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Abstract

Logical structures for modeling agents’ reasoning about unawareness are
presented where it can hold simultaneously that: (i) agents’ beliefs about
whether they are fully aware need not be veracious with partitional information;
and (ii) the agent is fully aware if and only if she is aware of a fixed domain
of formulae. In light of (ii), all states are deemed “possible”. Semantics oper-
ate in two stages, with belief in the second stage determined by truth in the
first stage. Characterization theorems show that, without the first stage, the
structures validate the same conditions as those of Halpern and Rego (2009a).

1 Introduction

Being unaware of something is the same as being unable to conceive of it. Unaware-
ness of the sentence φ thus implies not only the absence of belief in φ but also the
absence of belief in any sentence involving φ, including tautologies such as “φ or
not φ”.

Allowing for unawareness in economic models of decision makes it possible to explain
an array of phenomena that standard frameworks preclude. For example, suppose
Donald is unaware of the possibility of a bank run and chooses to invest his money
in shares in HSBC. If one were to give Donald the message, “there will or will not
be a bank run on HSBC”, standard Bayesian models of decision would deny any
possibility of Donald changing his mind as the message is not “informative” in the
sense of ruling out any state of affairs. However, given Donald’s prior unawareness,
the message does impact upon Donald’s information (put another way, it changes his
beliefs) and it therefore seems reasonable to allow Donald to revise his investment
strategy in light of receiving it. The question of how unawareness may affect dynamic
decision in this way has been studied by Li (2008), Grant and Quiggin (2009), and
Karni and Viero (2009).

Donald’s unawareness of the possibility of a bank run is an example of what this
paper refers to as specific unawareness : unawareness of a particular statement or
event. Though no agent who was (specifically) unaware of φ could ever believe
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she was unaware of φ – to do so would imply initial awareness of φ – such an agent
could hold beliefs about the more general possibility that there was something (non-
specific) of which she was unaware. In this paper the phenomenon of holding such
beliefs is called conscious unawareness.

Conscious unawareness may have a range of interesting economic consequences.
Tirole (2009) argues that if contracting parties believe they are unaware, it may be
efficient for them to allow scope for renegotiation in case they become aware of more
relevant facts in future (that is, it may be efficient to write incomplete contracts).
Other applications are interactive: for example, Halpern and Rego (2009a) suggest
that a local doctor may refer her patient to a specialist because she believes the
specialist is aware of relevant things that she is not. Walker and Dietz (2011) claim
that even in static single-agent settings, a decision maker’s conscious unawareness
may lead her to violate subjective expected utility.

Frameworks for modeling conscious unawareness should be consistent with agents
satisfying reasonable introspective properties. For instance, as Dekel et al. (1998)
argue, it should at least be possible that an agent who is unaware of φ does not
believe she is unaware of φ. Further introspective properties are highlighted by the
examples below:

Example 1: Martha is an inexperienced gambler playing a card game with her
friends. On the basis of her understanding of the rules of the game, she believes
that her current hand cannot be beaten. This belief (and the conception of
the rules on which it is founded) is correct. However, when the time comes
for her to place a bet, she decides not to gamble, reasoning that there may
additional rules of which she is unaware that could cause her to lose money.

Example 2: Eunice is a social worker visiting a family she has known for several
years. She interviews the family members and observes their behavior, watch-
ing for signs of anything that would be of concern to social services, and then
writes a report stating her conclusions. Given her longstanding acquaintance
with the family and years of professional experience, she is confident that she
is aware of all of the relevant concerns and, furthermore, she has sufficient
evidence to conclude that none of them apply to the family. She therefore
writes that there is nothing to be worried about. This assessment later proves
wrong.

While it is true that both Martha’s and Eunice’s choices turn out to be contrary
to their interests, neither of the examples is intended to portray unreasonable or
irrational beliefs or behavior.

Consider Martha’s case and let r be one of the rules of the game. It is natural to
suppose that the fact of Martha’s awareness of r is self-evident to her and thus that
she believes she is aware of r. After all, the very fact that she uses r to deduce
that she has a winning hand should be enough to convince her that she is aware of
it. Given this, an economist modeling a consciously unaware agent might wish to
require that for any statement φ:

The agent is aware of φ Ô⇒ She believes she is aware of φ (1)



By contrast, there seems to be little justification for assuming that the extent of
Martha’s awareness is self-evident to her. For although she can have no idea what
an additional rule to the game might involve, this could also be the case if there was
a rule she was unaware of. Thus, her inexperience alone gives her good grounds to
suspect that there she is not fully aware. Models of conscious unawareness should
therefore be consistent with:

The agent is fully aware /Ô⇒ She believes she is fully aware (2)

Turning to the case of Eunice, similar reasoning applies. She should not be expected
to recognize the existence of problems outside her conception since, by their nature,
these problems could not be self-evident. And given her close knowledge of the
family, it is reasonable for her to suppose that there may be no problems of this
kind. This suggests that models of conscious unawareness should satisfy:

The agent is not fully aware /Ô⇒ She believes she is not fully aware (3)

However, it turns out that (1) is inconsistent with (2) and (3) in the most straight-
forward types of model for conscious unawareness. To see this consider the case of
Martha again. According to (1) whatever she is aware of, she believes she is aware
of, and whatever she believes must be true in every state of the world she consid-
ers possible. This means that in every state she regards as possible, her level of
awareness is at least as great as it is in the true state of the world. But this implies
that she is fully aware in every state she considers possible, which means that she
believes she is fully aware, a violation of (2).

This difficulty, which is present in Halpern and Rego (2009a), has been recognized
in the literature and several authors1 have proposed alternative approaches that
circumvent the problem. These works resolve the inconsistency by allowing the set
of things the agent could be aware of to vary from state to state – thus, though
Martha is aware of the same things in all states she regards as possible, it need not
be that she is aware of everything there is to be aware of in all these states so it
does not follow that she believes she is fully aware.

Varying the domain of “things to be aware of” across states of the world in this
way allows one to reconcile (1) with (2) and (3), but the resulting state space is no
longer of the kind familiar from Savage (1954). In the latter type of state space,
states stand for a complete and consistent description of reality, where notions of
“completeness” and “consistency” are fixed across states. Yet if the set of “things
to be aware of” differs from state to state, it must be that the consistency of the
sentence “the agent is fully aware” with a given level of awareness is not fixed. Thus,
it cannot be that all states use a single, “objective”, criterion of consistency: those
that depart from this – for instance, any state used to model Example 2 where the
set of rules is greater than it really is – are described in this paper as “impossible”
states of the world.

There are at least three reasons why it is desirable to model conscious unawareness
using only “possible” states. The first is decision theoretic. In order to characterize

1These include Sillari (2008), Board and Chung (2007), and Halpern and Rego (2009b).



a decision maker’s beliefs in revealed preference terms2, the usual approach is to
specify payoffs to different courses of action under every state and endow the decision
maker with conditional preferences in every state of the world3. But if a state of
the world is impossible, it is difficult to see how payoffs and conditional preferences
under this state could ever be defined.

Second, working with a framework that includes both possible and impossible states
of the world complicates any reduction from a linguistic to a set-theoretic represen-
tation of the agent’s reasoning. As was shown by Dekel et al. (1998), set-theoretic
models for non-trivial specific unawareness must enrich the standard Savage frame-
work by describing both what the agent’s level of awareness is and what events
she regards as possible4. Set-theoretic models for conscious unawareness that use
impossible states (for example, Board and Chung (2009)) need to elaborate this
framework further by specifying, for each state, what degree of awareness amounts
to “full” awareness.

Finally, a pragmatic but arguably more important reason for working with only
possible states is that this has been the approach used in the overwhelming majority
of existing economic theory. If the goal is to integrate conscious unawareness with
this body of work in a manner that is accessible to non-experts, it seems sensible to
avoid departures from its existing standards wherever this is feasible.

