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Abstract5

Operational seasonal forecasting centres employ simulation mod-6

els to make probability forecasts of future conditions on seasonal to7

annual lead times. Skill in such forecasts is reflected in the infor-8

mation they add to purely empirical statistical models, or to earlier9

versions of simulation models. An evaluation of seasonal probabil-10

ity forecasts from the DEMETER and the ENSEMBLES multi-model11

ensemble experiments is presented. Two particular regions are con-12

sidered (Nino3.4 in the Pacific and Main Development Region in the13

Atlantic); these regions were chosen before any spatial distribution14

of skill were examined. The ENSEMBLES models are found to have15

skill against the climatological distribution on seasonal time scales;16

for models in ENSEMBLES which have a clearly defined predecessor17

model in DEMETER the improvement from DEMETER to ENSEM-18

BLES is discussed. Due to the long lead times of the forecasts and19

the evolution of observation technology, the forecast-outcome archive20

for seasonal forecast evaluation is small; arguably evaluation data for21

∗Under review for Quarterly Journal of the Royal Meteorological Society
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seasonal forecasting will always be precious. Issues of information con-22

tamination from in-sample evaluation are discussed, impacts (both23

positive and negative) of variations in cross-validation protocol are24

demonstrated. Other difficulties due to the small forecast-outcome25

archive are identified. The claim that the multi-model ensemble pro-26

vides a “better” probability forecast than the best single model is27

examined and challenged. Significant forecast information beyond the28

climatological distribution is also found in a probability forecast based29

on persistence. On seasonal time scales, the ENSEMBLES simulation-30

based probability forecasts add significantly more information to em-31

pirical probability forecasts than on decadal scales. It is suggested32

most skillful operational seasonal forecasts available would meld in-33

formation both from simulation models and empirical models.34

1 Introduction35

Skillful probabilistic forecasting of seasonal weather and climate statistics36

would be of value in many fields including agriculture, health and insurance.37

Since the late nineties seasonal forecasting using dynamical models of the38

coupled atmosphere, ocean and land surface system has become common in39

operational weather forecasting centres around the world. In recent years,40

multi-model ensembles have become popular tools to investigate and account41

for shortcomings due to structural model error in dynamical model-based42

predictions on time scales from days to seasons and centuries ([21, 34, 36]).43

The resources allocated to operational seasonal dynamical models, and the44

potential use of multi-model ensembles rather than a single model, depend45

critically on the forecast information simulation models add beyond statisti-46

cal approaches.47

The need for a consistent experimental design for the assessment of skill48

in multi-model seasonal forecasting was embraced by two large European49

projects in the last decade. These projects provided the basis for subsequent50

multi-model designs for operational seasonal-to-decadal forecasting ([33, 17]).51

The earlier European project, initiated in 2000, was DEMETER ([21, 8, 11]),52

in which a consistent framework was developed to conduct multi-model sea-53

sonal forecasting with a set of general circulation models (GCMs). A sim-54

ilar framework was adopted in ENSEMBLES ([13, 36, 9]), which produced55

the next generation of seasonal hindcast (or retrospective forecast) simula-56

tions, using updated model versions. Further details of the ENSEMBLES &57
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DEMETER experiments can be found in Table 1 & 2 in the Supplementary58

Material.59

The multi-model ensemble simulations from these projects provide a basis60

for the quantification of skill in GCM forecasts and an opportunity to assess61

the benefit of using multi-model ensembles ([36, 2]) over other approaches,62

such as forecasts based on statistical models ([7, 20, 27, 30, 32]). Furthermore,63

the consistency between the experimental design of the DEMETER and EN-64

SEMBLES seasonal forecasts makes it possible to quantify the improvement65

of skill, or in other words, the additional information gained from the fore-66

casts due to model development in the intervening period between the two67

projects. While evaluations of skill between individual model versions may68

exist in-house at forecast centres, the authors are unaware of any systematic69

comparison across centres and model versions. The analysis presented below70

allows direct comparisons between both the relative performance of and the71

improvement in different models.72

Two particular regions are considered. As a coupled atmospheric and73

oceanic phenomenon, the El Niño/Southern Oscillation (ENSO) in the trop-74

ical Pacific is the dominant mode of seasonal and interannual climate vari-75

ability. Sea surface temperatures (SSTs) in the Nino3.4 region at seasonal76

timescales provides an indicator for the ENSO phenomenon. SSTs in the77

Main Development Region (MDR), over the North Atlantic, provide an in-78

dicator for hurricane activity over the coming season. This paper focuses79

on probability forecast skill in these two regions.1 Probabilistic skill of sea-80

sonal forecasts from both DEMETER and ENSEMBLES are evaluated and81

contrasted. In each case, ensembles of GCM simulations are transformed82

into probabilistic distributions via kernel dressing (see [6]) and blended with83

the climatological distribution to provide calibrated seasonal forecasts; an84

approach which is becoming common in operational forecasting ([31]). Eval-85

uating probability forecasts as probability forecasts, rather than computing86

summary statistics of the ensemble mean, allows clearer consideration of the87

uncertainties sampled by the multi-model ensemble. It is also more easily88

interpreted in terms of the value, or information content, of the forecast from89

a decision-makers perspective.90

An overview of the DEMETER and ENSEMBLES multi-model exper-91

1Attention was restricted to these two regions prior to examination of any other regions.
This approach eases interpretation of the statistical significance of the results obtained over
studies that examine the entire globe and then focus analysis on areas with “significant”
skill.
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iments used to evaluate seasonal forecast skill over the Nino3.4 and MDR92

regions are given in section 2 and the approach to generating probabilistic93

forecasts and evaluating them is described in Section 3. In Section 4, prob-94

abilistic skill above that of the climatological distribution is demonstrated95

up to a lead time of seven months for SSTs over the Nino3.4 region and up96

to a lead time of two months for SSTs over the MDR. In Section 5 fore-97

casts from the ENSEMBLES models show improvements in skill compared98

to those from DEMETER for each of the models that are common to both99

projects. Broadly speaking these results are consistent with previous eval-100

uations of skill from the DEMETER and ENSEMBLES projects ([36, 2]),101

in which improvements in the anomaly correlation, RMS and Brier scores102

from DEMETER to ENSEMBLES were reported for SSTs over the tropical103

Pacific and some other regions up to six months ahead. Section 6 shows that104

somewhat surprisingly competitive results can be formed from purely empir-105

ical probability forecasts based on persistence. The illustrations presented106

in Section 7 suggest that increasing the ensemble size of future multi-model107

experiments could provide an efficient way of improving forecast skill, while108

Sections 8 and 9 highlight the motivation for using proper scoring rules and109

the challenges involved in model combination to produce multi-model en-110

semble forecasts, respectively. Section 10 discusses the issues of information111

contamination when data are precious. The key results and conclusions are112

summarized in section 11.113

2 The seasonal multi-model ENSEMBLES fore-114

casts115

The ENSEMBLES multi-model ensemble experiment for seasonal-to-annual116

forecasting comprises global coupled atmosphere-ocean climate models from117

the UK Met Office (UKMO), Météo France (MF), the European Centre for118

Medium-Range Weather Forecasts (ECMWF), the Leibniz Institute of Ma-119

rine Sciences at Kiel University (IFM-GEOMAR) and the Euro-Mediterranean120

Centre for Climate Change (CMCC-INGV) in Bologna ([9]). In each case121

the ensemble simulations include all the major radiative forcings; none of the122

coupled models has flux adjustments ([13, 36, 9]). A set of seasonal hindcast123

simulations cover the 46 year period from 1960 to 2005. For each launch124

date the atmosphere and ocean for each model were initialized using realistic125
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estimates of their observed states, providing an ensemble consisting of nine126

initial condition ensemble members for each model. Hindcast simulations127

were launched on the first day of February, of May, of August and of Novem-128

ber each year over the hindcast period and run for seven months. This set129

of 46 seasonal forecasts for each launch date is analysed below. Additionally130

each model, with the exception of CMCC-INGV, was run for an extended131

period up to a lead time of 14 months from the November launch.132

Improvements made in the ENSEMBLES multi-model forecasting sys-133

tem include a better representation of sub-gridscale physical processes in134

the simulation models, the inclusion of interannual variability in the green-135

house gas forcing and the use of improved ocean data assimilation, based136

on quality-controlled in situ ocean temperature and salinity profiles for the137

construction of the initial conditions ([14, 36]). Given two simulation mod-138

els from the same modelling centres, the experimental designs are sufficiently139

consistent to allow a direct comparison between the skill of seasonal forecasts140

from each version of the system. Further details of the models used for the141

DEMETER and ENSEMBLES projects are provided in Tables 1 and 2 of142

the Supplement Material.143

3 Defining probabilistic forecast skill144

Simulations from dynamical models are often used to make probabilistic pre-145

dictions with the aim of providing useful information for decision support.146

Evaluating the performance of these predictions, as well as understanding147

the sources of skill, is crucial for guiding decision-makers in which regions148

and on what timescales of interest the models are likely to be informative.149

And perhaps more importantly clarifying when they are likely to be mis-150

informative. Only proper scoring rules offer appropriate, clear measures of151

probabilistic forecast skill ([5, 37]).152

I. J. Good’s logarithmic score (Ignorance) (see [10, 25, 5]), is unique153

among several scoring rules ([37]) designed for evaluating the skill of proba-154

bilistic forecasts. It is the only proper and local score2 for continuous vari-155

