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Abstract

This paper studies how owners of carbon-emitting resources can bene�t from carbon taxation.

We build a Hotelling-like model with three energy resources: an exhaustible polluting resource,

a polluting backstop (not exhaustible) and a clean backstop (not exhaustible). The CO2 con-

centration must be kept under a carbon ceiling. The optimal extraction path is decentralized

by a tax on emissions, and tax revenues are not redistributed. We consider the cases where the

exhaustible resource gets exhausted and the polluting backstop is used at some point and �nd

that, under some conditions, tightening the carbon regulation increases the pro�ts of owners of

the exhaustible resource. When this resource is cheaper to extract than the dirty backstop, tight-

ening carbon regulation increases the pro�ts of the exhaustible resource owners : (i) if its demand

elasticity is low enough or (ii) if its extraction cost is close enough to that of the dirty backstop,

or (iii) if its pollution content is low enough (compared to that of the dirty backstop), or, (iv) if

its initial stock is low enough. When the exhaustible resource is more expensive to extract than

the dirty backstop, tightening the carbon regulation increases the pro�ts of its owners. We extend

our results in a two-sector economy where the exhaustible resource has a comparative advantage

in one of the two sectors, and to the case with an extra exhaustible polluting resource. In this

case, we show that owners of the more polluting of the two exhaustible resources may win more

or loose less than those of the other exhaustible resource.
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1 Introduction

In 2009, CO2 from energy production represented 65% of greenhouse gas emissions and fossil fuels

accounted for 81% of the world energy supply IEA (2011). Taxing carbon emissions have di�erent

e�ects on the pro�ts of fossil fuels owners depending on the characteristics of the fossil fuels they own.

Main fossil fuels � coal, gas and oil � are marked out by their recoverable reserves, their pollution

content, as shown in Table 1, and their delivery cost that varies depending on their use (sector, loca-

tion, technology) and their extraction cost, see Table 1. This paper studies the impact of tightening a

carbon cap over the CO2 concentration on pro�ts of owners of exhaustible polluting resources when

energy resources are optimally extracted and the optimum is decentralized by a tax on CO2 emissions.

We �nd that the pro�ts of owners of not-too-polluting exhaustible resources may increase thanks to

(optimal) carbon taxation if a dirtier abundant resource is also used, even if tax revenues are not

redistributed (the Grey Paradox).

At the COP6 of the UNFCCC1 , Dr Rilwanu Lukman, OPEC Secretary General declared "Espe-

cially vulnerable are the oil producing developing countries, which are mainly OPEC member countries,

[...], their principal revenue-earner, petroleum, is inextricably associated with the downside of the ne-

gotiations. It is important to ensure that measures taken to combat climate change do not place an

unfair burden on oil." Two reasons may explain why tightening carbon taxation would negatively

a�ect oil revenues and more generally pro�ts of carbon-emitting resources owners: �rst, the demand

of these resources may decrease in carbon-regulated countries, second, for a given after-tax resource

price, carbon taxation transfers rents from resources owners countries to carbon-regulated countries

if tax revenues are not redistributed to resources owners countries.

However, we show that pro�ts of owners of carbon-emitting exhaustible resources may increase

with optimal carbon taxation even if tax revenues are not redistributed to them. Two characteristics

of these resources lay behind this result: their exhaustibility and their relatively low pollution content

compared to very abundant fossil fuels, e.g coal. First, exhaustible resources like oil are likely to be

exhausted (unless the carbon regulation is very stringent) so that their cumulative consumption will

not depend on carbon regulation. Second, since most of the rare fossil fuels (oil, natural gas) are less

1The 6th Conference of the Parties to the UN Framework Convention on Climate Change - The Hague, November
2000
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polluting than very abundant fossil fuels2 their after-tax price may increase more than the carbon

tax, that will rise up pro�ts of owners of these resources. The basic idea is that a not-too-polluting

exhaustible resource (e.g. oil) will be in competition with more-polluting resources (e.g. coal) at some

point ; the carbon tax increases competitive advantage of this not-too-polluting resource vis-ï¾÷-vis

very polluting resources.

Our paper casts light on redistribution of wealth amongst countries driven by energy resources

scarcity rents. Fossil fuels reserves are spread very unequally in the world as shown in Table 2. More

than 57% of conventional proved gas reserves are located in Russia, Iran or Qatar. Almost 70% of

crude oil proven reserves are located in only six countries: Canada, Saudi Arabia, Iran, Iraq, Kuwait,

and United Arab Emirates. Around 75% of recoverable coal reserves are located in only �ve countries:

the USA, Russia, China, Australia and India. To the noticeable exception of Russia, countries having

the largest endowments in oil or gas have low endowments in coal. Carbon taxation raises important

issues concerning redistribution of wealth among countries. If carbon taxation lowers pro�ts of coal

owners but increases pro�ts of oil owners, some countries like OPEC countries may see their wealth

increased by carbon taxation contrary to countries with large coal endowments. We focus only on the

redistributional aspects driven by changes in energy prices due to carbon taxation.3

The empirical literature has made several attempts to evaluate the impacts of long-term carbon

regulation or the impacts of Kyoto Protocol on fossil fuels prices, oil and gas revenues. There is no

consensus about the size of the increase of fossil fuels price due to carbon regulation and its e�ect

on revenue of major fossil fuels exporters. For an overview of the models about how Kyoto Protocol

impacts OPEC countries, see Barnett et al. (2004). Persson et al. (2007) use an empirical model

to quantify the impact of carbon taxation on oil pro�ts assuming that oil producers are in perfect

competition and maximize their pro�ts over an intertemporal horizon. Johansson et al. (2009) assume

that OPEC producers play strategically as a dominant �rm in the transport sector facing only fringe

2Oil can be divided into two categories: unconventional and conventional oil. Unconventional oil is petroleum
produced or extracted using techniques other than the conventional (oil well) method and includes oil shales, oil sands,
based synthetic crudes and derivative products, coal-based liquid supplies, biomass-based liquid supplies and liquids
arising from chemical processing of natural gas (the IEA's oil Market Report unconventional oil). Looking only at the
upstream process, bituminous sand are 100% more polluting than crude oil. Unconventional is thus far more polluting
than conventional oil. In addition, sources for producing unconventional oil are abundant, so that unconventional oil
can be considered as a dirty backstop in the transportation sector for instance.

3However, bene�ts or losses from reducing emissions for each country depend also on issues such that country-
speci�c vulnerability to climate change, country-speci�c mitigation costs, the global mitigation e�ort and country-speci�c
contribution to it. We do not consider these issues in this paper.
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producers. Contrary to the rest of the literature, Persson et al. (2007) and Johansson et al. (2009)

found that oil pro�ts increase due to carbon regulation. However, no exlicit analytical results are

derived.

We build a Hotelling-like model where the CO2 concentration must be kept under a carbon ceil-

ing. This paper follows modelization introduced by Chakravorty et al. (2006). The social planner

model has the following features. Utility comes from three perfect substitute sources of energy: an

exhaustible polluting resource, a non-exhaustible strongly polluting resource (the dirty backstop) and

a non-exhaustible clean resource (the clean backstop). Each resource is distinguishable according to

its carbon content and its extraction cost. Resources owners are in perfect competition. The reg-

ulation takes the form of a carbon cap over the atmospheric carbon stock. This threshold can be

considered as an exogenous constraint, for instance stemming from a Kyoto-like Protocol, or as the

�rst-best carbon policy if the damage function can be approximated by a binary damage function with

nil marginal damage when the CO2 concentration is kept under the threshold and in�nite otherwise.

We assume no natural decay of carbon. The social planner seeks to maximize the total surplus taking

account of the scarcity constraint and the carbon cap constraint. To implement his optimal policy,

the social planner has a soft power: he can put a carbon tax on CO2 emissions but cannot forbid the

use of a particular resource or set a speci�c tax or a quota for each di�erent resource. When both the

exhaustible resource gets e�ectively exhausted and the dirty backstop is used � relevant case to study

the Grey Paradox �, we show that a unique carbon tax path allows to decentralize the equilibrium.

We consider the e�ect of optimal taxation on resources owners pro�ts and tax revenues are not re-

distributed. The optimal extraction path and the optimal tax path are the same if the social planner

includes pro�ts of resource owners in its objective function or not.

Our framework is close to Chakravorty et al. (2006, 2008): a social planner seeks to extract

optimally an exhaustible polluting resource and a clean resource and the environmental regulation

takes the form of carbon cap over CO2 concentration. However, questions addressed in this paper

are very di�erent. Our paper studies the optimal extraction of polluting resources in di�erent setting

and the consequence of optimal taxation of CO2 emissions on pro�ts. Contrary to Chakravorty et al.

(2006) our model includes several polluting resources to be able to point out the increase of pro�ts of

owners exhaustible resources due to carbon taxation. Like Chakravorty et al. (2008), we assume the
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existence of di�erent polluting resources.

Our paper focuses on the impact of carbon regulation on resources owners pro�ts. Because the

Grey Paradox may only occur when the exhaustible polluting resources is used before or after a dirtier

resource, characterization of the di�erent extraction paths is an important part of the analysis, even

if not the main interest of that paper. We simplify the characterization of the di�erent extraction

paths by assuming that natural dilution is negligible. In our framework, a more expensive before-tax

resource cannot be extracted before a less expensive before-tax resource following Her�ndahl principle.

However, if the cheaper resource is more polluting, it is not necessarily extracted along the optimal

extraction paths even if the more expensive one is extracted at some point.

As in Chakravorty et al. (2006, 2008), fossil fuels owners are in perfect competition. Thus pro�ts

are not due to market-power of resources owners but come from the scarcity of the resource. Energy

markets, and in particular oil market have been modeled in various ways throughout economic litera-

ture. A large empirical literature has tried to determine which market structure explains the best the

dynamics of the oil price. Gri�n (1985) estimates that market-sharing cartel model explains relatively

well OPEC behavior. Jones (1990) and Dahl & Yucel (1991) also support the cartel hypothesis. Other

papers �nd that OPEC manipulates prices only over some periods of time, and that increasing prices

of 1974-1980 are not due to an OPEC price manipulation (Loderer 1985). Several studies (Ezzati

1976, MacAvoy 1982 and Verleger 1982) explain oil prices changes in a competitive model.

The optimum is decentralized by a tax on CO2 emissions. A particular path of emissions can be

decentralized either by a carbon tax or by carbon quotas, as long as the price dynamics of carbon-

emitting resources is well understood. In our setting, a price instrument and a quantity instrument are

similar from the e�ciency point of view since bene�ts and costs of mitigation actions are known with-

out uncertainty4. However, the chosen instrument and its modalities of use impact di�erently pro�ts

of fossil fuels owners on energy markets. A carbon tax without abatement or auctioned exchangeable

quotas without redistributing carbon revenues are commonly presented as the worst instruments for

the pro�ts of fossil fuels owners. Redistributional aspects of the instruments have received few atten-

tion in the debate over climate change regulation. The literature has focused on capturing rents from

fossil fuels producers thanks to taxation of externalities (Liski & Tahvonen 2004, Bergstrom 1982)

4For a comparison of both price and quantity instruments with uncertainty in a general framework, one can refer to
Weitzman (1974) and its application to the climate change problem is Pizer (1997).

6



or using tari�s (Brander & Djajic 1983). Our paper shows that taxing a negative externalities may

increase the pro�ts of the owners of fossil fuels that generate it. Note that if tax revenues would

be redistributed, owners of exhaustible polluting resources would see their welfare increased by the

carbon regulation if their resources still get exhausted despite the regulation.

The Grey Paradox 5 can be expressed in the following way: the pro�ts of owners of not-too-

polluting exhaustible resources may increase thanks to (optimal) carbon taxation. the form of a

carbon tax or exchangeable quotas will a�ect di�erently resources owners depending on the carbon

content of each resource, but also on their delivery costs and their relative abundance. We study

how rents associated with exhaustible resources change when the ceiling is lowered. The mechanisms

are as described below. When switching from one resource to another, the price of the exhaustible

fossil fuel must equal the price of the dirty backstop if both are used along the optimal path of

extraction. When tightening the carbon regulation, the carbon tax increases. For a given increase

of the carbon tax, the tax paid per unit of the dirty backstop is larger than the tax paid per unit

of the less-polluting exhaustible resource, due to the di�erence in pollution contents. It comes that

pro�ts of owners of the exhaustible resource at the date of switch must increase to keep prices equal.

However, as the demand decreases at each date, this date of switch is postponed so that the e�ect

of carbon regulation on exhaustible resource owners is ambiguous. When the exhaustible resource is

used before the dirty backstop i.e it is cheaper to extract than the dirty backstop, if this resource is

su�ciently scarce, or if its extraction cost is close enough to the extraction cost of the dirty backstop,

or if its pollution content is low enough, or if the demand elasticity is low enough, the pro�ts of the

owners of the exhaustible polluting resource will increase when the carbon regulation is tightened. If

the exhaustible resource is used after the dirty backstop (more expensive to extract than the dirty

backstop) and exhausted, tightening the carbon regulation reduces the cumulative consumption of the

dirty backstop, lets unchanged the cumulative consumption of the exhaustible resource and increases

the pro�ts of owners of this resource.

We extend the analysis to a two-sector economy. Sectors are modeled as in Chakravorty & Krulce

(1994). The dirty backstop and the exhaustible resource are perfect substitutes in the electricity sector

5Let us note that in spite of their close names, the phenomenon we describe has nothing to do with the Green
Paradox presented by Sinn (2008). The Green Paradox deals with supply-side adverse e�ects of carbon regulation on
carbon emissions.
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but the dirty backstop must be transformed into fuel at a positive cost to be used in transportation

sector, contrary to the exhaustible resource that can be used at the same cost in both sectors. Once

transformed, fuel from the dirty backstop is a perfect substitute to the exhaustible resource in the

transportation sector. This setting is realistic when considering for instance the oil/coal specialization

in transportation and power generation. This conversion cost can be seen as the cost of coal-to-liquid

process for instance. This setting allows for joint use of the dirty backstop and the exhaustible resource

in the economy, the exhaustible one tending to be used in priority in the transportation sector. A �rst

condition for the Grey Paradox to appear is that both polluting resources must be in competition at

least in one sector. We show that main results of the one-sector model still hold.

A second extension consists in introducing a second exhaustible polluting resource. In this new

setting, there are four energy resources, perfect substitute in demand: two exhaustible polluting re-

sources, a non-exhaustible strongly polluting resource and a non-exhaustible clean resource. We show

that if a resource is in direct competition only with a dirtier backstop, results of the main model

still hold. When both exhaustible resources are in direct competition, we show that owners of the

least polluting of the polluting resources do not necessarily bene�t more or loose less from making the

carbon regulation more stringent. However if two resources in direct competition have close enough

extraction costs, tightening the carbon regulation will always bene�t more or harm less the pro�ts of

owners of the least polluting resource.

The remainder of this paper is organized as follows. Section 2 presents the main model. Section

3 presents the results over the e�ects of carbon regulation on the pro�ts of owners of the exhaustible

resource. Section 4 extends the results in a two-sector economy. Section 5 adds a second exhaustible

polluting resource. Section 6 concludes the paper.

2 The model

2.1 Assumptions and notations

We consider that utility comes from energy consumption. Three di�erent energy resources, per-

fect substitutes in demand, are available: an exhaustible resource, few polluting, in quantity X0
e ,

a non exhaustible strongly polluting resource and a non exhaustible clean resource. Resources
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Fossil fuels Reserves (MBtu) Pollution content (kgCO2/MBtu)

Coal 2.32606E+13 103.54

Oil 7.37308E+12 70.02

Natural Gas 6.37507E+12 52.03

Table 1: Estimated reserves and pollution contents of fossil fuels

IEA (2008), for oil and gas, reserves reported by Oil and Gas Journal, MBtu=million of British thermal units.

e,d,b respectively stand for 'the exhaustible resource', 'the d irty backstop' and 'the clean backstop':

u(xe(t) + xd(t) + xb(t)). Resources are labeled Re, Rd and Rb. We write D(.), the decreasing energy

demand function. We de�ne θi, i = {e, d, b}, the pollution content of resource i: the use of one unit of

resource i leads to θi units of CO2. We assume that θe < θd and θb = 0. Writing ci, for i = {e, d, b},

the extraction cost of resource i, we assume that ce < cb and cd < cb. The dirty backstop is non

exhaustible (or equivalently the dirtier resource is abundant enough not to be exhausted for the ceil-

ing regulation we choose). The clean resource is available in in�nite quantity at cost cb. The initial

amount of Re is written X
0
e , and the variation of its current stock writes:

Ẋe(t) = −xe(t)

We assume that the social discount rate is constant and equals r. The carbon stock, written Z(t),

must be kept under a threshold Z. This threshold can be considered as an exogenous constraint, for

instance stemming from a Kyoto-like Protocol. This type of carbon regulation is closer to �rst-best

carbon regulation that constant tax policy due to the fact that marginal damage are steeply increasing

with the carbon stock.6. Since the dirty backstop is available in in�nite quantity, the ceiling is binding

6All results found below hold with a constant carbon tax. With a constant carbon tax rather than a carbon ceiling,
ordering the extraction would become simpler. Writing µ, the unitary tax, the prices of the exhaustible resource and the
dirty backstops respectively become: ce + λ0ee

rt + θeµ and cd + θdµ. Because, the backstop prices are constant through
time, for a given set of parameters, only one backstop � the clean or the dirty one � is used through time. Thus, the
condition to get both polluting resources used (and Re exhausted) writes ce+ θeµ < cd+ θdµ < cb and θeX

0
e < Z−Z0.

The solution must satisfy:

ˆ T
0
D(ce + λ0ee

rt + θeµ)dt = X0
e

ce + λ0ee
rT + θeµ = Min(cb; cd + θdµ).
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Coal Crude Oil Natural Gas

North America 28.4 15.7 5.1
Canada 0.8 13.4 0.9

United States 27.5 1.4 3.9

Central & South America 1.5 8.3 4.2
Venezuela 0.1 6.5 2.7

Europe 8.9 1.1 2.8

Eurasia 26.5 7.4 32.4
Russia 18.3 4.5 27.0

Middle East 0.1 56.3 41.0
Iran 0.1 10.4 15.2
Iraq . 8.6 1.8

Kuwait . 7.8 0.9
Qatar . 1.1 14.6

Saudi Arabia . 20.1 4.1
United Arab Emirates . 7.4 3.4

Africa 3.7 8.6 7.9

Asia & Oceania 30.9 2.6 6.7
Australia 8.9 0.1 0.5

China 13.3 1.2 1.3
India 7.0 0.4 0.6

World 100.0 100.0 100.0

Table 2: Share of fossil fuels reserves by country and world region in 2008.

