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The rationale for international agreements on climate change mitigation comes 

from the global scope of impacts irrespective of the location of greenhouse gas 

(GHG) emissions. By contrast one of the motivations for national commitments to 

such agreements, and for national adaptation planning, is concern about national 

scale impacts. Climate predictions on regional scales are therefore highly sought 

after by policy and decision makers, yet robust, relevant predictions on these scales 

raise practical and philosophical challenges for climate science1. Existing methods 

underestimate uncertainty through limited exploration of model error2,3,4 and ad 

hoc choices regarding the relationship between model diversity and real world 

probabilities6,7. Here a new method is presented for extracting model based 

probabilistic information on regional and seasonal scales, utilising the world’s 

largest climate ensemble exploring the consequences of model uncertainty. For the 

first time ensemble filtering is implemented to counter problems of in-sample bias 

in future analyses. A probabilistic interpretation is presented of the regional scale 

consequences of targets to halve global GHG emissions by 20508,9, using a scenario 

with an estimated 32% probability of exceeding 2oC global warming (relative to 

pre-industrial levels). Meeting such a target leads to the model’s winter climate for 
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Northern Europe being between 0.5 and 5.9oC warmer and -5 and 34% wetter in 

the 2090s. A business-as-usual scenario provides ranges of 6.8 to 14.5oC and 22 to 

71%. Higher precipitation increases are found for North Asia. That these ranges 

are large illustrates the need for adaptation strategies which minimise 

vulnerability rather than optimise for the future 10. The method is potentially useful 

for making probabilistic statements about future seasonal mean model 

temperatures in many of the 22 predominantly land regions studied, as well as for 

model precipitation in a small number of high latitude regions.  

Probabilistic climate forecasts are most robust and best constrained for global 

multi-year mean near-surface temperature (Tg) because (i) observational and physical 

constraints on Tg minimise the impact of spatial and temporal variability, (ii) 

temperature is the best observed climatic variable, and (iii) it can be studied with a 

variety of different types of models from complicated global circulation models 

(GCMs), which resolve some aspects of the large scale dynamics, to simple energy 

balance models which explicitly average over such dynamical behaviour. Even so there 

remains significant uncertainty in the probability distribution for the long term Tg 

response to GHG stabilization scenarios, partly due to the limited ability of observations 

of the past to constrain feedbacks relevant to the future11. The nearer term transient 

response is better constrained12,13. Smaller spatial and temporal scales have many more 

degrees of freedom, making the evaluation of probabilistic information harder. Only 

GCMs provide data on regional scales yet the consequences of both aleatory and 

epistemic uncertainty are greater at smaller scales1 while our ability to explore such 

uncertainties are reduced as a consequence of these models’ computational demands. 

Here we combine information on model uncertainty with well-studied constraints on Tg 

to provide probabilistic model information on regional and seasonal scales. 
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Model uncertainty is evaluated with almost 40,000 simulations of the first 

experiment of the climateprediction.net project14; still by far the largest exploration of 

model uncertainty in a GCM. There will be an unavoidable bias in future analyses of 

this ensemble. The desire to reduce uncertainty, for example, can lead to a focus on 

model versions which exhibit some form of extreme behaviour15,16. This focus is 

developed “in-sample”, encouraging false confidence that uncertainty has been reduced. 

Here, to maintain the possibility of out-of-sample verification in future analyses, we 

apply ensemble filtering by removing half of the post quality controlled model versions 

(see methods) before further analysis. The remaining simulations consist of 6203 model 

versions14, each with initial condition ensembles of between 1 and 10 members.  The 

GCM is a version of HadSM317; the HadAM318 atmospheric model coupled to a 

thermodynamic ocean. Each simulation involves three 15 year phases14: (1) calibration, 

to deduce the ocean heat-flux convergence field used in subsequent phases to represent 

the transport of heat by ocean circulations, (2) control, to quantify the model’s 

behaviour with pre-industrial CO2 concentrations, and (3) doubled CO2, to explore the 

response to increasing CO2 concentrations. Regional19 temperature and precipitation, 

and Tg, anomalies are extracted for each simulation as the difference between the means 

of years eight to fifteen in phases two and three. To separate model uncertainty from 

internal model variability, ensemble results are presented as the mean of these 

anomalies across the initial condition ensemble for each model version (figures 1 and 

2). 

