).

Hence, we have determined the point (θ−E23, D
−
23) to which the economy converges during the

second regime. Figure 3 shows the equilibrium path leading to point D. Along the equilibrium

Figure 3: Phase diagram in (θE , D) space: Regime 2 and 3
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Notes: The solid line and dotted lines represent the research and extraction isoclines in regime 2, respectively. A part
of each isocline is plotted in gray, to indicated that they are only valid for θ < θ−E23.

path, the resource income share is increasing over time. Aggregate research may be declining

initially, but it increases during the run-up to the backstop technology until the moment of the

regime shift. As soon as the economy hits point C, aggregate research jumps down to point

D. The reason is that consumers want to prevent a downward jump in consumption at the

regime shift, when energy generation with the backstop technology starts using output. Put

differently, by investing relatively more now, consumers effectively shift part of the resource

wealth to the backstop era.

In Figure 3, the equilibrium path crosses the extraction isocline at point P, so that resource
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extraction first increases, peaks at point P and then declines over time until the regime shift.

The location of point B in the figure, which marks the regime shift from an era of both

resource and labor-augmenting technological progress to a regime of purely labor-augmenting

technical change, will be determined below.

4.2 Shift to Purely Labor-Augmenting Technical Change

According to transversality condition (10b), the shadow price of resource-

augmenting technical change should be zero at the end of regime 2. Intuitively, after the

regime switch at T23, the resource will not be used anymore so that resource-augmenting

technology is worthless from that moment onward. Optimality condition (7b) requires that

the marginal cost is equal to the marginal value of quality improvement in regime 1. In

regime 2, however, this equality does no longer hold: the marginal cost is now larger than the

marginal value. We exploit this distinction between the two regimes to determine the time of

the shift from regime 1 to regime 2, T12.

First, we define the ratio of marginal value and cost of quality improvements as follows:

µ ≡ ξRQRλR
wL

. (34)

At the end of regime 1, (7b) holds with equality, so that µ(T−12) = 1. At the end of regime

2, transversality condition (10b) implies µ(T−23) = 0. Using the continuity condition for λR,

(30) with i = R and (7b), we find the value for µ at the beginning of regime 2:15

λR(T−12) = λR(T+
12)⇒ µ(T−12) = µ(T+

12). (35)

As a result, for regime 2 we have the following begin and end condition:

µ(T+
12) = 1, (36a)

µ(T−23) = 0. (36b)

15The continuity of wL follows from (9).
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Combining (7b), (7c), (8), and (34) we find a differential equation for µ:

µ̇ = (r − ŵL)µ− ξRβ(1− β)θE
Y

wL/pY

Substitution of (9) and (13) into this expression, we obtain a differential equation for µ in

terms of θE and D:

µ̇ = µ
[
(1− β)ξL(LS −D)− ξLD

]
− θE

1− θE
ξR(1− β)(LS −D). (37)

Because the time paths for θE and D are already determined, together with the begin and

end conditions (36a)-(36b), equation (37) can be used to find the energy income share at

the beginning of regime 2. As a result, this procedure pins down the points (θ+
E12, D

+
12) and,

because of the continuity conditions, (θ−E12, D
−
12). Figure 4 shows the equilibrium path leading

to point C in the (θE , µ)-plane. Regime 2 starts at point B, where µ = 1 and investment in

resource-augmenting technical progress is still profitable. As θE increases further, however, the

switch to the backstop technology (when resource-augmenting technology becomes obsolete)

is so close that µ falls short of unity, so that DR jumps down to zero.16 This event marks the

beginning of regime 2. Having determined this point (θ+
E12, D

+
12), we have also pinned down

the point to which the economy should converge during regime 1.

Figure 5 shows the equilibrium path that leads to point B in the (θE , D)-plane. The

energy income share is increasing over time along this path. Initially, the resulting price

effect induces an increase in profits per unit of quality in the resource sector, leading to an

increase in resource-augmenting technical change. This effect is strong enough to outweigh

the decreasing amount of labor-augmenting research (as the labor income share declines) so

that aggregate research increases. However, as the introduction of the backstop technology

comes closer, the remaining time during which quality improvements in the resource sector

generate profits becomes smaller. As a result, the increase of resource-augmenting research

diminishes and aggregate research start to decline over time until the end of regime 1, when

resource-augmenting technical change stops. This decline of aggregate research at the end of

regime 1 necessarily occurs if the beginning of regime 2 is located below the research isocline,

16Intuitively, the downward jump in DR occurs because Q̇R is linear in DR (see (6)), so that the marginal
cost (in terms of required researchers) of quality improvement does not depend on DR. The proof for the
downward jump in DR can be found in Appendix A.13.
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Figure 4: Phase diagram in (θE , µ) space: Regime 2
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Figure 5: Phase diagram in (θE , D) space: Regime 1
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as shown Figure 3.

The starting point A on the equilibrium path depends on the initial resource stock. In

Section 5, we will derive the resource market clearing condition that determines the initial

energy income share and with it, given that we know the equilibrium path, the location of

point A.

4.3 Transition Towards Backstop Technology as Self-Fulfilling Prophecy

In this section, we discuss the scenarios in which the backstop technology will never be-

come competitive or when the implementation of the backstop technology is a self-fulfilling

prophecy. Proposition 4 summarizes the results of this section.

