Econometric Evaluation and Climate Change Policies

prepared for the CCCEP PhD Symposium, September 15, 2010

Ralf Martin¹

September 15, 2010

¹Centre for Economic Performance (CEP) and CCCEP

Background

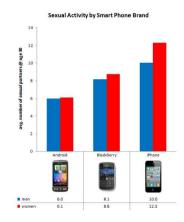
During the last 10-15 years the Climate Change Issue has trickled down from a high level policy debate into a vast array of different policy initiatives on the ground aiming to mitigate Greenhouse Gas (GHG) pollution. Examples from the UK:

- ▶ UK Climate Change Levy and Climate Change Agreements
- ► EU ETS
- ► Renewable Obligation
- ► Carbon Trust
- ► Enhanced Capital Allowance¹
- ► Energy Reduction Commitment²
- ► Energy Technology Institute³
- ► Carbon Emission Reduction Target⁴

The need for econometric evaluation

- ► To inform future Climate Change Policy making we need know the *causal* effect of these policies.
- ▶ Many of those policies have the following structure:
 - ► Large number of individuals/businesses/households receive policy treatment
 - ► Some don't
- ▶ We can rely on a rich econometric toolkit developed in the labour economics literature to analyse such polices.
- ► Labour economics examples:
 - ▶ Effect of education on wage outcomes
 - ▶ Effect of hospital treatment on health
 - ▶ Effect of Military service on wage outcomes
 - ▶ The effect of children on labour market prospects of women.

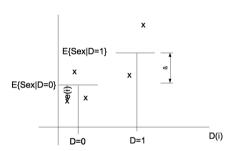
Outline


- ▶ Methodology of Econometric Evaluation
- ▶ Some existing examples in more detail
- ► Practical issues
- ► Some ideas for the future

First however an example on how not to do it.....

Drugs, Sex and ... iphones

- ► So what's wrong with the okcupid study?
- ► Exploits correlation between sex and iphone usage
- ► Implied causality: iphone to sex
- ► But: why not sex to iphone?
- ► So what to do?



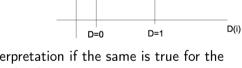
Outline

- ► Methodology of Econometric Evaluation⁵
- lacktriangleright Some existing examples in more detail
- ► Practical issues
- ► Some ideas for the future

A bit of methodology

- ► A more formal way of expressing the problem:
- ightharpoonup To Compute β we can use
- $\beta = \frac{Cov(S_i, D_i)}{Var(D_i)}$


```
To see last results note that:  Cov(S_i,D_i) = \tfrac{1}{N} \sum_i (S_i - Sex)(D_i - \bar{D}) = \tfrac{1}{N} \sum_i S_i D_i - Sex\bar{D}.  Note that \bar{S} = E[S_i|D_i = 1]P(D = 1) + E[S_i|D_i = 0](1 - P(D = 1))  and \tfrac{1}{N} \sum_i S_i D_i = E[S_i|D_i = 1]P(D = 1).  Hence Cov(S_i,D_i) = (E[S_i|D_i = 1] - E[S_i|D_i = 0])P(D = 1)(1 - P(D = 1)).
```


Similarly we can show that $Var(D_i) = P(D=1)(1-P(D=1))$

From correlation to causality

$$S_i = \beta_0 + \beta \times D_i + e_i$$

- When can we interpret β as the causal effect of iphone usage on sex?
- ► Note that by construction we have that

E{Sex|D=1}

х

ightharpoonup Thus, eta has a causal interpretation if the same is true for the actual process generating the data:

E{Sex|D=0}

- \triangleright $S_i = b \times D_i + \varepsilon_i$
- $E[\varepsilon_i|D_i] = E[\varepsilon_i] = 0$

How to violate $E[\varepsilon_i|D_i] = E[\varepsilon_i] = 0$?

- ▶ If both D_i and S_i are caused by something else or causality goes both ways; e.g.
- $\triangleright \varepsilon_i = -\rho \times Nerd_i + \eta_i t \text{ and } E[D_i|Nerd_i = 1] < E[D_i|Nerd_i = 0]$
- ▶ then $E[\varepsilon_i|D_i=1] > 0 > E[\varepsilon_i|D_i=0]$
- ► So what to do?
 - ▶ Selection on observables: Controlling for other factors
 - ▶ Differences in Differences/Fixed Effects: Using time series variation to get rid of unobserved factors
 - ▶ Randomised Experiments: give me the iphone pill
 - ► Natural Experiments
 - ► Regression discontinuity
- ► Let's discuss each in turn

Selection on observables

- ► Suppose we have variables that can control for confounding factors; e.g. academic subject of individual.
- We can include them in a multivariate regressions: $S_i = \beta D_i + beta_1 Subject_i + \eta_i$
- ▶ Rather than $E[\varepsilon_i|D_i]$ = we only need $E[\eta_i|D_i]$ = 0 for causality.
- ▶ However: is academic subject sufficient to capture nerdiness?