Calculus based on the Energy Information Administration data over recoverable coal reserves, proven crude oil reserves
and proven natural gas reserves. Estimates of coal reserves for Iraq, Kuwait, Qatar, Saudi Arabia and United Arab
Emirates are missing. Only countries having more than 5% of world reserves of at least one fossil fuel are included in
this table.
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Lifting costs Finding costs Upstream costs

United States 12.18 21.58 33.76
On-shore 12.73 18.65 31.38
O�-shore 10.09 41.51 51.60

All Other Countries 9.95 15.13 25.08
Canada 12.69 12.07 24.76
Africa 10.31 35.01 45.32

Middle East 9.89 6.99 16.88
Central & South America 6.21 20.43 26.64

2009 dollars per barrel of oil equivalent. Values represent average costs. Upstream costs represent the sum of �nding
and lifting costs.

Table 3: Costs for producing crude oil and natural gas, 2007�2009.

for any value of Z. We assume that Z > Z0. There is no natural decay of carbon. Thus the variation

of the carbon stock through time is simply given by:

Ż(t) = θexe(t) + θdxd(t)

To implement his optimal policy, the social planner has a soft power: he can put a carbon tax on

CO2 emissions but cannot forbid the use of a particular resource or set a speci�c tax, a quota for

each di�erent resource. This carbon tax can be paid by consumers (demand side) or by fossil fuels

providers (extraction side). Resources owners are in perfect competition.

2.2 The Welfare maximization program

The social planner seeks to �nd the extraction {xe(t), xd(t), xb(t)} which maximizes the net discounted

social surplus under the environmental constraint:

ˆ ∞
0

e−rt

(
u(xe(t) + xd(t) + xb(t))− cexe(t)− cdxd(t)− cbxb(t)

)
dt
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s.t.

Ẋe(t) = −xe(t)

Ż(t) = θexe(t) + θdxd(t)

Z(t) ≤ Z

Xe(t), xi(t) ≥ 0

with Z0, X0
e given.

Writing λe(t), the shadow value of the remaining stock of the exhaustible resource, Re Xe(t) and

µ(t) the shadow cost of the pollution stock Z(t), Transversality conditions are given by:

lim
t→∞

λe(t)e
−rtXe(t) = 0 (2.1)

lim
t→∞

µ(t)e−rtZ(t) = 0 (2.2)

Equation 2.1 simply states that the exhaustible resource must be exhausted in the long run if the

scarcity rent is positive.

2.3 First Order Conditions

We de�ne the current value Hamiltonian:

H(t) = u(xe(t) + xd(t))− cexe(t)− cdxd(t)

−λe(t)xe(t)

−µ(t)(θexe(t) + θdxd(t))

with the following slackness conditions:

ν(t) ≥ 0 and ν(t)(Z − Z(t)) = 0 (2.3)

β(t) ≥ 0 and β(t)Xe(t) = 0 (2.4)

ε(t) ≥ 0 and ε(t)xe(t) = 0 (2.5)
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For any control {xe(t), xd(t)} there exist co-state variables λe(t), µ(t), that must satisfy following

conditions together with Transversality conditions and slackness conditions:

λ̇e(t) = rλe(t)−
∂H(t)

∂Xe(t)
⇐⇒ λ̇e(t) = rλe(t) + β(t) (2.6)

µ̇(t) = rµ(t)− ∂H(t)

∂Z(t)
⇐⇒ µ̇(t) = rµ(t) + ν(t) (2.7)

∂H(t)

∂xe(t)
= 0 ⇐⇒ pe(t) = ce + λe(t) + θeµ(t) (2.8)

∂H(t)

∂xd(t)
= 0 ⇐⇒ pd(t) = cd + θdµ(t) (2.9)

∂H(t)

∂xb(t)
= 0 ⇐⇒ pb(t) = cb (2.10)

The co-state variable λe(t) represents the current value of the scarcity rent of the exhaustible

resource. As shown in Hotelling 1931, it increases at rate r: the discounted net marginal surplus

of extraction must be constant. Along the optimal path, extracting a supplementary unit must be

equivalent to saving it for a latter use. Writing λ0
e ≡ λe(0), it comes that:

λe(t) = λ0
ee
rt.

The co-state variable µ(t) represents the current value of the shadow cost of marginal pollution.

It exhibits a familiar pattern driven by the ceiling-shaped carbon regulation. If the ceiling does not

bind but will bind, the pollution cost increases at the rate of the discount rate. The intuition behind

this result is similar to Hotelling rule since emitting CO2 can be seen as extracting clean air from

a reservoir with an initial stock of de�ned by Z − Z0. With positive constant natural dilution, this

result is unchanged. Writing µ0 ≡ µ(0), it comes that:

µ(t) = µ0ert.

The optimal price of Re is simply the sum of its extraction cost, its pollution cost and its scarcity

rent by equation 2.8. The optimal price of the dirty backstop is simply the sum of its extraction cost

and its pollution cost by equation 2.9. The unitary pollution cost of carbon is independent from the

source it comes from, but the pollution costs per unit of energy di�er due to the di�erence in pollution

contents.
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Finding the optimal extraction path requires to determine the initial scarcity rent, λ0
e, the initial

shadow cost of pollution µ0, the date of switch from one fossil fuel to another, t1, and the date the

ceiling is reached, t, such that taking account of the dynamics of the prices, of the scarcity rent and of

the carbon tax (expressed by equations 2.6-2.9), the solution veri�es that: (i) the energy price is con-

tinuous through time (this implies that price is continuous at dates t1 and t); (ii) if Re is exhausted, it

gets exhausted when its price reaches the price of the following resource in the extraction order (if Re

is used in �rst position, the dirty backstop succeeds to Re at time t1, if Re is used in second position,

the clean backstop succeeds to Re, at time t); (iii) the backstop starts to be used exactly when the

carbon ceiling starts to bind; (iv) when the ceiling starts to bind, at time t cumulated emissions equal

Z − Z0.

Decentralizing the optimal extraction path requires to implement a carbon tax. We show below

that when both both polluting resources are used and Re gets exhausted, a unique carbon tax exists

that allows to decentralize the equilibrium (Lemma 1). This tax must equal the shadow cost of

pollution, µ(t), and current marginal pro�t writes λe(t).

2.4 Ordering resources extraction: the "least cost �rst" principle.

Without natural absorption and carbon sequestration, we stop using fossil fuels once the CO2 con-

centration reaches the ceiling, thus the date the ceiling binds corresponds to the date of switch to the

clean backstop. The maximum amount of pollution put in the atmosphere is �xed and equals Z−Z0.

With equal extraction costs, only the least polluting resource is used or this resource is exhausted

(and the dirty backstop is used). If this resource gets exhausted and the dirty backstop is used, there

is no particular order of extraction, energy prices are equal through the whole path if both resources

are used. Hereafter, it is assumed that extraction costs are di�erent. From price equations 2.8 and 2.9,

it comes than there is no stop-and-go in the use of a polluting resource and no joint use. A resource

whose extraction cost is higher than another resource cannot be used before that resource following

the Her�ndahl principle (Her�ndahl 1967). Indeed, without natural dilution of CO2, the scarcity rent

and the pollution cost increase at the same rate, r. If ce < cd and λ
0
e + θeµ

0 > θdµ
0, it would imply

that ∀t, pd(t) < pe(t) and only the dirty backstop would be used whereas Re would be cheaper and
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less polluting.7

Finally, among the di�erent extraction paths described in Table 4, only cases where both resources

are used and Re gets exhausted (Cases A1 and B1) are relevant to study the Grey Paradox. It follows

that the analysis only focuses on these cases. However, we fully characterize the di�erent extraction

paths in order to determine the conditions over parameters to get the relevant cases.

Case Extraction costs The exhaustible resource The dirty backstop

Case A1 cd > ce used, exh. used

Case A2 ... used, not exh. not used

Case B1 cd < ce used, exh. used

Case B2 ... used, not exh. used

Case B4 ... used, not exh. not used

Case B3 ... not used used

"..." means that the value of that cell is the same than the value of the cell right above.

Table 4: The di�erent extraction paths with two polluting resources.

2.5 Decentralization of the optimal extraction path by using a tax on CO2

emissions

We assume that fossil fuels owners face no threat concerning their property rights over their fossil fuels

reserves (See Strand 2010 for a study of the impact of unsecured property rights over extraction). We

assume that the tax scheme of the social planner is credible for perfectly foresighted individuals and

fossil fuels owners are in perfect competition. The carbon tax can be paid by consumers (demand side)

or by fossil fuels providers (extraction side). Both options lead to the same results in this framework.

Lemma 1. If both polluting resources are used and Re gets exhausted, setting the carbon tax to the

value of the shadow cost of pollution, µ(t), is the only way to decentralize the optimum.

In other words, the dynamics of the carbon tax in such models is always given, but when both

7Note that if natural dilution is positive but constant, the Her�ndahl principle still holds.
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polluting resources are used, the value of the tax when extraction goes from one polluting resource

to the other polluting resource is �xed thus the entire tax path is determined. In a decentralized

economy, writing π(t), the unitary pro�ts of owners or Re and τ(t), the carbon tax, optimal prices

must write:

pe(t) = ce + λe(t) + θeµ(t) = ce + πe(t) + θeτ(t) when pe(t) < pd(t)

pd(t) = cd + θdµ(t) = cd + θdτ(t) when pe(t) > pd(t)

where λe(t) and µ(t) are de�ned by the set of necessary conditions over the continuity of the energy

price, the exhaustion of Re, and cumulative emissions.

A necessary condition to decentralize the optimum is that pro�ts increase at the interest rate,

otherwise fossil fuels owners would have an incentive to reallocate the resource extraction to increase

their pro�ts. It is clear that setting the carbon tax at µ(t) allows to decentralize the optimum. We

show that if both resources are used and Re gets exhausted, µ(t) is the only carbon tax that allows to

decentralize the equilibrium. Since the energy price path is fully determined and unique and pro�ts

must increase at rate r, the carbon tax has speci�c dynamics. In our model, fossil fuels prices net

of extraction cost increase at the rate of the social discount rate, thus the tax must also increase at

the social discount rate. We assume that both resources are used, and Re gets exhausted. It is clear

that the tax cannot be discontinuous when the dirty backstop is used or when Re is used. When the

dirty backstop is used, by equation 2.9, the carbon tax equals µ(t) and increases at rate r. If the tax

is di�erent that µ(t) when Re is used, the carbon tax must be discontinuous at the date of switch

from one fossil fuel to another. However, there is no downward jump of the carbon tax at this date,

since otherwise owners of the resource used in position 1 would have an incentive to postpone their

extraction to increase their pro�ts, and similarly there is no upward jump since owners of resource

used in position 2 could increase their pro�ts by bringing forward their extraction. It comes that the

tax is continuous, and thus there is a unique initial value of the tax that allows to decentralize the

optimum, µ0.

Corollary 2. When both resources are used and Re gets exhausted, the marginal pro�t at time t is

given by λe(t). Cumulative discounted pro�ts are proportional to the initial scarcity rent, λ0
e and write:

Π =

ˆ ∞
0

e−rtD(p(t))λe(t)dt = λ0
eXe

0.

If Re is not exhausted, perfect competition annihilates pro�ts of owners of Re. Pro�ts are not
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due to market-power of resources owners but come from the scarcity of the resource. When only one

polluting resource is used (Chakravorty et al. 2006), even if the energy price is well de�ned through

time, there is an in�nite number of ways of setting the carbon tax and the scarcity rent to implement

the optimal extraction. The social planner can always capture the pro�ts of resources owners by set-

ting a tax. To fully capture pro�ts, he can set the tax equal to the optimal price net of extraction cost.

If tax revenues are redistributed, owners of the exhaustible resources will see their welfare increase

if their resource still gets exhausted. This due to the fact that the price of the resource must increase,

thus the sum of the pro�ts and tax must increase at each date. Owners of a resource that is not

exhausted may win or loose depending on the increase in price compensates in their revenues the

decrease of consumption or not.

3 Results

3.1 The exhaustible resource is cheaper to extract than the dirty backstop,

ce < cd

If ce < cd, the exhaustible resource Re is necessarily used since it is less polluting that the dirty

backstop Rd. Two cases exist depending on whether Re gets exhausted (the dirty backstop is used)

or not (the dirty backstop is not used). Re gets exhausted and both resources are used if and only if

X0
e <

Z−Z0

θe
.

We consider Case A1, both polluting resources are used to get to the celling (X0
e <

Z−Z0

θe
). The

social planer must set the carbon tax such that the exhaustible resource gets exhausted when its price

equals the dirty backstop price, given consumption of both resources until the dirty backstop price

equals the clean backstop price exactly when the carbon stock reaches the carbon ceiling. The solution
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{λ0
e, µ

0, t1, t}8 must satisfy:

ce + λ0
ee
rt1 + θeµ

0ert1 = cd + θdµ
0ert1 (3.1)

cd + θdµ
0ert = cb (3.2)ˆ t1

0

D(ce + λ0
ee
rt + θeµ

0ert)dt = X0
e (3.3)

θeX
0
e +

ˆ t

t1

θdD(cd + θdµ
0ert)dt = Z − Z0 (3.4)

Case A1 is described in Figure 3.1. Bold curves represent the dirty backstop and the exhaustible

resource prices and the medium curve represents the scarcity rent. The initial prices paths are de-

scribed by the plain curves. Dotted curves represent these prices and the scarcity after a decrease of

the ceiling. Vertical bold black lines represent the tax by unit of resource and vertical bold grey lines

represent the pro�ts at the date of switch from one resource to another.

Reducing the carbon ceiling increases the carbon tax (e�ect 1 in Figure 3.1). Indeed, let assume

that this is not the case, it comes that the dirty backstop price would be lower over the whole path.

The exhaustible resource price must also decrease otherwise, its global consumption would decrease

whereas the dirty backstop consumption would increase, and Re would not be exhausted. However, if

its price decreases, the exhaustible resource gets exhausted earlier. At the new switch date from Re

to the dirty backstop, the dirty backstop price is thus lower than the switch price before the carbon

ceiling was tightened, thus the dirty backstop consumption increases. Contradiction. The price at

which the dirty backstop starts to be used increase (e�ect 2). Indeed let assume that this is the

opposite. If the switch date t1 decreases, the initial energy price must decrease to keep Re exhausted,

thus the price at which this resource gets exhausted � and the dirty backstop starts to be used �,

must decrease (e�ect 3). However, by equation 3.4 when tightening the carbon constraint, the dirty

backstop consumption must decrease thus the price at which it starts to be used must increase. Con-

tradiction. The date the ceiling binds is brought forward when the carbon ceiling is tightened (e�ect 4).

Tightening the ceiling has two e�ects on pro�ts of owners of Re. The price at which the dirty

8If X0
e >

Z−Z0

θe
, Re is not fully exhausted and the solution is described by a similar set of equations, excluding the

dirty backstop, and setting Re rent to zero, excluding equation of exhaustion of Re (equation 3.3) and equaling �nal
price of Re to the clean backstop price. The level of the carbon tax and the scarcity rent are undetermined. The social
planner will take the whole carbon tax revenues for itself, it comes that pro�ts of Re producers are discontinuous and
unde�ned when Z goes lower Z0 + θeX0

e
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backstop starts to be used increases (e�ect 1), so that value of the tax at the date of switch (long

vertical bold black lines), µ0ert1 increases. The rent at date t1 is exhausted (vertical bold grey lines)

increases as well (e�ect 3), as it satis�es λ0
ee
rt1 = (cd − ce) + (θd − θe)µ0ert1 .9 On the other hand, as

the tax increases, the after-tax price of the exhaustible resource increases, the demand at each date

decreases so that the date t1 at which it is exhausted, is postponed. Its �nal price is higher, thus the

current pro�ts when it gets exhausted are higher. However, it gets exhausted over a longer period of

time. It is not straightforward to see which e�ect is the larger (e�ect 5). Let look at a (too) simple

case and assume that the demand is totally inelastic. Then, the only e�ect of a carbon tax is not to

postpone extraction (the demand remains the same at each date during extraction) but to shorten the

length of extraction, that is to say to bring forward the date at which we switch from the dirty back-

stop to the clean backstop. The date t1 of switch from the exhaustible resource to the dirty backstop,

on the other hand, cannot be moved (as long as Z −Z0 > θeX
0
e ). So that the second e�ect described

earlier vanishes: when the tax increases, the date t1 at which Re is exhausted is not postponed. On

the other hand, the �rst e�ect does not disappear: the date at which the dirty backstop extraction

stops must be brought forward, so that the tax must increase at each date in order to make the price

of the dirty backstop cd + θdµ
0ert reach sooner the clean backstop price, cb. As a result, the �nal

before tax price of the exhaustible resource is increased (λ0
ee
rt1 = (cd − ce) + (θd − θe)µ0ert1), as t1

remains the same, the scarcity rent increases.

Lemma 3. ∀Z > θeX
0
e + Z0,

dλ0
e

dZ
< 0

i�.

D(p(t1))

D(p(0))

θd
θe

+ (θd − θe)
µ0

λ0
e

> 1.

Proof. Straightforward from the di�erentiation of Eqs 3.1-3.4 with respect to Z, see 7.1.

Remark that (θd − θe)µ
0

λ0
e
> 0, then a su�cient condition is that D(p(t1))

D(p(0))
θd
θe
> 1. When D(p(t1)) =

D(p(0)), it is always the case that D(p(t1))
D(p(0))

θd
θe
> 1. This very simple example shows the role of the

9It is straightforward, there that if the polluting backstop was less polluting than the exhaustible resource, the pro�ts
of owners of the exhaustible resources will decrease if the carbon ceiling is tightened.
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elasticity of demand on the outcome. Without any more information on this elasticity, one can,

however, shows that following propositions hold:

Proposition 4. If Re gets exhausted and Rd is used, and if the elasticity of demand is small enough,

tightening the carbon ceiling increases the pro�t of Re owners.

∃ε∗ such that: {
∀p,−D

′
(p)p

D(p)
≤ ε∗and Z > θeX

0
e + Z0

}
=⇒ dλ0

e

dZ
< 0.

Proof. We know that
dλ0
e

dZ
< 0 i�.

D(p(t1))

D(p(0))

θd
θe

+ (θd − θe)
µ0

λ0
e

> 1.

By the mean value theorem, there exists a date ti, satisfying 0 ≤ ti ≤ t1 such that:

D(p(t1))

D(p(0))
= 1 +

D
′
(p(ti))

D(p(0))
(p(t1)− p(0))

≥ 1−

(
−D

′
(p(ti))

D(p(ti))
p(ti)

)
p(t1)− p(0)

p(ti)

≥ 1− (−D
′
(p(ti))

D(p(ti))
p(ti))

cb − ce
ce

If ∀p, −D
′
(p)

D(p) p ≤
ce(1−θe/θd)

cb−ce ≡ ε∗, then tightening the carbon ceiling increases Re pro�ts.

Proposition 5. If Re gets exhausted and Rd is used, and if the pollution content of Re is small

enough compared to that of Rd, tightening the carbon ceiling increases the pro�t of Re producers.

∃η∗, with 0 < η∗ < 1, such that:

{
θe
θd
≤ 1− η∗and Z > θeX

0
e + Z0

}
=⇒ dλ0

e

dZ
< 0.