Proposition 4 Assuming that θE(0) < θ∗E, the following three scenarios of backstop technol-

ogy implementation can be distinguished:

(i) if θ∗E > θ+
E3, the backstop technology will eventually be implemented;

(ii) if θ∗E < θ+
E3 and θ−E12 > θ̃E, the backstop technology will never be implemented;

(iii) if θ∗E < θ+
E3 and θ−E12 < θ̃E, the implementation of the backstop technology becomes a

self-fulfilling prophecy;

where θ∗E denotes the energy income share at the intersection of the research and income share

isoclines in regime 1 and θ̃E ≡ θE |θ̇E=0,D=D−12
in regime 1.17

Proof. We compare two possible paths in the (θE , D) phase diagram: the first one (which

we will call ‘conservative’) is the path in regime 1 that leads to the intersection of the income

share isocline and the research isocline in the (θE , D)-plane. This corresponds to the saddle

path of the model without a backstop technology (see Figure 2). The second one (which we

will call ‘progressive’) is the equilibrium path that ultimately leads to the implementation of

the backstop technology, as described in Sections 4.1 and 4.2.

In case (i), the conservative path cannot be an equilibrium, because this path necessarily

intersects the line θ = θ+
23, so that along part of the conservative path the inequality θE > θ+

E23

holds. As a result, the non-renewable resource is relatively more expensive than the backstop

17The expression for θ∗E in terms of parameters can be found in Appendix A.6.
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technology. Hence, the resource will not be used anymore and the dynamics of the economy

are no longer described by the dynamic system of regime 1. The progressive path is the only

remaining equilibrium. This is the scenario described in Sections 4.1 and 4.2.

In case (ii), the progressive path cannot be an equilibrium, because the end point of regime

1 would be located to the right of the income share locus. This point can only be approached

if θE(0) > θ̃E . However, we have assumed that the initial resource stock is large enough to

have θE(0) < θ∗E < θ̃E . The conservative path can be an equilibrium, because it does not

intersect the line θE = θ+
E23, so that along the entire path the inequality θE < θ+

E23 holds. As

a result, the non-renewable resource is relatively cheaper than the backstop technology and

the dynamics of the economy are accurately described by the dynamic system of regime 1.

In case (iii), both the conservative and the progressive path can be an equilibrium. The

conservative path does not intersect the line θE = θ+
E23, so that along the entire path the

necessary condition for regime 1, θE < θ+
E23, holds. At the same time, the progressive path

may be an equilibrium, as the energy income share increases to θ+
E3 during regime 2, which

starts as soon as the economy in regime 1 has converged to (D−12, θ
−
E12). Hence, in this scenario

there are multiple equilibria, as shown in Figure 6. Expectations determine which equilibrium

path will be chosen, so that the implementation of the backstop technology is a self-fulfilling

prophecy. �

The intuition for the self-fulfilling prophecy in scenario (iii) is that both paths are sensible,

given that they are expected by investors. If investors expect that the backstop technology

will be too expensive to implement, they foresee that the economy will rely on the non-

renewable resource forever. Hence, resource-augmenting technical change is profitable and

will occur at a high rate. As a result, the resource indeed remains relatively cheaper than the

backstop technology. Conversely, if investors expect that the backstop technology is going to

replace the non-renewable resource in the future, they will invest less in resource-augmenting

technical change, because their investments will become worthless as soon as the economy

shifts to the backstop technology. As a result, resource-augmenting technical change will be

low and eventually fall to zero, so that the backstop technology indeed becomes competitive

and will be implemented.
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Figure 6: Phase diagram in (θE , D) space: Scenario (iii)
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5 Initial Conditions

Although we have constructed the equilibrium path in (θE , D)-space that runs through regime

1 and 2 and ends at a fixed point in regime 3, we still have to determine the initial point along

this path to complete the solution to the model.18 We can find this initial point by exploiting

the fact that total resource extraction over time should be equal to the initial stock of the

resource, or equivalently, that the resource stock should be equal to zero at the moment the

economy shifts from using the resource to using the backstop (i.e., at time T23).

In order to do so, we first need a differential equation for the reserve-to-extraction rate

y ≡ S/R in terms of y, θE , and D. Appendix A.14 derives the expressions for the following

differential equations in regime 1 and regime 2, respectively:

ẏ = − y(1− θE)(1− ν)

[
1− β
1− θE

(LS −D)
{
ψ−1 − (θE(ξR + ξL)− ξL)

}
− ψ−1D

]
, (38a)

ẏ = − y(1− θE)(1− ν)ξL(1− β)(LS −D) + ρy − 1. (38b)

18In this section, we only discuss the initial conditions for scenario (i) of Proposition 4, in which the backstop
technology will necessarily be implemented. The case in which the economy remains in regime 1 forever is
simpler and can be solved in a similar way.

26



Because we can plug in the already determined time paths for θE and D, we can use these

differential equations to find a unique equilibrium path in (θE , y)-space that leads to a zero

reserve-to-extraction rate at the time of the regime shift to the backstop technology. We define

this equilibrium path as y = g(θE). Subsequently, by defining the function D = f(θE) as the

equilibrium path in (θE , D)-space, we can substitute this function f(θE) in the relative factor

demand function that follows from the combination of (3) and (15), to derive a relationship

between the initial θE and y:

θE(0)

1− θE(0)
=

(
1− γ
γ

)σ
ν
(

S0

y(LS − f(θE))

QR(0)

QL(0)

) ν−1
ν

. (39)

The initial income share θE(0) now follows from the intersection of g(θE) and the initial

relative factor demand function in (θE , y)-space.