Co-variations of simulated winter and summer, temperature and precipitation with 

Tg for Northern Europe (NE) and North Asia (NA) are shown in figure 1. In both 

regions temperature and winter precipitation show a strong correlation with Tg. Summer 

precipitation does not. While such correlations are unsurprising, these results enable a 

quantification of the relationships in this model, accounting for a degree of epistemic 

uncertainty (parametric but not structural) in the atmospheric response. Yet it is unclear 
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how to evaluate the robustness of these relationships. The lack of independence between 

model versions20,21,22 ,1 removes the relevance of traditional goodness of fit tests, and 

constraints on climate ensembles remain elusive1,23,24 ,14. A simple linear least squares fit 

is therefore applied. As a test of sensitivity it is noted that including only those versions 

whose absolute global mean ocean heat-flux convergence is less than 2.5 W/m2 (red 

points) has little impact on the relationships. (See supplementary fig 1 for other seasons 

and regions). 

Probabilities of changes in Tg and atmospheric CO2 concentrations for given 

scenarios can be combined with these relationships to provide estimates of their 

implications for regional climate change within the model. The direct effect of CO2 

increases25, quantified by the intercept, is separated from the response associated with 

changes in Tg, quantified by the gradient,  as discussed on the global scale by Allen and 

Ingram, 200225 (see methods). The intercept is taken to be linearly related to CO2 

increase. Again lack of independence between model versions makes the results of 

traditional methods for evaluating uncertainty around the central estimate 

uninformative; the distribution of points about the regression line is a consequence of 

subjective choices, amongst other things, not an objective description of uncertainty. 

Furthermore, the societal relevance of climate predictions argues for a conservative 

approach to constraining even model results; overly constrained statements encourage 

false confidence and risk mal-adaptation. Thus, building on the “non-discountable 

envelope” of possibilities approach26 to this problem, a band of uniform probability is 

taken about the regression line; its width defined by the maximum range of model 

versions about that line (figure 1 and methods). Natural variability within the model is 

amenable to traditional approaches and is therefore handled separately (see methods). 

The model versions include both equilibrium and non-equilibrium states but one 

might nevertheless question whether the bands are likely to encompass behaviour 
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representative of a transient response such as that to be encountered in the 21st century. 

Figure 2 provides some justification for confidence, subject to the assumptions 

discussed later. It includes data from earlier in the same simulations, where this 

information is available, and indicates that the method does encompass the behaviour of 

the very early, transient, stages of the simulations for this model.  

The distributions in Figure 3 are conditional probability density functions for NE 

and NA model winter, deduced by combining these relationships with probability 

density functions (PDFs) for Tg and CO2 concentrations from Meinshausen et al., 20099. 

The 5-95% range for change in the 8-year mean, Northern European winter 

precipitation (temperature) between the late 1800s9 and the 2090s in this model is -5% 

to 34% (0.5 to 5.9oC) under the halved_by_2050 scenario; 22 to 71% (6.8 to 14.5oC) for 

the A1F1 SRES scenario. Table 1 presents the values for other seasons and for NA. 

Supplementary table 4 provides results for other regions.  

The assumptions necessary to relate model results to reality are the most 

significant aspect of any modelling study. There are three key assumptions in this 

approach. First the method relies on predicted distributions for Tg. While this provides 

flexibility to apply the Tg distribution of ones choice and removes the dependence on 

the global climate sensitivity of any specific model, it also integrates a dependence on 

the assumptions of the underlying study of Tg. Second, only changes in CO2 

concentrations are included in these simulations; changes in other greenhouse gases, 

particularly sulphate aerosols, will substantially affect some regions. Third, the 

relationships themselves could be a consequence of the model structure or the 

exploration of uncertain parameter values, rather than reflecting real world behaviour. 

The lack of a stratosphere27, dynamic ocean, dynamic ice sheets28, carbon cycle29, 

atmospheric/oceanic chemistry, and processes which require high resolution to be 

resolved etc., highlight the model-based nature of these conditional PDFs. This is true of 
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all climate predictions; none should be used quantitatively as real-world probabilities in 

climate change adaptation decisions. These results nevertheless provide a significant 

step forward in understanding the range of regional behaviour possible in current 

models, which is one source of guidance for such decisions. They incorporate the 

largest exploration of epistemic uncertainty in the simulation of regional climate to date, 

and are based on consistent model behaviour across an ensemble. Unlike existing 

methods for the analysis of perturbed physics ensembles this does not make the 

assumption that model diversity relates to probabilities of real world behaviour, the ad 

hoc nature of which has been discussed23,6,1. Furthermore it is orthogonal to arguments 

over a means for weighting models against observations to highlight those with the most 

relevant feedbacks for 21st century climate24,1.  

