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Abstract

Economic evaluation of climate policy is notoriously dependent on as-
sumptions about time and risk preferences, since reducing greenhouse gas
emissions today has a highly uncertain pay-o�, far into the future. These
assumptions have always been much debated. Rather than occupy a posi-
tion in this debate, we take a non-parametric approach here, based on the
concept of Time-Stochastic Dominance. Using an integrated assessment
model, we apply Time-Stochastic Dominance analysis to climate change,
asking are there global emissions abatement targets that everyone who
shares a broad class of time and risk preferences would agree to prefer?
Overall we �nd that even tough emissions targets would be chosen by
almost everyone, barring those with arguably `extreme' preferences.

Keywords: almost stochastic dominance, climate change, discount-
ing, integrated assessment, risk aversion, stochastic dominance, time
dominance, time-stochastic dominance

JEL codes: Q54
∗Grantham Research Institute on Climate Change and the Environment,
and Department of Geography and Environment, London School of Eco-
nomics and Political Science.
†Department of Economics, University of Verona.

We would like to thank Claudio Zoli for valuable discussions. This research
has received funding from the European Union's Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement 266992 � Global-IQ �Im-
pacts Quanti�cation of Global Changes�. SD would also like to acknowl-
edge the �nancial support of the Grantham Foundation for the Protection
of the Environment, as well as the Centre for Climate Change Economics
and Policy, which is funded by the UK's Economic and Social Research
Council and by Munich Re. The usual disclaimer applies.

Email for correspondence: s.dietz@lse.ac.uk

1



1 Introduction

For over three decades, economists have been evaluating the abatement of global
greenhouse gas emissions, to mitigate climate change. It has become increasingly
evident in that time that the value of emissions abatement depends sensitively
on the social planner's time preference and attitude to risk. This makes sense,
because emissions abatement is a �ne example of an investment that pays o�
mainly in the very long run and whose pay-o�s are subject to signi�cant un-
certainty. Unfortunately there is much debate about appropriate time and risk
preferences, hence there is much debate about optimal climate mitigation.

Most studies � certainly most empirical studies � have been based on a
model in which social welfare is the discounted sum of individual utilities. To
�x ideas, let us call β(t) the discount factor in year t. Standard practice is to
set β(t) = 1/ [1 + δ(t)] t, so it is immediately clear that over a long time horizon
even small di�erences in the utility discount rate δ(t) can have a large e�ect
on the valuation of future utility. Utility is assumed to be a concave function
of per-capita consumption of an aggregate good, net of the e�ect of climate
change, u′(c) > 0 and u′′(c) < 0. Consumption may be uncertain, and one
would take the expectation of utility in such a model. Ordinarily the utility
function exhibits constant relative risk aversion, u(c) = [1/(1 − η)] · c(t)1−η,
where −η is the elasticity of marginal utility with respect to consumption, i.e.
η is the coe�cient of relative risk aversion.

Within this framework, there has for many years been a vigorous debate
about δ(t) and η. In many respects, the pioneering studies of Cline (1992) and
Nordhaus (1991; 1994) staked out debating positions that still hold today. It is
well known that Cline set δ(t) = 0, ∀t based on so-called `prescriptive' ethical
reasoning (like e.g. Ramsey, Pigou and even Koopmans before him), while
Nordhaus set δ(t) = 3%, ∀t based on a more conventional `descriptive' analysis
of market rates of investment returns.1 These contrasting positions were one of
the main reasons why Cline and Nordhaus made di�erent recommendations on
emissions abatement, with Cline advocating substantially faster, deeper cuts.

This is what most remember from their debate, but it is worth pointing out
that Cline's conclusions also depended on applying a somewhat informal notion
of risk aversion to aggregate across a selection of his modelling `cases'. That
is, he did not treat consumption per capita as a random variable, but he did
explore di�erent combinations of parameter values in sensitivity analysis, and
in drawing conclusions attempted to informally aggregate across them. Thus
while it would not be until some years later that risk began to formally enter
the analysis as foreseen above, its importance was already evident at this early
stage.

More recently, the Stern Review on the Economics of Climate Change (Stern,
2007) has revived and updated `Cline vs. Nordhaus', by setting δ(t) = 0.1%, ∀t
and advocating aggressive emissions abatement.2 However, by implementing

1See Arrow et al. (1996) for a classic comparison of these two points of view, from where
the labels descriptive and prescriptive hail.

2See Nordhaus (2007; 2008) for critique of the Stern Review.
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formal Monte Carlo analysis and including in the parameter space some com-
binations of values implying catastrophic climate damage (Dietz et al., 2007),
the Stern Review and reactions to it also stimulated a more detailed and formal
debate about the role of risk and risk aversion (e.g. Pindyck, 2011; Weitzman,
2007, 2009).3 In an intertemporal model with growth and risk, η governs not
only risk aversion but also aversion to inequality in consumption over time4, thus
the dependence of the value of emissions abatement on η is complex. Across
the many perspectives on the Stern Review one can �nd support for η ∈ [0.5, 4]
(e.g. Dasgupta, 2007; Gollier, 2006; Stern, 2008). Various papers have shown
how sensitive the value of emissions abatement is to η, perhaps the most con-
vincing of which is Anderson et al. (2012), which is a global sensitivity analysis
using Nordhaus' DICE integrated assessment model, showing that the social
cost of carbon is far more sensitive to η than it is to any other model parameter
whatsoever.

While the debate as thus far described has been limited to which constant
values of δ and η to choose, the forms of the discount and utility functions are
also open to debate. For instance, Gerlagh and Liski (2012) investigate the
implications for climate policy of hyperbolic discounting.5 Similarly alterna-
tive utility functions have recently been proposed (Ikefuji et al., 2012; Pindyck,
2011). Millner (forthcoming) provides a recent review.

Rather than attempting to settle the debate, in this paper we embrace it.
Our starting point is the supposition that debate about time and risk preference
in climate economics legitimately exists. Given the ingredients of the debate and
the current state of knowledge, �reasonable minds may di�er� (?). Moreover,
we take it as given that it always will, or at the very least it will persist long
enough to cloud a sequence of important choices about global emissions faced in
reality, on which economists might be able to give more one-handed advice, as
President Truman might have put it. Why is the debate di�cult to resolve? It
contains both positive and normative elements. Even those who take a descrip-
tive approach as described above are taking a normative position in doing so.
While the positive `uncertainties' could in principle be eliminated by collecting
more empirical data from, for instance, market behaviour, questionnaire surveys
or laboratory experiments, in reality it is likely that signi�cant uncertainties will
persist. Witness longstanding di�culties with, and ongoing di�erences in ap-
proach to, puzzles in the economics of risk such as the equity premium / risk-free
rate. Moreover it is even more di�cult to resolve normative di�erences simply
by appeal to empirical information. Such di�erences may never be completely
eliminated.

Given ongoing debate about how precisely to structure and parameterise
time and risk preference in economic models of climate mitigation, the question

3The debate now extends to second-order uncertainty about probabilities, often known as
`ambiguity'. However, we abstract from this issue here; see e.g. Millner et al. (2013).

4In a model disaggregated into multiple regions (which Stern's was not), η also governs
aversion to inequality in consumption over space.