This paper presents a logical structure for modeling conscious unawareness where all
states are possible and where (1), (2), and (3) are nonetheless mutually consistent.
It achieves this by making the agent’s beliefs about whether or not she is fully
aware in any state dependent on her conjecture about her level of awareness in that
state rather than on a comparison between her actual awareness and the domain
of “things to be aware of”. The semantics of these structures works in two stages.
At the first stage, “conjectured truth” is assigned to logical formulae in all states.
For any formula that does not include the string “the agent is fully aware”, this
conjecture takes the same value as it would under conventional semantic rules, but
the truth of “the agent is fully aware” may be determined freely. The second stage
then assigns truth to formulae in the same way as in Fagin and Halpern (1988), with
the exception that an agent believes a formula if and only if she is aware of it and
it is conjectured true in every state she considers possible. One way of interpreting
this two-stage approach is as allowing the agent’s beliefs about “the agent is fully
aware” to be determined by some process of inductive reasoning (as in Grant and
Quiggin (2009)), whereas her other beliefs are arrived at by a process of deduction
from what is true (and she is aware of) in the states she deems possible.

As well as relying only on possible states, the framework proposed here has the
advantage of simplicity. Whereas other logical structures for modeling conscious
unawareness use quantification over propositional variables to assign truth to the

2Morris (1996) shows how this may be done in a framework without unawareness. Schipper
(2010) and Li (2008) offer revealed-preference characterizations of belief in the presence of specific
unawareness. Walker (2011a) does this in a setting that allows for both specific and conscious
unawareness.

3Though note the contribution of Lipman (2003).
4Heifetz et al. (2006) and Li (2009) offer different approaches to this.



formula “the agent is fully aware”, in what follows the conjectured truth of this
formula is determined much like that of a primitive proposition in standard logic,
while its second-stage truth follows from some straightforward consistency condi-
tions. As a result, the logical structures presented below do not need to use explicit
quantification.

The remainder of the paper is organized as follows. Section 2 presents the elements
of the logical structures including the two-stage semantics, while Section 3 discusses
various introspective axioms from elsewhere in the literature. Section 4 characterizes
the structures axiomatically under a number of well known restrictions, showing
that when the agent’s conjecture about “the agent is fully aware” is constrained to
be veracious, the structures are equivalent to those in Halpern and Rego (2009a).
Section 5 concludes with a brief review of some of the other related literature.

2 Two-Stage Semantics for Awareness and Belief

Consider a formal language, denoted L, for expressing the kind of reasoning that
was discussed in the Introduction. L consists of a countably infinite set of primitive
propositions, P , the string ∀xAx, the logical connectives ¬ and ∨, the brackets [
and ], and the modal operators A, L, and B. The primitive propositions are a
set of claims about the world that do not concern the decision maker’s beliefs or
awareness, such as “it will rain tomorrow” or “demand for bread will be high”, and
the string ∀xAx stands for the claim “the agent is fully aware”.

Any member of P and ∀xAx is a formula of the language, the full set of which is
denoted Φ. Φ is defined formally as the closure of P and ∀xAx under the following
formation rules5:

φ ∈ Φ Ô⇒ ¬φ,Aφ,Lφ,Bφ ∈ Φ
φ,ψ ∈ Φ Ô⇒ [φ ∨ ψ]

The connectives ¬ and ∨ respectively stand for “not” and “or”, and allow formulae
expressing negation and disjunction to be constructed from the members of Φ. Thus,
if φ and ψ are formulae, then so are ¬φ and [φ∨ψ]. The modal operators A, L, and
B, read “the agent is aware of the formula”, “the agent implicitly believes”, and
“the agent (explicitly) believes”, allow one to construct statements about the agent’s
epistemic status (how such statements should be interpreted is discussed below). As
is standard: [φ ∧ψ] (“φ and ψ”), [φ⇒ ψ] (“φ implies ψ”), and [φ⇔ ψ] (“φ if and
only if ψ”) will be used as shorthand for ¬[¬φ∨¬ψ], [¬φ∨ψ] and [[φ⇒ ψ]∧[ψ⇒ φ]]
respectively throughout this paper, and brackets will generally be suppressed unless
doing so leads to ambiguity.

A structure, D, in L, the full set of which is denoted D, is a tuple {Ω,V,P ,A,X}.
Ω is a state space consisting of possible worlds or states of affairs. V ∶ Ω → 2P is a

5It should be noted that L, unlike its counterparts in other papers in this literature, is not a
proper first order language in that it does not contain propositional variables and does not allow
quantification over any formula. Since the only quantified formulae of interest in this setting is
∀xAx, this additional expressive power would be redundant here.



truth assignment to the primitive propositions, listing those that are true in each
state, and P ∶ Ω→ 2Ω is a possibility correspondence, where P(ω) stands for the set
of states that the agent considers possible when the true state is ω. A ∶ Ω → 2P

is an awareness correspondence, mapping each state to the set of propositions that
the agent is aware of in that state and, finally, X ∶ Ω → {T,F} describes, for each
state, the conjecture the agent has about whether he is fully aware in each state.
If X(ω) = T then the agent imagines that in state ω his awareness is exhaustive
(i.e. his impression of ∀xAx is that it is true in ω), while X(ω) = F means that he
conjectures that ∀xAx is false in ω.

In what follows, a subformula of any formula φ is any consecutive string of characters
in φ that is itself a formula of L. For example, if φ = A[p ∨ Bq], then A[p ∨ Bq],
p∨Bq, Bq, p, and q are the subformulae of φ. Use Sub(φ) for the set of subformulae
of any φ ∈ Φ and define the referents of φ as Ref(φ) ∶= Sub(φ) ∩ P (that is, Ref(φ)
is the set of primitive propositions that are subformulae of φ).

The semantics of D comprises a set of rules that assign truth to every formula in
Φ in every state in Ω according to V , P , A, and X . The rules presented here are
unusual in that they operate in two stages: first, there is a set that establishes
what is “conjectured true” or “stage-one true” in each state; and second, there are
rules for assigning “stage-two truth”, or simply “truth” to the formulae. The role
of sage-one truth is to determine what the agent believes and at this level the truth
of the formula ∀xAx depends on the agent’s conjecture rather than the extent of
his awareness. Stage-two truth differs in that ∀xAx is true at this level if and only
if the agent is in fact aware of all propositions. As will be shown, this divergence
between the “conjectured” way in which stage-one truth is assigned to ∀xAx and the
“objective” standard applied to it for stage-two truth is what allows the members
of D to satisfy the various introspection properties advocated in the Introduction.

Use the operator V1 ∶ Ω ×Φ → {0,1} to denote what formulae are stage-one true at
each state of a given structure. V (ω,φ) = 1 is read “φ is stage-one true in state ω”
and V (ω,φ) = 0 means φ is first-stage false at ω. The operator is defined inductively
as follows:

S1. V1(ω, p) = 1 iff p ∈ V(ω) where p ∈ P ;

S2. V1(ω,∀xAx) = 1 iff X(ω) = T ;

S3. V1(ω,¬φ) = 1 − V1(ω,φ);

S4. V1(ω, [φ ∨ ψ]) =max{V1(ω,φ), V1(ω,ψ)};

S5. V1(ω,Aφ) = 1 iff Ref(φ) ⊆ A(ω);

S6. V1(ω,Lφ) = 1 iff V1(ω′, φ) = 1 for all ω′ ∈ P(ω); and

S7. V1(ω,Bφ) = 1 iff V1(ω,Aφ) = 1 and V1(ω,Lφ) = 1.

S1, S3, and S4 are familiar from propositional calculus. S1 requires that p is stage-
one true in state ω if and only if it is true in that state according to V, while S3



ensures the negation of φ is stage-one true iff φ is stage-one false and S4 makes
[φ ∨ ψ] stage-one true iff at least one of its disjuncts is stage-one true.