Proof. Straightforward from Lemma 3.

If the pollution contents of Re is low enough compared to that of Rd, then the comparative ad-

vantage of Re is high with respect to its direct competitor (Rd), and the owners of Re bene�t from

carbon regulation.
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Consider now the extreme case in which ce = cd. In this case, the scarcity rent of Re is initially

nil. With carbon regulation, the two resources are extracted simultaneously, so that λ0
e = (θd− θe)µ0.

The initial scarcity rent is no longer nil ant it increases with carbon regulation. We show in the next

proposition that this result remains true even with di�erent extraction costs, if they are close enough.

Proposition 6. If Re gets exhausted and Rd is used, and the extraction cost of the exhaustible re-

source is close enough from that of the dirty backstop, tightening the carbon ceiling increases the pro�ts

of owners of Re.

∀Z > θeX
0
e + Z0, ∃c∗ < cd such that:

cd ≥ ce ≥ c∗ =⇒ dλ0
e

dZ
< 0

Proof. Using Lemma 3, and replacing (θd − θe)µ
0

λ0
e
by 1− cd−ce

λeert1
, it comes that

dλ0
e

dZ
has the sign of:

−D(p(t1))

D(p(0))

θd
θe

+
cd − ce
λeert1

.

But λ0
ee
rt1 > (θd − θe)µ0ert1 But µ0ert1 does not depend on ce as (µ0ert1 , t− t1) are de�ned by:

θd

ˆ t−t1

0

D(cd + µ0ert1+ru)du = Z̄ − Z0 − θeXe

µ0ert1er(t−t1) = cb − cd

and µ0ert1 is strictly positive for any Z̄. At µ0e
rt1 given, as −D(cb)

D(ce)
θd
θe

+ cd−ce
(θd−θe)µ0ert1 is continuous

with ce and decreases with ce and is strictly negative for ce = cd, then there exists c∗ such that

Proposition 6 holds.

Proposition 7. If Re gets exhausted and the backstop used, and Re is scarce enough, tightening the

carbon ceiling increases the pro�ts of owners of Re.

∀Z > Z0, there exists X∗ such that:

X0
e < X∗ =⇒ dλ0

e

dZ
< 0.
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Proof. Demands D(p(t1)) and D(p(0)) are continuous functions of the initial stock X0
e . Moreover,

limX→0
D(p(t1))
D(p(0)) = 1, as a result, ∀ε, ∃X∗ such thatX0

e < X∗ =⇒
{
D(p(t1))
D(p(0)) ≥ 1− εand θeX0

e + Z0 < Z̄
}
.

Take ε < θd−θe
θd

and the corresponding X∗, then it is the case that for X0
e < X∗,

dλ0
e

dZ
< 0

Remark 8. ∀Xe

lim
Z→(Z0+θeXe)+

λ0
e > 0.

Proof. Using equation 3.1, it comes that λ0
e = e−rt1(cd − ce) + (θd − θe)µ0. Rewriting equation 3.4

into X0
e θe +

´ t
t1
θdD(cd + θdµ

0ert)dt = Z − Z0, it comes that, ∀Z̄, writing Z̄ = Z0 + θeXe + ε, we get

t−t1 < ε
θdD(cb)

. Using Equation 3.2, cd+θdµ
0ert = cb we get λ

0
e = e−rt1(cd−ce)+(θd−θe) cb−cdθdert

. But

t1 <
θeXe
D(cb)

, so that λ0
e > e

−r θeXe
D(cb) (cd−ce)+(θd−θe) cb−cdθd

e
−r( θeXe

D(cb)
+ ε
θc
D(cb)) > e

−r θeXe
D(cb) (cd−ce) > 0

Proposition 9. For a concave or linear demand function, oil pro�ts cannot exhibit a U-shape when

the carbon ceiling is tightened i.e the Grey Paradox cannot occur when making the carbon regulation

more stringent, if it does no occur for a less strict carbon regulation.

∀Z1, Z2 such that Z1 > θeX
0
e + Z0, Z2 > θeX

0
e + Z0 and Z1 > Z2, if D′′ < 0,

dλ0
e

dZ |Z=Z1
> 0 =⇒ dλ0

e

dZ |Z=Z2
> 0

Proof. From Lemma 3,
dλ0
e

dZ
has the sign ofN = −θdert1D(p(t1))+θee

rt1D(p(0))+rθdµ
0ert1θe

´ t1
0
D′(p(t))ertdt.

Thus, d2λe
dZdZ

has the sign:

−θdD′(p(t1))λ0
ere

rt1
dt1

dZ
+ (θe − θd)D′(p(0))θe

dµ0

dZ
− θd

dµ0

dZ
θe

ˆ t1

0

D′′(p(t))rertλ0
ee
rtdt

If D′′ ≤ 0, −θd dµ
0

dZ
θe
´ t1

0
D′′(p(t))rertλ0

ee
rtdt < 0 thus d2λe

dZdZ
| dλ0e
dZ

=0
< 0.
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Figure 3.1: Pro�ts, the carbon tax and the price paths when the carbon ceiling is lowered, ce < cd

3.2 The exhaustible resource is more expensive to extract than the dirty

backstop, ce > cd.

If ce > cd, without carbon regulation, the exhaustible resource is not be used
10. The carbon regulation

may help the exhaustible resource to be used if its price becomes cheaper than the dirty backstop

price.

As shown in Table 4, four di�erent cases exist. Both the dirty backstop and the exhaustible

resource are used to get to the ceiling, the dirty backstop is used �rst, the exhaustible resource gets

exhausted (Case B1). Both polluting resources are used to get to the ceiling, the dirty backstop �rst,

the exhaustible resource is not exhausted (Case B2). Only the exhaustible resource is used to get to

the ceiling (Case B4). Only the dirty backstop is used to get to the ceiling (Case B3). The relevant

case to study is Case B1 where both resources are used, and the exhaustible resource gets exhausted.

10Note that if the dirty backstop was less polluting than the exhaustible resources and cd < ce, the exhaustible
resource would never be used, even with carbon regulation.
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We show the conditions over parameters to get this case below in Lemma 10.

When the exhaustible resource is used after the dirty backstop and exhausted, the solution

{λ0
e, µ

0, t1, t} 11 satis�es:

ce + λee
rt1 + θeµ

0ert1 = cd + θdµ
0ert1 (3.5)

ce + λee
rt + θeµ

0ert = cb (3.6)ˆ t

t1

D(p(t))dt = X0
e (3.7)

ˆ t1

0

θdD(p(t))dt+ θeX
0
e = Z − Z0. (3.8)

We assume that resource extraction is as described by Case B1 and that after a marginal decrease

of the carbon ceiling we still stay in that case. Case B1 is described in Figure 3.3. Bold curves

represent the fossil fuels prices and the medium curve represents the scarcity rent. The initial prices

paths are described by the plain curves. Dotted curves represent these prices and the scarcity rent

after a decrease of the ceiling. Vertical bold black lines represent the tax by unit of each resource and

vertical bold grey lines represent the pro�ts of Re at the date of switch from one resource to another.

In that case, tightening the carbon regulation will increase the carbon tax, bring forward the date of

switch to Re and the date the ceiling binds, and increase the pro�ts of owners of Re. Indeed, �rst let

us remark that if the case is stable, the consumption of Re is unchanged, thus its price when it starts

to be used is unchanged and noted p1. If the carbon tax is reduced, thus the date of switch must

be postponed, and thus the global consumption of the dirty backstop increases, that is not possible.

Thus the carbon tax must increase (e�ect 1 in Figure 3.3) and the date of switch is brought forward

(e�ect 2). The date the ceiling is reached is also brought forward (e�ect 4), and the length of the

period of consumption of Re is unchanged since the sum of the scarcity rent and the carbon tax at

the switch date is unchanged. Since the switch price is unchanged, the value of the tax at the date of

switch is unchanged (vertical bold black lines), thus pro�ts at that date must be unchanged (vertical

bold grey lines). Since the date of switch is brought forward, the initial scarcity rent must increase

(e�ect 5) to keep the pro�t of time t1 unchanged.

Lemma 10. If cd < ce, di�erent cases can arise.

11Sets of equations describing the solution in the other cases are straightforward. For Case B1, the equation set is
similar, except that equation 3.7 must be dropped and the scarcity rent is set to 0. For cases B4 and B3, the solution
is as described by the solution of the one-resource case, as shown above.
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� If cb <
θdce−θecd
θd−θe , only the dirty backstop is used to get to the ceiling (Case B3) and the ex-

haustible resource is never used.

� If cb >
θdce−θecd
θd−θe , then the exhaustible resource is used when the ceiling is about to bind and

there exists Z∗ such that:

1. If Z < Z∗ and X0
e >

Z̄−Z0

θe
, only the exhaustible resource is used to get to the ceiling and

the dirty backstop is never used (Case B4);

2. If Z > Z∗ and X0
e >

Z∗−Z0

θe
, the dirty backstop is used, then the exhaustible resource is

used to get to the ceiling but not exhausted (Case B2);

3. Otherwise, if X0
e ≤ min(Z

∗−Z0

θe
, Z̄−Z

0

θe
) the dirty backstop is used at the beginning, then the

exhaustible resource is used to get to the ceiling and is exhausted (Case B1).

Proof. First, remark that if the dirty backstop is used at the date of switch with the clean backstop

(the date the ceiling is reached), then the exhaustible resource is never used. Indeed, assume that this

resource is used �rst and then the dirty backstop is used. If the latest resource is used at the switch

date with the clean backstop t, then it must be the case that ce + (θeµ
0 + λ0

e)e
rt > cd + θdµ

0ert, but

then ∀t ≤ t, ce + (θeµ
0 + λ0

e)e
rt > cd + θdµ

0ert, so that the exhaustible resource is never used. If the

dirty backstop is used alone until the date of switch with the clean backstop, then the carbon tax at

this date, µ0ert, satis�es:

cd + θdµ
0ert = cb.

A necessary condition for the dirty backstop to be used alone until the ceiling is reached is:

ce + θeµ
0ert > cd + θdµ

0ert.

Using that cd + θdµ
0ert = cb, a necessary condition writes:

ce − cd ≥
θd − θe
θe

(cb − cd),

which can be rewritten:

cb ≤
θdce − θecd
θd − θe

.

Similarly, it is easy to show that a necessary condition for the exhaustible resource to be used at the

binding date is cb >
θdce−θecd
θd−θe . So that the exhaustible resource is used at the date the ceiling is
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reached if and only if cb ≥ θdce−θecd
θd−θe .

Assume now that cb >
θdce−θecd
θd−θe , then the exhaustible resource is used at the binding date. The

carbon tax τ at the date the exhaustible resource starts to be used is such that: ce + λ0
ee
rt + θeτ ≤

cd + θdτ , that implies:

τ ≥ ce − cd
θd − θe

.

The lowest possible price path of the exhaustible resource is p(t) = ce + ce−cd
θd−θe e

rt. Call T ∗ the date

such that:

ce +
ce − cd
θd − θe

erT
∗

= cb.

Then the maximum amount of Re that can be consumed, if cb >
θdce−θecd
θd−θe is:

X∗ =

ˆ T∗

0

D(ce +
ce − cd
θd − θe

ert)dt.

Note that X0
e does not depend on Z. If X0

e > X∗, Re is not exhausted. If X0
e > X∗ and Z̄ >

Z0 + θeX
∗ ≡ Z∗, then the dirty backstop is used �rst, then an amount X∗ of Re is used to get to the

ceiling, Re is not exhausted (Case B2). If X0
e < X∗ and Z̄ < Z0 + θeX, then only Re is used to get to

the ceiling and Re is not exhausted (Case B4). If X0
e < X∗ and and Z̄ > Z0 + θeX

0
e , then the dirty

backstop is used �rst, then Re is used to get to the ceiling and is exhausted (Case B1). The di�erent

cases when Re is exhausted are indicated in Figure 3.2.

Proposition 11. As long as both resources are used and Re is fully used, tightening the ceiling

constraint increases the scarcity rent of Re.

If cb >
θecd−θdce
θe−θd , and X0

e < min(X∗, Z̄−Z
0

θe
), then:

dλ0
e

dZ
< 0.

Proof. See supra.

Remark that if X0
e = min(X∗, Z̄−Z

0

θe
), the scarcity rent and the carbon tax are unde�ned, only the

sum of the carbon tax and the rent is de�ned.
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Figure 3.2: Characterization of the di�erent cases when ce > cd
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Figure 3.3: Pro�ts, the carbon tax and the price paths when the carbon ceiling is lowered, ce > cd

4 Extension: the three-resource and two-sector model

The economy is divided into two sectors: for instance electricity production (power) and transportation

sectors. The dirty backstop Rd and the exhaustible resource Re are perfect substitute in the power

sector. In transportation sector, Rd needs to be transformed at a unitary cost of z, representing for

instance the cost of �coal-to-liquid� process. Once transformed, Rd and Re are perfect substitute in the

transportation sector. An in�nite backstop (for instance solar) is available at a constant cost, similar

in both sectors.12 We assume no natural dilution.13 We assume that the utility function is separable

in transport and energy. We write uE (resp. uT ) the utility associated with energy consumption in

the electricity (resp. transports) sector. We assume that this utility function satis�es the standard

regularity conditions as de�ned above. We write xj,i(t) the consumption of resource i in sector j at

12Following results still hold when considering heterogeneous backstop price
13However, introducing a light constant natural dilution in the case where Rd is used before the ceiling binds in both

sectors does not change our results.
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time t, xi(t) the global consumption of resource i at time t, xj(t) the global consumption in sector j

at time t. Notation Dj stands for the energy demand in sector j, Dj(p(t)) = xj(t). pj,i(t) represents

the price of resource i in the sector j. Others assumptions from section 2 are unchanged.

4.1 The social planner model and �rst order conditions

The social planner seeks to �nd the extraction path {x∗E,e(t), x∗T,e(t), x∗E,d(t), x∗T,d(t), x∗E,b(t), x∗T,b(t)}

that maximizes his welfare function given by:

ˆ ∞
0

e−rt

(
uE(xE(t)) + uT (xT (t))− cexe(t)− cdxE,d(t)− (cd + z)xT,d − cbxb(t)

)
dt

where

xE(t) = xE,e(t) + xE,d(t) + xE,b(t)

and

xT (t) = xT,e(t) + xT,d(t) + xT,b(t)

s.t. ∀t, ∀i,

Ẋe(t) = −xE,e(t)− xT,e(t)

Ż(t) = θe(xE,e(t) + xT,e(t)) + θd(xE,d(t) + xT,d(t))

Z(t) ≤ Z

0 ≤ xe(t), xE,i, xT,i(t)

with Z0, x0
e given.

We get the following optimal energy prices:

pE,e(t) = pT,o(t) = ce + λe(t) + θeµ(t) (4.1)

pE,d(t) = cd + θeµ(t) (4.2)

pT,c(t) = cd + θeµ(t) + z (4.3)

pE,b(t) = pT,s(t) = cb (4.4)

Dynamics of the scarcity rent and the shadow cost of pollution are unchanged. In each sector,
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energy demand is satis�ed by the cheapest resource the sectoral use, thus:

pE(t) = min{pE,e(t), pE,d(t), pE,b(t)} (4.5)

pT (t) = min{pT,e(t), pT,d(t), pT,b(t)} (4.6)

4.2 Ordering the extraction of resources

As in previous section, the "least cost �rst" principle holds. A more expensive resource for a speci�c

sectoral use cannot be used prior to a cheaper resource for that speci�c use. However, a cheaper

resource in a sector may not be used if this resource is the most polluting, and obviously a more

expensive resource in a sector is not necessarily used in that sector.

De�ning conditions over parameters such that one speci�c-case is obtained, is more complicated

than in the one-sector model. The initial quantity of the exhaustible resource a�ects its use. For

instance, if ce < cd a relatively scarce exhaustible resource Re leads to specialize Re for the transport

sector and leads to use only Rd in power sector.

All the possible cases are described in table 5

4.2.1 Characterization of cases D: Rd cheaper then Re only in the power sector: cd <

ce < cd + z

For any constraint on the stock of pollution Z̄ <∞, the dirty backstop price reaches the clean back-

stop price at some date. The carbon tax at this date is equal to cb−cd
θd

. The price of the exhaustible

resource at this date is thus, if it is not exhausted: ce + θe
cb−cd
θd

. If ce + θe
cb−cd
θd
≤ cb (or, equivalently

cb ≥ θdce−θecd
θd−θe ), if Re is not exhausted, then it is being used in both sectors as the energy price reaches

cb. We assume here that this is the case, we characterize next the case when cb <
θdce−θecd
θd−θe .

Assume that Rd price in the power sector and Re price in the power sector cross at some date

t1. Then from this date on, Re is used in both sectors. Assume that on this price path, Re is not

exhausted. The quantity of Re consumed from this date t1 is called X∗, satisfying:

X∗ =

ˆ 1/r ln(
(cb−ce)(θd−θe)
θe(ce−cd)

)

0

(DE(ce + θe
ce − cd
θd − θe

erdt) +DT (cd + θd
ce − cd
θd − θe

ert))dt
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Case Extraction costs Transports sector Power sector Re exhausted?

Case C1 ce < cd Re Re No

Case C2 ... Re Re,Rd Yes

Case C3 ... Re Rd Yes

Case C4 ... Re,Rd Re,Rd Yes

Case C5 ... Re,Rd Rd Yes

Case D1 cd + z > ce > cd Re Re No

Case D2 ... Re Rd,Re No

Case D3 ... Re Rd No

Case D4 ... Re Rd,Re Yes

Case D5 ... Re Rd Yes

Case D6 ... Re,Rd Rd Yes

Case E1 ce > cd + z Re Re No

Case E2 ... Re Rd,Re No

Case E3 ... Rd,Re Rd,Re No

Case E4 ... Re Rd,Re Yes

Case E5 ... Rd,Re Rd,Re Yes

Case E6 ... Re Rd Yes

Case E7 ... Rd,Re Rd Yes

"..." means that the value of that cell is the same than the value of the cell right above.

Table 5: The di�erent extraction paths in the two-sector economy
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Remark that X∗ does not depend on Z̄. The quantity X∗ is the maximum quantity of Re consumed

while Re is consumed in both sectors at the same time. Call Z∗ = Z0 + θeX
∗ the corresponding

CO2 emissions. Assume that Z̄ > Z∗, then there is a switch in at least one sector (as X∗ is the

maximum quantity of Re consumed when both sectors use Re simultaneously). If Z̄ > Z∗ and Re is

not exhausted, it must be the case that there is a switch in the energy sector, and no switch in the

transport sector(case D2). Indeed, as ce < cd + z, if Re is not exhausted, Re price in the transport

sector is always below Rd price in the transport sector. So that, only Re is used in the transport

sector and Rd then Re are used in the energy sector. The quantity of Re consumed on this price path

(Z̄ > Z∗ and Re is not exhausted) is thus equal to f(Z̄) de�ned, for Z̄ > Z∗, by:

ce + θeµ
0ert1 = cd + θdµ

0ert1

ce + θeµ
0erT = cb

θe

ˆ T

t1

(DT +DE)(ce + θeµ
0ert)dt+ θe

ˆ t1

0

DT (ce + θeµ
0ert)dt

+θd

ˆ t1

0

DE(cd + θdµ
0ert)dt = Z̄ − Z0

ˆ T

t1

(DT +DE)(ce + θeµ
0ert)dt+

ˆ t1

0

DT (ce + θeµ
0ert)dt = f(Z̄)

It is straightforward that, for Z̄ > Z∗, f(Z̄) > X∗ and f(Z∗) = X∗. Moreover, f(Z̄) ≤ Z̄−Z0

θe
because

as Z̄ increases, more Re but also more Rd are used. The price path for X = f(Z̄), with Z̄ > Z∗ is

illustrated on the upper left hand graph of Figure 4.1.