5In fact Nordhaus himself was for a time of the view that δ(t) should decline over time
(Nordhaus and Boyer, 2000).
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we ask is; can we make choices on emissions abatement without having to agree
on how exactly to represent time and risk preference? Put more formally, are
there combinations of whole classes of discount and utility functions, for which
it is possible to say that some abatement policies are preferred to others? These
classes admit di�erent functional forms, and, for given functional forms, often
wide ranges of parameter values, so the approach we take is non-parametric.
Where preference orderings over abatement policies can be constructed for cer-
tain combinations of discount and utility function, we say there is a space for
agreement. Hence a space for agreement is a partial ordering.

The theoretical machinery for analysing spaces for agreement builds on the
concepts of Stochastic Dominance (Section 2) and Time Dominance (Section
3), long-established frameworks for ordering risky prospects and cash�ows over
time, respectively. However, until now Stochastic Dominance and Time Domi-
nance have been limited in their applicability to climate policy by the fact that
the former does not admit pure time discounting, while the latter cannot be ap-
plied to uncertain future cash�ows except under very strong assumptions. The
one's strength is the other's weakness in this regard. Therefore, in a companion
paper we unify Stochastic Dominance and Time Dominance to produce a theory
of Time-Stochastic Dominance, which is able to handle choices between invest-
ments that are both inter-temporal and risky (Dietz and Matei, 2013). In this
paper we present the theory in a stripped-down manner, highlighting the key
theorems and providing cross-references to the proofs for the interested reader
(Section 4).

We make an empirical application by analysing a set of trajectories for global
greenhouse gas emissions � a set of `policies' � using a stochastic version of
Nordhaus' DICE model. DICE provides a theoretically coherent representation
of the coupled climate-economy system and is well understood, being openly
available and relatively simple. Section 5 describes how the model is set up, as
well as the policies to be compared. Our version of the model was developed by
Dietz and Asheim (2012) and, unlike standard DICE, incorporates uncertainty
via a set of random parameters that are inputs to Monte Carlo simulation. The
policies to be evaluated di�er in the maximum atmospheric concentration of
carbon dioxide that is permitted, i.e. each is an emissions path that maximises
social welfare subject to a constraint on atmospheric CO2.

Section 6 presents our results. It indicates that, although the pro�le of net
bene�ts from climate mitigation is such that strict Time-Stochastic Dominance
cannot be established, we can use the less restrictive concept of Almost Time-
Stochastic Dominance to show that the space for agreement on climate change
is indeed large. Section 7 completes the paper by providing a discussion.
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2 A primer on Stochastic Dominance and

`Almost' Stochastic Dominance

Stochastic Dominance (hereafter SD) determines the order of preference of an
expected-utility maximiser between risky prospects, while requiring minimal
knowledge of her utility function. Take any two risky prospects F and G, and
denote their cumulative distributions F 1 and G1 respectively. Assuming the
cumulative distributions have �nite support on [a, b], F is said to �rst-order
stochastic dominate G if and only if F 1(x) ≤ G1(x), ∀x ∈ [a, b] and there is a
strict inequality for at least one x, where x is a realisation from the distribution
of payo�s possible from a prospect. Moreover it can be shown that any expected-
utility maximiser with a utility function belonging to the set of non-decreasing
utility functions U1 = {u : u′(x) ≥ 0} would prefer F .

First-order SD does not exist if the cumulative distributions cross, which
means that, while it is a powerful result in the theory of choice under uncertainty,
the practical usefulness of the theorem is limited. By contrast, where F 2(x) =´ x
a
F 1(s)ds and G2(x) =

´ x
a
G1(s)ds, F second-order stochastic dominates G if

and only if F 2(x) ≤ G2(x), ∀x ∈ [a, b] and there is a strict inequality for at
least one x. It can be shown that any expected-utility maximiser with a utility
function belonging to the set of all non-decreasing and (weakly) concave utility
functions U2 = {u : u ∈ U1 and u

′′(x) ≤ 0} would prefer F , i.e. any such
(weakly) risk-averse decision-maker. Hence second-order SD can rank prospects
with, for example, the same mean but di�erent variances.

Nonetheless the practical usefulness of second-order SD is still limited. Con-
sider the following example. Let us try to use SD criteria to rank two prospects;
F pays out $0.5 with a probability of 0.01 and $1 million with a probability
of 0.99, while G pays out $1 for sure. While it would seem that virtually any
investor would prefer F , second-order SD does not exist as G2(x) − F 2(x) <
0, x ∈ [0.5, 1). Intuitively, the reason for the violation of second-order SD is
that the broad class of preferences admitted in U2 includes risk aversion so ex-
treme that the decision-maker e�ectively only cares about the 0.01 probability
of sacri�cing $0.5 by taking the gamble.

From here the obvious step would be to place additional restrictions on
the decision-maker's preferences. Thus we can de�ne the set U3 = {u :
u ∈ U2 and u

′′′(x) ≥ 0} and look for third-order SD. Decision-makers exhibit-
ing decreasing absolute risk aversion have preferences represented by utility
functions in U3 and such decision-makers will also exhibit `prudence' in inter-
temporal savings decisions (Kimball, 1990). F third-order stochastic domi-
nates G if and only if F 3(x) ≤ G3(x), ∀x ∈ [a, b] and EF (x) ≥ EG(x), and
there is at least one strict inequality.6 However, it can easily be veri�ed that
G3(x) − F 3(x) < 0, x ∈ [0.5, 1), yet EF (x) >> EG(x), so third-order SD does
not exist. Moreover SD cannot be established to any order, because the �rst
non-zero values of G1(x) − F 1(x) are negative as x increases from its lower
bound, yet EF (x) > EG(x).

6F 3(x) =
´ x
a F

2(s)ds and G3(x) =
´ x
a G

2(s)ds.
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A more fruitful route is the theory of `Almost Stochastic Dominance' (ASD)
set out by Leshno and Levy (2002) and recently further developed by Tzeng
et al. (2012). ASD places restrictions on the derivatives of the utility function
with the purpose of excluding the extreme preferences that prevent strict SD
from being established. Dominance relations are then characterised for `almost'
all decision-makers.

For every 0 < εk < 0.5, where k = 1, 2 corresponds to �rst- and second-order
SD respectively, de�ne subsets of Uk:

U1(ε1) =

{
u ∈ U1 : u′(x) ≤ inf[u′(x)]

[
1

ε1
− 1

]
, ∀x

}
and (1)

U2(ε2) =

{
u ∈ U2 : −u′′(x) ≤ inf[−u′′(x)]

[
1

ε2
− 1

]
, ∀x

}
.

U1(ε1) is the set of non-decreasing utility functions with the added restriction
that the ratio between maximum and minimum marginal utility is bounded by
1
ε1
− 1. In the limit as ε1 approaches 0.5, the only function in U1(ε1) is linear

utility. Conversely as ε1 approaches zero, U1(ε1) coincides with U1. U2(ε2) is
the set of non-decreasing, weakly concave utility functions with an analogous
restriction on the ratio between the maximum and minimum values of u′′(x). In
the limit as ε2 approaches 0.5, U2(ε2) contains only linear and quadratic utility
functions, while as ε2 approaches zero, it coincides with U2.

De�ning the set of realisations over which strict �rst-order SD is violated as

S1(F,G) =
{
x ∈ [a, b] : G1(x) < F 1(x)

}
,

F is said to �rst-order almost stochastic dominate G if and only if

ˆ
S1

[
F 1(x)−G1(x)

]
dx ≤ ε1 ·

ˆ b

a

∣∣[F 1(x)−G1(x)
]∣∣ dx.

Moreover, in a similar vein to strict SD, it can be shown that any expected-
utility maximiser with a utility function belonging to U1(ε1) would prefer F .