2Proper meaning that it cannot be optimized by hedging the probabilistic forecasts to-
ward other values against the forecasters true belief ([5, 35]). Local meaning that the score
depends solely on the probability assigned to the outcome, rather than being rewarded for
other features of the forecast distribution, such as its shape.
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ables (see [3, 23, 5]). The Ignorance Score is defined by:156

S(p(y), Y ) = − log2(p(Y )), (1)

where Y is the observed outcome and p(y) is the density function of the157

forecast distribution. Ignorance has a clear interpretation in terms of gam-158

bling returns (see [10, 16, 25]): Under a certain betting scenario, “Kelly159

Betting” ([16]), the Ignorance describes the rate at which the forecaster’s160

wealth changes with time. Through its close relation to Shannon’s infor-161

mation entropy, Ignorance can also be related to the amount of information162

expected from a forecast (see [25]). It is easily communicated as an effective163

interest rate (see [12]).164

In practice, given K forecast-outcome pairs, (pt, Yt, t = 1, ..., K), the em-165

pirical Ignorance score is:166

SE(p(y), Y ) =
1

K

K∑

i=1

− log2(pi(Yi)). (2)

Relative Ignorance reflects the performance of (a set of) forecasts p from one167

model relative to those of a reference forecast pref :168

Srel(p(y), Y ) =
1

K

K∑

i=1

− log2[(pi(Yi))/pref (Yi)]. (3)

The relative Ignorance of two forecast systems quantifies the information gain169

(in terms of bits) the model forecast system provides over the reference sys-170

tem. In other words, Ignorance reflects the (average) increase in probability171

density that the model forecast placed on the outcome relative to that of the172

reference forecast. By convention, Ignorance is a negatively oriented score,173

which means the smaller the score more skillful the forecasts. An Ignorance174

score of Srel = −1 means that, on average, forecasts from the model as-175

sign twice the probability density to the outcome compared to the reference176

forecast. Suitable references could include the climatological distribution, a177

probability forecast from a statistical model, or forecasts from another GCM.178

The climatological distribution provides the primary benchmark for seasonal179

forecast skill in this paper, see however Section 6.180

Probability forecasts are generated from the DEMETER and the EN-181

SEMBLES simulations via kernel dressing and are blended with climatology182

6
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to produce seasonal probability forecasts (for a full description see [6], and183

Appendix A). The climatological distribution is estimated by kernel dress-184

ing all available historical observations under cross-validation (see Appendix185

B). Figure 1 shows an example of the kernel dressed and blended proba-186

bilistic forecast distributions for a subset (over the period 1995-2000) of the187

IFS(ECMWF) hindcast simulations from ENSEMBLES for the Nino3.4 in-188

dex, launched in November. The blue shaded regions indicate the forecast189

percentiles between 1-99% and the red line shows the observed outcome (from190

the ERA40 reanalysis) for comparison. The grey shaded bands show the per-191

centiles between 1-99% for the climatological distribution.192

Figure 1: Probabilistic forecast distributions for the IFS(ECMWF) hindcast
simulations from ENSEMBLES for the Nino3.4 index, launched in November
over the period 1995-2000. The blue shaded regions indicate the forecast
percentiles between 1-99% and the red line shows the observed outcome from
the ERA40 reanalysis. The grey shaded intervals show the percentiles for the
climatological distribution.

The empirical Ignorance score of the dressed and blended GCM forecasts193

is then computed as a function of lead time (in months) for SSTs over the194

MDR and Nino3.4 regions relative to the climatology in Section 4. Fore-195

casts from each of the ENSEMBLES models are contrasted with those of196

DEMETER in Section 5.197

7



DR
AF
T

4 ENSEMBLES seasonal forecast skill198

Figures 2 and 3 show the skill of probability forecasts from each of the mod-199

els and launch dates available in the ENSEMBLES seasonal forecast project.200

Figure 2 shows empirical Ignorance scores for forecasts of the Nino3.4 index201

as a function of lead time, in months, relative to climatology. Each of the202

four panels corresponds a different forecast launch month (as indicated). In203

general at short lead times all the models are substantially more skillful than204

climatology (that is a negative relative Ignorance) for all four initialization205

dates. This result is generally consistent with [36], who reported anomaly206

correlation skill for the multi-model ensemble mean was found to decay with207

lead time over the Nino3 region, to ∼0.5 up to fourteen months ahead. At208

longer lead times ENSEMBLES models show systematically less skill than at209

early lead times, as expected. In each case, however, the simulation models210

demonstrate skill above the climatology up to a lead time of seven months.211

For the hindcasts launched in November some skill appears up to a lead212

time of fourteen months (although alternative cross-validation protocol casts213

some doubt on this result - see Section 10). At the longer lead times relative214

Ignorance scores of approximately −0.25 are found for most models, which215

translates into the simulation models placing, on average, ∼ 19% more prob-216

ability density on the outcome compared to the climatological distribution.217

The IFS(ECMWF) and HadGem2(UKMO) models often score slightly lower218

(are more skillful) than the other three models. The sampling uncertainty219

across forecast launches is represented by a bootstrap resampling procedure,220

which resamples the set of forecast Ignorance scores for each model, with221

replacement. The bootstrap resampling intervals are shown as vertical bars222

in each of the figures as a 5-95% interval.223

Figure 3 shows the Ignorance score as a function of lead time for SSTs over224

the MDR relative to climatology. Compared to the Nino3.4 index, hindcasts225

of SSTs in the MDR are less informative at all lead times, particularly for the226

forecasts launched in November, whose performance decreases significantly227

within the first two months. Despite the higher Ignorance scores (lower228

skill), the GCM hindcasts for the MDR demonstrate significant skill relative229

to climatology up to seven months ahead for most models and launch dates,230

with the exception of the November launch. Comparison with alternative231

benchmarks, like the persistence forecast show much larger variation than232

altering the cross-validation scheme.233

In Figures 2 and 3, two models with similar bootstrap resampling inter-234
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Figure 2: Ignorance score of each model from ENSEMBLES for the Nino3.4
index relative to climatology as a function of lead time in months. The
four different panels show the hindcasts initialized in (a) February, (b) May,
(c) August and (d) November. Zero Ignorance indicates a model has no
skill relative to climatology and negative relative Ignorance scores suggest a
model is more skillful than climatology. Bootstrap resampling intervals (the
vertical bars) reflect the 5% to 95% range as estimated from 512 resamples.
All models show significantly more skill than climatology up to a lead time of
five months, regardless of when the forecasts are launched. For the November
launch (d) the bootstrap resampling intervals often cross the zero skill line
beyond a lead time of six months.

vals might be misinterpreted to suggest that neither model is significantly235

better than the other. Bootstrap resampling skill against climatology is mis-236

leading if interpreted incorrectly. One model can systematically outperform237

a second model on every forecast yet the resample ranges in the skill relative238

to climatology may overlap. The relative Ignorance between two models on239

the other hand, provides a clear result reflected in bootstrap resampling from240

the model-model relative scores.241
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Figure 3: Ignorance score of each model from ENSEMBLES for the MDR
index relative to climatology as a function of lead time in months. The four
different panels show the hindcasts initialized in (a) February, (b) May, (c)
August and (d) November. Zero Ignorance indicates a model has no skill rel-
ative to climatology and negative relative Ignorance scores suggest a model is
more skillful than climatology. Bootstrap resampling intervals (the vertical
bars) reflect the 5% to 95% range as estimated from 512 resamples. Signif-
icant skill above climatology is demonstrated for most models and launch
dates at early lead times (up to six months for the February launches, for
example), with the exception of the November forecast launches, where the
bootstrap intervals overlap the zero-skill climatology beyond a lead time of
two months.