S5-S7 govern awareness and belief and operate in an analogous fashion to their
equivalents in Fagin and Halpern (1988) and Halpern (2001). S5 implies that it is
stage-one true that agent is aware of φ in ω iff he is aware of all of φ’s referents in ω.
This is what Halpern (2001) calls “awareness generated by primitive propositions”.
S6 says that the agent implicitly believes φ in ω iff φ is stage-one true in every state
he considers possible at ω, and S7 then identifies belief with implicit belief plus
awareness. S5-S7 suggest that implicit belief can be interpreted as a component
of belief rather than an epistemic property in its own right: part of believing φ is
considering possible only states where φ is true, but there is no state of mind that
corresponds this.

The novel part of the stage-one semantics - and the respect in which these semantics
are “conjectured” - is S2. This rule states that ∀xAx is stage-one true in ω if and
only if the agent’s conjecture is that his awareness is comprehensive in ω. The way in
which the stage-one truth of ∀xAx (and other formulae of which it is a subformula)
in any given state is determined therefore differs from other formulae in that it
depends on the agent’s conjecture rather than features of the state itself.

Second-stage truth, which determines in which states any given formula does hold
true, is assigned according to a second set of rules. Where V (ω,φ) = 1 means φ is
stage-two true (or simply “true”) in state ω and V (ω,φ) = 0 means φ is false at ω,
these rules are as follows:

O1. V (ω, p) = 1 iff p ∈ V(ω) where p ∈ P ;

O2. V (ω,∀xAx) = 1 iff A(ω) = P ;

O3. V (ω,¬φ) = 1 − V (ω,φ);

O4. V (ω, [φ ∨ ψ]) =max{V (ω,φ), V (ω,ψ)};

O5. V (ω,Aφ) = 1 iff Ref(φ) ⊆ A(ω);

O6. V (ω,Lφ) = 1 iff V1(ω′, φ) = 1 for all ω′ ∈ P(ω); and

O7. V (ω,Bφ) = 1 iff V (ω,Aφ) = 1 and V (ω,Lφ) = 1.

Most of the rules function in essentially the same manner as their equivalents in
S1-S7. The exceptions are O2 and O7. O2 uses an “objective” criterion in place
of the agent’s conjecture to assign truth to the formula ∀xAx, stating simply that
∀xAx is true in ω if and only if the agent is aware of all propositions (and therefore,
by O6, all formulae) in ω. O7 marks the point of contact between the first- and
second-stage semantics, and implies that the agent implicitly believes φ in ω if and
only if φ is stage-one true when in every state he considers possible at ω. Thus,
whether or not an agent believes a formula depends on its stage-one truth in the
states he regards as possible and, for those formulae in which ∀xAx appears as a
subformula, this can be different from its second-stage truth.



Note that all of the states in any structure in D are “possible” in the sense outlined
in the Introduction as the consistency of ∀xAx with any given level of awareness is
the same in all states.

3 Properties of awareness

It remains to be shown what the intrinsic properties of D are, and whether its
structures can be used to describe the sort of reasoning described in the Introduction.
A useful concept for investigating these matters is validity. A set of formulae ∆ will
be said to be valid in the structure D iff, for every φ ∈ ∆, V (ω,φ) = 1 for all ω in
D’s state space. ∆ is then valid in D∗ ⊆ D iff it is valid in all D ∈ D∗, and if it is
valid in D, it will be described simply as being valid.

Many of the sets of formulae described in this section are presented as schemes, where
a scheme is a formula, certain subformulae of which can be replaced uniformly by
any other formula from a particular domain. For example, the scheme φ ∨ [ψ ∧ ¬φ]
for any φ,ψ ∈ Φ contains p ∨ [q ∧ ¬p] but not p ∨ [B∀xAx ∧ ¬Lr], since φ is not
uniformly replaced by any formula in the latter case. A scheme is valid in some
D∗ ⊆ D whenever every instance of it is valid in D∗.

There are certain schemes whose validity is necessary if the A and B operators are to
be plausibly interpreted as representing awareness and belief across all D. Consider
the following sets, where φ can be any member of Φ:

PL ¬AφÔ⇒ ¬Bφ ∧ ¬B¬Bφ; and

AU ¬AφÔ⇒ ¬A¬Aφ.

PL, which stands for “plausibility”6, is a formal statement of the fact that whenever
an agent is unaware of something, he cannot believe it and cannot believe that
he does not believe it. Similarly, AU (for “awareness-unawareness introspection”)
expresses the fact that an agent who is unaware of φ cannot be aware that he is
unaware of φ. Any structure in which either PL or AU were not valid would not
be suitable for modelling belief and awareness, but it is easy to show that both are
valid in D.

The validity of other sets of formulae shows what sort of awareness the structures
in D can model. Take the following formulae, where once again φ and ψ can be any
formulae:

A0 A∀xAx;

A1 A¬φ⇐⇒ Aφ

A2 A[φ ∨ ψ] ⇐⇒ Aφ ∧Aψ;

A3 ALφ⇐⇒ Aφ;

6This terminology, and that of AU introspection, is due to Dekel et al. (1998).



A4 AAφ⇐⇒ Aφ;

A5 ABφ⇐⇒ Aφ; and

A6 ∀xAxÔ⇒ Ap for all p ∈ P .

A0-A5 jointly correspond to “awareness generated by primitive propositions” - Aφ
iff Ap for all p ∈ Ref(φ) - which seems to be a natural form of awareness to attribute
to an economic agent7. One way of interpreting A0-A5 is the assumption that the
agent is aware of all aspects of the grammar of L (i.e. the rules for constructing
formulae) but not necessarily all of the vocabulary (i.e. the propositions). A6 then
formalizes the interpretation of ∀xAx as “the agent is aware of all formulae”. It
is straightforward to show that all of A0-A6 are valid in D and that A1 and A4

entail AU.

A further group of formulae can be regarded as conditions on the rationality of the
agent under consideration. Where φ can be any member of Φ, none of the following
is valid in D:

PI∗ BφÔ⇒ BBφ;

NI∗ ¬Bφ ∧AφÔ⇒ B¬Bφ; and

BA AφÔ⇒ BAφ.

PI∗ (for “positive introspection”) and NI∗ (“negative introspection”) respectively
state that the agent believes he believes whatever formulae he believes and that
he believes he does not believe whatever formulae he does is aware of but does
not believe. BA, which as (1) was endorsed in the Introduction, then says that
he believes he is aware of whatever he is aware of. Considered together, the three
properties amount to the agent knowing the content of his own mind: he knows
the formulae he is aware of and knows whether or not he believes each of these
formulae. If part of being rational is deducing what is self-evident and the content
of the agent’s mind is self-evident to the him, then PI, NI, and BA function as
rationality conditions.

In some economic theories, rationality also commits the agent to having only true
beliefs. The argument for this is that in order to hold false beliefs, an agent must
misinterpret whatever evidence of the true state of the world he has at his disposal,
and such an agent could not be said to deduce beliefs from evidence in a rational
fashion. However, since in D the agent’s beliefs concerning the formula ∀xAx are
determined by a conjecture rather than true features of the states he considers
possible, this veracity condition is applied only to a restricted domain. Define this
domain, denoted Φ∀−, inductively as follows:

p ∈ P Ô⇒ p ∈ Φ∀−

φ ∈ {Aψ,Lψ,Bψ} Ô⇒ φ ∈ Φ∀−

φ ∈ Φ̃ Ô⇒ ⊺φ,¬φ ∈ Φ∀−

φ,χ ∈ Φ̃ Ô⇒ [φ ∨ χ] ∈ Φ∀−

7Halpern (2001) describes other types of awareness, which could be accommodated in structures
very similar to D.



where ψ may be any formula in Φ. Φ∀− is the set of formulae whose stage-two truth
in any state in any D ∈ D is always the same as their stage-one truth in that state.
The rationality condition can now be stated as:

T∗ BφÔ⇒ φ for any φ ∈ Φ∀−;

T∗ is not valid in D.