De�ning the set of realisations over which strict second-order SD is violated
as

S2(F,G) =
{
x ∈ [a, b] : G2(s) < F 2(s)

}
,

F second-order almost stochastic dominates G if and only if

ˆ
S2

[
F 2(x)−G2(x)

]
dx ≤ ε2 ·

ˆ b

a

∣∣[F 2(x)−G2(x)
]∣∣ dx and

EF (x) ≥ EG(x).

Any expected-utility maximiser with a utility function belonging to U2(ε2)
would prefer F . From these de�nitions of �rst- and second-order ASD one
can see that εk intuitively represents the proportion of the total area between
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F k and Gk in which the condition for strict SD of the kth order is violated. The
smaller is εk, the smaller is the relative violation.

One could say that ASD fudges the issue somewhat, insofar as the clarity
that strict SD brings to the ordering of prospects is partly lost. However, that
is to overlook the value empirically of scrutinising the area of violation of strict
SD, i.e. with ASD the focus turns to analysing the size of εk. Another obvious
di�culty is in determining just how large εk can be before it can no longer be
said that one prospect almost stochastic dominates another, i.e. what is an
`extreme' preference? This is clearly subjective, but Levy et al. (2010) o�er
an illustration of how to de�ne it using laboratory data on participant choices
when faced with binary lotteries. Extreme risk preferences are marked out by
establishing gambles that all participants are prepared to take. By making the
conservative assumption that no participant has extreme risk preferences, the
set of non-extreme preferences is at least as large as that marked out by the
least and most risk-averse participants. Preferences outside these limits can be
considered extreme.

3 A primer on Time Dominance

The theory of Time Dominance (TD) builds on the SD approach to choice
problems under uncertainty, and transfers it to problems of intertemporal choice
(Bøhren and Hansen, 1980; Ekern, 1981). Denoting the cumulative cash�ows
of any two investments X1 and Y1,

7 X is said to �rst-order time dominate Y if
and only if X1(t) ≥ Y1(t), ∀t ∈ [0, T ] and there is a strict inequality for some
t, where T is the terminal period of the most long-lived project. Moreover it
can be shown that any decision-maker with a discount function belonging to
the set of all decreasing consumption discount functions V̂1 = {v̂ : v̂′(t) < 0}
would prefer X. Thus if the decision-maker prefers a dollar today to a dollar
tomorrow, she will prefer X if it �rst-order time dominates Y .

Just like SD, �rst-order TD has limited practical purchase, because the set
of undominated investments remains large, i.e. the criterion X1(t) ≥ Y1(t), ∀t
is restrictive.8 Therefore, proceeding again by analogy to SD, X second-order
time dominates Y if and only if

X1(T ) ≥ Y1(T ) and

X2(t) ≥ Y2(t), ∀t ∈ [0, T ],

where X2(t) =
´ t
0
X1(τ)dτ and Y2(t) =

´ t
0
Y1(τ)dτ , and there is at least one

strict inequality. Any decision-maker with a discount function belonging to the

7X1(t) =
´ t
0 x(τ)dτ and Y1(t) =

´ t
0 y(τ)dτ .

8Indeed, in the domain of deterministic cash�ows over multiple time-periods, the require-
ment that X1(0) ≥ Y 1(0) means that one investment cannot dominate another by a �rst,
second or higher order, if the initial cost is higher, no matter what the later bene�ts are.
This makes it di�cult to compare investments of di�erent sizes. However, this can be worked
around by normalising the cash�ows to the size of the investment (Bøhren and Hansen, 1980).
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set of all decreasing, convex consumption discount functions V̂2 = {v̂ : v̂ ∈
V̂1 and v̂

′′(t) > 0} would prefer X. Noting how the conditions for second-order
TD are obtained from their counterparts for �rst-order TD by integration, TD
can be de�ned to the nth order (see Ekern, 1981).

Notice that TD applies to deterministic cash�ows. It would be possible to
apply the method to uncertain cash�ows, if X and Y were expected cash�ows
and if a corresponding risk adjustment were made to {v̂}. However, since any
two cash�ows X and Y would then be discounted using the same set of risk-
adjusted rates, it would be necessary to assume that the cash�ows belong to
the same risk class (Bøhren and Hansen, 1980), for example under the capi-
tal asset pricing model they would have to share the same covariance with the
market portfolio. This signi�cantly limits the reach of the method to uncertain
investments. It would also be necessary to assume that any investments being
compared are small (i.e. marginal), since the domain of {v̂} is cash�ows and
therefore depends on a common assumed growth rate. Neither of these assump-
tions is likely to hold in the case of climate change (see Weitzman, 2007, for
a discussion of the covariance between climate mitigation and market returns,
and Dietz and Hepburn, 2013, for a discussion of whether climate mitigation is
non-marginal).

This sets the scene for a theory that uni�es the capacity of SD to order
risky prospects with the capacity of TD to order intertemporal cash�ows. The
resulting theory of Time-Stochastic Dominance has the additional advantage
that time and risk preferences can be disentangled and each scrutinised explicitly
(whereas in applying TD, even if the assumptions just discussed would hold,
both time and risk preference would be bound up in the concept of risk-adjusted
discount functions).

4 Time-Stochastic Dominance and Almost Time-

Stochastic Dominance

The Time-Stochastic Dominance (TSD) approach is developed formally in Di-
etz and Matei (2013). Here we will summarise the key concepts, referring the
interested reader to the companion paper for more details, including proofs.

Take two prospects X and Y , both of which yield random cash�ows over
time. The underlying purpose is to compare the expected discounted utilities
of the prospects at t = 0, i.e. for prospect X one would compute

NPVv,u(X) =

ˆ T

0

v(t) · EFu(x, t)dt =

ˆ T

0

v(t) ·
ˆ b

a

u(x) · F 1(x, t)dxdt (2)

where it is important to note that v is a utility or pure time discount function,
rather than a consumption discount function as in the case of TD. Nonetheless
we otherwise borrow the terminology developed above by analysing combina-
tions of classes of discount and utility functions, such that Vi × Uj denotes the
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combination of the ith class of pure time discount function with the jth class
of utility function. For example, a natural �rst point of reference would be
V1 × U1, the set of all combinations of decreasing pure time discount function
and non-decreasing utility function. These combinations are the basis for our
notion of a space for agreement. In other words, we will be looking for the least
restricted combination Vi ×Uj such that one prospect � one climate mitigation
policy � dominates another.

Where f(x, t) represents the probability density function for prospect X at
time t,

F 1
1 (x, t) =

ˆ x

a

F1(s, t)ds =

ˆ t

0

F 1(x, τ)dτ =

ˆ t

0

ˆ x

a

f(s, τ)dsdτ.

De�ning d(z, t) = g(y, t)− f(x, t), we set

Dj
i (z, t) = Gji (y, t)− F

j
i (x, t)

for all x, y, z ∈ [a, b] and all t ∈ [0, T ]. Given information on the �rst n and
m derivatives of the discount and utility functions respectively, we recursively
de�ne:

Dn(z, t) =
´ t
0
Dn−1(z, τ)dτ

Dm(z, t) =
´ z
a
Dm−1(s, t)ds

Dm
n (z, t) =

´ t
0
Dm
n−1(z, τ)dτ =

´ z
a
Dm−1
n (s, t)ds =

´ t
0

´ z
a
Dm−1
n−1 (s, τ)dsdτ,

where i ∈ {1, 2, . . . , n} is the order of pure TD (i.e. the number of integra-
tions with respect to time) and j ∈ {1, 2, . . . ,m} is the order of SD (i.e. the
number of integrations with respect to the consequence space).