Figure 4 shows the Ignorance of each of the ENSEMBLES models for the242

Nino3.4 index relative to the IFS(ECWMF) model. There are indeed some243

cases where the IFS(ECMWF) model outperforms all other models despite244

the overlapping bootstrap resampling intervals in Figure 2. For example,245

the IFS(ECMWF) model systematically outperforms the ARPEGE(CNRM),246
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ECHAM5(INGV) and ECHAM5(IFMK) models particularly at early lead247

times for most launch dates. In the case analysed above, there is substantial248

information in the forecasts from the ENSEMBLES models for the Nino3.4249

index even at longer lead times; the IFS(ECMWF) model shows higher skill250

(often exceeding 0.5 bits in the first 6 months) relative to the other seasonal251

forecast models used in ENSEMBLES.252
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Figure 4: Ignorance score of the ENSEMBLES model forecasts for the
Nino3.4 index relative to the IFS(ECWMF) model as a function of lead
time in months. Zero Ignorance indicates a model has no skill relative to the
IFS(ECMWF) model and negative relative Ignorance scores suggest a model
is more skillful than the IFS(ECMWF) model. Bootstrap resampling inter-
vals (the vertical bars) reflect the 5% to 95% range as estimated from 512
resamples. All models shown are typically less skillful than IFS(ECMWF)
at all lead times and for most forecast launch dates. For launch dates
in August, however, the IFS(ECMWF) model is shown neither to per-
form significantly better nor significantly worse than HadGem2(UKMO) and
ECHAM5(INGV).
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5 Contrasting skill of ENSEMBLES & DEME-253

TER254

The methods and models used for the seasonal hindcast experiments in the255

ENSEMBLES project were developed in light of the experience gained and256

models available from the DEMETER project. The DEMETER seasonal257

hindcasts and ENSEMBLES hindcasts for the same verification period pro-258

vide an opportunity to measure the improvement of forecast skill after four259

years of model development. Such an evaluation is aided by the similarities260

in the experimental design between the two projects.261

Figure 5 shows the Ignorance score of each of the DEMETER model fore-262

casts for the Nino3.4 index relative to climatology. With the exception of263

ECHAM5(MPI), each model appears substantially more skillful than clima-264

tology at all lead times and for all four initialization dates. The lack of skill265

demonstrated by the ECHAM5(MPI) model reflects the fact that when its266

ensemble members are dressed and blended with climatology (see Appendix267

A), they are assigned relatively little weight (that is the forecast is virtually268

the climatological distribution). There is little or no contribution from the269

ECHAM5(MPI) model ensemble to the calibrated forecast) beyond a lead270

time of three months. This is particularly true for the November launch, in271

which the forecast blending parameter as a function of lead time, α, takes272

values [α = 0.90, 0.81, 0.02, 0.00, 0.00, 0.00], respectively.273

In order to measure the improvement of forecast performance due to274

model development from the DEMETER to the ENSEMBLES project, the275

Ignorance of the forecast distributions derived from pairs of model simula-276

tions from each project is compared. Although seven European simulation277

models were used in the DEMETER project, only those models that corre-278

spond to earlier “versions” of those used in ENSEMBLES are considered.279

Figure 6 shows the Ignorance for seasonal forecasts of the Nino3.4 index280

forecasts from the ENSEMBLES models relative to those of the correspond-281

ing DEMETER models. In general, the relative Ignorance scores in Figure 6282

demonstrate improvements for ENSEMBLES (negative relative Ignorance283

scores) for most lead times and for most models. The ECHAM5(INGV)284

model is an exception to this finding; the reduction in skill for this model is285

consistent with [1], which it was shown that subsurface data assimilation for286

ocean initialization degraded prediction skill over the tropical Atlantic. The287

ECHAM5(IFMK) model shows substantial improvements, up to one bit, at288
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Figure 5: Ignorance score of each model from DEMETER for the Nino3.4
index relative to climatology as a function of lead time in months. Zero
Ignorance indicates a model has no skill relative to climatology and nega-
tive relative Ignorance scores suggest a model is more skillful than clima-
tology. Bootstrap resampling intervals (the vertical bars) reflect the 5% to
95% range as estimated from 512 resamples. All models, with the excep-
tion of ECHAM5(MPI) are significantly more skillful than climatology at
most lead times, particularly for forecasts launched in August and Novem-
ber. At lead times beyond four months, for forecasts launched in November,
the ECHAM5(MPI) model is given zero weight when blended with the cli-
matological distribution.

early lead times, particularly for forecast launches in February and May (the289

ENSEMBLES model placing twice the probability density on the outcome290

compared to the DEMETER model). Improvements are also demonstrated291

at lead times beyond three months for forecasts launched in August, partic-292

ularly for the ECHAM5(IFMK) and HadGem2(UKMO) models.293
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Figure 6: Ignorance score of each model from ENSEMBLES for the Nino3.4
index relative to the corresponding DEMETER forecasts as a function of
lead time in months. Zero Ignorance indicates an ENSEMBLES model has
no added skill relative to the corresponding DEMETER model and negative
relative Ignorance scores suggest the ENSEMBLES model is more skillful
than that of the corresponding DEMETER model. Bootstrap resampling
intervals (the vertical bars) reflect the 5% to 95% range as estimated from
512 resamples. The ENSEMBLES models typically demonstrate improve-
ments, of up to one bit in some cases, over their corresponding DEMETER
models. ECHAM5(INGV) is an exception to this improvement and is shown
to perform worse in ENSEMBLES than its DEMETER model version.

6 Contrasting ENSEMBLES seasonal skill with294

persistence forecasts295

In the previous sections the climatological distribution was used as a bench-296

mark against the performance of the ENSEMBLES and the DEMETER sea-297

sonal hindcasts. Whilst comparing skill between dynamical models and cli-298
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matology provides insight into the information gained from forecasting with299

dynamical models, there may also be other simple empirical models that can300

serve as appropriate benchmarks to model performance [27, 30]. A prob-301

abilistic persistence forecast provides an interesting benchmark accounting302

for the effects both of physical persistence and of any long term drift in the303

temperature of the target region. Whether the additional skill in the EN-304

SEMBLES models over the Nino3.4 region compared to the MDR is related305

to the strong persistence of ENSO can be investigated by looking at the per-306

formance of forecasts over these two regions relative to a persistence model3.307

The persistence forecasts generated here use the observed SST value over the308

chosen region in the month prior to the forecast launch, persisted forward in309

time, and transformed into a probabilistic distribution using kernel dressing310

parameters that vary with lead time (as described in [30]).311

Figure 7 shows the Ignorance score of each of the ENSEMBLES models for312

the Nino3.4 index relative to persistence. For forecasts launched in February313

most of the ENSEMBLES models are significantly more skillful than persis-314

tence at all lead times. For launch dates in August and November little if any315

information is added compared to the persistence forecasts for most models316

at any lead time. In fact at early lead times (up to three months ahead) per-317

sistence outperforms the ECHAM5(IFMK) and ARPEGR(CNRM) models.318

At moderate lead times for the August launch and most lead times in the319

May launch, on the other hand, the IFS(ECMWF) and HadGEM2(UKMO)320

models outperform persistence.321

Figure 8 shows the corresponding results for the MDR index relative to a322

probabilistic persistence forecast. In this case the ENSEMBLES models and323

persistence have similar skill, with no one model emerging as significantly324

better than another. These comparable levels of skill suggest that blending325

statistical model output with simulation model output would add value to326

seasonal forecasts.327

7 More models or more members?328

Knowledge of the relationship between ensemble size and forecast quality329

aids forecast system design. The cost of increasing the number of ensemble330

members is typically small relative to the cost of model development. The331

cost of increasing the ensemble size increases only (nearly) linearly. It is often332