 These results combine model probabilities from initial condition ensembles with 

probabilities for Tg and a range of possibilities described by the perturbed physics 

ensemble. Maintaining the philosophy behind the envelopes of possibility approach, 

only the 5-95% ranges are presented. The approach provides contextual information for 

adaptation decisions; an alternative to datasets with more limited uncertainty 

exploration which potentially encourage false confidence. Increasing initial condition 

ensemble sizes could narrow the conditional PDFs through better quantification of the 

model version means for those versions which provide the outer bounds of the uniform 

probability bands. Increasing perturbed physics ensemble sizes could broaden the 

conditional PDFs through wider exploration of feedback mechanisms. Robust 

physically understood constraints would of course reduce uncertainty. Climate change is 

a problem of interlinked risks; if some model regions see only the 5% temperature 

change this implies that others must see much greater changes to maintain consistency 

with the change in Tg. Despite the large uncertainties illustrated here, the regional 

consequences of the two scenarios show little overlap by the end of the century. Under 

the A1F1 scenario even the 5% values represent significant change. 
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Methods Summary: 

Separation of forms of uncertainty: Model version response is taken as the mean 

across its initial condition ensemble (ICE). The nature of the distributed modelling 

experiment means model versions have varying size ICEs; some have only single 

simulations. The linear fits are not sensitive to the minimum size ICE deemed 

acceptable, although the spread about the fit is. Accepting smaller ICEs leads to greater 

mixing of internal variability and model uncertainty and consequently greater spread. 

Increasing the minimum size ICE better separates the two forms of uncertainty but at 

the cost of reducing the total number of model versions available. Here the minimum 

size ICE is taken as four – reducing the total number of model versions from 6203 to 

1594. Using these model versions a simple linear regression was performed for each 

regional variable against Tg; giving an intercept (i) and gradient (g). 

Construction of Conditional PDFs: PDFs of Tg and atmospheric CO2 concentrations 

were provided9 in terms of 600 equally likely 21st century timeseries for each scenario. 

For each timeseries the mean Tg (mTg) and mean atmospheric CO2 concentration 

(mCO2) was calculated for the central 8 years of the relevant decade. Assuming a linear 

direct response to CO2 concentrations the central estimate for the regional variable is 

then calculated as: 

Regional Variable Central Estimate   = i * ((mCO2 / p2CO2) -1) + g * mTg 

where p2CO2 is the atmospheric CO2 concentrations in the second phase of the 

simulations. 

A range of equal probability, defined by the maximum deviation from the linear 

fit of any model version mean, is taken about this central estimate. A single sided 

Gaussian distribution is added to the lower and upper end of this range. The gaussian’s 

variance is taken as the mean variance, allowing for uncertainty in Tg, across all initial 
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condition ensembles included. This provides a tail of probability which accounts for 

internal model variability. The resulting 600 distributions are combined and normalised 

to produce the conditional PDFs in figure 3.  

Supplementary Information accompanies this paper. 
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Figure 1: Changes in Northern European (top) and North Asian (bottom) 

temperature (left) and precipitation (right) with Tg, as simulated by model 

versions of the grand ensemble. DJF indicates winter 

(December/January/February), JJA summer (June/July/August). Model versions 

with absolute values of global mean atmosphere/ocean heat flux (Hg) less than 

2.5 W/m2 are shown in red.  All points are ensemble means across initial 

condition ensembles where available. Crosses have at least 4 member initial 

condition ensembles, dots have fewer members and are omitted from further 

analysis – see methods. The least squared linear fits are based on crosses 

only; black (all model versions) and red (model versions with |Hg| < 2.5 W/m2). 

The correlation coefficient is shown in the top left hand corner of each plot; this 

information is indicative only of potential relevance. The shaded band is taken 

as having uniform probability. 
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Figure 2: Black crosses are the same as in figure 1 but for temperature only: 

Northern Europe – left, North Asia - right. Coloured crosses are from earlier in a 

subset of the same simulations (only some simulations provided the necessary 

data). Blue crosses are calculated as the difference between the means of 

years one to eight from phases two and three. Orange crosses use years three 

to ten. 

Figure 3: Conditional probability density functions for Northern European (left), 

and North Asian (right) winter temperature (top) and precipitation (bottom) 

changes. Changes in the eight year model mean are presented for the 2050s 

and the 2090s based on predictions of Tg and CO2 concentrations from 

Meinshausen et al 20099 which include the effects of a number of GHGs. Red 

represents the SRES A1F1 scenario and blue the Meinshausen halved-by-2050 

scenario.  

 

Additional Methods: The model and experimental design for the ensemble are 

described in Stainforth et al. 200514. The parameters perturbed in the experiment and the 

definitions of the regions analysed are presented in supplementary information 1.  