De�nition 1 (Time-Stochastic Dominance of order i, j). For any two
risky, intertemporal prospects X and Y

X >iT jS Y if and only if ∆ ≡ NPVv,u(X)−NPVv,u(Y ) ≥ 0,

for all (v, u) ∈ Vi × Uj .

In this de�nition, the ordering >iT jS denotes pure TD of the ith order,
combined with SD of the jth order. For example, >1T1S , which we can shorten
to >1TS , denotes time and stochastic dominance of the �rst order.

Proposition 1 (First-order Time-Stochastic Dominance). X >1TS Y
if and only if

D1
1(z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

and there is a strict inequality for some (z, t).
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Proposition 1 tells us that X �rst-order time-stochastic dominates Y pro-
vided the integral over time of the cdf of Y is at least as large as the integral
over time of the cdf of X, for all wealth levels and all time-periods. It maps
out a space for agreement, as we can say that all decision-makers with prefer-
ences that can be represented by V1×U1 will rank X higher than Y , no matter
what precisely is their discount function or utility function, not to mention what
precisely is their rate of impatience δ(t) or CRRA η.

Having established �rst-order TSD, we can proceed from here either by plac-
ing an additional restriction on the discount function, or on the utility function,
or on both. A particularly compelling case is (v, u) ∈ V1×U2 � since few would
be uncomfortable with the notion of excluding risk-seeking behaviour a priori,
especially in the public sector.

Proposition 2 (First-order Time and Second-order Stochastic Domi-
nance). X >1T2S Y if and only if

D2
1(z, t) ≥ 0 ∀z ∈ [a, b] and ∀t ∈ [0, T ],

with at least one strict inequality.

Proposition 2 delineates a space for agreement for all decision-makers who
are at the same time impatient and risk averse, a subset of the set of decision-
makers in Proposition 1.

It is evident from Proposition 2 that restricting the utility function by one
degree corresponds to integratingD1

1(z, t) once more over the consequence space.
If we want to pursue the further case of (v, u) ∈ V2 × U2, representing a risk-
averse planner with impatience decreasing over time, then we would integrate
D2

1(z, t) once more with respect to time (see Dietz and Matei, 2013). Taking this
to its logical conclusion, we can generalise TSD to the nth order with respect to
time and the mth order with respect to risk.

Proposition 3 (nth-order Time and mth-order Stochastic Dominance).
X nth-order time and mth-order stochastic dominates Y if

i)Dj+1
i+1 (b, T ) ≥ 0

ii)Dj+1
n (b, t) ≥ 0, ∀t ∈ [0, T ]

iii)Dm
i+1(z, T ) ≥ 0,∀z ∈ [a, b]

iv)Dm
n (z, t) ≥ 0,∀z ∈ [a, b],∀t ∈ [0, T ]

with (iv) holding as a strong inequality over some sub interval and where i =
{0, . . . , n− 1} and j = {0, . . . ,m− 1}.

Dominance criteria have strong appeal, because they o�er non-parametric
rankings for entire preference classes. However, as discussed above in relation
to SD, it is in the nature of their characterisation that they can fail to estab-
lish superiority of one investment over another, even if the violation of strict
dominance is very small and the order of preference would seem to be common
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sense. Strict TSD evidently shares this weakness. To counter it, we establish
theorems for Almost TSD, extending the framework of Leshno and Levy (2002)
and Tzeng et al. (2012) into our bi-dimensional time-risk set-up. In particu-
lar, we will characterise almost �rst-order TSD and almost �rst-order time and
second-order stochastic dominance.

Consider the following combinations of preferences:

V1(γ1)× U1(γ1) = {v ∈ V1, u ∈ U1 : sup[−v′(t)u′(z) ≤

inf [−v′(t)u′(z)]
[

1

γ1
− 1

]
, ∀z ∈ [a, b], ∀t ∈ [0, T ]} (3)

V1(γ2)× U2(γ2) = {v ∈ V1, u ∈ U2 : sup[v′(t)u′′(z) ≤

inf [v′(t)u′′(z)]

[
1

γ2
− 1

]
, ∀z ∈ [a, b], ∀t ∈ [0, T ]} (4)

In words, V1(γ1)×U1(γ1) is the set of all combinations of decreasing pure time
discount function and non-decreasing utility function, with the added restriction
that the ratio between the maximum and minimum products of [−v′(t) · u′(z)] is
bounded by 1

γ1
−1. The supremum (in�mum) of [−v′(t) · u′(z)] is attained when

v′(t) < 0 is the in�mum (supremum) of its set and u′(z) ≥ 0 is the supremum
(in�mum) of its. V1(γ2) × U2(γ2) is similarly de�ned, except that we are now
focused on the products of [v′(t) · u′′(z)] with respect to 1

γ2
− 1. The supremum

(in�mum) of [v′(t) · u′′(z)] is attained when v′(t) < 0 and u′′(z) ≤ 0 are the
suprema (in�ma) of their respective sets.

Conceptually, bounding the ratio of v′(t) amounts to restricting v′′(t), such
that preferences exhibiting a very large change in impatience over time are
excluded, for example preferences exhibiting a very rapid decrease in impatience.
Similarly, bounding the ratio of u′(z) or u′′(z) amounts to restricting u′′(z) or
u′′′(z) respectively, such that extreme concavity (risk aversion) or convexity
(risk seeking) of u(z) is ruled out, as are large changes in prudence with respect
to z. Dietz and Matei (2013) formalise this story.

Now divide the interval [a, b] into two sets, for all t ∈ [0, T ]. The �rst subset
S1
1 includes only realisations where D1

1 < 0, i.e. where the condition for strict
�rst-order TSD is violated:

S1
1(D1

1) =
{
z ∈ [a, b], ∀t ∈ [0, T ] : D1

1(z, t) < 0
}
.

As before, consider also decision-makers who simultaneously exhibit impa-
tience and risk aversion/neutrality, i.e. (v, u) ∈ V1 × U2. In this case we parcel
out the subset of realisations S2

1 where D2
1 < 0:

S2
1(D2

1) =
{
z ∈ [a, b], ∀t ∈ [0, T ] : D2

1(z, t) < 0
}
.
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De�nition 2 (Almost First-order Time-Stochastic Dominance).
X almost �rst-order time-stochastic dominates Y , denoted X �A1TS Y , if

and only if

´ T
0

´
S1
1

[
−D1

1(z, t)
]
dzdt ≤ γ1

´ T
0

´ b
a
|
[
D1

1(z, t)
]
| dzdt and´

S1,T

[
−D1

1(z, T )
]
dz ≤ ε1T

´ b
a
|
[
D1

1(z, T )
]
| dz.

The left-hand side of the �rst inequality constitutes the violation γ1 of strict
�rst-order TSD across all time-periods. In addition, as the second inequality
shows, the de�nition also requires the violation of strict �rst-order TSD to be
no larger than ε1T in the �nal time-period, where ε1T is de�ned as in (1) but is
now measured with respect to D1

1(z, T ).

Proposition 4 (A1TSD). X �A1TS Y if, for all (v, u) ∈ V1(γ1)×U1(γ1)andu ∈
U1(ε1T ),

NPVv,u(X) ≥ NPVv,u(Y ) and there is at least one strict inequality.