Finally, there are some formulae whose validity would entail the agent’s having
overly strong powers of cognizance. Consider the following:

P∀ ∀xAxÔ⇒ B∀xAx; and

N∀ ¬∀xAxÔ⇒ B¬∀xAx.

P∀ and N∀ formalize the notion that an agent should always know whether or not
he is aware of everything. As was argued in the Chapter 1, this is not a compelling
property in a wide range of economic applications, so structures in which either for-
mula is valid should be avoided when modeling such environments. Neither formula
is valid in D.

4 Characterization results

Characterization theorems identify those formulae that are valid in a given class of
structures in D. They thus show precisely what can and cannot be modeled using
the structures in question. The purpose of this section is to state a characterization
theorem for the whole of D, as well as for certain subsets of D in which the rationality
conditions introduced above are validated. A further characterization is provided
for the structures in D that correspond to those in Halpern and Rego (2009a), and
it is shown that these cannot be reconciled with the rationality conditions without
entailing P∀ and N∀.

The sets of formulae that characterize various subsets of D will be presented as axiom
systems. An axiom system consists of a number of foundational schemes known as
axioms and a set of deductive rules, which take the form “from φ1, . . . , φn conclude
ψ”. A proof of a formula, φn, in an axiom system is a finite list of formulae,
φ1, . . . , φn, such that for each φi in the list, either φi is an instance of an axiom
scheme, or there is a deductive rule that says φi can be concluded from some subset
of φ1, . . . , φi−1. A theorem of a system is any formula for which there exists a proof
within that system, and a system characterizes some D∗ ⊆ D iff the set of theorems
of the system is identical to the set of formulae that are valid in D∗.

All of the axiom systems to be considered in this section include the following:

PC Any tautology in propositional calculus; and

K [Lφ ∧L[φ⇒ ψ]] Ô⇒ Lψ (Distribution)



where φ,ψ ∈ Φ. The tautologies of propositional calculus are those formulae that
are valid in virtue of rules O3 and O4. Distribution states that if an agent implicitly
believes an implication and its antecedent, he must implicitly believe its consequent.
PC and K are common to all “normal” axiom systems in modal logic, where belief
may be characterized using a possibility correspondence(see Hughes and Cresswell
(1996) or Fagin et al. (1995) for more details).

A further axiom that is present in all the systems discussed here is equivalent to the
definition of belief given in O7:

A7 Bφ⇐⇒ Aφ ∧Lφ

for any φ ∈ Φ. Note that A7 in combination with A2 and A6 entails PL.

All axiom systems in this paper include the following set of deductive rules:

MP From φ and φ⇒ ψ infer ψ (Modus Ponens); and

N If φ can be obtained without the use of A6 infer Lφ (Necessitation).

Modus Ponens and a variant of Necessitation are common to all mainstream axiom
systems in modal logic. MP allows one to perform deductive inference in proving
theorems in an axiom system, whileN implies that an agent can deduce any theorem
obtained without the use of A6 provided he is aware of it. An unusual feature of N
is the fact that it applies only to formulae that can be derived without A6, reflecting
the fact that the agent’s beliefs concerning ∀xAx are determined by his conjectures.
As will be shown below, strengthening N to the version that is more common in the
literature precludes many of the examples that were used to motivate this approach.

Finally, stronger versions of some of the rationality conditions described above will
be used in the characterization results:

PI LφÔ⇒ LLφ;

NI ¬LφÔ⇒ L¬Lφ; and

T LφÔ⇒ φ for φ ∈ Φ∀−

for any φ ∈ Φ. PI, NI, T are difficult to interpret in terms of rationality since the
operator L does not represent an epistemic property in its own right. However, it
should be noted that, given A7, the three conditions respectively imply PI∗, NI∗,
and T∗.

To state the main characterization result, write AB for the system comprising the
axioms PC, K, and A0-7, and the deductive rules MP and N. The notation
AB{X} then refers to AB supplemented with all the axioms in {X} (so, for ex-
ample, AB{T,PI} = AB ∪T∪PI). Let Dr ⊂ D be the set of structures in which P is
reflexive, Dt ⊂ D be those where P is transitive, De be those where P is Euclidean8,
and Db be those where ω ∈ P(ω′) implies A(ω) ⊇ A(ω′). The shorthand Dx,y,...,z is
used for Dz ∩Dz′ ∩ ⋅ ⋅ ⋅ ∩Dz′′ .

8P is Euclidean iff ω′, ω′′ ∈ P(ω) implies ω′ ∈ P(ω′′).



Theorem 1 The following hold:

i. D is characterized by AB;

ii. Dt is characterized by ABPI;

iii. De is characterized by ABNI;

iv. Dr,t,e is characterized by ABPI,NI,T

v. Db is characterized by ABBA.

And if Dz, Dz′, . . . , Dz′′ are respectively characterized by ABx, ABx′, . . . , ABx′′,
then Dz,z′,...,z′′ is characterized by ABx,x′,...,x′′.

The theorem shows that the rationality conditions can be neatly characterized in
terms of properties of P and A. It should be emphasized that it does not imply (for
instance) that there are no structures in D ∖Dt in which PI is valid.

Now consider a new subset of D, DT , containing all those structures where X(ω) = T
iff A(ω) = P for all ω,ω′ ∈ Ω. The structures in DT are those where the agent’s
conjecture about whether ∀xAx is true in any state is always veracious, a feature
that renders the first-stage element of the semantics is redundant (that is, it implies
V1(ω,φ) = V (ω,φ) for all ω ∈ Ω and all φ ∈ Φ). The semantics of these structures
can be shown to match those described by Halpern and Rego (2009a).

A more conventional version of the derivation rule for necessitation can be expressed
as follows:

N′ From φ infer Lφ.

Use ABx
T for the axiom system that is identical to ABx in every respect, except

that N is replaced by N′. The following result, which parallels Theorem 1, can be
proved for DT :

Theorem 2 The following hold:

i. DT is characterized by ABT ;

ii. Dr
T is characterized by ABT

T ;

iii. Dt
T is characterized by ABPI

T ;

iv. De
T is characterized by ABNI

T ;

v. Db
T is characterized by ABBA

T .

And if Dx
T , D

y
T
, . . . , Dz

T are respectively characterized by ABx
T , AB

y
T
, . . . , ABz

T ,
then Dx,y,...,z is characterized by ABx,y,...,z

T
.



The principle advantage of using the structures in DT is that it allows one to do
without the two-stage semantic apparatus – there is no difference between first- and
second-stage truth so one may evaluate a formula’s truth in any state using the
V1 operator. However, as has been noted by Board and Chung (2007) and Sillari
(2008), the structures have the undesirable property that BA cannot hold without
P∀ and BA,T,NI,PI do not hold unless N∀ does.

Proposition 1 P∀ is a theorem of ABBA

T and N∀ is a theorem of ABBA,T,NI,PI

T
.

5 Other Literature and Concluding Remarks

The logical structures defined here draw on the contributions of many other authors.
Early pioneering work in this field includes Fagin and Halpern (1988) and Modica
and Rustichini (1994 and 1999), who present structures for modeling specific un-
awareness. Halpern (2001) shows that the latter structures are equivalent to the
former when awareness is generated by primitive propositions and T, PI, and NI

hold. Thijsse (1996) describes a structure for specific unawareness that assigns truth
using two semantic stages, but in other respects his approach is quite different to
that proposed here.