The nature of the climateprediction.net project leads to a dataset which is 

unsurprisingly messy; some simulations do not complete, some do not return all of the 

data. Quality control procedures applied here were similar to those used in previous 

studies14,30 . Before inclusion in this study each simulation was checked: i) for the 

existence of information on the parameter values used, ii) for the existence of files 

necessary to check the stability of the control phase and to calculate the regional data 

used herein, iii) to ensure that the drift in annual mean Tg in the last eight years of the 

control phase was no greater than 0.02 Kyr-1, iv) to ensure the data was not corrupted, as 
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indicated by an inability to calculate a climate sensitivity14 or jumps in seasonal means 

from one season to the next of more than 10K or 40mm/day, and v) to remove those 

showing unphysical cooling in the tropical east pacific using the method applied in 

Knight et al, 200730. 

39802 simulations passed the data quality checks. Ensemble filtering involved the 

removal of half the model versions leaving 19618 simulations and 6203 model versions 

for inclusion here. Where duplicate simulations gave non-identical results, their mean 

was taken. Within each initial condition ensemble the regional and seasonal variance 

was calculated allowing for the impact of the deduced relationship on the uncertainty in 

the dependent variable. 

While all simulations provided mean data for the last eight years of each phase, 

only 16378 of the 19618 simulations provided the regional timeseries data necessary for 

the calculation of time means from earlier in the phases for inclusion in figure 2. This 

extra data only became available for new runs following an upgrade to the distributed 

modelling software part way through the project. 

Northern Europe was taken as 48N-75N, 10W-40E, and North Asia as 50N-70N 

40E-180E, following Giorgi and Francisco, 200019, but including both land and sea 

points. Supplementary information contains information for other regions. 

 

References 

1. Stainforth, D. A., Allen, M. R., Tredger, E. R., and Smith, L. A., Confidence, 

uncertainty and decision-support relevance in climate predictions. Philosophical 

Transactions of the Royal Society a-Mathematical Physical and Engineering 

Sciences 365 (1857), 2145 (2007). 



13 

2. Tebaldi, C., Smith, R. L., Nychka, D., and Mearns, L. O., Quantifying 

uncertainty in projections of regional climate change: A Bayesian approach to 

the analysis of multimodel ensembles. Journal of Climate 18 (10), 1524 (2005). 

3. Stott, P. A., Kettleborough, J. A., and Allen, M. R., Uncertainty in continental-

scale temperature predictions. Geophysical Research Letters 33 (2) (2006). 

4. Palmer, T. N. and Ralsanen, J., Quantifying the risk of extreme seasonal 

precipitation events in a changing climate. Nature 415 (6871), 512 (2002). 

5. Raisanen, J. and Ruokolainen, L., Probabilistic forecasts of near-term climate 

change based on a resampling ensemble technique. Tellus Series a-Dynamic 

Meteorology and Oceanography 58 (4), 461 (2006). 

6. Allen, M.R., Frame, D.J., Kettleborough, J., Stainforth, D.A. “Model error in 

weather and climate forecasting” in “Predictability of Weather and Climate”. 

Cambridge University Press, ISBN-10: 0521848822, ISBN-13: 978-

0521848824, pp 391-427 (2006).  

7. Murphy, J.M. et al., UK Climate Projections Science Report: Climate change 

projections. Met Office Hadley Centre, Exeter. 

http://ukclimateprojections.defra.gov.uk (2009) 

8. G8. Hokkaido Toyako Summit Leaders Declaration (G8, 2008); available at 

(www.mofa.go.jp/policy/economy/summit/2008/doc/doc080714__en.htm). 

9. Meinshausen, M. et al., Greenhouse-gas emission targets for limiting global 

warming to 2 degrees C. Nature 458 (7242), 1158 (2009). 

10. Hulme, M., Pielke, R., and Dessai, S. Keeping Prediction in perspective. Nature 

Reports Climate Change, 126 (2009) 

11. Baker, M. B. and Roe, G. H., The Shape of Things to Come: Why Is Climate 

Change So Predictable? Journal of Climate 22 (17), 4574 (2009). 



14 

12. Frame, D. J. et al., Constraining climate forecasts: The role of prior assumptions. 

Geophysical Research Letters 32 (9) (2005). 

13. Sokolov, A. P. et al., Probabilistic Forecast for Twenty-First-Century Climate 

Based on Uncertainties in Emissions (Without Policy) and Climate Parameters. 

Journal of Climate 22 (19), 5175 (2009). 

14. Stainforth, D. A. et al., Uncertainty in predictions of the climate response to 

rising levels of greenhouse gases. Nature 433 (7024), 403 (2005) 

15. Rodwell, M. J. and Palmer, T. N., Using numerical weather prediction to assess 

climate models. Quarterly Journal of the Royal Meteorological Society 133 

(622), 129 (2007). 