3We are very grateful to an anonymous reviewer for suggesting this comparison.
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Figure 7: Ignorance score of each model from ENSEMBLES for the Nino3.4
index relative to persistence forecasts as a function of lead time in months.
The four different panels show the hindcasts initialized in (a) February, (b)
May, (c) August and (d) November. Scores below zero indicate that an
ENSEMBLES model is more skillful than the persistence forecasts. Boot-
strap resampling intervals (the vertical bars) reflect the 5% to 95% range as
estimated from 512 resamples. ENSEMBLES model forecasts launched in
February are shown to be more skillful than persistence at all lead times,
whereas for forecasts launched in August the models are significantly worse
than persistence at early lead times.

true that the quality of the forecast increases with the number of ensemble333

members as well, however this improvement in forecast skill depends on both334

the current ensemble size and the quality of that model’s ultimate distri-335

bution. The seasonal forecasts from the ENSEMBLES project provide an336

opportunity to investigate the relationship between ensemble size and fore-337

cast quality. This analysis would be eased, for example, had one launch date338

included an increased number of members so that the value of additional339
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Figure 8: Ignorance score of each model from ENSEMBLES for the MDR
index relative to persistence forecasts as a function of lead time in months.
The four different panels show the hindcasts initialized in (a) February, (b)
May, (c) August and (d) November. Scores below zero indicate that an EN-
SEMBLES model is more skillful than the persistence forecasts. Bootstrap
resampling intervals (the vertical bars) reflect the 5% to 95% range as es-
timated from 512 resamples. While there is a tendency for Ignorance score
remain negative for several months in a row, suggesting skill, the upper (95%)
resampling bound is almost always greater than zero.

members could be tested more directly.340

Figure 9 shows the effect of decreasing the number of ensemble members341

on the forecast skill for the Nino3.4 index from the IFS(ECMWF) model342

launched in November. The skill of two-member ensembles (red) and four-343

member ensembles (green) are shown relative to the full nine-member en-344

semble (the zero line) both as a set of random draws from the nine original345

members without replacement (Figure 9a) and as the average Ignorance of346
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all two- or four-ensemble member combinations (Figure 9b). In Figure 9a347

most two- and four-member combinations show less skill than the full nine-348

member ensemble, with only a few ensemble member combinations scoring349

better than the original ensemble now and then. Figure 9b shows that de-350

creasing the number of ensemble members systematically decreases the av-351

erage skill (that is, increases the Ignorance score) across all lead times. This352

result holds both when decreasing from nine members to four members and353

when decreasing from four to two ensemble members. At a lead time of six354

months, where the IFS(ECMWF) model still has non-trivial skill relative to355

climatology (Figure 2), for example, the two-member forecast places ∼ 7%356

and the four-member ensemble places ∼ 3% less probability density on av-357

erage on the outcome4 relative to the nine-member ensemble (Figure 9b).358

This result suggests that increasing the current ensemble size of nine would359

further improve the forecast performance5.360

A larger ensemble could be obtained either by increasing the number361

of ensemble members from one particular model, or, alternatively, by com-362

bining simulations from different models to form a multi-model ensemble363

(see [21, 35]). Of course developing a new, ideally independent model is364

more costly than increasing the number of ensemble members from an exist-365

ing model. Combining the output of different (independent) models might,366

however, have the added advantage of reducing the systematic bias of any367

single model6. One may therefore expect to obtain significantly more in-368

formation by using multi-model outputs than by increasing the number of369

ensemble members from a single model.370

Figure 10 shows the Ignorance score for a set of multi-model forecasts,371

in which ensemble members from each of the different ENSEMBLES mod-372

els are treated equally (that is each ensemble member is assigned equal373

weight). Here the nine-member IFS(ECMWF) forecasts define the zero line.374

Figure 10a shows the Ignorance score for forecasts built from multi-model375

4Under true cross-validation (see Section 10) the effect increases: a two-member forecast
places ∼ 15% less probability on the observed outcome.

5Operational systems typically consist of 40 to 50 ensemble members. Without hindcast
sets, representative of operational systems, however, it is impossible to fully test this
hypothesis.

6In practice, numerical models developed for weather and climate simulations are far
from independent because they share common parametrizations and numerical schemes,
and are typically tuned towards the same training dataset. And they face the same
technological (computation) limitation. This leads to structural similarities the models
and, consequently, to common shortcomings, (e.g. in “blocking”).
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Figure 9: (a) Ignorance of the IFS(ECMWF) model as a function of lead
time in months for the Nino3.4 index. The green (red) lines represent the
skill of a subset of four-member (two-member) ensemble forecasts relative to
the full nine-member ensemble forecast. Each four-member and two-member
ensemble consist of random draws from the original nine-member ensemble;
(b) Average Ignorance of all possible combinations of two-member (red) and
four-member (green) ensembles. On average the four-member ensembles are
more skillful than the two-member ensemble, while both ensemble sizes are
shown to perform worse on average than the full nine-member ensemble (that
is Ignorance score are all above zero).

ensembles containing four members randomly drawn from the 36 available376

ensemble members (nine members from each of four models) without re-377

placement. Similarly, Figure 10b shows the skill of multi-model ensembles378

containing nine randomly drawn members. The blue line in each case shows379

the skill of the full multi-model ensemble, containing 36 members from sim-380

ulations of the IFS(ECMWF), HadGem2(UKMO), ECHAM5(IFMK) and381

ARPEGE(CNRM) models. The four-member multi-model forecasts are shown382

to perform substantially worse than the nine-member IFS(ECMWF) ensem-383

ble (indicated by positive Ignorance scores), particularly over short lead times384

(up to eight months). The skill of the nine-member multi-model forecasts385

are generally increased compared to the four-member forecasts, however,386

the single-model, IFS(ECMWF), forecast is still shown to be more skillful7387

7As noted by a referee, in this study the “best” model has been identified in-sample.
In this particular study, the ECMWF model is by far the highest scoring model across
forecasts (see Supplement Material), and is typically ranked first or second in over half
of all skillful forecasts. Rather than resample to show ECMWF is the best, the fraction
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than the multi-model forecast at short lead times. This is also true for the388

full 36-member multi-model forecast, although at longer lead times (beyond389

eight months) the full multi-model ensemble is shown to outperform the390

IFS(ECMWF) ensemble. This result in this case suggests that increasing391

the ensemble size of the “best” model is most likely to improve forecast skill392

in these regions.393
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(b) 9−member ensemble

Figure 10: Ignorance of multi-model forecasts as a function of lead time in
months for the Nino3.4 index, launched in November, relative to the nine-
member IFS(ECMWF) forecast. The blue line represents the multi-model
forecast using all 36 ensemble members from the four ENSEMBLES models,
equally weighted. The red lines are multi-model forecasts using randomly
drawn combinations of four-members (a) and nine-members (b) from the
full ensemble. The four-member multi-model forecasts are shown to perform
substantially worse than the nine-member IFS(ECMWF) ensemble (that is
Ignorance scores are often above zero) and worse than the full 36-member
multi-model ensemble. The nine-member multi-model forecasts perform bet-
ter in general than the four-member forecasts, and to a similar level of skill as
the nine-member IFS(ECMWF) ensemble at lead times beyond eight months.

of times it is best or second is shown in supplement material. Note also Table 1 and
Table 2 in this context. In practice, determining the best model a priori, either for a
given purpose, or in a multidimensional sense, is not straightforward (if possible at all).
In-sample evaluations of past model performance over relatively short hindcast periods
further hinder this task.
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8 The importance of being proper394