Working backward in time, we first construct the equilibrium path for y in regime 2

and subsequently extend it into regime 1. By imposing y(T23) = 0 and using the already

determined time paths of θE and D, the differential equation (38b) gives a unique equilibrium

path in (θE , y)-space.

Figure 7: Phase diagram in (θE , y) space: Regime 2
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Figure 8: Phase diagram in (θE , y) space: Regime 1
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equation (39). The ẏ = 0-locus is left out to keep the diagram clear.

Given that we know θ+
E12, we can use the equilibrium path g(θE) to determine y+

12. Figure

7 illustrates this procedure. It shows the phase diagram for the reserve-to-extraction rate in

regime 2. The solid line represents the ẏ = 0-locus and the dashed arrow gives the equilibrium

path for y. Hence, during regime 2, the reserve-to-extraction rate moves along the equilibrium

path from point A to point B. The dynamic behavior of θE and y is illustrated by the solid

horizontal and vertical arrows, respectively.

Because of the continuity of the energy income share θE and the total research effort

D at T12 the reserve-to-extraction rate y should also be continuous at T12, i.e. y−12 = y+
12.

Therefore, having determined the point (θ−E12, y
−
12) = (θ+

E12, y
+
12), we can use the differential

equation (38a) together with the already determined time paths of θE and D to pin down the

equilibrium path of y in regime 1 leading to this end point. The phase diagram in Figure 8

illustrates this. The constructed equilibrium path is represented by the dashed arrow. The

solid line in the figure shows the relationship between the initial values of θE and y, which is

given in (39). The intersection of (39) with the constructed equilibrium path in (θE , y)-space,

determines the initial point [θE(0), y(0)] that is consistent with factor market equilibrium
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and with complete depletion of the resource stock. Hence, during regime 1, the reserve-to-

extraction rate starts at point A and moves along the equilibrium path to point B in Figure

8. The dynamic behavior of θE and y is illustrated by the solid horizontal and vertical arrow,

respectively.

6 Numerical Illustration

In this section, we quantify the results of the model by performing a numerical analysis.19 We

first calibrate the model to match data on energy expenditures, reserve-to-extraction rates,

and consumption growth in modern industrialized economies. To check the robustness of the

model, we also simulate a specification of the model in which the non-renewable resource and

the backstop technology are good but imperfect instead of perfect substitutes.20 Subsequently,

we discuss the simulation outcomes of three different scenarios.

6.1 Calibration

In line with empirical evidence, we presume that the elasticity of substitution between labor

and energy is smaller than unity. In a meta-analysis Koetse, de Groot, and Florax (2008) find

a cross-price elasticity between capital and energy in the United States of 0.383 in the short

run and 0.520 in the long run. We take the average of these values and impose σ = 0.45.

The parameter β is the output elasticity of the primary factors, labor and the non-renewable

resource, in both service sectors. Our value of 0.80 lies within the range of the labor income

shares reported in Gollin (2002) and is in line with the average share of fossil fuel consumption

in total energy consumption in the OECD countries, which amounted to 82 percent over the

years 2000-2011 (World Bank, 2012). We set the rate of pure time preference ρ to 0.01 and

choose γ = 0.50 for the final good production function parameter. The backstop productivity

parameter η is fixed at 10. The initial stocks of quality in both sectors QL0, QR0 and the

labor supply LS are normalized to unity.

We choose an initial non-renewable resource stock of 1250 to obtain an initial energy

income share of 8.8 percent, equal to the average energy expenditure share in GDP over

19For the numerical simulation, we use the relaxation algorithm explained in Trimborn, Koch, and Steger
(2008).

20In the imperfect substitution specification, the elasticity of substitution between the resource and the
backstop is set to α = 50.
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the period 1970-2009 in the United States (U.S. Energy Information Administration, 2011).

By choosing the research productivity parameters ξL = 0.165 and ξR = 0.90, we get an

initial yearly consumption growth rate of 1.7 percent, in line with the average yearly growth

rate of GDP per capita in the United States over the period 1970-2011 (The Conference

Board, 2011). The reserve-to-production ratios for oil, natural gas, and coal in 2008 were

44, 58, and 127, respectively (U.S. Energy Information Administration, 2012).21 Our implied

initial reserve-to-extraction rate y(0) of 74 lies within this range. The backstop-resource

price ratio pY H(0)/pY R(0) is initially equal to 3.8 and gradually declines towards unity. Our

calibration implies that θ+
23 < θ∗, so that the backstop technology will eventually become

competitive. The simulated model gives rise to roughly 80 years of resource use before the

backstop technology is implemented. Resource-augmenting technical change will disappear

after the first quarter of this era.

6.2 Results

Figure 9 shows the phase diagrams of the calibrated model. Panels (a) and (b) correspond

to regime 1 and 2, respectively. Panel (c) shows the phase diagram in (θE , µ)-space, which is

used to determine the starting point of regime 2. Finally, panel (d) shows the phase diagram

for the model without a backstop technology. The equilibrium paths are given by the fat

dotted lines in the four panels. The economy starts at point A in panel (a) and moves along

the equilibrium path, crosses the extraction isocline at point P and continues until point B,

which is also shown in panel (b). After the regime shift, the economy gradually moves along

the equilibrium path from this point B in panel (b), passes the extraction isocline at point P,

and finally reaches point C. As soon as point C is reached, total research jumps down from

point C to point D. Panel (c) illustrates that the energy income share at the time of the first

regime shift, θ+
E12, can be determined by using the intersection point of the equilibrium path

and the horizontal µ = 1 line. Finally, panel (d) shows that an economy without a backstop

technology, will move along the indicated equilibrium path from point A to point B, where

the income share and research isoclines intersect.