16.  Joshi, M.M., Webb, M.J., Maycock, A.C., and Collins, M. Stratospheric water 

vapour and high climate sensitivity in a version of the HadSM3 climate model, 

Atmos. Chem. Phys. (2010). 

17. Williams, K. D., Senior, C. A., and Mitchell, J. F. B., Transient climate change 

in the Hadley Centre models: The role of physical processes. Journal of Climate 

14 (12), 2659 (2001). 

18. Pope, V. D., Gallani, M. L., Rowntree, P. R., and Stratton, R. A., The impact of 

new physical parametrizations in the Hadley Centre climate model: HadAM3. 

Climate Dynamics 16 (2-3), 123 (2000). 

19. Giorgi, F. & Francisco, R. Uncertainties in regional climate change prediction: a 

regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. 

Climate Dynamics 16, 169-182 (2000) 

20. Jun, M., Knutti, R., and Nychka, D. W., Spatial Analysis to Quantify Numerical 

Model Bias and Dependence: How Many Climate Models Are There? Journal of 

the American Statistical Association 103 (483), 934 (2008). 



15 

21. Abramowitz, G. and Gupta, H., Toward a model space and model independence 

metric. Geophysical Research Letters 35 (5) (2008). 

22. Jun, M. Y., Knutti, R., and Nychka, D. W., Local eigenvalue analysis of CMIP3 

climate model errors. Tellus Series a-Dynamic Meteorology and Oceanography 

60 (5), 992 (2008). 

23. Smith, L. A., What might we learn from climate forecasts? Proceedings of the 

National Academy of Sciences of the United States of America 99, 2487 (2002). 

24. McWilliams, J. C., Irreducible imprecision in atmospheric and oceanic 

simulations. Proceedings of the National Academy of Sciences of the United 

States of America 104 (21), 8709 (2007). 

25. Allen, M. R. and Ingram, W. J., Constraints on future changes in climate and the 

hydrologic cycle. Nature 419 (6903), 224 (2002). 

26. Stainforth, D. A. et al., Issues in the interpretation of climate model ensembles to 

inform decisions. Philosophical Transactions of the Royal Society a-

Mathematical Physical and Engineering Sciences 365 (1857), 2163 (2007). 

27. Baldwin, M. P., Dameris, M., and Shepherd, T. G., Atmosphere - How will the 

stratosphere affect climate change? Science 316 (5831), 1576 (2007). 

28. Notz, D., The future of ice sheets and sea ice: Between reversible retreat and 

unstoppable loss. Proceedings of the National Academy of Sciences of the 

United States of America 106 (49), 20590 (2009). 

29. Friedlingstein, P. et al., Climate-carbon cycle feedback analysis: Results from 

the (CMIP)-M-4 model intercomparison. Journal of Climate 19 (14), 3337 

(2006). 

30. Knight, C.G. et al. Association of parameter, software, and hardware variation 

with large-scale behavior across 57,000 climate models. Proceedings of the 



16 

National Academy of Sciences of the United States of America 104, 12259-

12264 (2007). 



17 

Table 1: Selected Regional, Seasonal Changes by the  2090s. 

The predicted distribution of change in 8 year mean model climate by the 2090s for Northern 

Europe(NE) and North Asia (NA), temperature (T in Kelvin) and precipitation (Pr in %), and 

various seasons (Dec/Jan/Feb(DJF), Mar/Apr/May(MAM) etc.). The 5-95% range is presented 

for the A1F1 and the halved-by-2050 scenarios used in Meinshausen et al. 2009.  Figures are 

only presented where the correlation coefficient with Tg is 0.8 or greater (see methods). This is 

an arbitrary cut-off which is useful simply in highlighting relationships of potential relevance. For 

NE and NA it identifies all relationships for which this approach has value. 

Halved-by-2050 A1F1 

R
eg

io
n 

S
es

si
on

 

V
ar

ia
bl

e 

5% 95% 5% 95% 

NE DJF T 0.55 5.85 6.85 14.45 

NE MAM T 0.15 4.65 5.05 11.65 

NE JJA T -0.05 4.25 3.45 9.45 

NE SON T 0.15 4.15 4.05 9.95 

NE Annual T 0.35 4.45 4.95 11.15 

NA DJF T 0.25 6.35 6.35 15.25 

NA MAM T -0.25 4.85 3.75 10.95 

NA JJA T -0.95 4.75 1.75 9.35 

NA SON T 0.35 4.65 4.75 11.45 

NA Annual T -0.05 4.75 4.25 11.35 

NE DJF Pr -5.5 33.5 22.5 70.5 

NA DJF Pr 1.5 46.5 31.5 90.5 

NA MAM Pr -1.5 32.5 20.5 64.5 

NA SON Pr -0.5 25.5 16.5 49.5 

NA Annual Pr 1.5 23.5 21.5 52.5 
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Captions for Supplementary Figures 

Supplementary Figure 1: As Figure 1 but for all regions and seasons. The 

shaded band is taken as having uniform probability. It is only plotted when the 

correlation coefficient is 0.8 or greater. This is an arbitrary cut off and in any 

case is only indicative of the potential usefulness of the correlation. A 

judgement of the relevance of the relationship should be made on a case by 

case basis but for plotting purposes it is useful to apply this criterion. 
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Supplementary Table 1: List of regions studied  

The regions analysed were the same as those used in Giorgi and Francisco, 2000 but including 

both land and sea points. Their definitions are included here. 