It is sometimes said that a multi-model ensemble forecast is more skillful395

than any of its constituent single-model ensemble forecasts. This may be the396

case in terms of reducing root-mean-square (RMS) like scores (see [21, 11,397

4, 35, 36, 2]). For probability forecasts, the definition of skill should reflect398

the characteristics of the forecast problem. While RMS scores are effectively399

optimal in linear stochastic systems, they are misleading in evaluating non-400

linear forecast systems, even when the data is not precious. Indeed RMS401

scores can be misleading even in the limit of an infinite forecast-verification402

archive (see [19]). Improvements in RMS skill when using multi-model ensem-403

bles may be due to error cancellation from independent model contributions404

(see [11, 15, 4]). For example, if some of the single-model ensembles lie below405

the observations and some lie above then the ensemble mean could lie closer406

to the observed outcome than any single ensemble member. While such an407

error cancellation would reduce the RMS score, rewarding the multi-model408

forecast more than any single model contribution, a proper skill score ([5])409

would not credit this “false” skill. Similarly, combining ensemble members410

from different models may serve to reduce the variance of ensemble mean411

statistics, which in turn may lead to a lower RMS score. Indeed, if the en-412

semble variance is large, adding “information free” ensemble members at the413

mean value will reduce the RMS error, but need not improve a probabilistic414

score.415

It has also been suggested that the multi-model ensemble forecast out-416

performs any of the single-model ensemble forecasts by reducing an apparent417

overconfidence in any one model (see [35, 36, 2]). Such “improvements” can418

be easily over-interpreted, however; merely doubling the ensemble size under419

the same model may significantly increase the spread of the forecast distribu-420

tion. Another way to widen the ensemble spread is simply to blend ([6]) the421

model forecast distribution with an estimate of the climatological distribu-422

tion, based on the historical observations (see Appendix A for details). Two423

single-model forecasts may be ranked differently before and after blending424

with the climatological distribution. The effect of multi-model combination425

on seasonal forecast skill is investigated below.426
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9 Multiple models Ensembles when data are427

precious428

There are many ways in which forecast distributions, generated from ensem-429

bles of individual model runs can be combined to produce a single probabilis-430

tic multi-model forecast distribution. One approach may be to assign equal431

weight to each model and simply sum the distributions generated from each432

model to obtain a single probabilistic distribution (see [11]). When different433

forecast models do not provide equal amounts of information, one may want434

to weight the models according to some measure of past performance, see435

for example [18, 24, 8]. The combined multi-model forecast is the weighted436

linear sum of the constituent distributions,437

pmm =
∑

i

ωipi, (4)

where the pi is the forecast distribution from model i and ωi its weight,438

with
∑

i ωi = 1. The weighting parameters may be chosen by minimizing439

the Ignorance score for example, although fitting ωi in this way can be costly440

and is typically complicated by different models sharing information. And, of441

course, the weights of individual models are expected to vary as a function of442

lead time. Another, perhaps more fundamental problem of such a weighting443

procedure is that ωi are likely to be over- or under-fitted when the forecast-444

outcome archive is small ([22, 29]).445

To avoid complications with fitting model weights a simple iterative method446

to combine models is used below: First, a reference forecast distribution is447

derived from the ensemble members of one particular candidate model, in448

this case the IFS(ECMWF) forecasts, which were argued to provide the most449

skillful seasonal forecasts for the Nino3.4 index back in Section 4. Each of the450

other candidate models, in turn, is then combined with the IFS(ECMWF)451

model by deriving a forecast distribution from the ensemble members of452

both models, equally weighted. The skill of each two-model combination is453

computed in terms of Ignorance relative to the IFS(ECMWF) reference fore-454

cast and shown in Table 1 for the November launch forecasts of the Nino3.4455

index. Each model combination shows the average relative Ignorance (neg-456

ative scores indicate an improvement over simply using the IFS(ECMWF)457

forecast). Positive values in the 5th, 8th and 11th columns of Table 1 show458

that there is no clear improvement in skill for any two-model combination in459
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this case, particularly at lead times less than eight months. Arguably beyond460

eight months the improvements in skill are not significant; the bootstrap re-461

sampling intervals overlap with zero relative skill in each case. Table 2 shows462

the corresponding results when other models are combined with the UKMO463

model. In this case combining with ECMWF tends to improve the average464

Ignorance at all lead times (negative values in 4th and 5th columns of Table465

2), but no other combination does this. Starting with ECMWF, combining466

UKMO has a much smaller effect. In cases where significant improvements467

are found from such a model combination then further models could be in-468

cluded into the multi-model forecast by choosing those models which yield469

the biggest improvement in skill and adding them into the forecast one by470

one with equal weight until no further skill can be added. In this case, how-471

ever, results suggest that the most skillful seasonal forecasts are provided by472

using ensemble members from a single model.473

10 Establishing skill when data are precious474

The DEMETER and the ENSEMBLES seasonal hindcast archive contains475

merely 46 independent forecast-outcome pairs for each launch date. At sea-476

sonal forecast timescales and longer, no true out-of-sample evaluation can477

be achieved on human timescales; evaluations today must necessarily be in-478

sample. In this case, it is desirable to strike a balance between using as much479

of the available data as possible to obtain the best results and holding back480

enough data so as to avoid information contamination (overfitting) which481

would lead to poor estimates of real-time operational skill.482

The results shown in the previous sections used median cross-validation483

protocol as described in Appendix B; no additional data is held back in484

the evaluation of probabilistic forecast distributions beyond that excluded485

when determining the kernel parameters. While using median values for486

u, σ and α seems unlikely to allow significant information contamination,487

this median leave-one-out protocol is not “true” cross-validation. In a true488

cross-validation protocol, more than one segment of data at a time must489

be removed from the fitting protocol. This reduces chance of information490

contamination, it also reduces true quality of the estimation when data are491

precious. Appendix B details both protocols.492

Figure 11 shows the skill of forecasts from the ENSEMBLES models using493

true cross-validation. Figure 11a shows the Ignorance score for forecasts494
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LT ECMWF ECMWF&UKMO ECMWF&CNRM ECMWF&IFMK
5% mean 95% 5% mean 95% 5% mean 95%

1 -2.15 -0.08 0.05 0.16 0.05 0.17 0.28 0.07 0.20 0.30
2 -2.03 -0.29 -0.07 0.10 -0.17 0.04 0.24 0.15 0.33 0.47
3 -1.63 -0.44 -0.16 0.08 -0.21 0.04 0.23 -0.09 0.18 0.37
4 -1.36 -0.17 -0.03 0.10 -0.05 0.11 0.26 0.13 0.29 0.41
5 -1.10 -0.19 0.01 0.16 -0.25 -0.04 0.16 0.09 0.28 0.42
6 -0.73 -0.16 0.01 0.17 -0.04 0.11 0.25 0.03 0.19 0.31
7 -0.53 -0.05 0.09 0.22 -0.07 0.07 0.20 0.09 0.18 0.26
8 -0.34 -0.06 0.05 0.15 -0.04 0.06 0.16 -0.04 0.06 0.15
9 -0.23 -0.14 -0.04 0.05 -0.10 0.00 0.11 -0.14 -0.04 0.04
10 -0.27 -0.16 -0.06 0.03 -0.17 -0.05 0.06 -0.14 -0.04 0.05
11 -0.22 -0.32 -0.17 -0.02 -0.22 -0.08 0.06 -0.33 -0.20 -0.08
12 -0.28 -0.20 -0.09 0.01 -0.17 -0.05 0.07 -0.13 -0.03 0.07
13 -0.35 -0.08 -0.01 0.06 -0.20 -0.03 0.11 -0.14 -0.05 0.05
14 -0.39 -0.12 -0.03 0.07 -0.12 0.00 0.13 -0.31 -0.12 0.03

Table 1: Ignorance of each two-model forecast combination, as labeled, rela-
tive to the IFS(ECMWF) forecast for each (monthly) lead time for seasonal
forecasts of the Nino3.4 index, launched in November. In each case the in-
dividual models are also blended with the climatological distribution using
blending parameters that minimize the Ignorance score. Each two-model
combination shows the average relative Ignorance and the 5−95% bootstrap
resampling intervals, which provide an estimate of sampling uncertainty of
the relative skill score. For comparison, the second column shows the skill of
the (single) ECMWF model relative to climatology.
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LT UKMO UKMO&ECMWF UKMO&CNRM UKMO&IFMK
5% mean 95% 5% mean 95% 5% mean 95%