Figure 10 depicts the time paths of six variables of interest. The solid lines represent

the benchmark scenario. To illustrate the importance of taking the existence of a backstop

21For 2011, BP (2012) reports reserve-to-production rates of 54, 60, and 112 for oil, natural gas, and coal,
respectively.
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Figure 10: Transitional Dynamics

Panel (a): Resource-Saving Research Panel (b): Labor-Saving Research
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Notes: The solid line represents scenario 1, in which a backstop technology that provides a perfect substitute
for the resource is available. The gray line represents scenario 2, in which there is no backstop technology
available. The dashed line represents scenario 3, in which a backstop technology that provides a good, but
imperfect substitute for the resource is available. Parameters are set to: LS = 1, α = 50, β = 0.80, γ = 0.50,
η = 10, ρ = 0.01, σ = 0.45, ξL = 0.165, and ξR = 0.90. The initial quality levels QL(0) and QR(0) are equal
to 1. The initial resource stock S0 is set to 1250 in scenarios 1 and 2 to obtain θE(0) = 0.088 in scenario 1.
In the third scenario, the initial resource stock is chosen such that θE(0) = 0.088.
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technology into account, the gray line shows the time paths for an economy without a backstop

technology that is similar to the benchmark economy in all other respects. As a robustness

check, the dashed lines give the results for a model in which the non-renewable resource and

the backstop technology are good, but imperfect instead of perfect substitutes. The time

paths generated by the imperfect substitutes model are smoother, but otherwise quite similar

to the ones that result from our benchmark model.

Panel (a) of Figure 10 shows that the availability of a backstop technology leads to a

smaller amount of research in the resource service sector. Panel (b) indicates that labor

saving research jumps up as the economy shifts to the regime without resource-augmenting

technical change. Panel (c) delineates the non-monotonic development of aggregate research

compared to the monotonically increasing research efforts in the model without a backstop

technology. Panel (d) shows the repercussions for consumption growth of the reallocations of

labor between the production and the research sector. As illustrated in panel (e), resource

extraction is initially declining, starts to increase as soon as the economy shifts to regime

2, then peaks just before the start of regime 3, when the resource stock is depleted and

extraction jumps to zero. In the model without a backstop technology, resource extraction is

lower initially and decreases monotonically over time. Finally, panel (f) shows the jump in

output that materializes at the second regime shift, when energy generation with the backstop

technology commences.

7 Conclusion

This paper has investigated the interaction between the existence of backstop technologies

(technologies capable of producing renewable substitutes for non-renewable resources) and

the rate and direction of technical change. For this purpose, we have constructed a growth

model with a non-renewable resource and a backstop technology in which profit incentives

determine both the rate and the direction of technical change endogenously. We take into

account that natural resources and man-made factors of production are poor substitutes

and that energy generation with the backstop technology is costly. The model is solved

analytically and we visualize its transitional dynamics and regime shifts in phase portraits

of the different regimes. We quantify the results by calibrating the model and performing a

simulation analysis. Moreover, we show that the results are robust to relaxing the assumption
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of perfect substitutability between the non-renewable resource and the backstop technology.

We find that the economy may experience two consecutive regimes of energy generation.

Initially, energy generation relies completely on the resource. Depending on the productivity

of the available backstop technology, the economy may shift to a regime in which the resource

stock is depleted and only the backstop technology will be used to produce energy. In this

scenario, short-run resource extraction will be higher than in a model [XXX OR: in an

equilibrium I WANT TO COMPARE THE TWO POSSIBLE EQUILIBRIA! XXX] without

the backstop technology. Moreover, the transition to a backstop technology reduces resource-

saving technical change compared to an economy without a backstop technology available: the

increase in energy efficiency even ceases before the backstop technology becomes competitive.

Hence, there are also two consecutive regimes of technical change. Initially, both labor and

resource-augmenting technical change are taking place. Subsequently, a second regime with

purely labor-augmenting technical change commences.

Due to the endogeneity of the direction of technical change, the transition to the back-

stop technology does not take place in all scenarios. If the productivity of the backstop

technology is low enough, the economy remains in the resource regime forever: due to

resource-augmenting technical change, the backstop technology will not become competitive.

For intermediate values of the backstop technology productivity, the implementation of the

backstop technology is a self-fulfilling prophecy: if investors expect energy generation to rely

upon the resource forever, investment in resource-augmenting technical change is attractive so

that resource-augmenting technical change is high and the resource indeed remains relatively

cheaper than the backstop technology. Conversely, if investors expect the backstop technology

to be implemented in the future, resource-augmenting technical change becomes unattractive

and eventually drops to zero, so that the backstop technology indeed will become competitive

in the future.

The existence of expectations-driven multiple equilibria has important implications for

policy. As is standard in other models of directed technical change, our model includes

externalities that can be addressed by policies: the benefits from research are not fully

appropriated and there is monopolistic competition. If the coordination of expectations is

difficult, additional temporary policies might be needed to steer the economy into the direction

of the optimal path. The representative agent will prefer one of the two equilibria. We leave
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it to future research to extend the model with externalities associated with fossil use and to

analyze policy options.