If Z̄ < Z∗, and Re is not exhausted then only Re is used in both sector (case D1). The quantity

of Re consumed on this price path (Z̄ < Z∗ and Re is not exhausted) is thus equal to f(Z̄) de�ned,

for Z̄ < Z∗, by f(Z̄) = Z̄−Z0

θe
.

If X ≤ f(Z̄), the exhaustible resource is exhausted. Keeping Z̄ constant and decreasing X, µ0

decreases. As a result the date of switch, in the power sector, from Rd to Re is postponed (case D4) as

illustrated in the upper right hand graph of Figure 4.1) until this date coincides with Re exhaustion
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date, that is to say until X ≥ g(Z̄), where g(Z̄) satis�es:

ce + (λo + θeµ
0)erT = cd + θdµ

0erT

ce + (λo + θeµ
0)erT = cb

θe

ˆ T

0

DT (ce + (λo + θeµ
0)ert)dt+ θd

ˆ T

0

DE(cd + θdµ
0ert)dt = Z̄ − Z0

ˆ T

0

DT (ce + (λo + θeµ
0)ert)dt = g(Z̄)

The lower left hand graph of Figure 4.1 illustrates the price path when X = g(Z̄). As X decreases

below g(Z̄), Rd price remains below Re price in the power sector and Re is used only in the power

sector (case D5). Only Re is used in the transport sector until the �nal Re price in the transport

sector is above the �nal Rd price in the transport sector, that is to say as long as X > h(Z̄) with h(Z̄)

de�ned by:

ce + (λo + θeµ
0)erT = cd + z + θdµ

0erT

ce + (λo + θeµ
0)erT = cb

cd + θdµ
0ert = cb

θe

ˆ T

0

DT (ce + (λo + θeµ
0)ert)dt+ θd

ˆ t

0

DE(cd + θdµ
0ert)dt = Z̄ − Z0

ˆ T

0

DT (ce + (λo + θeµ
0)ert)dt = h(Z̄)

for Z̄ > Z2 where Z2 is such that:

Z2 = Z0 + θd

ˆ 1/r ln(
cb−cd

cb−(cd+z)
)

0

DE(cd + (cb − (cd + z))ert)dt.

The price path for X = h(Z̄) is illustrated on the lower right hand graph of Fig.4.1.

If X ≤ h(Z̄), then the exhaustible resource is exhausted, only Rd is used in the power sector, the

exhaustible resource then Rd are used in the transport sector (case D6).

If cb <
θdce−θecd
θd−θe (and cd < ce < cd + z) then Rd price in the power sector always remain below

Re price in the power sector (prices in the power sector never cross). If Re is abundant enough, it is

not exhausted and it is used in the transport sector, while Re is used in the power sector (case D3).
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De�ne Z̄1 = Z0 + θd
´ 1/r ln(

(cb−cd)θe
(cb−ce)θd

)

0 DE(cd + θd
cb−ce
θe

)ertdt.

For Z̄ > Z̄1, de�ne f(Z̄) by:

ce + θeµ
0erT1 = cb

cd + θdµ
0erT2 = cb

θe

ˆ T1

0

DT (ce + θeµ
0ert)dt+ θd

ˆ T2

0

DE(cd + θdµ
0ert)dt = Z̄ − Z0

ˆ T

0

DT (ce + θeµ
0ert)dt = f(Z̄)

If X ≤ f(Z̄), then the exhaustible resource is exhausted, only Rd is used in the power sector, only

the exhaustible resource is used in the transport sector (case D5) as long as X > h(Z̄), where h(Z̄) is

de�ned, for Z̄ > Z̄2, with Z̄2 = Z0 + θd
´ 1/r ln(

cb−cd
cb−(cd+z)

)

0 DE(cd + (cb − (cd + z))ert)dt by:

ce + (λo + θeµ
0)erT = cd + z + θdµ

0erT

ce + (λo + θeµ
0)erT = cb

cd + θdµ
0ert = cb

θe

ˆ T

0

DT (ce + (λo + θeµ
0)ert)dt+ θd

ˆ t

0

DE(cd + θdµ
0ert)dt = Z̄ − Z0

ˆ T

0

DT (ce + (λo + θeµ
0)ert)dt = h(Z̄)

If X ≤ h(Z̄), then the exhaustible resource is exhausted, only Rd is used in the power sector, the

exhaustible resource then Rd are used in the transport sector (case D6).

4.2.2 Characterization of all the cases

The following lemma gives the order of extraction for all parameters value. The characterizations are

detailed in Appendix 8.1.

Lemma 12. The order of use of the two resources in the two sectors follows the following pattern:

� For all ce < cd < cd + z, there exist X∗ and Z̄2 such that there exists a continuous increasing

function f(Z̄), de�ned for all values of the ceiling Z̄, and there exists a continuous increasing

function h(Z̄) for all Z̄ > Z̄2, such that the ordering of the resources is as described on Fig.4.2.

� For all cd < ce < cd + z and cb−cd
θd
≤ cb−ce

θe
, there exist X∗ and Z̄2 such that there exist two

34



t

p

0
µ

θ d
dc
+

0
µ

θ d
d
z

c
+

+

R e
	  u
se
d	  
in
	  b
ot
h	  
	  

se
ct
or
s	  	  

(le
ss
	  th

an
	  X

* )
	  

R e
	  u
se
d	  
in
	  T
	  ;	  
R d
	  u
se
d	  
in
	  E
	  

bc

R e
	  e
xh
au
st
ed

	  ;	  
us
ed

	  in
	  q
ua
n:

ty
	  lo
w
er
	  th

an
	  f(
Z)
	  

λ
µ

θ
+

+
0

e
ec

t

p

0
µ

θ e
ec
+

0
µ

θ d
dc
+

0
µ

θ d
d
z

c
+

+

R e
	  u
se
d	  
in
	  b
ot
h	  
se
ct
or
s	  (
in
	  q
ua
n:

ty
	  X
*)
	  

R e
	  u
se
d	  
in
	  T
	  ;	  
R d
	  u
se
d	  
in
	  E
	  

bc

R e
	  u
se
d	  
in
	  q
ua
n:

ty
	  f(
Z)
	  

t

p

0
µ

θ d
dc
+

0
µ

θ d
d
z

c
+

+

R e
	  u
se
d	  
in
	  T
	  ;	  
R d
	  u
se
d	  
in
	  E
	  

bc

R e
	  e
xh
au
st
ed

	  ;	  
us
ed

	  in
	  q
ua
n:

ty
	  lo
w
er
	  th

an
	  g
(Z
)	  

λ
µ

θ
+

+
0

e
ec

t

p

0
µ

θ d
dc
+

0
µ

θ d
d
z

c
+

+

R e
	  u
se
d	  
in
	  T
	  ;	  
R d
	  u
se
d	  
in
	  E
	  

bc

R e
	  e
xh
au
st
ed

	  ;	  
us
ed

	  in
	  q
ua
n:

ty
	  lo
w
er
	  th

an
	  g
(Z
)	  

λ
µ

θ
+

+
0

e
ec

R d
	  u
se
d	  
in
	  E
	  

R b
	  u
se
d	  
in
	  T
	  

Figure 4.1: Price paths when cd < ce < cd + z with di�erent values of Xe35



continuous increasing function f(Z̄), g(Z̄) de�ned for all values of the ceiling Z̄, and there exists

a continuous increasing function h(Z̄) for all Z̄ > Z̄2 such that the ordering of the resources is

as described on Fig.4.3.

� For all cd < ce < cd + z and cb−cd
θd

> cb−ce
θe

, there exist Z̄1 and Z̄2 such that there exists a

continuous increasing function f(Z̄) de�ned for all values of the ceiling Z̄ > Z̄1, and there exists

a continuous increasing function h(Z̄) for all Z̄ > Z̄2 such that the ordering of the resources is

as described on Fig.4.4.

� For all cd + z < ce and cb−cd
θd
≤ cb−ce

θe
, there exists Z̄2 such that there exist two continuous in-

creasing function f(Z̄), g(Z̄) de�ned for all values of the ceiling Z̄, and there exists a continuous

increasing function h(Z̄) for all Z̄ > Z̄2 such that the ordering of the resources is as described

on Fig.4.5.

� For all cd + z < ce and cb−cd
θd

> cb−ce
θe

> cb−(cd+z)
θd

, there exists Z̄1 such that there exists a

continuous increasing function h(Z̄) for all Z̄ > Z̄1 such that the ordering of the resources is as

described on Fig.4.6.

4.3 General results

The way the scarcity rent of Re varies with the value of the ceiling is given by the following lemma14,

in which we restrict our attention to the case when Re is exhausted (otherwise the scarcity in zero):

Lemma 13. The derivative of the scarcity rent λ0
e with respect to Z̄ satis�es:

� In cases C2 and E4
dλ0
e

dZ
has the sign of:

1− (θd − θe)
µ0

λ0
e

− θd
θe

DE(p(t1))

DT (p(0)) +DE(p(0))

� In cases C3, D5 and E6.
dλ0
e

dZ
> 0

� In case C4,
dλ0
e

dZ
has the sign of:

1− θd
θe

DE(t1) +DT (t2)

DE(0) +DT (0)
− (θd − θe)

µ0

λ0
o

14Remark that the value of dλ/dZ̄ is not continuous when crossing the frontier between two cases. This comes from
the fact that the demand addressed to one speci�c resource at a switch date is not continuous when crossing a frontier
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� In cases C5 and D6,
dλ0
e

dZ
has the sign of:

1− (θd − θe)
µo
λe
− θd
θe

DT (t1)

DT (0)

� In cases D4, E4 and E5
dλ0
e

dZ
> 0

Proposition 14. If there is a switch from the exhaustible resource to the dirty backstop in at least

one sector, if Re is exhausted strictly before the clean backstop starts to be used, and if the elasticity of

demand in the sector(s) in which there is a switch is small enough ; then tightening the carbon ceiling

increases the pro�t of the exhaustible resource producers:

� ∀ce ≤ cd + z, ∃ε∗ and ∃(h(Z̄), g(Z̄)) such that:

{
∀p,−D

′

T (p)p

DT (p)
≤ ε∗and X < min(h(Z̄), g(Z̄))

}
=⇒ dλ0

e

dZ
≤ 0

� ∀ce ≤ cd, ∃(ε∗T , ε∗E) and ∃(h(Z̄), g(Z̄)) such that::

{
∀p,−D

′

T (p)p

DT (p)
≤ ε∗T and −

D
′

E(p)p

DE(p)
) ≤ ε∗Eand g(Z̄) < X < h(Z̄)

}
=⇒ dλ0

e

dZ
≤ 0.

Proposition 15. If there is a switch from the exhaustible resource to the dirty backstop along the

optimal path of extraction, and if the pollution content of the exhaustible resource is low enough, then

tightening the carbon ceiling increases the pro�t of the exhaustible resource producers:

� ∀ce < cd + z, ∃η∗, with 0 < η∗ < 1, such that:

{
θe
θd
≤ 1− η∗and X < min(h(Z̄), g(Z̄))

}
=⇒ dλ0

e

dZ
< 0

� ∀ce ≤ cd, ∃η∗∗, with 0 < η∗ < 1, such that:

{
θe
θd
≤ 1− η∗∗andg(Z̄) < X < h(Z̄)

}
=⇒ dλ0

e

dZ
< 0.

Proof. See infra.

Proposition 16. If there is no switch between fossil fuel in both sectors along the optimal path of

extraction,
dλ0
e

dZ
> 0 i.e tightening the carbon ceiling will reduce the pro�ts of oil owners.
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Proof. See infra.

If there is no switch between fossil fuel in both sectors along the optimal path of extraction i.e

if resources are fully sector-specialized, resources are no more in direct competition. Tightening the

carbon regulation leads to a reduction of consumption in both sectors. In the sector(s) where only the

exhaustible resource is used, the situation is similar to the one-sector case when only the exhaustible

resource is used: pro�ts of the exhaustible resource owners will decrease when tightening the carbon

regulation.

Proposition 17. For all Z, if Re is exhausted and if there is a switch from Re to the dirty backstop

in at least one sector, and if the delivery cost of Re in the sector in which there is the �rst switch

is close enough from that of the dirty backstop, tightening the carbon ceiling increases the pro�ts of

owners of Re. Writing cdd the delivery cost of Rd in that sector, ∃0 < c∗ < 1, such that:

c∗ ≤ ce ≤ cdd =⇒ dλ0
e

dZ
< 0.

If the delivery costs of both resources are close enough in the sector where they are in direct

competition, tightening the ceiling constraint will increase the pro�ts of the exhaustible resource owners.

Proof. Straightforward from Section 3.

Proposition 18. If the exhaustible resource gets exhausted, but is not used at the beginning in any

sector,
dλ0
e

dZ
< 0 i.e tightening the ceiling constraint will increase the pro�ts of the exhaustible resource

owners.

Proof. Straightforward from Section 3.

In the one-sector case of Section 3, if the exhaustible resource is used latter than Rd, but fully used

tightening the carbon ceiling increases the pro�t of the exhaustible resource owners. The reason is that

without a carbon regulation the exhaustible resource will not be used at all due to its expensiveness.

Tightening the carbon ceiling would reinforce the use of the exhaustible resource and increase its

scarcity rent. In the two-sector case one must add the condition than there is no sector where only

the exhaustible resource is used. Indeed, if the exhaustible resource consumption is largely favored in

the sector where the exhaustible resource is in competition with Rd but used after Rd, in the sector

where only the exhaustible resource is used this is obviously not the case. The e�ect depends on the

sectoral demands.
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Proposition 19. ∀cd, ce, there exists Z̄min such that, ∀ Z̄ > Z̄min, ∃X∗ :

X0
e < X∗ =⇒ dλ0

e

dZ
< 0.

As long as Rd and Re are cheaper to extract than solar, if the exhaustible resource resource is scarce

enough, tightening the ceiling constraint will increase the pro�ts of the exhaustible resource owners.

Proof. Straightforward from Section 3.

5 Extension: the four-resource and one-sector economy

In this section, we assume that two polluting exhaustible resources (resources 1 and 2) are available in

addition to the dirty and the clean backstops. The variables λ0
i , ci and θi, respectively stand for the

initial scarcity of the scarce resource i, i ∈ {0; 1}, its extraction cost and its pollution content. We call

resource 1, the exhaustible resource that is the cheaper to extract of the two exhaustible resources,

and resource 2 the other one, thus by de�nition c1 < c2. The non-exhaustible polluting resource is

the most polluting resource, θd > max{θ1; θ2} and the clean backstop is the most expensive without

carbon taxation, max{c1; c2; cd} < cb. Others assumptions from Section 2 are unchanged. If two

resources are extracted contiguously in time, they are said to be in "direct competition".

Extension of the maximization program to the four-resource case is straightforward. Previous

optimal pricing rules still hold and for any scarce resource i, i ∈ {0; 1} we get: ci + λ0
i e
rt + θiµ

0ert.

Without natural dilution, as shown in Section 3, the Her�ndahl principle holds (Her�ndahl 1967):

a more expensive resource cannot be used after a cheaper resource. We study two di�erent cases.

First, the case where the extraction cost of the dirty backstop is larger than the extraction costs of

the exhaustible resources, cd > c2 > c1. Second, the case where it lays in-between, c2 > cd > c1.

5.1 Ordering the extraction of resources

5.1.1 The dirty backstop is the most expensive to extract, cd > c2 > c1

Di�erent extraction paths can exist. Labels of the di�erent cases are given in Table 6. The full

characterization of the di�erent extraction paths when cd > c2 > c1 is given in Lemma 20. We study

here the case where resource 1 and 2 and the dirty backstop are used along the optimal path. For

the other cases, one must refer to Section 2. If the dirty backstop is used, thus necessarily both

44



exhaustible resources get exhausted since they are cheaper to extract and less polluting than the

dirty backstop. As the extraction cost of the dirty backstop is lower than that of the clean backstop

(cd < cb), a su�cient condition to get the dirty backstop used writes θ1X
0
1 + θ2X

0
2 < Z − Z0. Thus,

both resources 1 and 2 are exhausted and the dirty backstop is used i�. θ1X
0
1 + θ2X

0
2 < Z − Z0.

Table 6: The di�erent extraction paths with three polluting resources when cd > c2 > c1.

Case Extraction costs Resource 1 Resource 2 Dirty backstop*

Case F1 cd > c2 > c1 used, exh. used, exh. used

Case F2 ... used, exh. used, not exh. not used

Case F3 ... used, not exh. used, exh. not used

Case F4 ... used, not exh. used, not exh. not used

Case F5 ... used, not exh. not used not used

Case F6 ... not used used, not exh. not used

"..." means that the value of that cell is the same than the value of the cell right above. *Recall that the dirty backstop
is not exhaustible.

We can state the following Lemma:

Lemma 20. � If θ1c2−θ2c1θ1−θ2 > cb and θ1 > θ2, or if θ1 ≤ θ2 (See Figure 5.1), then

� Only resource 1 is used (case F5) i�. θ1X
0
1 ≥ Z − Z0;

� Resource 1 is exhausted, resource 2 is used but not exhausted, the dirty backstop is not used

(case F2) i�. θ1X
0
1 < Z − Z0 < θ1X

0
1 + θ2X

0
2 ;

� Both resources 1 and 2 are exhausted and the dirty backstop is used (case F1) i�. θ1X
0
1 +

θ2X
0
2 < Z − Z0.

� If θ1c2−θ2c1θ1−θ2 < cb and θ1 > θ2 (See Figure 5.2), then ∃Z∗, Z∗∗, Z∗ < Z∗∗, such that:

� If Z < Z∗ and X0
2 >

Z−Z0

θ1
, only resource 2 is used to get to the ceiling (case F6);

� If θ2X
0
2 + Z0 < Z < θ1X

0
1 + θ2X

0
2 + Z0, and X0

2 < Z∗−Z0

θ2
, resource 1 is used but not

exhausted, and resource 2 is exhausted, the dirty backstop is not used (case F3);
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� If Z∗∗ > Z > Z∗ and X0
2 >

Z∗−Z0

θ2
, resource 1 and 2 are used but not exhausted, the dirty

backstop is not used (case F4);

� If Z∗∗ < Z and X0
2 > max(Z

∗−Z0

θ2
, Z−Z

0−θ1X1

θ2
), resource 1 is exhausted and resource 2 is

used but not exhausted, the dirty backstop is not used (case F2);

� If Z > θ1X
0
1 + θ2X

0
2 + Z0, both resources 1 and 2 are exhausted, the dirty backstop is used

(case F1).