1 -1.90 -0.35 -0.21 -0.08 -0.02 0.08 0.17 -0.01 0.11 0.22
2 -1.92 -0.41 -0.18 0.01 0.03 0.12 0.21 0.22 0.34 0.44
3 -1.64 -0.33 -0.15 -0.01 0.00 0.13 0.26 0.14 0.28 0.40
4 -1.29 -0.24 -0.13 0.00 -0.09 0.06 0.20 0.13 0.26 0.38
5 -0.87 -0.37 -0.22 -0.09 -0.34 -0.12 0.07 0.06 0.21 0.33
6 -0.43 -0.49 -0.30 -0.11 -0.38 -0.12 0.09 -0.11 0.06 0.20
7 -0.13 -0.45 -0.31 -0.16 -0.30 -0.13 0.02 -0.09 0.00 0.08
8 -0.14 -0.26 -0.15 -0.06 -0.20 -0.05 0.06 -0.24 -0.07 0.06
9 -0.24 -0.15 -0.04 0.05 -0.21 -0.03 0.12 -0.18 -0.06 0.05
10 -0.32 -0.12 -0.02 0.08 -0.10 0.00 0.10 -0.12 -0.02 0.08
11 -0.33 -0.24 -0.05 0.12 -0.15 -0.01 0.13 -0.40 -0.16 0.03
12 -0.32 -0.22 -0.06 0.09 -0.11 0.00 0.10 -0.17 -0.03 0.11
13 -0.31 -0.13 -0.05 0.03 -0.14 -0.02 0.12 -0.17 -0.07 0.03
14 -0.31 -0.24 -0.10 0.03 -0.11 0.00 0.10 -0.39 -0.18 0.01

Table 2: Ignorance of each two-model forecast combination, as labeled, rel-
ative to the HadGem2(UKMO) forecast for each (monthly) lead time for
seasonal forecasts of the Nino3.4 index, launched in November. In each case
the individual models are also blended with the climatological distribution
using blending parameters that minimize the Ignorance score. Each two-
model combination shows the average relative Ignorance and the 5 − 95%
bootstrap resampling intervals, which provide an estimate of sampling un-
certainty of the relative skill score. For comparison, the second column shows
the skill of the (single) UKMO model relative to climatology.
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of the Nino3.4 index, launched in November. Comparing Figure 11a with495

Figure 2d shows clearly a reduction in skill at longer lead times under the true496

cross-validation protocol, as well as a widening of the bootstrap resampling497

intervals in some cases. Significant skill above climatology is demonstrated498

only up to a lead time of four months. Similarly Figure 11b shows the skill of499

the ENSEMBLES model forecasts for the MDR index. In this case significant500

skill above climatology is shown to vanish beyond a lead time of two months.501

The preferred cross-validation protocol when the data archive is small is502

unclear. The approach taken here is to consider more than one protocol. The503

true cross-validation protocol employed in this section (Figure 11) reflects504

the expected reduction in the skill of models simply because less data is used505

to calibrate the forecasts. The median cross-validation protocol (Figure 2506

and 3) runs the risk of overfitting the dressing parameters for in-sample507

evaluation, however. Only out of sample evaluation could establish which508

effect dominates in this case.509

2 4 6 8 10 12 14
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Lead time

Ig
no

ra
nc

e 
re

la
tiv

e 
to

 c
lim

at
ol

og
y

IFS(ECMWF)
HadGem2(UKMO)
ECHAM5(IFMK)
ARPEGE(CNRM)

2 4 6 8 10 12 14
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Lead time

Ig
no

ra
nc

e 
re

la
tiv

e 
to

 c
lim

at
ol

og
y

IFS(ECMWF)
HadGem2(UKMO)
ECHAM5(IFMK)
ARPEGE(CNRM)

Figure 11: Ignorance score of each model from ENSEMBLES relative to cli-
matology as a function of lead time in months using true cross-validation
for, (a) forecasts of the Nino3.4 index and (b) forecasts of the MDR index
launched in November. Zero Ignorance indicates a model has no skill relative
to climatology and negative relative Ignorance scores suggest a model is more
skillful than climatology. Bootstrap resampling intervals (the vertical bars)
reflect the 5% to 95% range as estimated from 512 resamples. Skill is typi-
cally reduced compared to the median cross-validation protocol (Figures 2d
and 3d), particularly at very early lead times over the MDR. The bootstrap
resampling intervals are also widened in some cases.

Figure 12 illustrates the effect of the different cross-validation protocols510
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on the calculated skill of the seasonal forecasts. The figure shows Ignorance511

scores for the IFS(ECMWF) model from ENSEMBLES relative to climatol-512

ogy using the median (x-axis) and true (y-axis) cross-validation protocols513

for forecasts of the Nino3.4 index. Each of the four panels corresponds to514

a different forecast launch month (as indicated). As expected, on average515

the true cross-validation protocol suggests less skill (that is, larger Ignorance516

scores) relative to median cross-validation. This improvement on average is517

not systematic across individual forecasts. The reduction of skill under true518

cross-validation protocol is small in most cases, giving increased confidence519

to results using median cross-validation. The most prominent differences are520

at the highest values of Ignorance where the forecasts have little skill un-521

der either protocol. For the November launch this typically occurs at longer522

lead times (beyond seven months). The argument here is merely that it is523

important to consider questions of cross-validation when data are precious.524

11 Conclusions525

The current generation of seasonal forecasts will retire before the forecast-526

outcome archive grows significantly larger: seasonal verification data are527

precious! This complicates forecast calibration and evaluation must be per-528

formed using cross-validation with only a small sample. Nevertheless proba-529

bilistic seasonal forecasts based on the ENSEMBLES stream II experiment530

demonstrate increased skill in forecasting sea surface temperatures in the531

Nino3.4 region over that of the DEMETER model simulations. Further532

analysis suggests that increasing the ensemble size could potentially improve533

forecast skill further. Such evaluations of skill, on the other hand, should534

be analysed with care. RMS-based skill scores can obscure skill in nonlinear535

systems. The statistical characteristics reflected in RMS scores differ from536

those using proper scoring rules, which are recommended for evaluations of537

such nonlinear systems as in weather and climate dynamics. The evidence538

of skill presented, particularly at moderate lead times, is shown to be ro-539

bust to different choices of appropriate (proper) scores (see Supplementary540

Material), and may prove to have nontrivial value in application. Simula-541

tion based forecasts clearly outperform climatological probability forecasts542

in many cases. The fact that empirical persistence-based probability fore-543

casts provide a significantly stronger challenge suggests that, in practice, the544

skill of operational forecast systems can be enhanced with information from545
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Figure 12: Comparison of Ignorance scores for the IFS(ECMWF) model
from ENSEMBLES relative to climatology using the median and true cross-
validation protocols for forecasts of the Nino3.4 index, launched in the months
as indicated. On average the true cross-validation protocol shows a reduc-
tion in skill (larger Ignorance scores) compared to median cross-validation,
although individual forecasts can score better. The reduction of skill when
using the true cross-validation protocol is most prominent at higher values of
Ignorance (when the forecasts are already demonstrating poor skill under the
median cross-validation protocol), which for the November launch typically
occurs at longer lead times (beyond seven months).

the richer empirical models. Distinguishing the limitations of this level of546

skill for decision-making from the limitations of our current skill scores and547

evaluation methodologies will also prove of great value, both in terms of in-548

forming future experimental designs for multi-model ensemble projects and549

for determining the value of these forecast systems to decision-makers.550
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A From Simulation to a PDF551

An ensemble of simulations is transformed into a probabilistic distribution552

function by a combination of kernel dressing and blending with climatology553

(see [6]). An N -member ensemble at time t is given as Xt = [x1
t , ..., x

N
t ],554

where xi
t is the value of a physical quantity (for example the SST in the555

MDR region) for the ith ensemble member. For simplicity, all ensemble556

members under given a model are treated as exchangeable. In other words,557

the ensemble interpretation does not depend on the ordering of the ensemble558

members as long as they are generated by the same model ([6]). Kernel559

dressing defines the model-based component of the density as:560

p(y : X,σ) =
1

Nσ

N∑

i

K

(
y − (xi − µ)

σ

)
, (5)

where y is a random variable corresponding to the density function p and K561

is the kernel, taken here to be562

K(ζ) =
1√
2π

exp(−1

2
ζ2). (6)

Thus each ensemble member contributes a Gaussian kernel centred at xi−µ.563

Here µ is an offset, which accounts for any systematic “bias”. For a Gaus-564

sian kernel, the kernel width σ is simply the standard deviation determined565

empirically as discussed below.566

For any finite ensemble, there remains the chance of∼ 2
N that the outcome567

lies outside the range of the ensemble even when the outcome is selected568

from the same distribution as the ensemble itself. Given the nonlinearity of569

the model, such outcomes can be very far outside the range of the ensemble570

members. In addition to N being finite, in practice, of course, the simulations571

are not drawn from the same distribution as the outcome as the ensemble572

simulation system is not perfect. To improve the skill of the probabilistic573

forecasts, the kernel dressed ensemble may be blended with an estimate of574

the climatological distribution of the system (see [6] for more details, and [23]575

for a Bayesian approach). The blended forecast distribution is then written576

as577

p(·) = αpm(·) + (1− α)pc(·), (7)