Name Latitude (°) Longitude (°) 

Australia 45S-11S 110E-155E 

Amazon Basin 20S-12N 82W-34W 

Southern South America 56S-20S 76W-40W 

Central America 10N-30N 116W-83W 

Western North America 30N-60N 130W-103W 

Central North America 30N-50N 103W-85W 

Eastern North America 25N-50N 85W-60W 

Alaska 60N-72N 170W-103W 

Greenland 50N-85N 103W-10W 

Mediterranean Basin 30N-48N 10W-40E 

Northern Europe 48N-75N 10W-40E 

Western Africa 12S-18N 20W-22E 

Eastern Africa 12S-18N 22E-52E 

Southern Africa 35S-12S 10W-52E 

Sahara 18N-30N 20W-65E 

Southeast Asia 11S-20N 95E-155E 

East Asia 20N-50N 100E-145E 

South Asia 5N-30N 65E-100E 

Central Asia 30N-50N 40E-75E 

Tibet 30N-50N 75E-100E 

North Asia 50N-70N 40E-180E 

 



23 

Supplementary Table 2: Parameters Perturbed in the Ensemble 

The parameters which were perturbed in the ensemble analysed herein.  

  Parameter 
Component of GCM 

physics 
          Description/Process Affected 

Vf1 Large scale cloud Ice fall speed 

Ct Large scale cloud Cloud droplet to rain conversion rate 

Cw Large scale cloud Cloud droplet to rain conversion threshold 

RHcrit Large scale cloud Threshold of relative humidity for cloud 

formation 

EACF Large scale cloud Cloud fraction at saturation 

EntCoef Convection Entrainment rate coefficient. 

Scales rate of mixing between environmental 

air and convective plume 

Ice_size Radiation Effective radius of cloud ice spheres 

Non-spherical ice 

particle 

parameters 

Radiation Parameters allowing for non-spherical ice 

particles in the radiation scheme 

Alpham Sea Ice Albedo at melting point of ice 

Dtice Sea ice The dependence of sea ice albedo on 

temperature 
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Supplementary Table 3: Parameter Values and Perturb ation Codes 

The identification code of each simulation included in this analysis is listed in supplementary 

table 5. Also listed is a “perturbation code” which identifies the model version of that simulation, 

i.e. the parameter perturbations which have been made. Each digit in the perturbation code 

represents the values of a different parameter or parameter group; “1” is always the standard 

value in the unperturbed model. The parameter values corresponding to each parameter code 

digit are given here. 

  Value of this digit of the parameter code: 

  0 1 2 3 4 

Parameter 

code digit 

Parameter Corresponding Parameter values:  

1st alpham - 0.5 0.57 0.65  

2nd Ct 5e-5 1e-4 4e-4   

3rd Cw_land 

CW_sea 

1e-4 

2e-5 

2e-4 

5e-5 

2e-3 

5e-4 

  

4th dtice  10 5 2 <0 

5th EACF  0.5 0.7:0.6 0.8:0.65  

6th entcoef 0.6 3.0 9.0   

7th Non-spherical ice 

particle parameters: 

i_cnv_ice_lw 

i_cnv_ice_sw 

i_st_ice_sw 

i_st_ice_sw 

 

 

 

 

 

1 

3 

1 

2 

 

 

7 

7 

7 

7 

  

8th ice_size 2.5e-5 3e-5 4e-5   

9th rhcrit 0.6 0.7 0.9    

10th vf1 0.5 1.0 2.0   
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Supplementary Table 4: Regional, Seasonal Changes b y 2090. 

The predicted distribution of change in 8 year mean model climate by the 2090s for all regions 

and seasons in which the correlation coefficient with Tg is 0.8 or greater. The 5-95% range is 

presented for the A1F1 and the halved-by-2050 scenarios used in Meinshausen et al. 2009.  

Note: The 0.8 cut off is applied only as an indication of potential relevance of the relationship. 

The numbers in this table should be interpreted in the light of the judged relevance of the 

associated relationship in the plots in supplementary figure 1.  