0
1X

1

0

θ
ZZ −

Case F5: 

R1 only, not exhausted

dccc ≤≤ 21 21 θθ ≤21 θθ >
bc

cc >
−
−

21

1221

θθ
θθ

and { or }

Z0Z

Case F2: 

R1 exhausted, R2 

used not exhausted

1

0
22

0

θ
θ XZZ −−

Case F1:

R1 and R2 exhausted, 

Dirty backstop used

0
22

0 XZ θ+

Figure 5.1: The di�erent extraction path when c1 < c2 < cd and only resource 2 is used for a very

low Z
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Case F4:

R1 and R2 

used, not 

exhausted

0
2X

2

0

θ
ZZ −

dccc ≤≤ 21 21 θθ >
bc

cc <
−
−

21

1221

θθ
θθ

2

0
11

0

θ
θ XZZ −−

Case F6:

R2 only,  not 

exhausted

Case F2: 

R1 exhausted

R2 used, not 

exhausted

Case F1: 

R1 and R2 

exhausted, 

Dirty backstop

used

Case F3:

R1 used, not 

exhausted

R2 exhausted

Z0Z

*
2X

exhausted

0*
22

0
11

** ZXXZ ++= θθ0*
22

* ZXZ += θ

Figure 5.2: The di�erent extraction path when c1 < c2 < cd and only resource 1 is used for a very

low Z

See Appendix for discussion of Lemma 20.

5.1.2 Intermediate cost for the dirty backstop, c1 < cd < c2

Di�erent extraction paths can exist. Labels of the di�erent cases are presented in Table 7. The full

characterization of the di�erent extraction paths when cd > c2 > c1 is given in Lemma 7.

Resource 1 is cheaper and less polluting to extract that the dirty backstop, thus using the dirty

backstop implies to exhaust resource 1 �rst. If resource 1 is less polluting than resource 2, resource

1 gets exhausted i�. θ1X
0
1 < Z − Z0. Two cases where the three polluting resources are used, and

at least one resource is exhausted can occur: resources 1 and 2 are exhausted and the dirty backstop

is used (case G1), or resource 1 is exhausted, the dirty backstop used, resource 2 is used but not

exhausted (case G2). Other cases are either not relevant (cases where only one polluting resource is
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used) or already studied in Section 3 (cases where only two polluting resources are used). 15

Case Extraction costs Resource 1 Resource 2 Dirty backstop*

Case G1 c2 > cd > c1 used, exh. used, exh. used

Case G2 ... used, exh. used, not exh. used

Case G3 ... used, exh. used, not exh. not used

Case G4 ... used, exh. not used used

Case G5 ... used, not exh. used, exh. not used

Case G6 ... used, not exh. used, not exh. not used

Case G7 ... used, not exh. not used not used

Case G8 ... not used used, not exh. not used

"..." means that the value of that cell is the same than the value of the cell right above. *Recall that the dirty backstop
is not exhaustible.

Table 7: The di�erent extraction paths with three polluting resources when c2 > cd > c1.

We can state the following Lemma:

Lemma 21. � If θdc2−θ2cdθd−θ2 > cb (θ1 >< θ2) (See Figure 3.2), then:

� Only resource 1 is used (case G7) i�. θ1X
0
1 ≥ Z − Z0;

� Resource 1 is exhausted and the dirty backstop is used (case G4) i�. θ1fX
0
1 < Z − Z0.

� If θdc2−θ2cd
θd−θ2 < cb and [θ1 < θ2 or (θ1 > θ2 and θ1c2−θ2c1

θ1−θ2 > cb )] (See Figure 5.4)), then

∃Z̃, Z∗∗, Z∗∗∗, Z̃ < Z∗∗ < Z∗∗∗, such that:

� If Z < Z̃, only resource 1 is used to get to the ceiling (case G7);

� If Z∗∗ > Z > Z̃, and X0
2 >

Z−Z0−θ1X1

θ2
, resource 1 is exhausted and resource 2 is used but

not exhausted (case G3);

� If Z > Z̃, and X0
2 < min(Z−Z

0−θ1X1

θ2
, Z
∗∗−Z0−θ1X1

θ2
), resources 1 and 2 are exhausted and

the dirty backstop is used (case G1);

15Note that if the polluting backstop was less polluting than the second exhaustible resource, this resource would
never be used, and the situation will be as described in Section 3.

48



� If Z > Z∗∗ and X0
2 > Z∗∗−Z0−θ1X1

θ2
, resource 1 is exhausted, resource 2 is used but not

exhausted, and the dirty backstop is used (case G2).

� If θdc2−θ2cd
θd−θ2 < cb and θ1 > θ2 and θ1c2−θ2c1

θ1−θ2 < cb (See Figure 5.3), then ∃Z∗, Z∗∗, Z∗∗∗, Z∗ <

Z∗∗ < Z∗∗∗, such that:

� If Z < Z∗and X0
2 >

Z−Z0

θ2
, only resource 2 is used to get to the ceiling (case G8);

� If X0
2 <

Z∗−Z0

θ2
and Z−Z0

θ2
< X0

2 <
Z−Z0−θ1X1

θ2
, resource 1 is exhausted, resource 2 is used

but not exhausted, the dirty backstop is unused (case G5);

� If Z∗∗ > Z > Z∗ and X0
2 > Z∗−Z0

θ2
, resource 1 is exhausted, resource 2 is used but not

exhausted, the dirty backstop is unused (case G6);

� If Z∗∗∗ > Z > Z∗∗and X0
2 > Z−Z0−θ1X1

θ2
, resource 1 is exhausted, resource 2 is used but

not exhausted, the dirty backstop is unused (case G3);

� If Z∗∗∗ < Z and X0
2 > Z∗∗∗−Z0−θ1X1

θ2
, resource 1 is exhausted, resource 2 is used but not

exhausted, the dirty backstop is used (case G2);

� If Z∗ < Z and X0
2 < min(Z−Z

0−θ1X1

θ2
, Z
∗∗∗−Z0−θ1X1

θ2
), resources 1 and 2 are exhausted, the

dirty backstop is used (case G1).

See Appendix for discussion of Lemma 21
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Case G2:

R1 exhausted,

R2 used, not 

exhausted,

Dirty backstop used

Case G3:

R1 exhausted,

R2 used, not 

exhausted
Case G6:

R1 and R2 used, 

not exhausted

0
2X

2

0
11

0

θ
θ XZZ −−

Case G8:

R2 only, not 

exhausted

21 ccc d <<
b

d

dd c
cc <

−
−

2

22

θθ
θθ

21 θθ >
bc

cc <
−
−

21

1221

θθ
θθ

2

0

θ
ZZ −

**
2X

Case G1:

R1 and R2 exhausted,

Dirty backstop usedCase G5:

R1 used non 

exhausted,

R2 exhausted

Z0Z

*
2X

exhausted

0*
22

0
11

** ZXXZ ++= θθ0*
22

* ZXZ += θ 0**
22

0
11

*** ZXXZ ++= θθ

Figure 5.3: The di�erent extraction path when c1 < cd < c2 and only resource 2 is used for a very

low Z
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0
2X

21 θθ <

2

0
11

0

θ
θ XZZ −−

Case G7:

R1 only, not 

exhausted

21 ccc d <<
b

d

dd c
cc <

−
−

2

22

θθ
θθ

21 θθ >
bc

cc >
−
−

21

1221

θθ
θθ

and or

Case G2:

R1 exhausted,

R2 used, not exhausted,

Dirty backstop used

{ }

Case G3:

R1 exhausted,

R2 used, not 

exhausted

Z0Z

*
2X

exhausted

0*
22

0
11

** ZXXZ ++= θθ

Case G1:

R1 and R2 exhausted,

Dirty backstop used

00
11

~
ZXZ += θ

Figure 5.4: The di�erent extraction path when c1 < cd < c2 and only resource 1 is used for a very

low Z

5.2 General results

5.2.1 Preliminary remarks over pro�ts of resources 1 and 2 when c1 < c2 < cd

If both resources 1 and 2 are exhausted and the dirty backstop is used (case F1), thus writing t1,

the date of switch from resource 1 to resource 2, t2 the date of switch from resource 2 to the dirty

backstop, and �nally t, the date of switch to the clean backstop. The solution {λ0
1, λ

0
2, µ

0, t1, t2, t}

51



must satisfy:

c1 + λ0
1e
rt1 + θ1µ

0ert1 = c2 + λ0
2e
rt1 + θ2µ

0ert1 (5.1)

c2 + λ0
2e
rt2 + θ2µ

0ert2 = cd + θdµ
0ert2 (5.2)

cd + θdµ
0ert = q (5.3)ˆ t1

0

D(c1 + λ0
1e
rt + θ1µ

0ert)dt = X0
1 (5.4)

ˆ t2

t1

D(c2 + λ0
2e
rt + θ2µ

0ert)dt = X0
2 (5.5)

θ1X
0
1 + θ2X

0
2 + θd

ˆ t

t2

D(cd + θdµ
0ert)dt = Z − Z0 (5.6)

Pro�ts of resource 2 's owners (c1 < c2 < cd). Tightening the ceiling has two e�ects on

resource 2 pro�ts. Because resource 2 is in direct competition with the dirty backstop, these e�ects

are similar to those on pro�ts of owners of the exhaustible resource described in Section 2 when

ce < cd. The price at which the dirty backstop starts to be used increases, so that the value of the

tax at the date of switch to the dirty backstop, µ0ert2 , increases. The rent of resource 2 when it gets

exhausted increases as well, as it satis�es λ0
2e
rt2 = (cd − c2) + (θd − θ2)µ0ert2 . On the other hand,

the after-tax price of resource 2 increases, the demand at each date decreases so that resource 2 gets

exhausted over a longer period of time, and its price when it starts to be used, must therefore increase.

It follows that the price of resource 1 must increase and the date of switch from resource 1 to resource

2 is postponed. Because the period over which resource 2 is used is extended, it follows that the date

of switch from resource 2 to the dirty backstop is postponed. Finally, the current pro�ts of resource

2 owners when it gets exhausted are higher but the date of exhaustion of resource 2 is postponed, so

that the resulting e�ect is ambiguous. However, we can state the following Lemma:
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Lemma 22. ∀c1, c2, cd such that c1 < c2 < cd, ∀Z > Z0 + θ1X
0
1 + θ2X

0
2 ,

dλ0
2

dZ
< 0

i�.

1− (θd − θ2)
µ0

λ0
2

− D(t2)

D(t1)

θd
θ2
− λ0

2 + θ2µ
0

λ0
1 + θ1µ0

θd
θ2

(1− D(0)

D(t1)
)
D(t2)

D(0)
< 0.

Proof. See Appendix

Pro�ts of resource 1 's owners (c1 < c2 < cd). Contrary to R2, R1 is not in direct competition

with the dirty backstop. The current rent at that date may decrease or increase depending on the

ordering of pollution contents, θ1 and θ2 and on the dynamics of the scarcity rent of resource 2. Indeed,

by equation 5.1, we get that: λ0
1 = (c2 − c1)e−rt1 + λ0

2 + (θ2 − θ1)µ0. When tightening the carbon

ceiling, the date of switch to resource 2 is postponed. In the general case, the e�ect of tightening the

carbon ceiling on pro�ts of owners of R1 is thus undetermined. However, we can state the following

Lemma:

Lemma 23. ∀c1, c2, cd such that c1 < c2 < cd, ∀Z > Z0 + θ2X
0
2 + θ1X

0
1 ,

dλ0
1

dZ
< 0

i�.

θd
θ1

D(t2)

D(0)
+

θdµ
0

λ0
1 + θ1µ0

(1− D(t1)

D(0)
) +

θdµ
0

λ0
2 + θ2µ0

(1− D(t2)

D(t1)
) > 1.

Proof. See Appendix.

5.2.2 Preliminary remarks over pro�ts of resources 1 and 2 when c1 < cd < c2

If the extraction path is as described by case G1, thus writing t1, the date of switch from resource 1

to the dirty backstop, t2, the date of switch from the dirty backstop to resource 2, and �nally t, the
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date of switch to the clean backstop, the solution (λ0
1, λ

0
2, µ

0, t1, t2, t) must satisfy:

c1 + λ0
1e
rt1 + θ1µ

0ert1 = cd + θdµ
0ert1

c2 + λ0
2e
rt2 + θ2µ

0ert2 = cd + θdµ
0ert2 (5.7)

c2 + λ0
2e
rt + θ2µ

0ert = cb (5.8)ˆ t1

0

D(c1 + λ0
1e
rt + θ1µ

0ert)dt = X0
1 (5.9)

ˆ t

t2

D(c2 + λ0
2e
rt + θ2µ

0ert)dt = X0
2 (5.10)

θ1X
0
1 + θ2X

0
2 +

ˆ t2

t1

θdD(cd + θdµ
0ert)dt = Z − Z0 (5.11)

If both resources 1 and 2 are exhausted and the dirty backstop is used, and that after a marginal

decrease of the carbon ceiling we still stay in that case, tightening the carbon regulation will increase

the carbon tax, postpone the date of switch to the dirty backstop, t1, bring forward the date of switch

to resource 2 and the date the ceiling binds, and increase pro�ts of owners of resource 2. The price

of resource 2 when it starts to be used, p(t2), is independent of Z. Indeed, from equations 5.8 and

5.10, if resource 2 is exhausted, its price when it starts to be used, is de�ned by
´ cb
p(t2)

D(c2 + (p(t2)−

c2)ert)dt = X0
2 . If resource 2 is not exhausted, using equations 5.8 and setting λ0

2 to zero, it comes

that p(t2) = c2 + θ2
cd−c2
θd−θ2 .

The consumption of resource 2 equals X0
2 if resource 2 is exhausted i.e if X0

2 < X∗2 , or X
∗
2 other-

wise. Thus the consumption of resource 2 equals min(X0
2 , X

∗
2 ). The length of period during which

resource 2 is used is unchanged, since the starting price and the �nal price of resource 2 is unchanged.16

Pro�ts of owners of resource 2 (c1 < cd < c2). The reasoning is similar than the one exposed

in the case with two polluting resources where the exhaustible resource is the most expensive but

gets exhausted (Section 3, subsection 3.2, ce > cd). Since the starting price of resource 2, p(t2), is

16Indeed, with a marginal decrease of Z, the price at which resource 2 starts to be used is unchanged. If the carbon
tax was reduced, the dirty backstop price path would be put downward, and thus the date of switch to resource 2 would
be postponed to get the starting price of R2 unchanged. If the date of switch from resource 1 to the dirty backstop is
brought forward, the global consumption of the dirty backstop increases since it would be used over a longer period at
a lower price, that is not possible due to the ceiling constraint and the assumption that both other resources 1 and 2
are exhausted. If the date of switch from resource 1 to the dirty backstop is postponed, the price of resource 1 must
be put downward, so that the dirty backstop price and resource 1 price gets equal at a later date, but in that case, the
consumption of resource 1 must increase since it would be used over a longer period of time at a lower price, that is
not possible. It follows that when decreasing Z, if both resources still get exhausted and the dirty backstop used, the
carbon tax must increase and the date of switch from the dirty backstop to resource 2 is brought forward. The date
the ceiling is reached is also brought forward.
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unchanged, thus the sum of the scarcity rent and the carbon tax of resource 2. Note that p(t2) is

also the price at which the dirty backstop stops to be used. So, the dirty backstop price and thus the

value of the tax at that time, µ0ert2 , are unchanged. It follows that pro�ts at the date of switch from

the dirty backstop to resource 2 must be unchanged. Since the date of switch to the dirty backstop

is brought forward, the initial scarcity rent of resource 2 must increase to keep the current value rent

at the switch date to resource 2 unchanged. but less polluting than the dirty backstop increase when

the carbon ceiling is tightened, as long as this resource is exhausted. We call N , the set of parameters

such that R2 is used after the dirty backstop and gets exhausted.17

Proposition 24. If resource 2 is used after the dirty backstop and exhausted, tightening the carbon

ceiling increases pro�ts of resource 2 owners.

If parameters belong to N , then
dλ0

2

dZ
< 0.

Proof. See above

Pro�ts of owners of resource 1 (c1 < cd < c2). As mentioned above, the starting price

of resource 2, p(t2), is �xed and does not depend on Z and the consumption of resource 2 equals

min(X0
2 ;X∗2 ). It follows that {λ0

1, µ
0, t1, t2} must satisfy:

c1 + λ0
1e
rt1 + θ1µ

0ert1 = cd + θdµ
0ert1

p(t2) = cd + θdµ
0ert2 (5.12)ˆ t1

0

D(c1 + λ0
1e
rt + θ1µ

0ert)dt = X0
1 (5.13)

θ1X
0
1 +

ˆ t2

t1

θdD(cd + θdµ
0ert)dt = Z − Z0 − θ2min(X0

2 ;X∗2 ) (5.14)

This system is similar to the system describing the solution when only one exhaustible resource,

17N is the collection of parameters satisfying:
θdc2−θ2cd
θd−θ2

< cb and [θ1 < θ2 or (θ1 > θ2 and
θ1c2−θ2c1
θ1−θ2

> cb )] and Z > Z̃, andX0
2 < min(Z−Z

0−θ1X1
θ2

, Z
∗∗−Z0−θ1X1

θ2
)

or
θdc2−θ2cd
θd−θ2

< cb and θ1 > θ2 and θ1c2−θ2c1
θ1−θ2

< cb and Z
∗ < Z and X0

2 < min(Z−Z
0−θ1X1
θ2

, Z
∗∗∗−Z0−θ1X1

θ2
).

Note that for parameters such that θdc2−θ2cd
θd−θ2

< cb and [θ1 < θ2 or (θ1 > θ2 and
θ1c2−θ2c1
θ1−θ2

> cb )] or
θdc2−θ2cd
θd−θ2

< cb

and θ1 > θ2 and θ1c2−θ2c1
θ1−θ2

< cb, we can �nd Z and X0
2 such that parameters belong to N .
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� cheaper than the dirty backstop �, is available in Section 3. The di�erence lays in the fact that

the �nal price of the dirty backstop equals resource the starting price of R2 price and not the clean

backstop price, cb. The �nal date we consider is thus t2 and not t. The global amount of pollution

allowed from the consumption of resource 1 and the dirty backstop becomes Z − Z0 −min(X0
2 ;X∗2 ).

Recall that in Lemma 3 of Section 3 , the condition over the sign of
dλ0
e

dZ
< 0 does not depends on t

nor Z0, nor cb It follows that if resource 1 is exhausted, the dirty backstop and resource 2 used, the

condition to get
dλ0

1

dZ
< 0 is similar to the condition expressed in Lemma 3 of Section 3 when R1 is

exhausted, the dirty backstop is used but R2 is not used.