29



DR
AF
T

where pm is the density function generated by dressing the model ensemble578

and pc is the estimate of climatological density. The blending parameter α579

determines how much weight is placed in the model. Specifying the three580

values (kernel width σ, kernel offset µ and weight α) at each lead time de-581

fines the forecast distribution. These parameters are fitted simultaneously by582

optimising the empirical Ignorance score, using a cross-validation protocol8583

as described in Appendix B.584

B Information Contamination and Cross-validation585

Ideally, forecast performance is evaluated “out-of-sample”, with new data586

unknown at the time the model parameters where determined (much less587

data seen by the analyst). Given a large forecast-outcome archive, cross-588

validation reduces information contamination and over-fitting when working589

in-sample (that is, when evaluating a model on the sample sample used to590

fit the aprameters of that model) by dividing the archive into two sets. A591

training set, used to build the forecast model and fit the parameters, and592

a testing set, used to get an estimate the skill and likely performance of593

the model. The process can be repeated to examine the robustness of the594

results, but information from the test set(s) must not be used to improve the595

forecast model. When the archive is small and will increase only slowly, one596

does not have the luxury of this approach. Calibration and evaluation are597

at best performed under more complex cross-validation; the ideal protocol598

is not clear and the results can be expected to change with the protocol. A599

median protocol and a true leave-one-out protocol are defined below.600

First, define the forecast probability distribution to be p(x,Xt,Θ), t =601

1, ..., N , where X represents the ensemble forecast at time t, Θ represents602

a vector of parameters (including the kernel width σ, offset µ and blending603

parameter α) to be fitted and N is the number of forecasts. The correspond-604

ing outcomes are defined to be st. For each forecast at time j = 1, ..., N ,605

leave out one pair of forecast-outcome data (Xj, sj) and use the remaining606

8As only 46 years of data are used in this case, any estimation of the two parameters
lacks robustness. If one has 4000 years of data, one could draw multiple 46-year data sets
from them and estimate the parameters for each sample set. In experiments with simple
systems, it turns out that the variation of such estimates is large (see [29]). Note that
a 46 year hindcast archive of the full ensemble system may not be available to aid the
construction of operational forecast systems.
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forecast-outcome data pairs to determine the parameter Θj by minimizing607

the empirical score (in this paper Ignorance is used). The median value, Θ̄,608

of the set of N Θj is then used in the forecast model. This “median protocol”609

maintains a large learning set with only slight information contamination.610

The leave-one-out protocol described in the previous paragraph is not611

pure cross-validation as Θ̄ arguably contains information from every (Xj, sj)612

when the median is taken. To achieve pure cross-validation, the following613

protocol is adopted. For each forecast at time j, first leave out (Xj, sj), then614

for the remaining set apply the median cross-validation protocol described615

above to obtain N parameter values Θ̄j. The value Θ̄j at each time j is then616

independent of (Xj, sj). The forecast empirical Ignorance is then given by617 ∑N
j=1 − log2 p(sj, Xj, Θ̄j). This protocol ensures that the parameters Θj have618

no explicit dependence on the datum used to evaluate them at the cost of a619

smaller learning set(s). Even in this case, the datum was known to the ana-620

lyst. Indeed, use of a common archive in DEMETER and in ENSEMBLES621

(Stream Two) clouds the possibility of assigning clear statistical significance622

to estimates of expected skill.623
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[6] J. Bröcker and L. A. Smith. From ensemble forecasts to predictive dis-647

tribution functions. Tellus A, 60, 663-678 (2007).648

[7] C. A. S. Coelho, D. B. Stephenson, M. Balmaseda, F. J. Doblas-Reyes649

and G. J. van Oldenborgh. Towards an integrated seasonal forecasting650

system for South America. Journal of Climate, 19, 3704-3721 (2006).651

[8] F. J. Doblas-Reyes, R. Hagedorn and T. N. Palmer. The rationale behind652

the success of multi-model ensembles in seasonal forecasting. Part II:653

Calibration and combination. Tellus A, 57 (2005).654

[9] F. J. Doblas-Reyes, A. Weisheimer, T. N. Palmer, J. M. Murphy and655

D. Smith. Forecast quality assessment of the ENSEMBLES seasonal-to-656

decadal Stream 2 hindcasts. Technical Memorandum (ECMWF), 621657

(2010).658

[10] I. J. Good. Rational decisions. Journal of the Royal Statistical Society,659

XIV(1):107-114 (1952).660

[11] R. Hagedorn, F. J. Doblas-Reyes, and T. N. Palmer. The rationale be-661

hind the success of multi-model ensembles in seasonal forecasting. Part662

I: Basic concept. Tellus A, 57, 219233 (2005).663

[12] R. Hagedorn and L. A. Smith. Communicating the value of probabilistic664

forecasts with weather roulette. Meteorological Applications, 16(2):143-665

155 (2009).666

32



DR
AF
T

[13] C. D. Hewitt and D. J. Griggs. Ensembles-based Predictions of Climate667

Changes and their Impacts. Eos, Transactions American Geophysical668

Union, 85, p566 (2004).669

[14] B. Ingleby and M. Huddleston. Quality control of ocean temperature670

and salinity profiles - historical and real-time data. Journal of Marine671

Systems, 65:158-175 (2007).672

[15] I.-S. Kang and J. Yoo. Examination of multi-model ensemble seasonal673

prediction methods using a simple climate system. Climate Dynamics,674

26:285294 (2006).675

[16] J. L. Kelly, Jr. A New Interpretation of Information Rate. Bell System676

Technical Journal, 35:917-926 (1956).677

[17] B. P. Kirtman, D. Min, J. M. Infanti, J. L. Kinter III, D. A. Paolino, Q.678

Zhang, H. van den Dool, S. Saha, M. P. Mendez, E. Becker, P. Peng, P.679

Tripp, J. Huang, D. G. DeWitt, M. K. Tippett, A, G. Barnston, S. Li, A.680

Rosati, S. D. Schubert, M. Rienecker, M. Suarez, Z. E. Li, J. Marshak,681

Y.-K. Lim, J. Tribbia, K. Pegion, W. J. Merryfield, B. Denis, and E. F.682

Wood. The North American Multi-Model Ensemble (NMME): Phase-1683

Seasonal to Interannual Prediction, Phase-2 Toward Developing Intra-684

Seasonal Prediction. Bulletin of the American Meteorological Society,685

(2013).686

[18] T. N. Krishnamurti, C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z.687

Zhang, C. E. Williford, S. Gadgil, and S. Surendran. Improved Weather688

and Seasonal Climate Forecasts from Multimodel Superensemble. Sci-689

ence, 285(5433):15481550 (1999).690

[19] P. E. McSharry and L. A. Smith. Better nonlinear models from noisy691

data: Attractors with maximum likelihood. Physical Review Letters, 83,692

(21):4285-4288 (1999).693

[20] G. J. van Oldenborgh, M. A. Balmaseda, L. Ferranti, T. N. Stockdale694

and D. L. T. Anderson. Did the ECMWF seasonal forecast model out-695

perform statistical ENSO forecast models over the last 15 years? Journal696

of Climate, 18, 3240-3249 (2005).697

[21] T. N. Palmer, A. Alessandri, U. Andersen, P. Cantelaube, M. Davey,698
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Probabilistic skill in ensemble seasonal2

forecasts3

Leonard A. Smith, Hailiang Du, Emma B. Suckling and Falk Niehörster
Centre for the Analysis of Time Series, LSE, UK