Halved-by-2050 A1F1 

R
eg

io
n 

S
es

si
on

 

V
ar

ia
bl

e 

5% 95% 5% 95% 

Australia DJF T 0.95 3.85 3.05 7.25 

Australia MAM T 0.85 3.85 3.05 7.55 

Australia JJA T 0.65 3.15 2.45 6.45 

Australia SON T 1.05 4.05 3.35 7.75 

Australia Annual T 1.05 3.65 3.15 7.25 

Amazon_Basin DJF T 0.25 4.55 2.05 8.45 

Amazon_Basin MAM T 0.65 4.95 2.85 9.25 

Amazon_Basin JJA T 0.55 5.45 2.75 9.85 

Amazon_Basin SON T 0.85 5.15 3.15 9.75 

Amazon_Basin Annual T 0.75 4.95 2.85 9.25 

Southern_South_America DJF T 0.25 2.75 1.65 5.75 

Southern_South_America MAM T -0.05 2.95 1.25 5.85 

Southern_South_America JJA T 0.35 3.15 2.15 6.45 

Southern_South_America SON T 0.25 2.95 1.95 6.25 

Southern_South_America Annual T 0.35 2.85 1.85 5.95 

Central_America DJF T 0.45 3.05 3.55 7.55 

Central_America MAM T 0.95 3.65 3.95 8.35 

Central_America JJA T 1.05 4.25 4.15 9.15 

Central_America SON T 0.95 3.65 3.65 8.05 



26 

Central_America Annual T 1.05 3.45 3.95 8.15 

Western_North_America DJF T 0.25 4.55 3.65 9.85 

Western_North_America MAM T 0.05 3.65 3.55 8.75 

Western_North_America JJA T 1.25 4.85 5.95 11.95 

Western_North_America SON T 0.75 4.05 4.75 10.15 

Western_North_America Annual T 0.95 4.05 4.75 10.05 

Central_North_America DJF T -0.35 5.95 5.25 13.25 

Central_North_America MAM T 0.35 5.35 5.05 11.85 

Central_North_America JJA T 0.85 6.95 6.55 15.05 

Central_North_America SON T 0.15 5.65 4.45 12.05 

Central_North_America Annual T 0.85 5.45 5.85 12.65 

Eastern_North_America DJF T 0.35 4.65 5.15 11.25 

Eastern_North_America MAM T 0.75 4.15 4.65 9.75 

Eastern_North_America JJA T 1.05 4.05 5.15 10.15 

Eastern_North_America SON T 1.05 4.05 4.95 9.85 

Eastern_North_America Annual T 0.95 4.05 5.15 10.15 

Alaska DJF T 0.05 9.65 6.45 18.55 

Alaska MAM T -0.35 5.15 4.45 11.95 

Alaska JJA T -0.65 3.65 1.55 7.25 

Alaska SON T 0.55 5.75 6.85 14.45 

Alaska Annual T 0.55 5.55 5.45 12.85 

Alaska MAM Pr -25.5 40.5 -19.5 54.5 

Alaska SON Pr -15.5 39.5 -1.5 61.5 

Alaska Annual Pr -12.5 32.5 2.5 56.5 

Greenland DJF T 0.35 7.25 6.15 16.05 

Greenland MAM T 0.35 5.05 4.65 11.15 

Greenland JJA T -0.25 3.15 2.35 7.15 

Greenland SON T 0.05 4.75 4.75 11.45 
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Greenland Annual T 0.55 4.95 4.85 11.35 