In de�ning almost �rst-order time and second-order stochastic dominance it
is necessary to measure three violations. In addition to the violation γ2 that
prevents us from obtaining strict �rst-order time and second-order stochastic
dominance with respect to the whole consequence space [a, b] and time-horizon
[0, T ], and the violation in the �nal time-period ε2T , we need to measure a
further violation of the non-negativity condition on the integral with respect to
time of D2

1(b, t). To do this we divide the time horizon [0, T ] into two sets, when
z = b. The �rst subset includes only realisations where D2

1(b, t) < 0:

S1(D2
1) =

{
z = b, t ∈ [0, T ] : D2

1(t) < 0
}
.

De�nition 3 (Almost First-order Time and Second-order Stochastic
Dominance).

X almost �rst-order time and second-order stochastic dominates Y , denoted
X �A1T2S Y if and only if

i)
´ T
0

´
S2
1

[
−D2

1(z, t)
]
dzdt ≤ γ2

´ T
0

´ b
a
|
[
D2

1(z, t)
]
| dzdt and

ii)
´
S2

[
−D2

1(z, T )
]
dz ≤ ε2T

´ b
a
|
[
D2

1(z, T )
]
| dz, and

iii)
´
S1

[
D2

1(b, t)
]
dt ≤ γ1b

´ T
0
|
[
D2

1(b, t)
]
| dt, and

iv)D2
1(b, T ) ≥ 0.

Note that the restriction
´
S1

[
D2

1(b, t)
]
dt/
´ T
0
|
[
D2

1(b, t)
]
| dt ≤ γ1b requires

(v, u) ∈ V1(γ1) × U1(γ1) for all t when z = b, which we hence write as (v, u) ∈
V1(γ1b)× U1(γ1b), while there is also a speci�c requirement that D2

1(b, T ) ≥ 0.

Proposition 5 (A1T2SD). X �A1T2S Y if, for all (v, u) ∈ V1(γ2) × U2(γ2),
V1(γ1b)× U1(γ1b), and u ∈ U2(ε2T ),

NPVv,u(X) ≥ NPVv,u(Y ) and there is at least one strict inequality.
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5 Modelling approach

5.1 A stochastic version of DICE

Standard versions of DICE are deterministic, with �xed parameters. This is a
poor �t to the problem of evaluating climate policy, however, because risk is
a central element. Therefore we use a stochastic version of DICE, developed
by Dietz and Asheim (2012). This version randomises eight parameters in the
model so that Monte Carlo simulation can be undertaken. Table 1 lists the
eight parameters, and the form and parameterisation of the probability density
functions assigned to them. The equations of the model can be found in the
Appendix to Nordhaus (2008). Unless otherwise stated here, no changes are
made to original model.

The eight random parameters were originally selected by Nordhaus (2008),
based on his broader assessment of which of all the model's parameters had the
largest impact on the value of policies. The �rst four parameters in Table 1 play
a role in determining CO2 emissions. In one-sector growth models like DICE,
CO2 emissions are directly proportional to output, which is in turn determined
in signi�cant measure by productivity (i) and the stock of labour (ii). However,
while CO2 emissions are proportional to output, the proportion is usually as-
sumed to decrease over time due to structural change away from CO2-intensive
production activities (e.g. from manufacturing to services), and to decreases
in CO2 intensity in any given activity. In DICE, this is achieved by virtue of
a variable representing the autonomous ratio of emissions/output (i.e. in the
absence of policy-driven emissions control), which decreases over time as a func-
tion of a rate-of-decarbonisation parameter (iii). A further check on industrial
CO2 emissions is provided in the long run by the �nite total remaining stock of
fossil fuels (iv).

[TABLE 1 HERE]

The �fth uncertain parameter is the price of a CO2-abatement backstop
technology, capable of completely eliminating CO2 emissions. Such a technol-
ogy could most plausibly be a zero-emissions energy technology such as solar
or geothermal power.9 The initial backstop price (v) is very high (mean =
US$1170/tC ), but it declines over time. In DICE, the coe�cient of the abate-
ment cost function is a function of the backstop price, hence we obtain abate-
ment cost uncertainty as a result of backstop price uncertainty.

The sixth and seventh parameters in Table 1 capture important uncertain-
ties in climate science. On the one hand parameter (vi) captures uncertainty
about the carbon cycle via the proportion of CO2 in the atmosphere in a par-
ticular time-period, which dissolves into the upper ocean in the next period.
On the other hand uncertainty about the relationship between a given stock of

9It could also be a geo-engineering technology such as arti�cial trees to sequester atmo-
spheric CO2, except that DICE has exogenous emissions of CO2 from land use.
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atmospheric CO2 and temperature is captured by specifying a random climate-
sensitivity parameter (vii). The climate sensitivity is the increase in global
mean temperature, in equilibrium, that results from a doubling of the atmo-
spheric stock of CO2. In simple climate models like DICE's, it is critical in
determining how fast and how far the planet is forecast to warm in response to
emissions. There is by now much evidence, derived from a variety of approaches
(see Meehl et al., 2007, and Roe and Baker, 2007), that the probability density
function for the climate sensitivity has a positive skew.

The eighth and �nal uncertain parameter is one element of the damage
function linking temperature and utility-equivalent losses in output. In Dietz
and Asheim's (2012) version of DICE, the damage function has the following
form:

Ω(t) =
1

1 + α1Υ(t) + α2Υ(t)2 + [α̃3Υ(t)] 7
, (5)

where Ω is the proportion of output lost, Υ is the increase in global mean
temperature over the pre-industrial level, and αi, i ∈ {1, 2, 3} are coe�cients.
α̃3 is a normally distributed random coe�cient (viii), so the higher-order term
[α̃3Υ(t)] 7 captures the uncertain prospect that signi�cant warming of the planet
could be accompanied by a very steep increase in damages. That such a pos-
sibility exists has been the subject of recent controversy, with the approaches
of Nordhaus (2008) and Weitzman (2012) marking out opposing stances. The
controversy exists, because there is essentially no empirical evidence to sup-
port calibration of the damage function at high temperatures (Dietz, 2011; Tol,
2012); instead there are simply beliefs. In standard DICE, α3 = 0, thus there is
no higher-order e�ect and 5◦C warming, as a benchmark for a large tempera-
ture increase, results in a loss of utility equivalent to 6% of output. By contrast
Weitzman (2012) suggests a functional form which can be approximated by
α3 = 0.166. Here α̃3 is calibrated such that the Nordhaus and Weitzman po-
sitions represent minus/plus three standard deviations respectively, and at the
mean 5◦C warming results in a loss of utility equivalent to around 7% of output.
Thus the mean value of function (5) remains fairly conservative.

Random parameters (i)-(viii), alongside the model's remaining non-random
parameters and initial conditions (as per Nordhaus, 2008), are inputs to a Monte
Carlo simulation. In particular, a Latin Hypercube sample of 1000 runs of the
model is taken. Each run solves the model for a particular policy, which as
described below is a schedule of values for the rate of control of CO2 emissions.
From this is produced a schedule of distributions of consumption per capita
(where consumption per capita is equivalent to a cash�ow in our theory), which
is the focus of the Time-Stochastic Dominance analysis.

5.2 Policies to be evaluated

We evaluate a set of �ve, representative policies governing the rate of control
of CO2 emissions, plus a sixth path representing a forecast of emissions in the
absence of policy-driven controls, i.e. `business as usual'. These policies are
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exogenous, since it makes no sense to optimise within the framework of Time-
Stochastic Dominance, the whole point of which is to construct partial orderings
given disagreement over the precise form and parameterisation of the discount
and utility functions.