In our analysis, we have abstracted from stock-dependent extraction costs. To shed light

on optimal environmental policy, these should be introduced together with pollution from

the combustion of the non-renewable resource. An extension in this direction is especially

interesting in the light of the multiple equilibria that may exist if the backstop technology

is relatively expensive (i.e., relatively unproductive). Furthermore, the effects of including

a separate type of backstop technology improving technical change could be investigated in

future work.

Appendix

This appendix contains the derivations of the mathematical results in the paper. It first

derives the optimality conditions for firms and households. Second, expressions for the relative

income shares and the real interest rate will be derived. Finally, some important properties

of the differential equations and the isoclines in the dynamic system will be discussed.

A.1 Final Output

Profit of firms in the final output sector are given by:

pY Y (YL, YE)− pY LYL − pY EYE (A.1)

where the function for Y is specified in (1). Profit maximization gives rise to the following

first-order conditions:

pY L = pY

[
γY

σ−1
σ

L + (1− γ)Y
σ−1
σ

E

] 1
σ−1

γY
− 1
σ

L , (A.2)

pY E = pY

[
γY

σ−1
σ

L + (1− γ)Y
σ−1
σ

E

] 1
σ−1

(1− γ)Y
− 1
σ

E . (A.3)

Dividing both expressions gives (2). Combining (1) with (A.2)-(A.3), we get:

pY Y = pY LYL + pY EYE . (A.4)
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Substitution of (A.2)-(A.3) into the production function (1) and combining the result with

(A.4), we obtain an expression for the price index of final output:

pY = [γ(1− γ)]−1
{
γ [(1− γ)pY L]1−σ + (1− γ) [γpY E ]1−σ

} 1
1−σ

. (A.5)

A.2 Intermediate Goods

The Hamiltonian associated with the optimization problem of firm k in the intermediate good

sector is given by:

Hik = pY i(1− β)qikZ
β
i x

1−β
ik − qikpY xik − wDDik + λikξiQiDi, (A.6)

where i = Zi = {R,L}. The necessary first-order conditions for an optimum are given by:

∂Hik
∂xik

= 0⇒ (1− β)2pY iqikZ
β
i x
−β
ik = qikpY , (A.7)

∂Hik
∂Dik

≤ 0⇒ −wD + λikξiQi ≤ 0, with equality if Dik > 0, (A.8)

∂Hik
∂qik

= − ˙λik + rλik ⇒ pY i(1− β)Zβi x
1−β
ik − xikpY = −λ̇ik + rλik. (A.9)

The transversality conditions are given by (10a)-(10b). Substitution of (5b) in (A.7) gives

(7a), (A.8) directly implies (7b), and the combination of (A.7) and (A.9) gives (7c). Com-

bining (5b) with (7a), we obtain:

xik = xi =

(
pY i(1− β)2

pY

) 1
β

Zi =
θiY (1− β)2

Qi
. (A.10)

where the second equality uses (3).

A.3 Households

The wealth of households is equal to

V = wRS + λLQL + λRQR, (A.11)
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so that the change in wealth over time equals:

V̇ = ẇRS − wRR+ λ̇LQL + λLQ̇L + λ̇RQR + λRQ̇R, (A.12)

where we have used (4) to substitute for Ṡ. Defining πi as profits per unit of quality, total

profits in each intermediate goods sector are equal to Qiπi = pxixi − pYQi, so that (7a) and

(7c) can be combined to get

pxixi = Qirλi −Qiλ̇i +Qixi. (A.13)

Combining (A.4), (3), and (5a)-(5b) we obtain:

pY Y = wLL+ pxLxL + wRR+ pxRxR + ηH. (A.14)

Plugging (A.13) in (A.14) and using the resulting expression to substitute for wRR in (A.12),

we get:

V̇ = pY Y −QLxL −QRxR − ηH + wLL+ rQLλL + rQRλR + λLQ̇L + λRQ̇R. (A.15)

By combining (6) and (A.8) we obtain λiQ̇i = λiξiQiDi = wDDi. Using this expression

together the market equilibrium conditions from Section 2.2 in (A.15), we obtain the flow

budget constraint of the households from the main text.

The Hamiltonian associated with the optimization problem of the households reads:

H = ln(C) + λV
[
r(V − wRS) + ẇRS + wLS − pCC

]
. (A.16)

The necessary first-order conditions for an optimum are given by:

∂H
∂C

= 0⇒ 1

C
− λV pC = 0⇒ Ĉ + p̂C = −λ̂V , (A.17)

∂H
∂S

= 0⇒ −λV rwR + λV ẇR = 0⇒ p̂R = r, (A.18)

∂H
∂V

= − λ̇V + ρλV ⇒ λV r = −λ̇V + ρλV . (A.19)

Combining (A.17) and (A.19) gives the Ramsey rule (14a). The first-order condition (A.18)
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is the Hotelling rule (14b).