We call M this set of parameters such that resource 1 gets exhausted and the dirty backstop is

used after, resource 2 being used or not later, and being exhausted or not if used..18

Lemma 25. For all parameters that belong to M1 ,

dλ0
1

dZ
< 0

i�.

D(p(t1))

D(p(0))

θd
θ1

+ (θd − θ1)
µ0

λ0
1

> 1.

It is straightforward to verify that Propositions concerning the sign of
dλ0

1

dZ
(Propositions 14-9) of

Section 3 still hold when taking care of rewriting the condition to get resource 1 exhausted and the

three polluting resources used.

5.2.3 Results over pro�ts of resources owners when e�ects are ambiguous

As indicated above, if c1 < c2 < cd, the impacts of tightening the ceiling on pro�ts of either resource

1 or 2 is undetermined. Similarly, if c1 < c2 < cd, the impacts of tightening the ceiling on pro�ts of

either resource 1. Hereafters, we show some proposition concerning the e�ect in the ambiguous cases.

18See Lemma 21, parameters belonging to M satisfy:
θdc2−θ2cd
θd−θ2

> cb and θ1X
0
1 < Z − Z0

or
θdc2−θ2cd
θd−θ2

< cb and [θ1 < θ2 or (θ1 > θ2 and θ1c2−θ2c1
θ1−θ2

> cb )] and Z > min(Z0 + θ1X1 + θ2X0
2 , Z

0 + θ1X1 + θ2X∗2 )
or
θdc2−θ2cd
θd−θ2

< cb and θ1 > θ2 and θ1c2−θ2c1
θ1−θ2

< cb and Z > min(Z0 + θ1X1 + θ2X0
2 , Z

0 + θ1X1 + θ2X∗∗2 ).

It is straightforward that for parameters such that θdc2−θ2cd
θd−θ2

> cb
or
θdc2−θ2cd
θd−θ2

< cb and [θ1 < θ2 or (θ1 > θ2 and θ1c2−θ2c1
θ1−θ2

> cb )]
or
θdc2−θ2cd
θd−θ2

< cb and θ1 > θ2 and θ1c2−θ2c1
θ1−θ2

< cb

, it is possible to �nd Z, X0
2 such that the parameters belong to M .
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If c1 < c2 < cd, tightening the carbon ceiling increases the pro�ts of resource 2 if this resource gets

exhausted after the dirty backstop is used, thus this case doe snot require more space in the analysis.

Proposition 26. If resource i gets exhausted and the dirty backstop is used and the pollution content

of resource i is low enough, tightening the carbon ceiling increases the pro�t of resource i owners.

� ∀c1, c2, cd such that c1 < c2 < cd, for i ∈ {1, 2}, ∃η∗, with 0 < η∗ < 1, such that:

{
θi
θd
≤ 1− η∗i and Z > θ−iX

0
−i + Z0 + θiXi

}
=⇒ dλ0

i

dZ
< 0

� ∀c1, c2, cd such that c1 < cd < c2, ∃0 < η∗1 such that

{
θ1

θd
≤ 1− η∗1and parameters belong to N1

}
=⇒ dλ0

1

dZ
< 0.

Proof. Straightforward from Lemmas 22 and 23, and previous sections.

Proposition 27. If resource i gets exhausted and the dirty backstop is used and the elasticity of

demand is small enough, tightening the carbon ceiling increases the pro�t of the owners of resource i.

� ∀c1, c2, cd such that c1 < c2 < cd, , ∃ε∗i such that ∀Z > Z0 + θ1X
0
1 + θ2X

0
2 :

{
∀p,−D

′
(p)p

D(p)
≤ ε∗i

}
=⇒ dλ0

i

dZ
< 0.

� ∀c1, c2, cd such that c1 < cd < c2, ∃ε∗ such that, for all parameters belonging to N1:

{
∀p,−D

′
(p)p

D(p)
≤ ε∗1

}
=⇒ dλ0

1

dZ
< 0.

Proof. Straightforward from Lemmas 22 and 23, and previous sections.

Remark 28. When X0
2 is low enough, tightening the carbon ceiling does not necessarily increase

the pro�ts of owners of resource 2. Result of Proposition 7 cannot be extended to the case with

several exhaustible resources. Demands D(t1) and D(t2) are continuous functions of the initial stock

of resource 2, and lim
X0

2 7→0
D(t2) = D(t1). Using Lemma 22, for X0

2 low enough,
dλ0

2

dZ
has the sign of:

−( θdθ2 −1)+
λ0
2−θ2µ

0

λ0
1+θ1µ0

θd
θ2

(1− D(t1)
D(0) )+ θdµ

0

λ0
1+θ1µ0 (1− D(t1)

D(0) ) that can be either negative or positive. However,

for X0
1 and X0

2 low enough,
dλ0

2

dZ
is negative.
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Remark 29. When the carbon ceiling is getting low enough, to avoid exhaustion of resource 2, we

�nd that the scarcity rent associated with this resource is discontinuous when Z is getting lower than

θ1X
0
1 + θ2X

0
2 +Z0. This result is similar to result found in remark 8. Using equations 5.2 and 5.3, it

comes that λ0
2 = e−rt2(cd − c2) + (θd − θ2) cb−cdθd

e−rt. We know that t2 >
X0

1+X0
2

D(c1) and t1 >
X0

1

D(c1) , it

follows that there exists ε such that ∀Z θ1X
0
1 + θ2X

0
2 + Z0, λ0

2 > ε > 0.

Proposition 30. If resource i gets exhausted and the dirty backstop is used just after resource i and

the extraction cost of resource i is close enough from the dirty backstop extraction cost, tightening the

carbon ceiling increases the pro�t of Ri owners.

� ∀c1, c2, cd such that c1 < c2 < cd, ∀Z > θ1X
0
1 + θ2X

0
2 + Z0, ∃c∗ < cd such that:

cd ≥ c2 ≥ c∗ =⇒ dλ0
2

dZ
< 0

� ∀c1, c2, cd such that c1 < cd < c2, for all parameters belonging to N1 ∃c∗ < cd such that:

cd ≥ c1 ≥ c∗ =⇒ dλ0
1

dZ
< 0

Proof. Assume that c1 < c2 < cd. In that case, recall that
dλ0

2

dZ
is negative i�. 1 + (θ2 − θd)µ

0

λ0
2
−

D(t2)
D(t1)

θd
θ2
− λ0

2+θ2µ
0

λ0
1+θ1µ0

θd
θ2

(1− D(0)
D(t1) )D(t2)

D(0) is negative. Using equation 5.3, one must replace (θd − θ2)µ
0

λ0
2
by

1− cd−c2
λ0
2
e−rt2 , it comes that

dλ0
2

dZ
has the sign of: cd−c2

λ0
2
e−rt2− D(t2)

D(t1)
θd
θ2
− λ0

2+θ2µ
0

λ0
1+θ1µ0

θd
θ2

(1− D(0)
D(t1) )D(t2)

D(0) . It

follows that if cd−c2
λ0
2
e−rt2 − D(t2)

D(t1)
θd
θ2

is negative,
dλ0

2

dZ
is negative. We know that D(t2)

D(t1)
θd
θ2
> θd

θ2

D(cb)
D(c2) > 0

and λ0
2e
rt2 > (θd− θ2)µ0ert2 > 0. Thus,

dλ0
2

dZ
is negative if −D(cb)

D(c2)
θd
θ1

+ cd−c2
(θd−θ2)µ0ert2 is negative. µ0ert2

does not depend on c2 (-see proof of Proposition 6) and is strictly positive for any Z̄. At µ0ert2 given,

as −D(cb)
D(c2)

θd
θ1

+ cd−c2
(θd−θ2)µ0ert2 is continuous with c2 and decreases with c2 and is strictly negative for

c2 = cd, then there exists c∗ such that Proposition 30 holds.

For the case where c1 < cd < c2, see discussion over pro�ts of R1.

Remark 31. Contrary to Proposition 7, when X0
1 is low enough, tightening the carbon ceiling does

not necessarily increase the pro�ts of owners of resource 1. Demands D(0) and D(t1) are continuous
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functions of the initial stock of resource 1, and lim
X0

1 7→0
D(0) = D(t1).

dλ0
1

dZ
has the sign of 1− θd

θ1

D(t2)
D(0) −

θdµ
0

λ0
2+θ2µ0 + θdµ

0

λ0
2+θ2µ0

D(t2)
D(0) , that can be either positive or negative.

Comparison of the pro�ts of owners of resources 1 and 2

We now turn to investigate how a change in Z impacts the di�erence of rents λ0
1 − λ0

2 to determine

who bene�ts the most or looses the least from tightening the carbon regulation.

If c1 < cd < c2, the exhaustible resources are not in direct competition if the dirty backstop is

used. it follows that there is no particular rule concerning the e�ect of Z on
dλ0

1

dZ
− dλ0

2

dZ
.

Assume hereafters that If c1 < c2 < cd. In this case, the exhaustible resources are not in direct

competition. Rewriting equation 5.1, it comes that λ0
1 − λ0

2 = (c2 − c1)e−rt1 + (θ2 − θ1)µ0. Lowering

Z has an ambiguous e�ect on λ0
1−λ0

2 if θ2− θ1 > 0. However if θ2 < θ1, lowering Z decreases λ0
1−λ0

2,

i.e bene�ts more or harms less pro�ts of resource 2 owners than pro�ts of resource 1 owners. We can

state the following Lemma:

Lemma 32. ∀c1, c2, cd, c1 < c2 < cd, ∀Z > Z0 + θ1X
0
1 + θ2X

0
2 ,

dλ0
1

dZ
− dλ0

2

dZ
< 0

i�.

θd(1− λ0
2+θ2µ

0

λ0
1+θ1µ0 )(1− D(t1)

D(0) )D(t2)
D(t1) + (θ1 − θ2)

(
1− θdµ

0

λ0
2+θ2µ0 (1− D(t1)

D(0) )D(t2)
D(t1)

)
< 0

Proof. See Appendix.

Proposition 33. If the pollution content of resource 2 is lower or is higher � but close enough in

this case� than the pollution content of resource 1, tightening the carbon ceiling increases more (or

decreases less) the marginal pro�t of resource 2 owners than that of resource 1 owners. Owners of the

least polluting resource are not necessary those who gain the most or loose the least when the carbon

regulation is tightened.

∀c1, c2, cd, c1 < c2 < cd, ∀Z > θ1X
0
1 + θ1X

0
2 + Z0, ∃θ1 < θ∗ < 1,

θ2 ≤ θ∗ =⇒ dλ0
1

dZ
− dλ0

2

dZ
> 0.

Note that this implies that if θ2 ≤ θ1, then
dλ0

1

dZ
− dλ0

2

dZ
> 0.

Proof. The result for θ1 > θ2 is straightforward from Lemma 32. Assume now that θ1 < θ2, and

Z > θ1X
0
1 + θ2X

0
2 + Z0. We know that 0 < (1 − θdµ

0

λ0
2+θ2µ0 (1 − D(t1)

D(0) )D(t2)
D(t1) ) < 1, it follows that
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lim
θ2→θ1

(θ1 − θ2)
(

1− θdµ
0

λ0
2+θ2µ0 (1− D(t1)

D(0) )D(t2)
D(t1)

)
= 0. We also know that D(t2)

D(t1) >
D(cb)
D(c2) . Using equation

5.4, and the First Mean Value Theorem for Integrals there exists p∗, such that: p(0) < p∗ < p(t1),

and (p(t1) − p(0))D(p∗) = X0
1 . Note that D(cb) < D(p∗) < D(c1). It follows that lim

θ2→θ1
(p(t1) −

p(0)) > 0. Since D is strictly decreasing with p, we get that ∃β, (1 − D(t1)
D(0) ) > β > 0. Using

equation 5.1, we get that: λ0
1 − λ0

2 + (θ1 − θ2)µ0 = (c2 − c1)ert1 . As t1 ≤ X0
1

D(cb)
, it follows that

λ0
1 − λ0

2 + (θ1 − θ2)µ0 > (c2 − c1)e
r
X0

1
D(cb) > 0, thus ∃γ, such that (1 − λ0

2+θ2µ
0

λ0
1+θ1µ0 ) > γ > 0. Finally,

θd(1− λ0
2+θ2µ

0

λ0
1+θ1µ0 )(1− D(t1)

D(0) )D(t2)
D(t1) > θdβγ

D(cb)
D(c2) > 0. It follows that there exists θ∗ such that Proposition

33 holds.

Remark 34. If θ1 low enough, no particular result.

Proposition 35. If both resources 1 and 2 are exhausted and the dirty backstop is used, and resource

1 is scare enough then tightening the carbon ceiling will bene�t more or harm less the pro�ts of owners

of the least polluting resource.

∀c1, c2, cd, c1 < c2 < cd, ∀Z > θ2X
0
2 + Z0, ∃X∗1 such that ∀X0

1 :

X0
1 ≤ X∗1 =⇒ (θ1 − θ2)(

dλ0
1

dZ
− dλ0

2

dZ
) > 0

Proof. Demands D(0) and D(t1) are continuous functions of the initial stock of resource 1, and

lim
X1 7→0

D(0) = D(t1). As show above, ∃δ such that 0 < θd(1− λ0
2+θ2µ

0

λ1+θ1µ0 )D(t2)
D(t1) < δ, similarly we can show

that ∃ζ such that 0 < θdµ
0

λ0
2+θ2µ0

D(t2)
D(t1) < ζ, for X1 is low enough,

dλ0
1

dZ
− dλ0

2

dZ
has the sign of θ1 − θ2 and

we can �nd X∗1 such that Proposition 35 holds.

Remark 36. If X2 is low enough, the sign of
dλ0

1

dZ
− dλ0

2

dZ
is undetermined.

Proposition 37. If both resources 1 and 2 are exhausted and the dirty backstop is used, and the

extraction cost of resource 2 is close enough to that one of resource 1, tightening the carbon ceiling

will bene�t more or harm less the pro�ts of owners of the least polluting resource.

∀c1, c2, cd, c1 < c2 < cd, ∀Z > θ1X
0
1 + θ2X

0
2 + Z0, ∀cd, ∃c∗ < cd such that ∀c2:
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c1 < c2 ≤ c∗ =⇒ (θ1 − θ2)(
dλ0

1

dZ
− dλ0

2

dZ
) > 0

Proof. We replace θ1 − θ2 by c2−c1
ert2µ0 − λ1−λ0

2

µ0 , it comes that when c2 tends towards c1,
dλ0

1

dZ
− dλ0

2

dZ
has

the sign of (θ2 − θ1)(−θd µ0

λ1+θ1µ0

D(t2)
D(0) − 1 + µ0 θd

λ1+θ1µ0 ). Since −θd µ0

λ1+θ1µ0

D(t2)
D(0) − 1 + µ0 θd

λ1+θ1µ0 < 0,

it follows that
dλ0

1

dZ
− dλ0

2

dZ
has the sign of θ1 − θ2. Thus there exists c

∗ such that Proposition 37 holds.

Proposition 38. If the elasticity of demand is small enough, tightening the carbon ceiling will bene�t

more or harm less the pro�ts of owners of the least polluting resource.

∀c1, c2, cd, c1 < c2 < cd, ∀Z > θ1X
0
1 + θ2X

0
2 + Z0, ∃ε∗ such that:

{
∀p,−D

′
(p)p

D(p)
≤ ε∗

}
=⇒ (θ1 − θ2)(

dλ0
1

dZ
− dλ0

2

dZ
) > 0.

Proof. From Lemma 32, note that
dλ0

1

dZ
− dλ0

2

dZ
< 0 i�. (θ1 − θ2) +

(
θd(1 − λ0

2+θ2µ
0

λ0
1+θ1µ0 ) − θdµ

0

λ0
2+θ2µ0

)
(1 −

D(t1)
D(0) )D(t2)

D(t1) < 0. Recall that |1 − λ0
2+θ2µ

0

λ0
1+θ1µ0 − θdµ

0

λ0
2+θ2µ0 | < 1 and D(t2)

D(t1) <
D(c1)
D(cs)

, it comes that |
(
θd(1 −

λ0
2+θ2µ

0

λ0
1+θ1µ0 )− θdµ

0

λ0
2+θ2µ0

)
D(t2)
D(t1) | < θd

D(c1)
D(cs)

. As done above, using the mean value theorem, there exists ti ∈

[0; t1], such that: D(t1)
D(0) ≥ 1− (−D

′(p(ti))
D(p(ti))

p(ti))
p(t1)−p(0)

p(ti)
. We also have p(t1)−p(0)

p(ti)
≤ p(t1)−p(0)

p(0) < c2−c1
c1

.

Thus, if −D
′(p(ti))

D(p(ti))
p(ti)

c2−c1
c1
≤ |θ1−θ2|

θd
D(c1)

D(cs)

, then

|θ1 − θ2| > |[θd(1−
λ0

2 + θ2µ
0

λ0
1 + θ1µ0

)− θdµ
0

λ0
2 + θ2µ0

](1− D(t1)

D(0)
)
D(t2)

D(t1)
|.

Finally, if −D
′(p(ti))

D(p(ti))
p(ti) ≤ |θ1−θ2|

θd
D(c1)

D(cs)

c2−c1
c1

= ε, then
dλ0

1−dλ
0
2

dZ
has the sign of θ1 − θ2.
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6 Conclusion

This paper casts some light on redistributional e�ects of carbon taxation and shows that carbon-

emitting resources owners can bene�t from carbon taxation if a dirtier abundant resource is also used,

even if tax revenues are not redistributed.

Crude oil is likely to be in competition through time with unconventional oil, that is abundant (oil

shales, oil sands, based synthetic crudes and derivative products, coal-based liquid supplies, biomass-

based liquid supplies and liquids arising from chemical processing of natural gas ) and more polluting.

Following our model, oil owners may bene�t from carbon taxation. The same remark holds for natural

gas producers since gas is in competition with more polluting resources like coal.

Our results lead to reconsider the debate over compensations for losses in oil export revenues in-

duced by carbon taxation, claimed for instance by OPEC countries. Major coal exporters are likely to

be durably not sensitive to pro-mitigation arguments as long as their losses are not at least partially

compensated. Oil and gas exporters may be more easily convinced about the necessity of carbon

regulation since they may take direct advantage of carbon taxation.