Each of the �ve policies limits the atmospheric stock of CO2 to a pre-speci�ed
level. This approach maps on to real policy discussions, which often aim to
derive emissions targets based on a `stabilisation' level for the atmospheric con-
centration of CO2 in the very long run. In order to try, as far as possible, to
render the policies consistent with the assumptions we make, we use the stochas-
tic version of DICE itself to generate the �ve policy paths, rather than relying
on someone else's work with other assumptions and another model. The sixth
path, `business-as-usual' or BAU, is the baseline scenario from Nordhaus (2008).

The control variable is the emissions control rate µ(t) ∈ [0, 1], which is linked
to production and emissions via the following equation:

EIND(t) = σ(t)[1− µ(t)]Y (t),

where EIND(t) is industrial CO2 emissions, σ(t) is the ratio of uncontrolled
industrial emissions to output and Y (t) is production gross of abatement costs
and climate-change damages.

Each policy path is generated by solving a stochastic optimisation problem,
whereby the schedule {µ(t)}, ∀t is chosen to minimise abatement costs10 subject

to the constraint that the atmospheric stock of CO2, M
AT (t) ≤ MAT , where

MAT ∈ {450, 500, 550, 600, 650} and where the units are parts per million
volume. This is done under uncertainty about parameters (i)-(vi), since these
a�ect the cost of abatement and its impact on atmospheric CO2. The constraint
on the stock of atmospheric CO2 is in terms of its mean value. Notice that such
a policy objective does not necessarily entail MAT (t) = MAT . In our policies,

MAT (t) < MAT if it is cost-e�ective to do so. By contrast, much of the literature
on stabilisation of atmospheric CO2 requires the policy to satisfy this equality
in the long run.

In an integrated assessment model such as DICE, and especially in running
Monte Carlo simulation, solving this cost-minimisation problem is a non-trivial
computational challenge. We solve it using a genetic algorithm (Riskoptimizer)
and with two modi�cations to the basic optimisation problem.11 In addition,

10Of course, what is cost-e�ective depends on the social objective, so for this part of the anal-
ysis we cannot avoid pre-specifying and parameterising the social welfare and utility functions.
For this purpose, social welfare is given, as in standard DICE, by (??), where δ(t) = 1.5%, ∀t,
and utility is CRRA, where η = 2.

11First, we only solve µ(t) from 2015 to 2245 inclusive, rather than all the way out to 2395.
This considerably reduces the scope of the optimisation problem, in return for making little
di�erence to the results, since, in the standard version of DICE, µ(t) = 1 when t > 2245
(i.e. abatement yields high bene�ts relative to costs in the far-o� future). Our �rst period of
emissions control is 2015, since 2005, the �rst period of the model, is in the past. Second, we
guide the optimisation by imposing the soft constraint that µ(t) is non-decreasing everywhere
(via an exponential penalty function when µ(t) decreases between any two time-periods).
Otherwise, the algorithm struggles to �nd a path towards the global optimum. As a soft
constraint, the penalty does not enter the welfare evaluation. We were able to verify that
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we limit the Latin Hypercube Sample to 250 draws.12

[FIGURE 1 HERE]

5.3 Time-Stochastic Dominance with quantiles

The DICE model output, for any policy setting, is in the form of N = 1000
discrete time series of consumption per capita, each with a discrete value in
every time period. Each time series has an equal probability of 1/N .

The TD algorithm simply involves repeated summation of cash�ows. For
each additional restriction on the curvature of the discount function, a new
round of repeated summation is performed. Therefore, when v ∈ V1, X1(t) =∑t
τ=0 x(τ) , while recursivelyXn(t) =

∑t
τ=0Xn−1(τ) . We �rst cumulate across

time in this way.
The SD algorithm is based on comparing, for �rst- and second-order SD,

the quantile functions of the distributions considered, a methodology developed
by Levy and Hanoch (1970) and Levy and Kroll (1979) for uniform discrete
distributions. Take X to be an integrable random variable with, for each t ∈
[0, T ], a cdf F 1(x, t) and an r-quantile function F−1,r(p, t), the latter of which
is recursively de�ned as

F−1,1(p, t) := inf{x : F 1(x, t) ≥ p(t)},∀t ∈ [0, T ]
F−1,2(p, t) :=

´ p
0
F−1,1(y, t)dy, ∀p ∈ [0, 1] , ∀t and r ≥ 2

Proposition 6 (1TSD for quantile distributions). X >1TS Y if and only
if

H−1,11 (p, t) = F−1,11 (p, t)−G−1,11 (p, t) ≥ 0, ∀p ∈ [0, 1] and t ∈ [0, T ]

and there is a strict inequality for some (p, t).

Proposition 6 characterises First-order Time-Stochastic Dominance for quan-
tile distributions. Notice that since the quantile distribution function is just the
inverse of the cumulative distribution function, 1TSD requires F−1,11 (p, t) −
G−1,11 (p, t) ≥ 0, i.e. the inverse of the requirement for 1TSD in terms of cumu-
lative distributions.

Proposition 7 (1T2SD for quantile distributions). X >1T2S Y if and
only if

H−1,22 (p, t) ≥ 0, ∀p ∈ [0, 1] and t ∈ [0, T ]

and there is a strict inequality for some (p, t).

the algorithm's best solution satis�ed the property of non-decreasingness in µ(t), and that no
solution was found which returned lower costs, where µ(t) was decreasing at any point.

12In order to ensure comparability with the results of the Time-Stochastic Dominance anal-
ysis, the smaller sample is calibrated on the sample statistics of the larger sample.
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6 Results

6.1 Time-Stochastic Dominance analysis

We carry out the TSD analysis in two parts. In the �rst part we examine
whether any of the abatement policies time-stochastic dominates BAU. That is
to ask, can we use the analysis to establish that there is a space for agreement
on acting to reduce greenhouse gas emissions by some non-trivial amount? This
would already be of considerable help in understanding the scope of the debate
about climate mitigation. In the second part we use the framework to compare
the emissions reductions policies themselves � can we further use the framework
to discriminate between the set of policies, so that we end up with a relatively
clear idea of the policy that would be preferred?

Recall from Propositions 1 and 6 that �rst-order TSD requires H−1,11 (p, t) ≥
0, ∀z, t, with at least one strict inequality. Figure 2 plots H−1,11 (p, t) when

MAT ∈ {450, 500, 550, 600, 650} is compared with BAU. Hence visual inspection
is su�cient to establish that no abatement policy �rst-order time-stochastic
dominates BAU, not even the most accommodating 650ppm concentration limit.

[FIGURE 2 HERE]

Although �rst-order TSD cannot be established between abatement and
BAU, it could still be that one or more of the policies is preferred to BAU ac-
cording to �rst-order time and second -order stochastic dominance. Propositions
2 and 7 showed that �rst-order time and second-order stochastic dominance re-
quires H−1,21 (p, t) ≥ 0, ∀z, t, with at least one strict inequality. Figure 3 plots
H−1,21 when each abatement policy is compared with BAU. Again, it is straight-
forward to see that the condition for strict �rst-order time and second-order
stochastic dominance is not satis�ed for any of the policies. This is because, for
all policies, there exists a time-period in which the lowest level of consumption
per capita is realised under the mitigation policy rather than BAU.