Using time variation to get rid of un-observed factors

- ► Suppose we have time series data for individuals (Panel Data)
- ► Suppose that unobserved factors affect treatment and control group in the same way over time; i.e.
- ► Can use (e.g.) first differences to get rid of α : $Sex_{it} Sex_{it-1} = \beta(D_{it} D_{it-1}) + \eta_{it} \eta_{it-1}$
- ► Could be problematic if differences are not fixed over time; e.g. nerds are becoming cooler over time.
- ▶ Time series data might not be available.

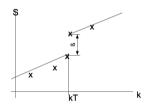
Randomised Trials - The Gold Standard

- ► Follow the example of Drug Trials
- ► Give a random sample of participants iphones.
- ► Force a control group not to get iphones
- ► Compare before and after
- ▶ Best practice to isolate the effect of a specific measure.
- ▶ Not without problems, however:
 - ► Non compliance
 - ► Applicability beyond trial group?
 - ► General equilibrium effects?
 - ▶ (Moral) reservations: withholding goodies from some people.
- ► More moral design options; e.g. delay distribution of goodies to control group

Natural Experiments - Randomised trials designed by the gods and/or circumstance

- ▶ Sometimes we don't need to do experiments ourselves.
- ► Requires often detailed knowledge of circumstances of a policies. A bit of a treasure hunt.
- ► Example: exploit the fact that iphone was not available on all networks. Could examine if people who were on O2 (which covered iphone first in the UK) before iphone introduction had more sex after iphone introduction
- ▶ In practice we embedd this in an instrumental variable regression approach where O2 network becomes an instrument for identifying the causal effect of treatment on the outcome

The Instrumental Variable Approach


- ▶ Requirements for an instrument:
 - 1. Not correlated with unobserved factors (i.e. O2 users should not have more or less sex for reasons other than the early iphone arrival on O2)
 - 2. Correlated with the treatment (iphone usage)
- ► The IV approach then consists of a first stage regression: $D_i = \pi z_i + \delta_i$ (allows to test requirement 2)
- ▶ And a second stage: $S_i = \beta \pi z_i + \varepsilon_i$
- ▶ Implies that we estimate $\beta = \frac{Cov(S_i, z_i)}{Cov(D_i, z_i)}$
- ▶ If z_i and D_i are binary: $\beta = \frac{E[S_i|Z_i=1]-E[S_i|Z_i=0]}{E[D_i|Z_i=1]-E[D_i|Z_i=0]}$ i.e. how much more sex (pre iphone) O2 users have scaled with the difference in iphone usage between O2 and other network users

Maybe our analysis comes to LATE?

- ▶ What if treatment effect varies across i: β_i instead of β
- ► IV estimator identifies the Local Average Treatment Effect (LATE)
- Average β_i for those i that change their treatment status in response to z_i
- ▶ i.e. those (pre iphone) O2 users that that would not have changed to the iphone if they had been on a non O2 network.
- ▶ as opposed to never compliers (O2 users that did not switch to iphone) or always compliers (people who moved to O2 just because of iphone)
- ▶ Important special case: Instrument captures eligibility; e.g. if people were not allowed to change networks, (pre iphone) phone network membership would be an eligibility instrument.
- ► Thus: No always takers. IV identifies Average Treatment Effect for the Treated (ATT).

Regression discontinuity

► If un-observed factors change smoothly but policy treatment does not

- ▶ A bit like controlling with observables
- ▶ But: we only need to capture confounding factors well around the discontinuity
- ► Examples: Test scores that lead to selection in different schools; Geographical boundaries that lead to exclusion from treatment but nothing else (e.g. school catchment areas, tax districts)

Outline

- ▶ Methodology of Econometric Evaluation
- ► Some existing examples in more detail
- ► Practical issues
- ► Some ideas for the future

UK Climate Change Levy (CCL)⁶

- ▶ Energy Tax for Industry introduced in 2001
- ► Some firms can join Climate Change Agreements (CCA) to be exempt
- ► Hence we can compare outcomes (energy usage, employment etc) in firms that are exempt and those that are not.
- ► However: CCA participation voluntary.