However, we have shown in the last section of this paper that owners of a polluting resource � in di-

rect competition with the dirtiest resource � may bene�t more or loose less from carbon taxation than

those of a less polluting resource that is not in direct competition with the dirtiest resource.Applying

this result to the transportation sector where inshore oil competes with o�shore oil (more polluting

and more expensive) and unconventional oil (the most polluting and the most expensive type of oil),

it comes that owners of o�shore oil may bene�t more or loose less from a tighter carbon regulation

than owners of inshore oil, despite the fact that o�shore oil is more polluting than inshore oil.
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7 Appendix of Section 2

7.1 Proof of Lemma 3

Di�erentiating Eqs 3.1-3.4 with respect to Z, it comes that

dλ0
e

dZ
has the sign of:

−θdD(p(t1)) + θeD(p(0)) + rθdµ
0θe

ˆ t1

0

D′(p(t))ertdt

that can be rewritten, using that ṗ(t) = r(λ0
e + θeµ

0)ert,

−θdD(p(t1)) + θeD(p(0)) + θdµ
0θe

D(p(t1))−D(p(0))

λ0
e + θeµ0

thus �nally,
dλ0
e

dZ
has the sign of:

1− D(p(t1))

D(p(0))

θd
θe
− (θd − θe)

µ0

λ0
e

8 Appendix of Section 4

8.1 Charaterization of the di�erent cases

8.1.1 Cases C: Rd cheaper than Re in both sectors: ce < cd < cd + z

If ce < cd < cd + z, then de�ne X∗, Z∗ such that the initial prices of Re and Rd in the power sector

are equal and the �nal prices of Re and Rd in the transport sectors are equal (i.e they reach cb at the

same date). Then one can verify that the quantity of Re used on this price path is equal to:

X∗ =

ˆ 1/r ln(
cd+z−ce
cd−ce

)

0

DT (ce +
(cd − ce)(cb − ce)

cd + z − ce
ert)dt

and the CO2 emissions on this price path are equal to:

Z∗ = Z0 + θeX
∗ + θd

ˆ 1/r ln(
(cb−cd)(cd+z−ce)

(cd−ce)(cb−(cd+z))
)

0

DE(cd +
(cd − ce)(cb − (cd + z))

cd + z − ce
ert)dt
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And we de�ne X̃ such that:

X̃ =

ˆ 1/r ln(
cd+z−ce
cd−ce

)

0

DT (ce + (cd − ce)ert)dt

The quantity X̃ is the quantity of Re that would be used if the initial price of Re (including the

scarcity rent) was cd and its �nal price cd + z.

We de�ne h(Z̄), for Z̄ ≤ Z∗, such that �nal Re price and �nal Rd price in the transport sector are

equal (i.e. they reach cb at the same date):

ce + (λo + θeµ
0)erT = cb

ce + (λo + θeµ
0)erT = cd + z + θde

rT

cd + θdµ
0erT2 = cb

h(Z̄) =

ˆ T

0

DT (ce + (λo + θeµ
0)ert)dt

θef(Z̄) + θd

ˆ T2

0

DE(cd + θde
rT )dt = Z̄ − Z0

for Z̄ > Z2 with

Z2 = Z0 + θd

ˆ 1/r ln(
cb−cd

cb−(cd+z)
)

0

DE(cd + (cb − (cd + z))ert)dt

and for Z̄ > Z∗, h(Z̄) = Z̄−Z0

θe
+X∗. It is straightforward that h(Z̄) ≥ Z̄−Z0

θe
+X∗. And we de�ne

g(Z̄), such that for Z̄1 < Z̄ ≤ Z∗, with Z̄1 = Z0 + θd
´ 1/r ln(

(cb−cd)θe
((cb−ce)θd)

)

0 DE(cd + θd
cb−ce
θe

ert)dt:

ce + λo + θeµ
0 = cd + θdµ

0

ce + (λo + θeµ
0)erT1 = cb

cd + θde
rT2 = cb

g(Z̄) =

ˆ T1

0

DT (ce + (λo + θeµ
0)ert)dt

θeg(Z̄) + θd

ˆ T2

0

DE(cd + θde
rt)dt = Z̄ − Z0
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and for Z̄ > Z∗:

ce + λo + θeµ
0 = cd + θdµ

0

ce + (λo + θeµ
0)ert1 = cd + z + θdµ

0ert1

cd + z + θde
rt2 = cb

cd + θde
rt3 = cb

g(Z̄) =

ˆ t1

0

DT (ce + (λo + θeµ
0)ert)dt

θeg(Z̄) + θd(

ˆ t3

0

DE(cd + θde
rt)dt+

ˆ t2

t1

DT (cd + z + θde
rt)dt) = Z̄ − Z0

It is straightforward that g(Z̄) ≤ X̃.

8.1.2 Cases E: Re more expensive than Rd in both sectors: ce > cd + z > cd

If ce > cd + z > cd and cb >
θdce−θecd
θd−θe , then if the exhaustible resource is not exhausted, Re is being

used just before the switch date with solar in the energy sector. Let de�ne Z∗ and X∗ such that Re

is not exhausted and the initial prices of Re and Rd in the energy sector are equal:

ce + θeµo = cd + θdµo

ce + θeµoe
rT = cb

X∗ =

ˆ T

0

DE(ce + θeµoe
rt)dt+

ˆ T

0

DT (ce + θeµoe
rt)dt

Z∗ = Z0 + θeX
∗

Let de�ne Z∗∗ and X∗∗ such that Re is not exhausted and the initial prices of Re and Rd in the

transport sector are equal:

ce + θeµo = cd + θdµo + z

ce + θeµoe
rT = cb

ce + θeµoe
rt1 = cd + θdµoe

rt1

X∗∗ =

ˆ T

t1

DE(ce + θeµoe
rt)dt+

ˆ T

0

DT (ce + θeµoe
rt)dt

Z∗∗ = Z0 + θeX
∗∗ + θd

ˆ t1

0

DE(cd + θdµoe
rt)dt
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De�ne f(Z̄), such that for Z̄ ≤ Z∗, f(Z̄) = Z̄−Z0

θ0
and for Z∗∗ > Z̄ > Z∗:

ce + θeµoe
rt1 = cd + θdµoe

rt1

ce + θeµoe
rT = cb

f(Z̄) =

ˆ T

t1

DE(ce + θeµoe
rt)dt+

ˆ T

0

DT (ce + θeµoe
rt)dt

θef(Z̄) + θd

ˆ t1

0

DE(cd + θdµoe
rt)dt = Z̄ − Z0

and for Z̄ > Z∗∗, f(Z̄) = Z∗∗ De�ne Z̃ such that lRe is exhausted ; and the initial prices of Re and

Rd in the transport sector are equal ; and the �nal prices of Re and Rd in the energy sector are equal:

ce + λo + θeµo = cd + z + θdµo

ce + (λo + θeµo)e
rT = cd + θdµoe

rT

ce + (λo + θeµo)e
rT = cb

X̃ =

ˆ T

0

DT (ce + (λo + θeµo)e
rt)dt

Z̃ = θeX1 + θd

ˆ T

0

DE(cd + θdµoe
rt)dt

For Z̄ < Z̃ de�ne g(Z̄):

ce + (λo + θeµo)e
rT = cd + θdµoe

rT

ce + (λo + θeµo)e
rT = cb

Z̄ = Z0 + θe

ˆ T

0

DT (ce + (λo + θeµo)e
rt)dt+ θd

ˆ T

0

DE(cd + θdµoe
rt)dt

g(Z̄) =

ˆ T

0

DT (ce + (λo + θeµo)e
rt)dt

and for Z̄ > Z̃, then g(Z̄) = Z̃. We de�ne Z̄2 by:

Z̄2 = Z0 + θd

ˆ 1/r ln(
cb−cd

cb−(cd+z)
)

0

DE(cd + (cb − (cd + z))ert)dt
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De�ne h(Z̄), such that for Z̄ < Z̃

ce + λo + θeµo = cd + z + θdµo

ce + (λo + θeµo)e
rT1 = cb

cd + θdµoe
rT2 = cb

θe

ˆ T1

0

DT (ce + (λo + θeµo)e
rt)dt+ θd

ˆ T2

0

DE(cd + θdµoe
rt)dt = Z̄ − Z0

h(Z̄) =

ˆ T1

0

DT (ce + (λo + θeµo)e
rt)dt

and for Z̄ > Z̃

ce + λo + θeµo = cd + z + θdµo

ce + (λo + θeµo)e
rt1 = cd + θdµoe

rt1

ce + (λo + θeµo)e
rT2 = cb

cd + θdµoe
rT1 = cb

h(Z̄) =

ˆ T2

0

DT (ce + (λo + θeµo)e
rt)dt+

ˆ T1

t1

DE(ce + (λo + θeµo)e
rt)dt

θeh(Z̄) + θd

ˆ t1

0

DE(cd + θdµoe
rt)dt = Z̄ − Z0

We can show that h(Z∗∗) = X∗∗

If ce > cd + z > cd and
θdce−θe(cd+z)

θd−θe < cb <
θdce−θecd
θd−θe , then de�ne X∗ and Z∗ such that:

ce + θeµ
0 = cd + z + θdµ

0

ce + θeµ
0ert1 = cb

cd + θdµ
0ert2 = cb

X∗ =

ˆ t1

0

DT (ce + θeµ
0ert)dt

Z∗ = Z0 + θeX
∗ + θd

ˆ t2

0

DE(cd + θdµ
0ert)dt

And de�ne h(Z̄), for Z̄ < Z∗ and Z̄ > Z1, with Z1 = Z0 +
´ 1/r ln(

(cb−cb)θe
(cb−ce)θd

)

0 DE(cd + θd(cb−ce)
θe

ert)dt
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by:

ce + θeµ
0ert1 = cb

cd + θdµ
0ert2 = cb

h(Z̄) =

ˆ t1

0

DT (ce + θeµ
0ert)dt

Z̄ = Z0 + θeh(Z̄) + θd

ˆ t2

0

DE(cd + θdµ
0ert)dt

And for Z̄ > Z∗, h(Z̄) = X∗ Then if X ≥ h(Z̄), the exhaustible resource is not exhausted. If Z̄ < Z∗

and X ≥ h(Z̄), the exhaustible resource is used in the transport sector and Rd in the energy sector.

If Z̄ > Z∗ and X ≥ h(Z̄), then only Rd is used in the energy sector and Rd then the exhaustible

resource is used in the transport sector. If X < h(Z̄) then the exhaustible resource is exhausted and

the exhaustible resource the Rd is used in the transport sector, only Rd is used in the energy sector.

If ce > cd + z > cd and
θdce−θe(cd+z)

θd−θe > cb, then the exhaustible resource, is never used.

8.2 Proof of Results

8.2.1 Case C2 and E4. Only Re is used in transport sector; Re then Rd are used in

power sector

The solution is given by:

ce + λ0
ee
rt1 + θeµ

0ert1 = cd + θdµ
0ert1 (8.1)

ce + λ0
ee
rt2 + θeµ

0ert2 = cb (8.2)

cd + θdµ
0ert = cb (8.3)ˆ t2

0

DT (ce + λ0
ee
rt + θeµ

0ert)dt (8.4)

+

ˆ t1

0

DE(ce + λ0
ee
rt + θeµ

0ert)dt = x0
e (8.5)

θexe + θd

ˆ t

t1

DE(cd + θdµ
0ert)dt = Z − Z0 (8.6)

Di�erentiating the previous system with respect to Z,we get that
dλ0
e

dZ
has the sign of:

1− (θd − θe)
µ0

λ0
o

− θd
θe

DE(p(t1))

DT (p(0)) +DE(p(0))
(8.7)
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It is the case that DE(p(t1))
DT (p(0))+DE(p(0)) > DE(cb)

DT (ce)+DE(ce)
, so that ∃θ∗ > 1 such that if θd

θe
> θ∗, then

dλ0
e

dZ
< 0.

Using that (θd − θe)µ
0
o

λ0 = 1− cd−ce
λoert1

, we get that
dλ0
e

dZ
has the sign of:

cd − ce
λoert1

− θd
θe

DE(p(t1))

DT (p(0)) +DE(p(0))
(8.8)

But λoe
rt1 > (θd − θe)µoert1 And t− t1 and µ0ert1 are de�ned by

θdµ
0ert1er(t−t1) = cb − cd (8.9)

θeXe + θd

ˆ t

t−t1
DE(cd + θdµ

0ert1eru)du = Z − Z0 (8.10)

we have the results on extraction costs.

8.2.2 Case C3, D5 and E6. Only Re is used in transport sector; Rd in power sector.

The solution is given by:

ce + λ0
ee
rt1 + θeµ

0ert1 = cb (8.11)

cd + θdµ
0ert = cb (8.12)ˆ t1

0

DT (ce + λ0
ee
rt + θeµ

0ert)dt = x0
e (8.13)

θexe + θd

ˆ t

0

DE(cd + θdµ
0ert)dt = Z − Z0 (8.14)

Di�erentiating the previous system with respect to Z, it comes that:

dλ0
e

dZ
> 0.
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8.2.3 Case C5 and D6: Re then Rd in transport sector; only Rd is used in power sector

(this case implies that the exhaustible resource is exhausted).

For X0
e low enough, extraction is necessarily as described by this case. The solution is given by:

ce + λ0
ee
rt1 + θeµ

0ert1 = cd + θdµ
0ert1 + z (8.15)

cd + θdµ
0ert2 + z = cb (8.16)

cd + θdµ
0ert = cb (8.17)ˆ t1

0

DT (ce + λ0
ee
rt + θeµ

0ert)dt = X0
e (8.18)

θeXe + θd

ˆ t2

t1

DT (cd + θdµ
0ert + z)dt (8.19)

+θd

ˆ t

0

DE(cd + θdµ
0ert)dt = Z − Z0 (8.20)

Di�erentiating the previous system with respect to Z we get that
dλ0
e

dZ
has the sign of:

1− (θd − θe)
µo
λo
− θd
θe

DT (t1)

DT (0)

So that the propositions of the �rst section continue to hold.

8.2.4 Case C4 ; Re then Rd in both sectors

The solution is given by:

ce + λ0
ee
rt1 + θeµ

0ert1 = cd + θdµ
0ert1 (8.21)

ce + λ0
ee
rt2 + θeµ

0ert2 = cd + θdµ
0ert2 + z (8.22)

cd + θdµ
0ert3 + z = cb (8.23)

cd + θdµ
0ert = cb (8.24)ˆ t1

0

DE(ce + λ0
ee
rt + θeµ

0ert) (8.25)

+

ˆ t2

0

DT (ce + λ0
ee
rt + θeµ

0ert)dt = x0
e (8.26)

θexe + θd

ˆ t

t1

DE(cd + θdµ
0ert)dt (8.27)

+θd

ˆ t3

t2

DT (cd + θdµ
0ert + z)dt = Z − Z0 (8.28)
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Di�erentiating the previous system with respect to Z we get that
dλ0
e

dZ
has the sign of:

1− θd
θe

DE(t1) +DT (t2)

DE(0) +DT (0)
− (θd − θe)

µ0

λ0
o

Remark that :
dλ0
e

dZ
has then the sign of:

−θd
θe

DE(t1) +DT (t2)

DE(0) +DT (0)
− cd − ce

λeert1

But λee
rt1 > (θd − θe)µ0e

rt1 . And and it is straightfoward that µ0ert1 > µ0
∗e
rt1 , with µ0

∗e
rt1 solution

of:

θdµ
0
∗e
rt1er(t−t1) = cb − cd

θeXe + θd

ˆ t

t−t1
DE(cd + θdµ

0
∗e
rt1eru)du = Z − Z0

which do not depend on ce.

8.2.5 Cases D4 and E4: only Re is used in transport sector; Rd then Re are used in

power sector.

The solution is given by:

ce + λ0
ee
rt1 + θeµ

0ert1 = cd + θdµ
0ert1 (8.29)

ce + λ0
ee
rt + θeµ

0ert = cb (8.30)ˆ t

t1

DE(ce + λ0
ee
rt + θeµ

0ert)dt (8.31)

+

ˆ t

0

DT (ce + λ0
ee
rt + θeµ

0ert)dt = x0
e (8.32)

θexe + θd

ˆ t1

0

DE(cd + θdµ
0ert)dt = Z − Z0 (8.33)

Di�erentiating the previous system with respect to Z
dλ0
e

dZ
has the sign of:

ce − cd
λoert1

− θd
θe

DE(t1)

DT (0)
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8.2.6 Case E5. Rd then Re in transport sector, Rd then Re in power sector.

Writing t∗ is the switch date from Rd to the exhaustible resource in the transport sector, the solution

is given by:

ce + λ0
ee
rt∗ + θeµ

0ert
∗

= cd + θdµ
0ert

∗
+ z (8.34)

ce + λ0
ee
rt1 + θeµ

0ert1 = cd + θdµ
0ert1 (8.35)

ce + λ0
ee
rt + θeµ

0ert = cb (8.36)ˆ t

t1

DE(ce + λ0
ee
rt + θeµ

0ert) (8.37)

+

ˆ t

t∗
DT (ce + λ0

ee
rt + θeµ

0ert)dt = x0
e (8.38)

θexe + θd

ˆ t1

0

DE(cd + θdµ
0ert)dt (8.39)

+θd

ˆ t∗

0

DT (cd + θdµ
0ert)dt = Z − Z0 (8.40)

Di�erentiating the previous system with respect to Z
dλ0
e

dZ
< 0, tightening the carbon regulation will

increase pro�t of the exhaustible resource owners.

8.2.7 Case E7. Rd then Re in transport sector, Rd in power sector.

The solution is given by:

ce + λ0
ee
rt∗ + θeµ

0ert
∗

= cd + θdµ
0ert

∗
+ z (8.41)

ce + λ0
ee
rt2 + θeµ

0ert2 = cb (8.42)

cd + θdµ
0ert = cb (8.43)ˆ t2

t∗
DT (ce + λ0

ee
rt + θeµ

0ert)dt = x0
e (8.44)

θexe + θd

ˆ t

0

DE(cd + θdµ
0ert)dt (8.45)

+θd

ˆ t∗

0

DT (cd + θdµ
0ert)dt = Z − Z0 (8.46)

Di�erentiating the previous system with respect to Z we get that
dλ0
e

dZ
< 0.
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9 Appendix of Section 5

9.1 Ordering the extraction of resources

9.1.1 The dirty backstop is the most expensive to extract

Discussion of Lemma 20

If θ1 ≤ θ2 and if resource 1 is not exhausted, the price of resource 1 is strictly lower than the prices of

resource 2 and the dirty backstop over the whole extraction path. Thus, before using resource 2 or the

dirty backstop, one must �rst exhaust resource 1. It comes that resource 1 is necessarily used, and is

exhausted i�. Z ≥ θ1X
0
1 +Z0. Assume now that θ1 > θ2 but

θ1c2−θ2c1
θ1−θ2 > cb. Condition

θ1c2−θ2c1
θ1−θ2 > cb

is equivalent to p1(t) < p2(t) with p1(t) = cb if both resources 1 and 2 are not exhausted. It follows

that if θ1c2−θ2c1
θ1−θ2 > cb and θ1 > θ2, for Z close enough to Z0, only resource 1 is used. Increasing Z

allows to consume more of resource 1, and keeps its price lower than resource 2 price, thus if resource

2 is used, resource 1 must be exhausted. Finally, if θ1c2−θ2c1
θ1−θ2 > cb and θ1 > θ2, or if θ1 ≤ θ2, and

Z < θ1X
0
1 + Z0, only resource 1 is used (case F5). Since resource 2 is less polluting than the dirty

backstop and cheaper to extract, before turning to the extraction of the dirty backstop, one must

exhaust �rst resource 2, and we get directly that if θ1c2−θ2c1θ1−θ2 > cb and θ1 > θ2, or if θ1 ≤ θ2, resource

1 is exhausted and resource 2 is used but not exhausted (case F2) i�. θ1X
0
1 < Z−Z0 < θ1X

0
1 +θ2X

0
2 .