A.4 Income Shares

This section derives the income shares for t < T+
23, when ωH = YH = 0 so that θE = θR. We

substitute (3) into (2) and use (A.10) to get

pY R
pY L

=
1− γ
γ

(
YR
YL

)− 1
σ

=

(
pY R
pY L

) 1
β RQR
LQL

=

(
1− γ
γ

)βσ
ν
(
RQR
LQL

)−β
ν

. (A.20)

Using the income share definitions together with (A.20), we find

θR
1− θR

=

(
1− γ
γ

)σ
ν
(
RQR
LQL

) ν−1
ν

=

(
wR
wL

QL
QR

)1−ν (1− γ
γ

)σ
, (A.21)

where the second equality additionally uses (5a) and (A.10) to obtain the price ratio

wR
wL

=
pY R
pY L

(
R

L

)β−1 QR
QL

(
xR
xL

)1−β
=

(
pY R
pY L

) 1
β QR
QL

=

(
1− γ
γ

)σ
ν
(
R

L

)− 1
ν
(
QR
QL

) ν−1
ν

. (A.22)

A.5 Real Interest Rate

If we combine (3) with (5a), and (5b) to find the price index pY L and subsequently convert

the expression into growth rates, we get

p̂Y L = βŵL + (1− β)(Q̂L + p̂Y )− Q̂L. (A.23)

Converting the price index (A.5) into growth rates and using (A.2)-(A.3), we obtain

p̂Y = θE p̂Y E + (1− θE)p̂Y L. (A.24)

Combining (A.23) and (A.24), and using (A.22), we find an expression for the real rate of

interest:

r − p̂Y = r − ŵL − (p̂Y − ŵD) = (1− θE)
[
r − ŵD − (Q̂R − Q̂L)

]
+ Q̂R. (A.25)
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The second equalities in (19) and (19) follow from the combination of (A.25) with the first

equalities in (19) and (19).

A.6 Research and Income Share Isoclines Regime 1

This section derives some relevant properties of the research and income share isoclines in

regime 1.

A.6.1 Properties and First-Order Derivatives

By imposing the steady state (i.e. θ̇E = Ḋ = 0 in the dynamic system (21a)-(21b) we find

the following isoclines:

D|θ̇E=0 =
LS(1− β)

[
ξL(ξL + 2ξR)− θ(ξL + ξR)2

]
ξ2
L(1− β)(1− θE) + ξLξR(3− 2β)(1− θE)− ξ2

R(1− β)θE
, (A.26)

D|Ḋ=0 =
Ξ

Ω
, (A.27)

where

Ξ ≡ LS(1− β)
[
ξLξR − (1− ν)ξL(ξL + 2ξR)θE + (1− ν)(ξL + ξR)2θ2

E

]
− (ξL + ξR)(1− θE)ρ,

Ω ≡ (1− ν)(1− β)ξ2
Rθ

2
E − (1− ν)ξ2

L(1− β)(1− θE)θE

+ ξLξR [2− θE(4− 3ν(1− θE)− 3θE)− β(1− 2(1− ν)(1− θE)θE)] .

It follows from the denominator of (A.26) that the θ̇E = 0 isocline has a vertical asymptote

at:

θ̄E ≡
ξL[ξL(1− β) + ξR(3− 2β)]

(1− β)(ξL + ξR)2 + ξLξR
> 0. (A.28)

The intersection point of the two isoclines, (θ∗E , D
∗) satisfies:

θ∗E =
ξL
{
LSξLξR(1− β) + [ξL(1− β) + ξR(3− 2β)] ρ

}
LSξLξR(ξL + ξR)(1− β) +

[
ξ2
L + ξ2

R + 3ξLξR − (ξL + ξR)2β
]
ρ
> 0, (A.29)

D∗ =
LSξL(ξL + ξR)(1− β)− ξRρ
ξL [ξR(2− β) + ξL(1− β)]

. (A.30)
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The corner properties for the two isoclines are:

D|θ̇E=0,θE=0 = LS − LSξR
ξL(1− β) + ξR(3− 2β)

, (A.31)

D|Ḋ=0,θE=0 =
LSξLξR(1− β)− (ξL + ξR)ρ

ξLξR(2− β)
, (A.32)

D|θ̇E=0,θE=1 = D|Ḋ=0,θE=1 = LS . (A.33)

The first-order derivative of the income share isocline with respect to θE is given by:

d(D|θ̇E=0)

dθE
= −

LSξLξ
3
R(1− β)[

ξL(1− β)(1− θE) + ξLξR(3− 2β)(1− θE)− ξ2
R(1− β)θE

]2 < 0.

The first-order derivative of the research isocline with respect to θE at θE = 1 is given by:

d(D|Ḋ=0)

dθE

∣∣∣∣
θE=1

=
(ξL + ξR)ρ+ LSξLξR[1− β(1− σ)]

ξR(1− β)[ξL + ξRβ(1− σ)]
> 0. (A.34)

The first-order derivative of the research isocline with respect to θE at θE = 0 is given by:

d(D|Ḋ=0)

dθE

∣∣∣∣
θE=0

=
Γ

Λ
, (A.35)

where

Γ ≡ LSξLξR(1− β) [ξR[1− β(1− σ)]− ξLβ(1− σ)]

+ (ξL + ξR)ρ [ξR(1− β(4− 2β(1− σ) + 3σ))− ξL(1− β)β(1− σ)] ,

Λ ≡ ξLξ
2
R(2− β)2 > 0.

Hence, the sign of (A.35) depends on the parameter values. However, it can be shown that

Γ < 0 if ξR is small relative to ξL, e.g. if ξR = 0, we obtain:

Γ|ξL=0 = −ξL(1− β)βρ(1− σ) < 0, (A.36)

so that the first-order derivative of the research isocline with respect to θE is negative at

θE = 0 if ξR is relatively small.
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A.6.2 Relative Positions

At θE = 0, the difference between the income share isocline and the research isocline is given

by:

(D|θ̇E=0 −D|Ḋ=0)|θE=0 =
ξL + ξR
2− β

(
ρ

ξLξR
+

LS(1− β)

ξL(1− β) + ξR(3− 2β)

)
> 0.