Li (2009) and Heifetz et al. (2006) give set-theoretic structures for modeling specific
unawareness, the latter with multiple agents. These have been shown, respectively
by Heinsalu (2011) and Heifetz et al. (2008), to be equivalent to sub-classes of
earlier logical structures of Fagin and Halpern and its multi-agent generalization in
Halpern and Rego (2008). A further interactive, set-theoretic approach is provided
by Gallanis (2009).

Halpern and Rego (2009a) extend Fagin and Halpern to allow for conscious un-
awareness, though as noted earlier (1) is inconsistent with (2) in this framework.
Board and Chung (2007), Sillari (2008), and Halpern and Rego (2009b) describe
structures in which this inconsistency does not arise provided there are impossible
states. Board and Chung (2009) render the partitional structures in Board and
Chung (2007) in set-theoretic terms; Board et al. (2009) demonstrate that the sub-
class of these structures where all states are possible is equivalent to those of Heifetz
et al. (2006).

The contribution of this work has been to set out structures where the introspective
properties proposed in this literature can be satisfied without introducing impossible
states. It is, perhaps, closest in spirit to the dynamic, interactive structures of
Grant and Quiggin (2009), where agents’ beliefs about the formula “the agent is
fully aware” are determined by inductive reasoning, though the current framework
is single-agent and static. Walker (2011b) shows how the partitional structures
presented here may be translated into set-theoretic terms, using a slightly adapted
version of Heifetz et al. (2006). Walker (2011a) then gives a decision theoretic
characterization of these set-theoretic structures.



A Proofs

A.1 Proof of Theorem 1

The theorem can be rephrased as claiming that the system AB is sound and complete
with respect to D, where an axiom system is sound wrt some class of structures iff
all of its theorems are valid in the class and complete iff every valid formula in the
class is a theorem of the system.

A.1.1 Soundness

This amounts to showing that the axioms PC, K, A0 −A7 are valid, and that
applications of the deductive rules preserve validity. Some of the arguments be-
low follow a very similar course to well known proofs in, for example, Hughes and
Cresswell (1996) and Fagin et al. (1995). I include all of the details because of the
non-standard semantics involved here.

PC is valid in virtue of rules O1, O2, and O4 as usual. If K were not valid, there
would be some a structure such that for state ω (a) V (ω,Lφ∧L[φ⇒ ψ]) = 1 and (b)
V (ω,Lψ) = 0. But (a) implies V1(ω′, φ) = 1 and V1(ω′, φ⇒ ψ) = 1 for all ω′ ∈ P(ω).
It immediately follows that V1(ω′, ψ) = 1 for all ω′ ∈ P(ω), implying V (ω,Lψ) = 1,
contradicting (b). A0 is valid because Ref(∀xAx) = ∅, while A1 −A5 are valid
in light of the fact that Ref(φ) = Ref(¬φ) = Ref(Lφ) = Ref(Aφ) = Ref(Bφ) and
Ref(φ) ∪ Ref(ψ) = Ref(φ ∧ ψ). A6 follows directly from O2 and O5 and A7 is
implied by O7.

Now suppose φ and φ⇒ ψ are valid formulae. If there were a state ω in any structure
such that V (ω,ψ) = 0 then, since φ is valid, it must be that V (ω,φ ⇒ ψ) = 0, but
this contradicts the fact that φ⇒ ψ is valid. Therefore ψ is valid and MP is validity
preserving.

To show thatN is validity preserving, first introduce the notion of stage-one validity.
A formula is stage-one valid in D whenever for every state in the state space of D,
V1(ω,φ) = 1. It is stage-one valid in any class of models D∗ ⊆ D it is stage-one valid
for all D ∈ D∗. An axiom system is then stage-one sound wrt D∗ iff any theorem φ

of it is stage-one valid in D∗.

Definition A.1 The axiom system ABx
1
consists of all of the axioms and deductive

rules in ABx except for the axiom A6.

Lemma A.1 The axiom system AB1 is stage-one sound wrt D.

Proof: The stage-one validity of the axioms PC, K, A0-5, A7, and MP can be
shown in a parallel manner to their validity, proven above.

For N, if φ is stage-one valid, then it follows immediately that for any ω in any
structure, V (ω′, φ) = 1 for all ω′ ∈ P(ω′), so Lφ is stage-one valid. Therefore N is
stage-one validity preserving. ◻



By definition, the set of theorems of ABx
1
is identical to the set of theorems of ABx

that can be proven without the use of A7. Suppose φ is a theorem of AB1, which by
Lemma A.1 implies that φ is stage-one valid. Hence for every ω in any structure it
must be that V (ω′, φ) = 1 for all ω′ ∈ P(ω) and thus that Lφ is valid. N is therefore
validity preserving.

Thus AB is valid in all of D. To complete the soundness proof for parts (ii)-(v) of
the Theorem, proceed as follows:

PI is valid in Dt: If V (ω,Lφ) = 1 for any φ ∈ Φ and in some D ∈ Dt, then for
every ω′ ∈ P(ω), V1(ω′, φ) = 1. Since D ∈ Dt, if ω′′ ∈ P(ω′) for ω′ ∈ P(ω),
then ω′′ ∈ P(ω′). Hence if ω′ ∈ P(ω), then for all ω′′ ∈ P(ω′), V1(ω′′, φ) = 1,
implying V1(ω′, Lφ) = 1. Since this holds for all ω′ ∈ P(ω), it follows that
V (ω,LLφ) = 1.

NI is valid in De: Whenever V (ω,¬Lφ) = 1 for any φ ∈ Φ and D ∈ De, there
is some ω′ ∈ P(ω) such that V1(ω′,¬φ). Since D ∈ De, if ω′′ ∈ P(ω) then
ω′′ ∈ P(ω′). Therefore if ω′ ∈ P(ω), there is some ω′′ ∈ P(ω′) such that
V1(ω′′, /φ) = 1, implying V1(ω′,¬Lφ) = 1. It follows that V (ω,L¬Lφ) = 1.

T is valid in Dr: First prove that if φ ∈ Φ∀−:

V (ω,φ) = 1 Ô⇒ V1(ω,φ) = 1 (4)

Note that for φ ∈ P or φ of the form Aψ, Lψ, Bψ where ψ is any member
of Φ, the fact that O1 and O5-7 respectively parallel S1 and S5-7 ensure that
(4) is satisfied by φ. Working inductively, if ψ satisfies (4), then for φ = ¬ψ,
V (ω,φ) = 1 iff V (ω,ψ) = 0 and V1(ω,φ) = 1 iff V1(ω,ψ) = 0, hence φ satisfies
(4). And if ψ and χ satisfy (4), where φ = [ψ ∨ χ], V (ω,φ) = 1 iff at least one
of V (ω,ψ) = 1 and V (ω,χ) = 1 and V1(ω,φ) = 1 iff at least one of V1(ω,ψ) = 1
and V1(ω,χ) = 1, so φ satisfies (4). Thus, (4) holds for all φ ∈ Φ∀− as required.

To show that T is valid in Dr, suppose ω ∈ P(ω) and that V (ω,Lφ) = 1
for some φ ∈ Φ∀− and ω in the state space of some D ∈ Dr. This requires
V1(ω′, φ) = 1 for all ω′ ∈ P(ω) and therefore (by the reflexivity of P) that
V1(ω,φ) = 1. By (4) it follows that V (ω,φ) = 1 and hence that T is valid in
Dr.

BA is valid in Db: If V (ω,Aφ) = 1 then A(ω) ⊇ Ref(φ). For ω in the state space
of some D ∈ Db, this implies A(ω′) ⊇ Ref(φ) for every ω′ ∈ P(ω) and thus that
V (ω,LAφ) = 1. Since Ref(φ) = Ref(Aφ), this implies V (ω,BAφ) = 1.