 There might be un-observed differences between firms that are joining and those that are not.
- ► Solution: 1. use differences 2. use instrument based on eligibility
- ▶ The model: $y_{it} = \beta D_{it} + \alpha_i + \eta_{it}$
- ightharpoonup Use differences to get rid of α
- ► Eligibility was based on pre 2001 pollution control legislation. Thus, we suggest that post 2001 outcome shocks are not correlated with eligibility

UK CCL – First Stage

	(1)	(2)	(3)	(4)		
Dependent variable		CCL				
Time period	2001	2001	2000-2004	2001		
Method	OLS	Probit	FE	Probit		
NEPER	0.320***	0.312***	0.439***			
	(0.036)	(0.048)	(0.041)			
lnGO(t-1)				0.030***		
				(0.011)		
lnK(t-1)				-0.038***		
				(0.008)		
lnEE(t-1)				-0.042***		
				(0.007)		
lnL(t-1)				0.003***		
				(0.003)		
Age controls	yes	yes	yes	yes		
Sector controls	yes	yes	no	yes		
Region-by-year controls	yes	yes	yes	yes		
Plant fixed effects	no	no	yes	no		
R-squared	0.29	0.29	0.81	0.38		
Observations	1307	4102	17257	4083		

UK CCL – Pre treatment differences?

Variable	CCA=0		CCA=1		Significant?
Age		13.55		17.53	***
Employment		151.49		536.44	***
Energy Expenditure		0.22		1.95	
Output		19.08		86.08	***
Plants		8282		1050	
Variable	EPER=0		EPER=1		Significant?
Δ In(Employment)		-0.021		-0.016	
Δln(Energy Expenditure))	0.034		0.026	
Δln(Output)		0.026		0.037	

UK CCL – Some Results

	(1)	(2)	(3)	(4)	(5)
Dependent variable	OLS	FE	r.f. (FE)	IV (FE)	obs./ plants
Energy share in gross output	-0.024*	-0.027	-0.098**	-0.223**	14,534
$\Delta ln(EE/GO)$	(0.013)	(0.020)	(0.040)	(0.092)	4,262
Energy share in var. costs	-0.027**	-0.019	-0.121***	-0.275***	14,534
$\Delta ln(EE/VCost)$	(0.013)	(0.018)	(0.038)	(0.089)	4,262
Energy expenditure	-0.021*	-0.039**	-0.065**	-0.149**	14,534
Δln(EE)	(0.013)	(0.018)	(0.029)	(0.067)	4,262

Dependent variable	(1) OLS	(2) FE	(3) r.f. (FE)	(4) IV (FE)	(5) obs./ plants
Employment $\Delta ln(L)$	0.006	-0.021	0.020	0.046	14,534
	(0.011)	(0.015)	(0.035)	(0.081)	4,262
Real gross output	0.003	-0.012	0.032	0.074	14,534
Δln(Real GO)	(0.011)	(0.015)	(0.034)	(0.077)	4,262
Total factor productivity $\Delta ln(GO)$ ~inputs	0.002	0.006	-0.010	-0.023	14,467
	(0.006)	(0.010)	(0.026)	(0.059)	4,262

Experiments are real

Hunt Allcott, "Social Norms and Energy Conservation" (http://web.mit.edu/allcott/www/Allcott

- ▶ US electric utility services company (OPower) mailed energy reports to a random sample of households
- ► Energy saving tips; information on electricity consumption of comparable households
- ▶ Population 78,492 household, 39,212 households in treatment group
- ► Random Treatment Group of
- ▶ 2.3% reduction in electricity consumption

Outline

- ▶ Methodology of Econometric Evaluation
- lacktriangleright Some existing examples in more detail
- ► Practical issues
- ► Some ideas for the future

Practical issues

- ► Talk to policy makers/government departments for two main reaons:
 - ► Will help you find natural experiments
 - ► Will provide you with necessary data
- ▶ Encourage policy makers to keep data and facilitate matching
- ▶ Encourage policy makers to allow more randomisation
- ► ONS Micro Data (http://www.ons.gov.uk/about/who-we-are/our-services/vml)

Outline

- ▶ Methodology of Econometric Evaluation
- lacktriangleright Some existing examples in more detail
- ► Practical issues
- ► Some ideas for the future

Future Plans

- ▶ UK Carbon Trust Energy Audits. What's the causal effects?
- ► EU ETS. A discontinuity design?
- ► Your ideas? Let's talk

In conclusion: hopefully you don't buy an iphone in order to have more sex.

Thanks for listening - r.martin@lse.ac.uk

Notes

```
<sup>1</sup>http://www.eca.gov.uk/
```

²http://www.decc.gov.uk/en/content/cms/what we do/lc uk/crc/crc.aspx

³http://www.energytechnologies.co.uk/Home.aspx

⁴http://www.decc.gov.uk/en/content/cms/what_we_do/consumers/saving_energ ⁵For further reading see Angrist and Pischke (2009) "Mostly Harmless Econo-

For further reading see Angrist and Pischke (2009) "Mostly Harmless Econometrics"; Michael Greenstone and Ted Gayer "Quasi-Experimental and Experi-

mental Approaches to Environmental Economics" RFF DP 07-22

⁶For details see Martin et al.,2009, http://cep.lse.ac.uk/pubs/download/dp0917.pdf