Because D|Ḋ=0,θE=1 = LS and limθE→θ̄E D|θ̇E=0 = −∞, the two isoclines cross exactly once

and the intersection point is located to the left of the vertical asymptote of the research

isocline.

A.7 Extraction Isocline Regime 1

This section derives some relevant properties of the extraction isocline in regime 1.

A.7.1 Properties and First-Order Derivative

Substitution of (13), (17) and (18) into (19) and imposing Ṙ = 0, we obtain the extraction

isocline, which also has a vertical asymptote at θ̄E :

D|Ṙ=0 = − (ξL + ξR)ρ+ LS(1− β)β(1− σ)[(ξL + ξR)2θE − ξL(ξL + 2ξR)]

β(1− σ)[ξ2
L(1− β)(1− θE) + ξLξR(3− 2β)(1− θE)− ξ2

R(1− β)θE ]
.

The first-order derivative of the extraction isocline with respect to θE is given by:

d(D|Ṙ=0)

dθE
= −

(ξL + ξR)
[
(ξ2L + ξ2R)(1− β) + ξLξR(3− 2β)

]
ρ+ LSξLξ

3
R(1− β)β(1− σ)

β[ξ2L(1− β)(1− θE) + ξLξR(3− 2β)(1− θE)− ξ2R(1− β)θE ](1− σ)
.

Hence, d(D|Ṙ=0)/dθE < 0 if θE < θ̄E .

A.7.2 Relative Position

The difference between the income share isocline and the extraction isocline is given by:

D|θ̇E=0 −D|Ṙ=0 =
(ξL + ξR)ρ(1− σ)−1

β[ξ2
L(1− β)(1− θE) + ξLξR(3− 2β)(1− θE)− ξ2

R(1− β)θE ]
.

It follows that D|θ̇E=0 −D|Ṙ=0 > 0 and limσ→1[D|θ̇E=0 −D|Ṙ=0] =∞ if θE < θ̄E .
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A.8 First-Order Derivatives of Differential Equations in Regime 1

The first-order derivative of the differential equation for θE with respect to D is given by:

dθ̇E
dD

= −
βθE [ξ2

L(1− β)(1− θE) + ξLξR(3− 2β)(1− θE)− ξ2
R(1− β)θE ](1− σ)

(ξL + ξR)
.

Therefore, dθ̇E/dD < 0 if θE < θ̄E . The first-order derivative of the differential equation for

D with respect to D for combinations of θE and D along the D-isocline is given by:

dḊ

dD

∣∣∣∣∣
Ḋ=0

=
(ξL + ξR)ρ+ LSξLξR [1− βθE(1− σ)]

ξL + ξR
> 0. (A.37)

Hence, dḊ/dD > 0 in the neighborhood of the research isocline in (θE , D)-space. The first-

order derivative of the differential equation for R with respect to D is given by:

dṘ

dD
= −

βR[ξ2
L(1− β)(1− θE) + ξLξR(3− 2β)(1− θE)− ξ2

R(1− β)θE ](1− σ)

(ξL + ξR)
.

Therefore, dṘ/dD < 0 if θE < θ̄E .

A.9 Research and Income Share Isoclines Regime 2

This section derives some relevant properties of the research and income share isoclines in

regime 2.

A.9.1 Properties and First-Order Derivatives

By imposing the steady state (i.e. θ̇E = Ḋ = 0) in the dynamic system (24a)-(24b) we find

the following isoclines:

D|θ̇E=0 = LS , (A.38)

D|Ḋ=0 = LS − LSξL + ρ

ξL [2− β(1− (1− β)θE(1− σ))]
. (A.39)
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The corner properties for the two isoclines are:

D|θ̇E=0,θE=0 = D|θ̇E=0,θE=1 = LS (A.40)

D|Ḋ=0,θE=0 = LS − LSξL + ρ

ξL(2− β)
, (A.41)

D|Ḋ=0,θE=1 = LS − LSξL + ρ

ξL [2− β[1 + (1− β)(1− σ)]]
. (A.42)

The first-order derivative of the income share isocline with respect to θE equals zero. The

first-order derivative of the research isocline with respect to θE is given by:

d(D|θ̇E=0)

dθE
= − (1− β)(1− σ)β(LSξL + ρ)

ξL [2− β(1 + (1− β)θE(1− σ))]2
< 0. (A.43)

A.9.2 Relative Positions

Comparing (A.38) and (A.39), we find that D|θ̇E=0 > D|Ḋ=0.

A.10 Extraction Isocline Regime 1

This section derives some relevant properties of the extraction isocline in regime 1.

A.10.1 Properties and First-Order Derivative

Substitution of (13), (6) and (22a) into (19) and imposing Ṙ = 0, we obtain the extraction

isocline

D|Ṙ=0 = LS − ρ

ξLβ(1− β)(1− θE)(1− σ)
. (A.44)

The first-order derivative of the extraction isocline with respect to θE is given by:

d(D|Ṙ=0)

dθE
= − ρ

ξL(1− β)(1− σ)β(1− θE)2
< 0. (A.45)

We have the following corner properties for (A.44):

lim
θE→1

D|Ṙ=0 = −∞, (A.46)

D|Ṙ=0,θE=0 < D|θ̇E=0. (A.47)
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It follows that the extraction isocline is located below the income share isocline in (θE , D)-

space, i.e. D|Ṙ=0 < D|θ̇E=0.