Finally, if X, Y, . . .Z are respectively valid in Dx, Dy, . . . , Dz, it follows trivially
that {X,Y, . . . ,Z} is valid in Dx,y,...,z. ∎

A.1.2 Completeness

Begin with some preliminary notation and definitions. For any finite set Γ =
{φ1, . . . φn}, write ⋀Γ for [φ1 ∧ [φ2 ∧ [. . . φn] . . . ]. If Γ is any set of formulae with



the property that there is a finite Γ′ ⊆ Γ such that ⋀Γ′ ⇒ φ is a theorem of axiom
system AX, write Γ ⊢AX φ. The notation ⊢AX φ then means simply that φ is a
theorem of of AX.

Say φ is consistent with axiom system AX – φ is AX-consistent – iff /⊢AX ¬φ and
φ is consistent with Γ iff Γ /⊢AX ¬φ. When Γ is a finite set of formulae, it is AX-
consistent iff /⊢AX ¬⋀Γ, and if Γ is infinite it is AX-consistent iff every finite subset
of Γ is AX-consistent. A set of formulae, Γ, is a maximal AX-consistent set iff it is
consistent and for every φ ∈ Φ ∖ Γ, ⊢AX ¬⋀Γ ∪ {φ}. Fagin et al. (1995) prove the
following lemma:

Lemma A.2 Provided AX is consistent and contains PC and MP, if ∆ is a AX-
consistent set, there exists a maximal AX-consistent set Γ such that Γ ⊇ ∆. Fur-
thermore, if Γ is a maximal AX-consistent set, then the following holds:

i. For all φ ∈ Φ one of φ and ¬φ is a member of Γ;

ii. [φ ∨ ψ] ∈ Γ iff at least one of φ ∈ Γ and ψ ∈ Γ;

iii. If φ and φ⇒ ψ are in Γ, then ψ is a member of Γ; and

iv. AX ⊢ φ implies φ ∈ Γ.

Now define an AX-acceptable set of formulae as any Γ such that whenever Γ ⊢AX Ap

for all but finite p ∈ P , Γ ⊢AX ∀xAx. A similar property (also called acceptability)
was introduced by Halpern and Rego (2009a), and plays the same role in their
completeness proof as it does here. Lemmas A.3-A.5 parallel analogous results in
Halpern and Rego.

Lemma A.3 If Γ is finite, then Γ is ABx-acceptable for any x.

Proof: Since P is infinite, there is no finite set of formulae, Γ, that does not contain
∀xAx and that is such that Γ ⊢ABx Ap for all but finite p ∈ P . Therefore, for finite
Γ, if Γ ⊢ABx Ap for all but finite p ∈ P , then ∀xAx ∈ Γ and thus Γ ⊢ABx ∀xAx, so Γ
is acceptable. ◻

Lemma A.4 If Γ is ABx-acceptable, then Γ∪{φ} is ABx-acceptable for any φ ∈ Φ.

Proof: Suppose Γ ∪ {φ} is not ABx-acceptable, so Γ ∪ {φ} ⊢ABx Ap for all but
finite p ∈ P but not Γ ∪ {φ} ⊢ABx ∀xAx. Since Γ is ABx-acceptable, there must
be an infinite number of p ∈ P such that Γ /⊢ABx Ap and hence it can only be that
Γ ∪ {φ} ⊢ABx Ap for all but finite p ∈ P if φ = ∀xAx, but this obviously implies
Γ ∪ {φ} ⊢ABx ∀xAx, a contradiction. ◻

Lemma A.5 If Γ is ABx-consistent and -acceptable, then there exists some maxi-
mal ABx-consistent and -acceptable Γ′ containing Γ.



Proof: Enumerate Φ, φ1, φ2 . . . with φ1 = ∀xAx and φ2 = ¬∀xAx. Define ∆0 ∶= Γ.
If ∆0 ⊢ ¬∀xAx, choose some p such that ∆0 /⊢ABx Ap (since ∆0 is ABx-consistent,
∆0 /⊢ABx ∀xAx and thus, as ∆0 is ABx-acceptable, there must exist some such p),
then let ∆1 ∶= ∆0 ∪ {¬Ap}. Otherwise, let ∆1 ∶= ∆0 ∪ {∀xAx}. Note that ∆1 is
always ABx-consistent and -acceptable.

For k > 1, let ∆k = ∆k−1 ∪ {φk} unless ∆k−1 ⊢ ¬φk in which case let ∆k = ∆k−1. By
Lemma A.4, ∆k is ABx-acceptable and by construction it is ABx-consistent.

Define Γ′ = ⋃∆k and note that it is maximal ABx-consistent. To prove that it is
also ABx-acceptable, suppose that for every p ∈ P , Γ ⊢ABx Ap. Since Γ′ is ABx-
consistent, this means that ∆1 contains no formula ¬Ap, which means that ∆1 does
include ∀xAx. Thus Γ′ ⊢ABx ∀xAx and hence Γ′ is ABx-acceptable. ◻

For each maximal AB-consistent set, Γ, define two further sets of formulae ΓT and
ΓF as follows (where Z ∈ {T,F}):

p ∈ ΓZ ⇐⇒ p ∈ Γ (5)

∀xAx ∈ ΓT ∀xAx ∉ ΓF (6)

¬φ ∈ ΓZ ⇐⇒ φ ∉ ΓZ (7)

[φ ∨ ψ] ∈ ΓZ ⇐⇒ At least one of φ ∈ ΓZ and ψ ∈ ΓZ (8)

Aφ ∈ ΓZ ⇐⇒ Aφ ∈ Γ (9)

Lφ ∈ ΓZ ⇐⇒ Lφ ∈ Γ (10)

Bφ ∈ ΓZ ⇐⇒ Bφ ∈ Γ (11)

Lemma A.6 Where Γ is maximal ABx-consistent, ΓT and ΓF are maximal ABx
1
-

consistent.

Proof: Recall the definition of the set Φ∀−:

p ∈ P Ô⇒ p ∈ Φ∀−

For any φ ∈ Φ, Aφ,Lφ,Bφ ∈ Φ∀−

φ ∈ Φ∀− Ô⇒ ¬φ ∈ Φ∀−

φ,ψ ∈ Φ∀− Ô⇒ [φ ∨ ψ] ∈ Φ∀−

Note first that for any φ ∈ Φ∀−, if φ ∈ Γ then φ ∈ ΓT ∩ ΓF . Since ∀xAx and ¬∀xAx
are each ABx

1
-consistent with any ABx

1
-consistent subset of Φ∀−, it follows that

(Γ ∩Φ∀−) ∪ {∀xAx} and (Γ ∩Φ∀−) ∪ {¬∀xAx} are ABx
1
-consistent sets.

To prove that ΓT and ΓF are ABx
S-maximal consistent sets, I show that for every

φ ∈ Φ, either φ or ¬φ belongs to each of them. Since Γ is maximal ABx
1
-consistent,

by Lemma A.2 it must be that for any φ ∈ Φ∀−, either φ or ¬φ belongs to Γ and
hence to ΓT and ΓF . Therefore, given rules (6) and (7) above, for any φ ∈ Φ∀− ∪
{∀xAx,¬∀xAx}, it is true of both ΓT and ΓF that they contain one of φ or ¬φ.

Now note that Φ is simply the closure of Φ∀− ∪{∀xAx,¬∀xAx} under negation and
disjunction. Working inductively, if one of φ or ¬φ belongs to ΓT , then by rule (7)
one of ¬φ and ¬¬φ belongs to ΓT ; and if one of φ or ¬φ plus one of ψ and ¬ψ belongs



to ΓT , by rules (8) and (7) one of [φ ∨ ψ] and ¬[φ ∨ ψ]. The same argument holds
for ΓF , hence for every φ ∈ Φ one of φ and ¬φ belongs to ΓT and one belongs to ΓF .
Therefore ΓT and ΓF are maximal ABx

1
-consistent. ◻

Lemma A.7 If Γ is a maximal ABx-consistent set, the only maximal ABx
1
-consistent

sets containing Γ ∩Φ∀− are ΓT and ΓF .