Greenland DJF Pr -4.5 26.5 16.5 57.5 

Greenland MAM Pr -0.5 25.5 19.5 52.5 

Greenland SON Pr -2.5 24.5 19.5 53.5 

Greenland Annual Pr 1.5 20.5 22.5 49.5 

Mediterranean_Basin DJF T 0.85 4.15 4.85 9.95 

Mediterranean_Basin MAM T 0.95 3.95 4.75 9.65 

Mediterranean_Basin JJA T 1.15 5.45 5.65 12.35 

Mediterranean_Basin SON T 1.05 4.25 4.65 9.95 

Mediterranean_Basin Annual T 1.15 4.05 5.15 10.15 

Northern_Europe DJF T 0.55 5.85 6.85 14.45 

Northern_Europe MAM T 0.15 4.65 5.05 11.65 

Northern_Europe JJA T -0.05 4.25 3.45 9.45 

Northern_Europe SON T 0.15 4.15 4.05 9.95 

Northern_Europe Annual T 0.35 4.45 4.95 11.15 

Northern_Europe DJF Pr -5.5 33.5 22.5 70.5 

Western_Africa DJF T 0.85 3.95 2.95 7.75 

Western_Africa MAM T 1.05 4.15 3.25 8.05 

Western_Africa JJA T 0.75 4.25 2.35 7.55 

Western_Africa SON T 0.45 4.25 2.05 7.45 

Western_Africa Annual T 0.85 4.15 2.75 7.65 

Eastern_Africa DJF T 0.65 4.25 2.65 8.15 

Eastern_Africa MAM T 0.85 4.55 3.25 8.95 

Eastern_Africa JJA T 0.65 5.05 2.55 8.85 

Eastern_Africa SON T 0.45 5.05 2.25 8.65 

Eastern_Africa Annual T 0.85 4.65 2.75 8.55 

Southern_Africa DJF T 0.85 3.15 2.65 6.45 

Southern_Africa MAM T 0.95 3.35 3.05 6.95 
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Southern_Africa JJA T 0.85 3.25 2.55 6.55 

Southern_Africa SON T 0.95 3.45 2.75 6.85 

Southern_Africa Annual T 0.95 3.25 2.75 6.65 

Sahara DJF T 0.75 3.85 3.85 8.85 

Sahara MAM T 1.25 4.45 5.05 10.25 

Sahara JJA T 1.35 5.35 5.55 11.55 

Sahara SON T 1.25 4.75 4.95 10.55 

Sahara Annual T 1.35 4.35 4.95 10.05 

Southeast_Asia DJF T 0.65 3.15 2.85 6.65 

Southeast_Asia MAM T 0.65 3.35 2.65 6.65 

Southeast_Asia JJA T 0.75 3.45 2.65 6.75 

Southeast_Asia SON T 0.75 3.55 2.95 6.95 

Southeast_Asia Annual T 0.75 3.35 2.75 6.75 

East_Asia DJF T 0.65 4.15 5.65 11.15 

East_Asia MAM T 0.75 3.95 4.65 9.65 

East_Asia JJA T 0.95 3.95 5.25 10.25 

East_Asia SON T 0.95 3.65 4.95 9.65 

East_Asia Annual T 0.95 3.85 5.15 10.05 

South_Asia DJF T 0.75 4.45 4.05 9.25 

South_Asia MAM T 0.95 4.15 3.75 8.55 

South_Asia JJA T 0.45 4.65 2.45 7.75 

South_Asia SON T 0.75 4.85 3.75 9.25 

South_Asia Annual T 0.85 4.45 3.55 8.55 

Central_Asia DJF T -0.05 4.65 5.05 11.75 

Central_Asia MAM T 0.45 5.35 5.55 12.45 

Central_Asia JJA T 1.35 5.35 6.35 13.05 

Central_Asia SON T 1.15 4.55 5.35 10.95 

Central_Asia Annual T 1.45 4.75 6.25 11.95 
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Tibet DJF T 1.05 5.75 6.55 13.65 

Tibet MAM T 1.05 5.25 5.45 11.75 

Tibet JJA T 1.25 5.25 5.65 11.95 

Tibet SON T 1.15 4.95 5.85 11.95 

Tibet Annual T 1.45 4.95 6.05 12.05 

Tibet MAM Pr -15.5 31.5 -11.5 40.5 

North_Asia DJF T 0.25 6.35 6.35 15.25 

North_Asia MAM T -0.25 4.85 3.75 10.95 

North_Asia JJA T -0.95 4.75 1.75 9.35 

North_Asia SON T 0.35 4.65 4.75 11.45 

North_Asia Annual T -0.05 4.75 4.25 11.35 

North_Asia DJF Pr 1.5 46.5 31.5 90.5 

North_Asia MAM Pr -1.5 32.5 20.5 64.5 

North_Asia SON Pr -0.5 25.5 16.5 49.5 

North_Asia Annual Pr 1.5 23.5 21.5 52.5 

Antarctica DJF T -0.25 2.85 0.75 4.85 

Antarctica MAM T -0.35 5.15 1.75 8.85 

Antarctica JJA T 0.15 5.95 3.05 10.85 

Antarctica SON T 0.25 4.25 2.65 8.15 

Antarctica Annual T 0.35 4.35 2.35 8.05 

Antarctica DJF Pr -1.5 26.5 3.5 41.5 

Antarctica MAM Pr 1.5 28.5 5.5 45.5 

Antarctica JJA Pr -0.5 35.5 12.5 62.5 

Antarctica SON Pr -5.5 28.5 0.5 44.5 

Antarctica Annual Pr 0.5 27.5 6.5 47.5 
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Supplementary Table 5: List of simulations and pert urbations 

The run ids for all simulations are listed along with the perturbation code identifying how 

parameters have been perturbed. This table can be found in 

supplementary_information_table_5_simulations.xls 

 

 