A.11 First-Order Derivatives of Differential Equations in Regime 2

The first-order derivative of the differential equation for θE with respect to D is given by:

dθ̇E
dD

= −ξL(1− β)(1− θE)(1− σ)βθE < 0. (A.48)

The first-order derivative of the differential equation for D with respect to D for combinations

of θE and D along the D-isocline is given by:

dḊ

dD

∣∣∣∣∣
Ḋ=0

= Lsψ−1[1− (1− ν)θE ] + ρ > 0. (A.49)

Hence, dḊ/dD > 0 in the neighborhood of the research isocline in (θE , D)-space. The first-

order derivative of the differential equation for R with respect to D is given by:

dṘ

dD
= −ξL(1− β)(1− θE)(1− σ)βR < 0. (A.50)

A.12 Exclusion of Simultaneous Use

We show that it is not possible to have a regime of simultaneous use of the resource and the

backstop technology. Simultaneous use requires equal effective prices of the resource and the

backstop technology, so that pY H = pY R = pY E . Using pY H = pY /η, this implies

p̂Y = p̂Y H = p̂Y R = p̂Y E . (A.51)

If we combine (3) with (5a), and (5b) to find the price indexes pY L and pY R, and subsequently

convert the expression into growth rates, we get

p̂Y L − p̂Y = β(ŵL − p̂Y − Q̂L), (A.52)

p̂Y R − p̂Y = β(ŵR − p̂Y − Q̂R). (A.53)
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Using (A.24) together with (A.51), we find p̂Y L = p̂Y . Substitution of this result into (A.52)

and (A.51) into (A.53), and using the Ramsey rule (14a), we obtain

r − ŵD = Q̂R − Q̂L (A.54)

Substitution of (13) into (9), in a regime with purely labor-augmenting technical change (i.e.

Q̂L > 0 and Q̂R = 0) we have

r − ŵD = (1− β)ξL(LS −D)− Q̂L. (A.55)

The conditions (A.54) and (A.55) can only be satisfied jointly if D = LS . However, this

implies that L = Y = 0, which cannot hold in equilibrium because it implies Ĉ = Ŷ = 0,

whereas the Ramsey rule (14a) together with (A.53) gives Ĉ = −ρ. Hence, during a regime

with purely labor-augmenting technical change, the effective relative price of the resource

and the backstop cannot be constant, so that simultaneous use of both energy sources will

not occur. As a result, simultaneous use is also impossible in a regime with both resource-

augmenting and labor-augmenting technical change. Optimality condition (7b) together with

(10b) namely implies that the economy eventually necessarily shifts to a regime without

resource-augmenting technical change. Condition (28) requires that θE is continuous at this

regime shift. However, the beginning of the regime without resource-augmenting technical

change, θE < (1− γ)σησ−1.22 The jump from a regime with simultaneous use with resource-

augmenting and labor-augmenting technical change to a regime with purely labor-augmenting

technical change necessarily implies a discontinuity in θE . Therefore, a regime of simultaneous

use cannot exist.

A.13 Proof Downward Jump in DR

We proof the downward dump in DR by contradiction. Suppose that D−R12 = D+
R12 ⇒ Q̂−R12 =

Q̂+
R12. From (7b), we get µ̂−12 = 0. The end condition µ+

23 = 0 in (36b) and the differential

equation for µ, (37), imply that µ̂+
12 < 0. Using definition (34), we obtain

(λ̂R − ŵD)−12 > (λ̂R − ŵD)+
12. (A.56)

22This inequality follows from the continuity of µ, optimality condition (7b), and (24a).
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Rearranging optimality condition (7c), we get

r − ŵD =
β

1− β
θRpY Y (1− β)2

QRλR
+ λ̂R − ŵD. (A.57)

Combining (A.56) and (A.57), and using the continuity of QR, Y , λR, and θR, we find

(r − ŵD)−12 > (r − ŵD)+
12. Substitution of this result into (9) with i = L implies Q̂−L12 >

Q̂+
L12 ⇒ D−L12 > D+

L12. Using the continuity of D at T12 and the identity D = DL + DR,

we obtain D−R12 > D+
R12. This contradicts our initial assumption of a continuous DR at T12.

Hence, DR jumps down at the end of regime 1. �

A.14 Initial Condition

By combining (3) with (15) and using the definition y ≡ S/R, the relative factor demand

function can be written as:

θE
1− θE

(
1− γ
γ

)σ
ν
(

S

y(LS −D)

QR
QL

) ν−1
ν

. (A.58)

Converting (A.58) into growth rates, we find:

θ̂E = −(1− θE)
1− ν
ν

[
Ŝ − ŷ +

D

LS −D
D̂ + Q̂R − Q̂L

]
. (A.59)

By using (13), (16), and Ŝ = −y−1, we get a differential equation for y:

ẏ = −y(1− ν)(1− θE)
[
r − ŵL − (Q̂R − Q̂L)

]
+ ρy − 1. (A.60)

For each regime, the specification of the differential equation in terms of y, θE , and D is

different. Substitution of (13), (17), and (18) into (A.60) gives (38a), the required differential

equation for y in regime 1. By instead substituting Q̂R = 0, (6) and (22a), and using (13)

again, we obtain (38b), the required differential equation in regime 2. Expression (39) is

obtained by substitution of S0, QR(0), QL(0) and the function D = f(θE) into (A.58).
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