Proof: Consider any maximal ABx-consistent Γ. Clearly Γ∩Φ∀− is a maximal ABx
1
-

consistent subset of Φ∀− and (by Lemma A.2) if ΓS ⊃ Γ ∩ Φ∀− and ΓS is maximal
ABx

1
-consistent then one of ∀xAx and ¬∀xAx belongs to ΓS . Therefore any maximal

ABx
1
-consistent set containing Γ∩Φ∀− also contains a maximal consistent subset of

(Γ ∩Φ∀−)∪{∀xAx,¬∀xAx}. There are only two such subsets: (Γ ∩Φ∀−)∪{∀xAx}
and (Γ ∩Φ∀−) ∪ {¬∀xAx}. The first is a subset of ΓT and the second a subset of

ΓF , both of which (by Lemma A.6) are maximal ABx
1
-consistent sets.

Now since Φ is simply the closure of Φ∀− ∪ {∀xAx,¬∀xAx} under negation and
disjunction, if ∆ is a maximal ABx

1
-consistent subset of Φ∀− ∪ {∀xAx,¬∀xAx} and

φ is any formula, either ∆ ⊢ABx

1
φ or ∆ ⊢ABx

1
¬φ (this was demonstrated in the

proof of Lemma A.6). Hence if ΓS is a maximal ABx
1
-consistent set and ΓS ⊇ ∆,

∆ ⊢ABx

1
φ for all φ ∈ ΓS . This means that there is only one ΓS where ΓS ⊇∆ and ΓS

is maximal ABx
1
-consistent, which establishes that the only maximal ABx

1
-consistent

sets containing Γ ∩Φ∀− are ΓT and ΓF . ◻

Notation A.1 From here on in, the following conventions are adopted:

i. Γ,Γ′ refer generically to maximal ABx-consistent sets;

ii. For any Γ, ΓT and ΓF refer to the sets defined as in (5)-(11). (Given Lemma
A.6 it is taken as read that these sets are maximal ABx

1
-consistent).

iii. ΓZ ,Γ
′Z refer generically to any maximal ABx

1
-consistent sets defined as in

(5)-(11), with Z understood to take either the value T or F .

Now enumerate the set of all acceptable maximal ABx-consistent sets Γ1,Γ2, . . . ,
and use ΓZ

i to refer to the maximal ABx
1
-consistent sets where ΓZ

i ∩Φ
∀− = Γi ∩Φ∀−.

For any set of formulae, ∆, let Ken(∆) refer to {φ ∶ Lφ ∈ ∆}, and then say ΓZ
i is

relevant iff there exists some Γj such that Ken(Γj) ⊆ ΓZ
i .

Lemma A.8 For every Γi, at least one of ΓT
i and ΓF

i is relevant in Dx
c .

Proof: Take any Γi, and first show that at least one of ΓT
i and ΓF

i is ABx-consistent.
By Lemma A.7, the only two maximal ABx

1
-consistent formulae containing Γi∩Φ∀−

are ΓT
i and ΓF

i . Since Γi ∩ Φ∀− is ABx-consistent and can thus (by Lemma A.2)
be extended to a maximal ABx-consistent set, and since ABx-consistency implies
ABx

1
-consistency, it follows that at least one of ΓT

i and ΓF
i is ABx-consistent.



Now observe that there exists a maximal ABx-consistent set, Γj , in which Lφ implies
φ is a theorem of ABx. Therefore, if Γk is maximal ABx-consistent, Ken(Γj) ⊆ Γk.
Therefore, whichever of ΓT

i and ΓF
i is maximal ABx-consistent is also relevant. ◻

To show completeness, introduce a canonical model for ABx, Dx
c . The state space

of the canonical model for ABx contains one distinct state corresponding to each
relevant ΓZ

i and no other states. Write ωZ
i for the state that corresponds to ΓZ

i .
The remaining elements of Dx

c are as follows:

p ∈ V(ωZ
i ) ⇐⇒ p ∈ Γi

ωZ′

j ∈ P(ωZ
i ) ⇐⇒ Ken(Γi) ⊆ ΓZ′

j

p ∈ A(ωZ
i ) ⇐⇒ Ap ∈ Γi

X(ωZ
i ) = Z for all ωZ

i

To obtain the result, work in two stages.

Lemma A.9 For any φ ∈ Φ and any ω in the state space of Dx
c :

V1(ωZ
i , φ) = 1 ⇐⇒ φ ∈ ΓZ

i (12)

Proof: For φ ∈ P , (12) is trivial. Where φ = ∀xAx, V1(ωZ
i , φ) = 1 iff X(ωZ

i )) = T iff
Y = T iff (by (6)) φ ∈ ΓZ

i .

Proceeding inductively where ψ and χ satisfy (12), then for φ = ¬ψ, S3 says
V1(ωZ

i , φ) = 1 iff V1(ωZ
i , ψ) = 0, and part (i) of Lemma A.2 implies that ¬ψ ∈ ΓZ

i iff
ψ ∉ ΓZ

i iff V1(ωZ
i , ψ) = 0. Thus (12) is satisfied for φ.

Where φ = [ψ ∨ χ], S4 says that V1(ωZ
i , φ) = 1 iff at least one of V1(ωZ

i , ψ) = 1 and
V1(ωZ

i , χ) = 1 iff at least one of ψ ∈ ΓZ
i and χ ∈ ΓZ

i . Part (ii) of Lemma A.2 shows
that this holds if and only if φ ∈ ΓZ

i , so (12) is satisfied for φ.

If φ = Aψ, V1(ωZ
i , φ) = 1 iff A(ωZ

i ) ⊇ Ref(ψ) iff Ap ∈ ΓZ
i for all p ∈ Ref(ψ) iff (by

A0-5) φ ∈ ΓZ
i .

Where φ = Lψ, φ ∈ ΓZ
i iff ψ ∈ Ken(ΓZ

i ) iff ψ ∈ Ken(Γi). This implies that ψ ∈ ΓZ′

j

for all ωZ′

j ∈ P(ωZ
i ). As ψ satisfies (12), it follows that V1(ωZ′

j , ψ) = 1 for all

ωZ′

j ∈ P(ω
Z
i ). By S6, this means V1(ωZ

i , φ) = 1.

Working the other way, if φ ∉ ΓZ
i , then Ken(Γi)∪{¬ψ} must be ABx

1
-consistent. To

see this, suppose Ken(Γi) ∪ {¬ψ} were ABx
1
-inconsistent; then there would be some

finite set {ψ1, ψ2, . . . , ψn} ⊆ Ken(Γi) such that:

⊢ABx

1
⋀n

i=1ψi ⇒ ψ

in which case by N, ⋀n
i=1ψi ⇒ ψ ∈ Ken(Γi) and by K, ψ ∈ Ken(Γi), a contradiction.

Therefore Ken(Γi) ∪ {¬ψ} is ABx
1
-consistent, so by Lemma A.2 there exists some

maximal ABx
1
-consistent ΓZ′

j such that Ken(Γi)∪{¬ψ} ⊆ ΓZ′

j . Since Ken(Γj) ⊆ ΓZ′

j ,

ΓZ′

j is relevant, and hence ωZ′

j is defined in the state space of Dx
c and ωZ′

j ∈ P(ω
Z
i ).

Since φ (and hence ¬ψ) satisfies (12), it must be that V1(ωZ′

j ,¬ψ) = 1, in which case

V1(ωZ
i , φ) = 0.