[FIGURE 3 HERE]

Unable to establish strict TSD of abatement over BAU, we now turn to
analysing almost TSD. In particular, we look at both almost �rst-order TSD as
set out in De�nition 2 and almost �rst-order time and second-order stochastic
dominance as set out in De�nition 3. Recall that γk denotes the overall volume
of violation of strict TSD relative to the total volume enclosed between Gji and

F ji . εkT is the violation of strict TSD in the �nal time-period only, while γ1b
is the violation of strict �rst-order time and second-order stochastic dominance
with respect to realisation b. As γk, εkT , γ1b → 0.5, the volume/area of violation
accounts for half of the entire volume/area between the cumulative distributions
being compared, while as γk, εkT , γ1b → 0 there is no violation.

What is striking about the results of analysing almost TSD in Table 2 is how
small the violations are. For all of the policies, especially the violation of strict
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�rst-order TSD is tiny relative to the total volume/area, as measured by γ1 and
ε1T . Therefore we have a formal result showing that everyone would prefer any
of the abatement policies to BAU, as long as their time and risk preferences can
be represented by functions in the set V1(γ1)×U1(γ1). Moreover we can say that
those who do not prefer the abatement policies have an extreme combination
of time and risk preferences. Violation of strict �rst-order time and second-
order stochastic dominance is also on the whole very small, and note that the
condition on D2

1(b, T ) in De�nition 3 � equivalently H−1,21 (p, T ) ≥ 0 � is met by
all policies.

[TABLE 2 HERE]

Notice that the overall violation increases with the stringency of the policy.
Indeed it does so at an increasing rate, so that when MAT = 450 it is no longer
entirely clear, given the inherent ambiguity in the concept γk, whether we should
think of it as being favoured by almost every decision maker in V1×U2. Rather,
for this policy especially, we must recognise that a non-trivial subset of decision-
makers would not prefer to implement emissions reductions over BAU.

Let us now use TSD analysis to compare the various abatement policies
with each other. We know from the analysis above that strict TSD will not
exist either to a �rst order or in the case of �rst-order time and second-order
stochastic dominance. Therefore we can proceed directly to analysing violations.
In doing so we con�ne our attention to the least restrictive �rst-order TSD,
given the wealth of pairwise comparisons that could potentially be made. Table
3 presents the results, in terms of violations of strict �rst-order TSD. The table
should be read such that F 1

1 is the CO2 limit in the �rst column and G1
1 is the

limit in the top row. So, for example, γ1 = 0.00859 is the violation of strict
�rst-order TSD for MAT = 450 over MAT = 650.

Although we might have expected the violations to be in the main large,
since the abatement policy controls are much more similar to each other than
they are to BAU � and they do tend to be higher than in the comparison with
BAU � in fact they are all relatively small in absolute terms, such that for any
pair of policies the lower CO2 limit in the pair is almost dominant. Therefore we
can go further and say that there exists a broad space for agreement, represented
by everyone whose preferences are in the set V1(γ1)×U1(γ1), for tough emissions

reduction targets, as tough as MAT = 450.

[TABLE 3 HERE]

6.2 How DICE yields these results

The topography of the panels in Figure 2 tells us much about the e�ect of
emissions abatement on consumption per capita in DICE, how this e�ect is
related to time and the nature of the uncertainty about it. In this century
we can see it is often the case that H−1,11 < 0, but the surface appears �at
as there is little di�erence between the cumulative distributions. In the next
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century, however, the surface rises to a peak at high quantiles, revealing that the
mitigation policies can yield much higher consumption per capita than BAU,
albeit there is much uncertainty about whether this will eventuate and there is
only a low probability associated with it. Comparing the policies, we can see
that it is more likely that H−1,11 < 0, the more stringent is the limit on the
atmospheric stock of CO2. However, what 2 does not show, due to truncating
the vertical axes in order to obtain a better resolution on the boundary between
H−1,11 < 0 and H−1,11 ≥ 0, is that conversely the peak di�erence in consumption
per capita is higher, the more stringent is the concentration limit.

What lies behind these patterns? In fact, Figure 2 can be seen as a new
expression of a well known story about the economics of climate mitigation. In
early years, the climate is close to its initial, relatively benign conditions, yet
signi�cant investment is required in emissions abatement. This makes it rather
likely that consumption per capita will initially be lower under a mitigation
policy than under BAU. How much lower depends in the main on uncertainty
about the cost of mitigation, and this in turn depends in the main on backstop-
price uncertainty in our version of DICE. However, in later years the BAU
atmospheric stock of CO2 is high, so the possibility opens up that emissions
abatement will deliver higher consumption per capita. How much higher de-
pends in the main on how much damage is caused by high atmospheric CO2

and therefore how much damage can be avoided by emissions abatement. In
our version of DICE this is highly uncertain � much more so than the cost of
emissions abatement � and depends principally on the climate sensitivity and
the damage function coe�cient α̃3 in (5). It is here that the driving force can be
found behind the tiny violations of strict TSD in Table 2, namely the small pos-
sibility, in the second half of the modelling horizon, that the mitigation policies
will deliver much higher consumption per capita than business as usual. This
is consistent with the observation in previous, related research that the tails of
the distribution are critical in determining the bene�ts of emissions abatement
(e.g. Dietz, 2011; Weitzman, 2009).

In addition, productivity growth is a large source of uncertainty throughout,
which a�ects BAU consumption per capita and all that depends on it. When
productivity grows quickly, consumption per capita does likewise, as do CO2

emissions, all else being equal. This increases the share of output that must be
diverted to meeting a given limit on atmospheric CO2, but at the same time
it increases the global mean temperature, climate damage and the bene�ts of
emissions abatement, again all else being equal. In our version of DICE, low
productivity and output is associated with the lowest realisations of consump-
tion per capita. Since in these states of nature there is little bene�t to emissions
reductions, it is low productivity that is pivotal in generating the violation of
strict TSD in the �rst place.
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7 Conclusions

In this paper we ask, is there space for agreement on climate change, in the
speci�c sense of asking, are there climate policies that everyone who shares
a broad class of time and risk preferences would prefer, �rst to business as
usual and second to other policies? To �nd out we applied a new theory of
Time-Stochastic Dominance, which enables time and risk preferences to be dis-
entangled and dominance relations to be tested amongst options based only on
partial information about the decision-maker or social planner's preferences on
both dimensions. Our application was based on a stochastic version of the DICE
model, in which eight key model parameters were randomised and Monte Carlo
simulation was undertaken.

We were unable to establish strict TSD in the data, even when moving to
second-order stochastic dominance (with �rst-order time dominance). However,
when we analyse the related theory of Almost TSD we �nd that the volume of
violation of strict TSD is generally very small indeed, so that we can say that
almost all decision-makers would indeed favour any of our mitigation policies
over BAU, and moreover that they would favour tougher mitigation policies
over slacker alternatives. So the space for agreement is large in this regard.

Clearly our empirical results depend on the structure of the DICE model
and how we have parameterised it. Of particular note are the key roles played
by uncertainty about climate sensitivity, the curvature of the damage function,
and productivity growth. Our parameterisation of the former two is key in pro-
ducing a small violation of strict TSD, because when a high climate sensitivity
combines with a high curvature on the damage function, Dj

i (z, t) explodes. Our
parameterisation of initial TFP growth, speci�cally our assumption via an un-
bounded normal distribution that it could be very low or even negative over
long periods, is conversely key in producing a violation in the �rst place.

Our interpretation of γk, εkT and γ1b in the application of Almost TSD is also
open to debate, given the nature of the concept. Research on almost dominance
relations is still at a relatively early stage, so we lack data on the basis of which
we can say with high con�dence that some preferences are extreme, while others
are not. Nonetheless our violations are for the most part so small that we are
somewhat immune to this criticism.