Assume now that θ1c2−θ2c1
θ1−θ2 < cb and θ1 > θ2. For Z close enough to Z0, only resource 2 is used.

Increasing Z leads to start extracting resource 1 at some point. Using similar reasoning as in proof of

Lemma 11 in Section 3, there exists X0
2 de�ned by X∗2 =

´ cb
p∗
D(c2 +(p∗− c2)ert)dp such that p∗ is the

switch price from resource 2 to resource 1 if both resources are not exhausted. If X0
2 < X∗2 , resource

2 is exhausted before using resource 1 when Z is increased. We call Z∗ = θ2X
∗
2 + Z0. If X0

2 < X∗2 ,

for Z > Z∗, resource 2 gets exhausted i�. Z > θ2X
0
2 + Z0 and both resource 1 and 2 get exhausted

i�. Z > θ1X
0
1 + θ2X

0
2 +Z0. If X0

2 > X∗2 , resource 2 is not exhausted when resource 1 is used but not

exhausted. Both resources are used and not exhausted i�. θ2X
∗
2 +Z0 < Z < θ1X

0
1 +θ2X

∗
2 +Z0 = Z∗∗.

Resource 1 gets exhausted i�. Z > θ1X
0
1 + θ2X

∗
2 +Z0 = Z∗∗. Increasing Z over Z∗∗, leads to extract

more of resource 2, until getting it exhausted for Z = θ1X
0
1 + θ2X

0
2 + Z0. For a larger Z, the dirty

backstop starts to be used (case F1).

9.1.2 Intermediate cost for the dirty backstop, c1 < cd < c2

Discussion over Lemma 21
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Condition θdc2−θ2cd
θd−θ2 > cb implies that the dirty backstop is preferred to resource 2 on the whole

extraction path, thus resource 2 is never used. The characterization of the paths is thus similar to

the case of Section 3 where only one exhaustible resource is available, and is more expensive but less

polluting than the dirty backstop.

If θdc2−θ2cdθd−θ2 < cb, if resource 2 was abundant, its �nal price would be lower than the �nal price of

the dirty backstop, thus for a relatively low carbon ceiling, resource 2 is necessarily used if the dirty

backstop is used. If θ1 < θ2 or (θ1 > θ2 and θ1c2−θ2c1
θ1−θ2 > cb ), for Z close enough to Z0, resource 1

is used, and resource 1 must be exhausted before turning to extract resource 2 when Z gets larger

than Z∗ = θ1X
0
1 + Z0. If resource 1 is used, its consumption increases when Z increases until being

exhausted. This is due to the fact that this resource is the cheapest to extract. In that case, for

Z ≤ θ1X
0
1 +Z0, only resource 1 is used, and if Z > θ1X

0
1 +Z0, resource 2 is used after resource 1 gets

exhausted. When increasing Z, at some point the dirty backstop starts to be extracted. Resource 2 can

be exhausted or not before turning to the dirty backstop extraction cost. To determine the conditions

to get resource 2 exhausted after using the dirty backstop through time, let us remark that the situation

is very close to situation described in Section 3 when the exhaustible resource is more expensive than

the dirty backstop. The di�erence is simply that a quantity θ1X
0
1of pollution is necessarily added to

the initial carbon stock Z0 before using resource 2. Considering the value of the carbon stock when the

backstop starts to be used, θ1X
0
1 +Z0 as an initial carbon stock of a new extraction problem starting

at date t1, following reasoning exposed in Section 3, proof of Lemma 11, we get that ∃Z∗∗, Z∗∗∗,

Z∗∗ < Z∗∗∗, such that if Z∗∗ > Z > Z∗, and X0
2 >

Z−Z0−θ1X1

θ2
, resource 1 is exhausted and resource

2 is used but not exhausted (case G3); if Z > Z∗, and X0
2 < min(Z−Z

0−θ1X1

θ2
, Z
∗∗−Z0−θ1X1

θ2
), resource

1 and 2 are exhausted and the dirty backstop is used (case G1); if Z > Z∗∗ and X0
2 >

Z∗∗−Z0−θ1X1

θ2
,

resource 1 is exhausted, and resource 2 is used but not exhausted, the dirty backstop is used (case

G2).

Now let assume that θdc2−θ2cd
θd−θ2 < cb and θ1 > θ2 and θ1c2−θ2c1

θ1−θ2 < cb. For Z close enough to Z0,

only resource 2 is used. Increasing Z from Z0, it comes that resource 1 must be used at some point.

Resource 2 is exhausted before starting to use resource 1 when Z increases i�. X0
2 < X∗2 , where

X∗2 represents the maximum quantity of resource 2 that can be used before its initial price equals

the price of resource 1 if both resources were abundant. X∗2 =
´ cb
p∗
D()dp where p∗ would be the

switch price from resource 1 to 2 if both were abundant. It follows that, if X0
2 < X∗2 : resource 2 is

exhausted i�. Z ≥ θ2X
0
2 + Z0; resource 1 is used and not exhausted and resource 2 is exhausted i�.
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θ1X
0
1 + θ2X

0
2 + Z0 > Z > θ2X

0
2 + Z0; both resources 1 and 2 are exhausted and the dirty backstop

is used i�. θ1X
0
1 + θ2X

0
2 + Z0 < Z. If X0

2 > X∗2 , resource 2 is not exhausted when Z is large enough

to start using resource 1: only resource 2 is used i�. Z < θ2X
∗
2 + Z0 ≡ Z∗; resource 1 is used

but not exhausted and resource 2 is used but not exhausted i�. Z∗∗ ≡ θ1X
0
1 + θ2X

∗
2 + Z0 > Z >

θ2X
∗
2 + Z0 ≡ Z∗. For Z ≥ Z∗∗, resource 1 is exhausted. Let us de�ne X∗∗2 , the maximum quantity

of resource 2 that could be used if this resource was abundant. X∗∗2 writes X∗∗2 =
´ cb
p∗∗D()dp where

p∗∗ would be the switch price from resource 2 to the dirty backstop if resource 2 was abundant.. For

Z∗∗ ≡ θ1X
0
1 + θ2X

∗
2 + Z0 < Z < θ1X

0
1 + θ2X

∗∗
2 + Z0 ≡ Z∗∗∗ and Z < θ1X

0
1 + θ2X2 + Z0, resource 1

is exhausted and resource 2 is used but not exhausted, the dirty backstop unused. Let assume that

X∗∗2 > X0
2 > X∗2 , we get that both resources 1 and 2 are exhausted and the dirty backstop used i�.

Z∗∗ ≡ θ1X
0
1 + θ2X2 + Z0 < Z. Let assume that X∗∗2 < X0

2 , resource 2 cannot be exhausted, and

resource 1 gets exhausted and resource 2 is used but not exhausted and the dirty backstop used i�.

θ1X
0
1 + θ2X

∗∗
2 + Z0 < Z.

9.2 General results

9.2.1 Preliminary remarks over pro�ts of resources 1 and 2 when c1 < c2 < cd

Detailed calculus to get
dλ0

1

dZ
,
dλ0

2

dZ
and

dλ0
1

dZ
− dλ0

2

dZ
:

Proof of Lemma 22

Proof.
dλ0

2

dZ
has the sign of:

X = −r(λ0
1 − λ0

2 + (θ1 − θ2)µ0)θd(−
´ t1

0
D′()ertdt)D(t2)− θdD(t2)D(t1)

+θ2

(
r(λ0

1 − λ0
2 + (θ1 − θ2)µ0)(−

´ t1
0
D′()ertdt)D(t2)

)
+θ2

(
r(λ0

2 + (θ2 − θd)µ0)(−
´ t1

0
D′()ertdt)D(t1) +D(t2)D(t1)

)
+θ2

(
r(λ0

1 − λ0
2 + (θ1 − θ2)µ0)r(λ0

2 + (θ2 − θd)µ0)(−
´ t1

0
D′()ertdt)(−

´ t2
t1
D′()ertdt)

)
+θ2

(
r(λ0

2 + (θ2 − θd)µ0)D(t1)(−
´ t2
t1
D′()ertdt)

)
Remarking that ṗ = r(λ0

1 + θ1)µ0ert over [0; t1] and ṗ = r(λ0
2 + θ2)µ0ert over [t1; t1], it comes that

dλ0
2

dZ
has the sign of:

X = r(λ0
2 + θ2µ

0)(θd − θ2)(−
´ t1

0
D′(p(t))ertdt)D(t2)−D(t2)(θd − θ2)D(0)

+θ2

(
−D(t2)D(t1) + r(λ0

2 + (θ2 − θd)µ0)(−
´ t1

0
D′(p(t))ertdt)D(t1)

)
+θ2

(
Y − rθdµ0D(t1)(−

´ t2
t1
D′(p(t))ertdt) +D(t1)D(t1)

)
where
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Y = r(λ0
1 − λ0

2 + (θ1 − θ2)µ0)r(λ0
2 + (θ2 − θd)µ0)(−

´ t1
0
D′(p(t))ertdt)(−

´ t2
t1
D′(p(t))ertdt)

We get

Y = (D(0)−D(t1))(D(t1)−D(t2))

−rθdµ0(D(0)−D(t1))(−
´ t2
t1
D′()ertdt)

−r(λ0
2 + (θ2 − θd)µ0)(−

´ t1
0
D′()ertdt)(D(t1)−D(t2))

we thus get:

X = r(λ0
2 + θ2µ

0)(θd − θ2)(−
´ t1

0
D′(p(t))ertdt)D(t2)

−D(t2)θdD(0) + θ2D(0)(D(t1))

−θ2rθdµ
0D(0)(−

´ t2
t1
D′()ertdt)

+θ2r(λ
0
2 + (θ2 − θd)µ0)(−

´ t1
0
D′()ertdt)D(t2)

Finally,

X = D(0)(−D(t2)θd + θ2D(t1)) + rλ0
2θd(−

´ t1
0
D′()ertdt)D(t2)

−θ2rθdµ
0D(0)(−

´ t2
t1
D′()ertdt)

dλ0
2

dZ
has the sign of:

1− D(t2)
D(t1)

θd
θ2
− λ0

2

λ0
1+θ1µ0

θd
θ2

(1− D(0)
D(t1) )D(t2)

D(0) −
θdµ

0

λ0
2+θ2µ0 (1− D(t2)

D(t1) )

that we can also rewrite into

1− D(t2)
D(t1)

θd
θ2
− λ0

2

λ0
1+θ1µ0

θd
θ2

(1− D(0)
D(t1) )D(t2)

D(0) −
θdµ

0

λ0
2+θ2µ0 (1− D(t2)

D(t1) )

1 + θ2
µ0

λ0
2
− D(t2)

D(t1)
θd
θ2

(λ0
2+θ2µ

0)

λ0
2

− λ0
2+θ2µ

0

λ0
1+θ1µ0

θd
θ2

(1− D(0)
D(t1) )D(t2)

D(0) −
θdµ

0

λ0
2

(1− D(t2)
D(t1) )

Finally,
dλ0

2

dZ
has the sign of: 1 + (θ2 − θd)µ

0

λ0
2
− D(t2)

D(t1)
θd
θ2
− λ0

2+θ2µ
0

λ0
1+θ1µ0

θd
θ2

(1− D(0)
D(t1) )D(t2)

D(0)

and 1− D(t2)
D(t1)

θd
θ2

negative is still a su�cient condition to get
dλ0

2

dZ
negative.

Proof of Lemma 23

Proof. Remarking that ṗ = r(λ0
1 + θ1)µ0ert over [0; t1] and ṗ = r(λ0

2 + θ2)µ0ert over [t1; t1], it comes

that
dλ0

1

dZ
has the sign of:

−D(t1)(θdD(t2)− θ1D(0))− rθdθ1µ
0(−
´ t1

0
D′()ertdt)D(t2)− rθ1θdµ

0D(0)(−
´ t2
t1
D′(p(t))ertdt)

and �nally,
dλ0

1

dZ
has the sign of:

1− θdD(t2)
θ1D(0) −

θdµ
0

λ0
1+θ1µ0 (1− D(t1)

D(0) )− θdµ
0

λ0
2+θ2µ0 (1− D(t2)

D(t1) )

Detailed calculus:

dλ0
1

dZ
has the sign of:

W = −ert1ert2θdD(t2)D(t1)
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+θ1

(
r(λ0

1 − λ0
2 + (θ1 − θ2)µ0)ert1ert2(−

´ t1
0
D′()ertdt)D(t2)

)
+θ1

(
ert1r(λ0

2 + (θ2 − θd)µ0)ert2(−
´ t1

0
D′()ertdt)D(t1) + ert1ert2D(t2)D(t1)

)
+θ1

(
r(λ0

1 − λ0
2 + (θ1 − θ2)µ0)ert1r(λ0

2 + (θ2 − θd)µ0)ert2(−
´ t1

0
D′()ertdt)(−

´ t2
t1
D′()ertdt)

)
+θ1

(
ert1r(λ0

2 + (θ2 − θd)µ0)ert2D(t1)(−
´ t2
t1
D′()ertdt)

)
Remarking that ṗ = r(λ0

1 + θ1)µ0ert over [0; t1] and ṗ = r(λ0
2 + θ2)µ0ert over [t1; t1], it comes that

dλ0
1

dZ
has the sign of:

X = −θdD(t2)D(t1)

+θ1

(
−r(λ0

2 + θ2µ
0)(−

´ t1
0
D′()ertdt)D(t2)

)
+θ1

(
(D(0)−D(t1))D(t2) + r(λ0

2 + (θ2 − θd)µ0)(−
´ t1

0
D′()ertdt)D(t1) +D(t2)D(t1)

)
+θ1

(
Y +D(t1)(D(t1)−D(t2))− rθdµ0D(t1)(−

´ t2
t1
D′()ertdt)

)
where

Y = r(λ0
1 − λ0

2 + (θ1 − θ2)µ0)r(λ0
2 + (θ2 − θd)µ0)(−

´ t1
0
D′()ertdt)(−

´ t2
t1
D′()ertdt)

We get Y = (D(0)−D(t1))(D(t1)−D(t2))

−r(λ0
1 + θ1µ

0)rθdµ
0(−
´ t1

0
D′()ertdt)(−

´ t2
t1
D′()ertdt)

−r(λ0
2 + θ2µ

0)r(λ0
2 + (θ2 − θd)µ0)(−

´ t1
0
D′()ertdt)(−

´ t2
t1
D′()ertdt)

then,

Y = (D(0)−D(t1))(D(t1)−D(t2))

−rθdµ0(D(0)−D(t1))(−
´ t2
t1
D′()ertdt)

−r(λ0
2 + (θ2 − θd)µ0)(−

´ t1
0
D′()ertdt)(D(t1)−D(t2))

thus

X = D(t1)(θ1D(0)− θdD(t2))− θ1rθdµ
0D(0)(−

´ t2
t1
D′()ertdt)

−θ1rθdµ
0D(t2)(−

´ t1
0
D′()ertdt)

Finally,
dλ0

1

dZ
has the sign:

1− θd
θ1

D(t2)
D(0) −

θdµ
0

λ0
2+θ2µ0 (1− D(t2)

D(t1) )− θdµ
0

λ0
1+θ1µ0

D(t2)
D(t1) (1− D(t∗)

D(0) )

A su�cient condition to get
dλ0

1

dZ
< 0 is 1 < θd

θ1

D(t2)
D(0)

Proof of Lemma 32

Proof.
dλ0

1

dZ
− dλ0

2

dZ
has the sign of:

W = r(λ0
1 − λ0

2 + (θ1 − θ2)µ0)θd(−
´ t1

0
D′()ertdt)D(t2)

+(θ1 − θ2)
(
r(λ0

1 − λ0
2 + (θ1 − θ2)µ0)(−

´ t1
0
D′()ertdt)D(t2)

)
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+(θ1 − θ2)
(
r(λ0

2 + (θ2 − θd)µ0)(−
´ t1

0
D′()ertdt)D(t1) +D(t2)D(t1)

)
+(θ1 − θ2)

(
Y + r(λ0

2 + (θ2 − θd)µ0)D(t1)(−
´ t2
t1
D′()ertdt)

)
W = θd(D(0)−D(t1))D(t2)

−r(λ0
2 + θ2µ

0)θd(−
´ t1

0
D′()ertdt)D(t2)

+(θ1 − θ2)
(

(D(0)−D(t1))D(t2)− r(λ0
2 + θ2µ

0)(−
´ t1

0
D′()ertdt)D(t2)

)
+(θ1 − θ2)

(
r(λ0

2 + (θ2 − θd)µ0)(−
´ t1

0
D′()ertdt)D(t1) +D(t2)D(t1)

)
+(θ1 − θ2)

(
Y − rθdµ0D(t1)(−

´ t2
t1
D′()ertdt) +D(t1)(D(t1)−D(t2))

)
W = θd(D(0)−D(t1))D(t2) + (θ1 − θ2)D(0)D(t1)

−r(λ0
2 + θ2µ

0)θd(−
´ t1

0
D′()ertdt)D(t2)

−(θ1 − θ2)rθdµ
0D(0)(−

´ t2
t1
D′()ertdt)

−(θ1 − θ2)rθdµ
0(−
´ t1

0
D′()ertdt)D(t2)

W = θd(D(0)−D(t1))D(t2) + (θ1 − θ2)D(0)D(t1)

−λ
0
2+θ2µ

0

λ0
1+θ1µ0 θd(D(0)−D(t1))D(t2)

−(θ1 − θ2) θdµ
0

λ0
2+θ2µ0D(0)(D(t1)−D(t2))

−(θ1 − θ2) θdµ
0

λ0
1+θ1µ0 (D(0)−D(t1))D(t2)

W = θd(1− D(t1)
D(0) )D(t2)

D(t1) + θ1 − θ2

−λ
0
2+θ2µ

0

λ0
1+θ1µ0 θd(1− D(t1)

D(0) )D(t2)
D(t1)

−(θ1 − θ2) θdµ
0

λ0
2+θ2µ0 (1− D(t2)

D(t1) )

−(θ1 − θ2) θdµ
0

λ0
1+θ1µ0 (1− D(t1)

D(0) )D(t2)
D(t1)

Finally,
dλ0

1

dZ
− dλ0

2

dZ
has the sign of:

θd(1− λ0
2+θ2µ

0

λ0
1+θ1µ0 )(1− D(t1)

D(0) )D(t2)
D(t1) + (θ1 − θ2)

(
1− θdµ

0

λ0
2+θ2µ0 (1− D(t1)

D(0) )D(t2)
D(t1)

)
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