Finally, for φ = Bψ, V1(ωZ
i ,Bψ) = 1 iff V1(ωZ

i ,Aψ) = 1 and V1(ωZ
i , Lψ) = 1 iff

Aψ,Lψ ∈ ΓZ
i iff (by A7) Bψ ∈ ΓZ

i . ◻

Lemma A.10 For every φ ∈ Φ:

V (ωZ
i , φ) = 1 ⇐⇒ φ ∈ Γi (13)

It should be stressed that (13) does not require V (ωZ
i , φ) = 1 iff φ ∈ ΓZ

i .

Proof: Where φ is a primitive proposition, (13) is satisfied straightforwardly by
virtue of the definition of V above. If φ = Ap for any p ∈ P , then φ ∈ Γi iff p ∈ A(ωZ

i ),
which holds iff V (ωZ

i , φ) = 1. For φ = ∀xAx, if φ ∈ Γi then (by A6) Ap ∈ Γi for
all p ∈ P , implying V (ωZ

i , φ) = 1; and if V (ωZ
i , φ) = 1 then V (ωZ

i ,Ap) = 1 for all
p ∈ P , implying Ap ∈ Γi for all p ∈ P , which, given that Γi is AB

x-acceptable, implies
φ ∈ Γi.

Most of the remainder of the proof proceeds inductively in a parallel fashion to that
for Lemma A.9. The single point of departure is the argument that if ψ satisfies
(13) then φ = Lψ also satisfies (13). This is now as follows. We have φ ∈ Γi iff φ ∈ Γ

T
i

and φ ∈ ΓF
i iff (given Lemma A.9) V1(ωZ

i , φ) = 1 for Z ∈ {T,F} iff V1(ωZ′

j , ψ) = 1 for

all ωZ′

j ∈ P(ω
Z
i ) and Z ∈ {T,F} iff V (ωZ

i , φ) = 1 for Z ∈ {T,F}. ◻

Lemma A.8 implies that every acceptable and maximal ABx-consistent set Γi has
some state ωZ

i in the canonical model. Lemmas A.3 and A.5 imply that every
ABx-consistent formula belongs to some acceptable maximal ABx-consistent set, so
therefore (13) implies that every AB-consistent formula is true in some state of the
canonical model for ABx. Therefore the only formulae that are not true in any state
of Dx

c are those that are inconsistent – that is, the negations of theorems ABx – so
the only formulae that are true in every state of Dx

c are theorems of ABx. Therefore
any formula that is valid in D is a theorem of Dc, so AB is complete with respect
to D.

To demonstrate that ABx is complete with respect to Dz, it suffices to show that
Dx

c is a member of Dz. For this, proceed as follows:

DPI
c belongs to Dt: If ωZ′

j ∈ ωZ
i , then Ken(Γi) ⊆ ΓZ′

j and, by PI, Ken(Γi) ⊆
Ken(ΓZ′

j ) = Ken(Γj). Hence, if ωZ′′

k ∈ P(ωZ′

j ) and therefore Ken(Γj) ⊆ ΓZ′′

k ,

Ken(Γi) ⊆ ΓZ′

k implying ωZ′′

k ∈ P(ωZ
i ). Thus P is transitive in DPI

c and there-
fore DPI

c ∈ D
t.

DNI
c belongs to De: If ωZ′

j ∈ P(ω
Z
i ), Ken(Γi) ⊆ ΓZ′

j and by NI and part (i) of

Lemma A.2 if φ ∉ Ken(Γi) then φ ∉ Ken(ΓZ
j ) = Ken(Γj). Thus Ken(Γj) ⊆

Ken(Γi) and hence if ωZ′′

k ∈ P(ωZ
i ) then Ken(Γj) ⊆ ΓZ′′

k , implying ωZ′′

k ∈

P(ωZ′

j ). Thus P in DNI
c is Euclidean and therefore DNI

c ∈ De.

D
T,PI,NI
c belongs to Dr: First show that underT, Ken(Γi)must beABT

1
-consistent

for any maximal ABT-consistent Γi. For if there was some φ ∈ Ken(Γi) such
that ⊢ABT

1

¬φ, then it holds by PC that for some ψ ∈ Φ∀−, ⊢ABT

1

φ⇒ [ψ∧¬ψ],
hence by N, φ⇒ [ψ ∧¬ψ] ∈ Ken(Γi) and therefore by K, [ψ ∧¬ψ] ∈ Ken(Γi).



But then since [ψ ∧ ¬ψ] ∈ Φ∀−, by T [ψ ∧ ¬ψ] ∈ Γi, which is impossible as Γi

is ABT-consistent.

By T, it must be that (Ken(Γi) ∩Φ∀−) ⊆ (Γi ∩Φ∀−). And since Ken(Γi) is

ABT

1
-consistent, by Lemma A.2 it must be a subset of some maximal ABT

1
-

consistent set that is itself a superset of Γi ∩ Φ∀−. By Lemma A.7, the only
two such sets are ΓT

i and ΓF
i . Therefore Ken(Γi) ⊆ ΓT

i or Ken(Γi) ⊆ ΓF
i . So

for all ωZ
i , at least one of ωT

i and ωF
i belongs to P(ωZ

i ).

To show the result, demonstrate that if Ken(Γi) /⊆ ΓZ
i then ΓZ

i is not relevant,
and therefore that ωZ

i is not defined, from which it follows that whenever ωZ
i

is defined, ωZ
i ∈ P(ωZ

i ). Suppose this is not the case and that Ken(Γi) /⊆ ΓZ
i

and ωZ
i is relevant, implying that there is some Γj such that Ken(Γj) ⊆ ΓZ

i .
Then by PI and NI, Ken(Γj) = Ken(Γi), so Ken(Γi) ⊆ ΓZ

i , a contradiction.

DAB
c belongs to Db: Suppose ωZ′

j ∈ P(ω
Z
i ) and thus that Ken(Γi) ⊆ ΓZ′

j . If p ∈

A(ωZ
i ) then Ap ∈ ΓZ

i and by AB, Ap ∈ Ken(Γi) and thus Ap ∈ ΓZ′

j , implying

p ∈ A(ωZ′

j ). Therefore ωZ′

j ∈ P(ω
Z
i ) implies A(ωZ

i ) ⊆ A(ω
Z′

j ) so DAB
c belongs

to Db.

To complete the proof, the arguments above can be used to show that the canonical
model of the system ABx,x′,...,x′′ lies within Dz,z′,...,z′′ , so ABx,x′,...,x′′ is complete
with respect to Dz,z′,...,z′′ . ∎

A.2 Proof of Theorem 2

If D ∈ DT , then it must be that:

V (ω,φ) = 1 ⇐⇒ V1(ω,φ) = 1 (14)

for any φ ∈ Φ and any ω in D’s state space. (14) implies that V (ω,Lφ) = 1 iff
V (ω′, φ) = 1 for all ω′ ∈ P(ω). It is then easy to see that DT is essentially the same
as the structures Mgpp for the language LKXA described by Halpern (2001), who
proves an analogous theorem. ∎

A.3 Proof of Proposition 1

Given Theorem 2, it suffices to show the following:

P∀ is valid in Db
T (15)

N∀ is valid in Dr,t,e,b
T

(16)

To show (15), consider any D ∈ Db
T whose state space includes ω. V (ω,∀xAx) = 1

implies A(ω′) = P for all ω′ ∈ P(ω), which given (14) requires V (ω,L∀xAx) = 1 and
therefore V (ω,B∀xAx) = 1.

For (16), take D ∈ Dr,t,e,b
T

with state ω. Since P is partitional, ω′ ∈ P(ω) implies
A(ω) = A(ω′). Therefore V (ω,¬∀xAx) = 1 implies V (ω′,¬∀xAx) = 1 for all ω′ ∈
P(ω), which by (14) implies V (ω,B¬∀xAx) = 1. ◻
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