References

Anderson, B., Borgonovo, E., Galeotti, M., Roson, R., 2012. Uncertainty in
integrated assessment modelling: can global sensitivity analysis be of help?

Arrow, K. J., Cline, W., Maler, K., Munasinghe, M., Squitieri, R., Stiglitz, J.,
1996. Intertemporal equity, discounting, and economic e�ciency. In: IPCC
(Ed.), Climate Change 1995: Economic and Social Dimensions of Climate
Change. Cambridge University Press, pp. 127�144.

20



Bøhren, Ø., Hansen, T., 1980. Capital budgeting with unspeci�ed discount rates.
Scandinavian Journal of Economics, 45�58.

Cline, W. R., 1992. The Economics of Global Warming. Peterson Institute.

Dasgupta, P., 2007. The stern review's economics of climate change. National
Institute Economic Review 199 (1), 4�7.

Dietz, S., 2011. High impact, low probability? an empirical analysis of risk in
the economics of climate change. Climatic Change 103 (3), 519�541.

Dietz, S., Asheim, G., 2012. Climate policy under sustainable discounted util-
itarianism. Journal of Environmental Economics and Management 63, 321�
335.

Dietz, S., Hepburn, C. J., 2013. Bene�t-cost analysis of non-marginal climate
and energy projects. Energy Economics 40, 61�71.

Dietz, S., Hope, C., Patmore, N., 2007. Some economics of dangerous climate
change: Re�ections on the stern review. Global Environmental Change 17 (3),
311�325.

Dietz, S., Matei, A. N., 2013. Spaces for agreement: a theory of time-stochastic
dominance.

Ekern, S., 1981. Time dominance e�ciency analysis. Journal of Finance 36 (5),
1023�1033.

Gerlagh, R., Liski, M., 2012. Carbon prices for the next thousand years.

Gollier, C., 2006. An evaluation of stern's report on the economics of climate
change.

Ikefuji, M., Laeven, R. J., Magnus, J. R., Muris, C., 2012. Pareto utility. Theory
and Decision, 1�15.

Kimball, M. S., 1990. Precautionary saving in the small and in the large. Econo-
metrica, 53�73.

Leshno, M., Levy, H., 2002. Preferred by all and preferred by most decision
makers: Almost stochastic dominance. Management Science 48 (8), 1074�
1085.

Levy, H., Hanoch, G., 1970. Relative e�ectiveness of e�ciency criteria for port-
folio selection. Journal of Financial and Quantitative Analysis, 63�76.

Levy, H., Kroll, Y., 1979. E�ciency analysis with borrowing and lending: crite-
ria and their e�ectiveness. Review of Economics and Statistics 61 (1), 125�130.

Levy, H., Leshno, M., Leibovitch, B., 2010. Economically relevant preferences
for all observed epsilon. Annals of Operations Research 176 (1), 153�178.

21



Meehl, G., Stocker, T., Collins, W., Friedlingstein, A., Gaye, A., Gregory, J.,
Kitoh, A., Knutti, R., Murphy, J., Noda, A., Raper, S., Watterson, I., Weaver,
A., Zhao, Z.-C., 2007. Global climate projections. In: Solomon, S., Qin, D.,
Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H.
(Eds.), Climate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, Cambridge, UK.

Millner, A., forthcoming. On welfare frameworks and catastrophic climate risks.
Journal of Environmental Economics and Management.

Millner, A., Dietz, S., Heal, G. M., 2013. Scienti�c ambiguity and climate policy.
Environmental and Resource Economics 55 (1), 21�46.

Nordhaus, W. D., 1991. To slow or not to slow: the economics of the greenhouse
e�ect. Economic Journal 101 (407), 920�937.

Nordhaus, W. D., 1994. Managing the Global Commons: the Economics of
Climate Change. MIT Press, Cambridge, MA.

Nordhaus, W. D., 2007. A review of the "stern review on the economics of
climate change". Journal of Economic Literature, 686�702.

Nordhaus, W. D., 2008. A Question of Balance: Weighing the Options on Global
Warming Policies. Yale University Press.

Nordhaus, W. D., Boyer, J., 2000. Warming the World: Economic Models of
Global Warming. MIT Press (MA).

Pindyck, R. S., 2011. Fat tails, thin tails, and climate change policy. Review of
Environmental Economics and Policy 5 (2), 258�274.

Roe, G., Baker, M., 2007. Why is climate sensitivity so unpredictable? Science
318 (5850), 629�632.

Stern, N., 2007. The Economics of Climate Change: the Stern Review. Cam-
bridge University Press.

Stern, N., 2008. The economics of climate change. American Economic Review:
Papers and Proceedings 98 (2), 1�37.

Tol, R. S. J., 2012. On the uncertainty about the total economic impact of
climate change. Environmental and Resource Economics 53 (1), 97�116.

Tzeng, L. Y., Huang, R. J., Shih, P.-T., 2012. Revisiting almost second-degree
stochastic dominance. Management Science.

Weitzman, M., 2007. A review of the Stern Review on the economics of climate
change. Journal of Economic Literature 45 (3), 703�724.

22



Weitzman, M., 2009. On modeling and interpreting the economics of catas-
trophic climate change. Review of Economics and Statistics 91 (1), 1�19.

Weitzman, M., 2012. Ghg targets as insurance against catastrophic climate dam-
ages. Journal of Public Economic Theory 14 (2), 221�244.

23



Figure 1: Abatement policies in terms of the emissions control rate.
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Figure 2: H−1,11 (p, t) for MAT ∈ {450, 500, 550, 600, 650}.
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Figure 3: H−1,21 (p, t) for MAT ∈ {450, 500, 550, 600, 650}.
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Table 1: Uncertain parameters for simulation of DICE.
Parameter Units Functional Mean Standard

form deviation

(i) Initial growth Per Normal 0.0092 0.004

rate of TFP year

(ii) Asymptotic Millions Normal 8600 1892

global population

(iii) Rate of Per Normal -0.007 0.002

decarbonisation year

(iv) Total resources Billion tons Normal 6000 1200

of fossil fuels of carbon

(v) Price of back- US$ per ton of Normal 1170 468

stop technology carbon replaced

(vi) Transfer coe�cient Per Normal 0.189 0.017

in carbon cycle decade

(vii) Climate ◦C per doubling of Log- 1.099* 0.3912*

sensitivity atmospheric CO2 normal

(viii) Damage function Fraction of Normal 0.082 0.028

coe�cient α3 global output

*In natural logarithm space.

Table 2: Violations of strict �rst-order TSD and strict �rst-order time and
second-order stochastic dominance.

CO2 limit (ppm) γ1 ε1T γ2 ε2T γ1b

650 0.00009 0.00003 0.00002 8E-07 0
600 0.00045 0.00003 0.00045 2E-06 6.01E-08
550 0.00092 0.00003 0.00231 2E-06 0.00014
500 0.00188 0.00004 0.00605 3E-06 0.00086
450 0.00388 0.00004 0.01363 4E-06 0.00245

Table 3: First-order TSD analysis of abatement policies against each other.
CO2 limit (ppm) 650 600 550 500

γ1 ε1T γ1 ε1T γ1 ε1T γ1 ε1T
600 0.00255 0.00012
550 0.00351 0.00011 0.01054 0.00034
500 0.00517 0.00011 0.01260 0.00032 0.01764 0.00050
450 0.00859 0.00013 0.01870 0.00036 0.02480 0.00052 0.03701 0.00107
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