4

February 26, 20145

This document provides supplementary material for the manuscript (Smith6

et al. Probabilistic skill in ensemble seasonal forecasts).7

• Details of the ENSEMBLES & DEMETER simulation models used in8

the seasonal forecast evaluation are given in Table 1 and Table 2. Ta-9

ble 1 contains a description of the simulation models that constitute10

the ENSEMBLES seasonal hindcast experiment. There were seven11

comprehensive European global coupled atmosphere-ocean models de-12

veloped in the DEMETER project. Table 2 lists a subset of simulation13

models from the DEMETER project, which are directly comparable to14

the models used for the ENSEMBLES hindcasts.15

• Ignorance scores of both the DEMETER and the ENSEMBLES fore-16

casts using the true cross-validation protocol (as described in Appendix17

B of the main manuscript) are presented in Figure 1-4, which can be18

compared with those generated using median cross-validation (See Fig-19

ure 2, 3, 5, 6 of the main manuscript).20

• Figure 5a and 5b illustrate the results shown in Table 1 and Table 221

of the main manuscript in terms of the additional information gained22

from multi-model combination with the best and second best ranked23

models, respectively.24

• Table 3 shows the statistics of each of the four simulation models’25

forecast performance in rank ordered according to Ignorance score for26

each forecast of Nino3.4 index at November launch. It appears the27

1
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IFS(ECMWF) and HadGEM2(UKMO) comes first or second much28

more often than the other two models.29

• Ignorance score of each model from ENSEMBLES relative to persis-30

tence forecasts as a function of lead time at November launch for both31

Nino3.4 index and MDR index is shown in Figure 6. In Figure 7d &32

8d of the main manuscript, results after lead time 7 were not presented33

in order to conveniently compare with the rest of the panels of Figure34

7 & 8. Results for the whole range of lead time is presented here in35

Figure 6.36

• Rank continuous probability score of each model from ENSEMBLES37

for the Nino3.4 index relative to climatological forecast at November38

launch is illustrated in Figure 7. The results are consistent with the39

evaluation using Ignorance score (See Figure 2d of the main manuscript).40
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Figure 1: Ignorance score of each model from DEMETER for the Nino3.4
index relative to climatology as a function of lead time in months using true
leave-one-out cross-validation. Zero Ignorance indicates a model has no skill
relative to climatology and negative relative Ignorance scores suggest a model
is more skillful than climatology. Bootstrap resampling intervals (the vertical
bars) reflect the 5% to 95% range as estimated from 512 resamples. All mod-
els, with the exception of ECHAM5(MPI) are significantly more skillful than
climatology at most lead times, particularly for forecasts launched in Au-
gust and November. Note that ECHAM5(MPI) significantly under perform
climatology at short lead for forecasts launched in August.
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Figure 2: Ignorance score of each model from ENSEMBLES for the Nino3.4
index relative to the equivalent DEMETER forecasts as a function of lead
time in months using true cross-validation. Zero Ignorance indicates an
ENSEMBLES model has no skill relative to the corresponding DEMETER
model and negative relative Ignorance scores suggest the ENSEMBLES
model is more skillful than that of the corresponding DEMETER model.
Bootstrap resampling intervals (the vertical bars) reflect the 5% to 95% range
as estimated from 512 resamples. ENSEMBLES models typically demon-
strate improvements, of up to one bit in some cases, over their corresponding
DEMETER models. ECHAM5(INGV) is an exception to this improvement
and is shown to perform worse in ENSEMBLES than its DEMETER version.
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Figure 3: Ignorance score of each model from ENSEMBLES relative to cli-
matology as a function of lead time in months using true leave-one-out cross-
validation for forecasts of the Nino3.4 index. The four different panels show
the hindcasts initialized in February, May, August and November. Zero Ig-
norance indicates a model has no skill relative to climatology and negative
relative Ignorance scores suggest a model is more skillful than climatology.
Bootstrap resampling intervals (the vertical bars) reflect the 5% to 95% range
as estimated from 512 resamples. Skill is generally reduced compared to the
median cross-validation procedure (Figure 2. in the manuscript). The boot-
strap resampling intervals are also widened in some cases.
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Figure 4: Ignorance score of each model from ENSEMBLES relative to cli-
matology as a function of lead time in months using true leave-one-out cross-
validation for forecasts at Main Development Region. The four different
panels show the hindcasts initialized in February, May, August and Novem-
ber. Zero Ignorance indicates a model has no skill relative to climatology
and negative relative Ignorance scores suggest a model is more skillful than
climatology. Bootstrap resampling intervals (the vertical bars) reflect the
5% to 95% range as estimated from 512 resamples. Skill is generally re-
duced compared to the median cross-validation procedure (Figure 3. in the
manuscript). The bootstrap resampling intervals are also widened in some
cases.
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Figure 5: Ignorance score of each two-model forecast combination, as la-
belled, relative to a) the IFS(ECMWF) forecast; b) the HadGem2(UKMO)
forecast, at each lead time for forecasts of the Nino3.4 index, launched in
November. In each case the inividual models are also blended with the cli-
matological distribution (dressing and blending parameter values are fitted
using median cross-validation protocol). Bootstrap resampling intervals (the
vertical bars) reflect the 5% to 95% range as estimated from 512 resamples.
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Model Lead time 1 2 3 4 5 6 7

ECMWF

No. Rank 1 18 14 14 12 20 22 16
% of Rank 1 43.9% 34.2% 34.2% 29.3% 48.8% 53.7% 39.0%

% of Rank 1 or 2 75.6% 75.6% 68.3% 56.1% 63.4% 70.7% 73.2%
p(x >= No.Rank1) 0.006 0.122 0.122 0.318 0.001 0.001 0.033

UKMO

No. Rank 1 17 24 23 22 11 9 18
% of Rank 1 41.5% 58.5% 56.1% 53.7% 26.8% 21.9% 43.9%

% of Rank 1 or 2 70.7% 82.9% 82.9% 73.1% 63.4% 78.1% 75.6%
p(x >= No.Rank1) 0.015 0.000 0.000 0.000 0.452 0.730 0.006

CNRM

No. Rank 1 5 2 2 6 7 6 4
% of Rank 1 12.2% 4.9% 4.9% 14.6% 17.1% 14.6% 9.8%

% of Rank 1 or 2 39.0% 22.0% 22.0% 39.0% 39.0% 26.8% 31.7%
p(x >= No.Rank1) 0.987 1.000 1.000 0.964 0.917 0.964 0.996

IFMK

No. Rank 1 1 1 2 1 3 4 3
% of Rank 1 2.4% 2.4% 4.9% 2.4% 7.3% 9.8% 7.3%

% of Rank 1 or 2 14.6% 19.5% 26.8% 31.7% 34.2% 24.4% 19.5%
p(x >= No.Rank1) 1.000 1.000 1.000 1.000 0.999 0.996 0.999

Table 3: Four simulation models’ forecast performance is rank ordered ac-
cording to Ignorance score for each forecast of Nino3.4 index at November
launch. The number of times each model rank the first, the percentage of
each model rank the first and the percentage of each model rank the first or
second. p(x >= No.Rank1) is the probability that the number of times a
model rank the first no less than the observed No. Rank 1 assuming all four
models are equally good.
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Figure 6: Ignorance score of each model from ENSEMBLES for a) the
Nino3.4 index; b) the MDR index, relative to persistence forecast as a func-
tion of lead time in months for November launch. Bootstrap resampling
intervals (the vertical bars) reflect the 5% to 95% range as estimated from
512 resamples.
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forecasts3

Leonard A. Smith, Hailiang Du, Emma B. Suckling and Falk Niehörster
Centre for the Analysis of Time Series, LSE, UK

4

February 26, 20145

This document provides supplementary material for the manuscript (Smith6

et al. Probabilistic skill in ensemble seasonal forecasts).7

• Details of the ENSEMBLES & DEMETER simulation models used in8

the seasonal forecast evaluation are given in Table 1 and Table 2. Ta-9

ble 1 contains a description of the simulation models that constitute10

the ENSEMBLES seasonal hindcast experiment. There were seven11

comprehensive European global coupled atmosphere-ocean models de-12

veloped in the DEMETER project. Table 2 lists a subset of simulation13

models from the DEMETER project, which are directly comparable to14

the models used for the ENSEMBLES hindcasts.15

• Ignorance scores of both the DEMETER and the ENSEMBLES fore-16

casts using the true cross-validation protocol (as described in Appendix17

B of the main manuscript) are presented in Figure 1-4, which can be18

compared with those generated using median cross-validation (See Fig-19

ure 2, 3, 5, 6 of the main manuscript).20

• Figure 5a and 5b illustrate the results shown in Table 1 and Table 221

of the main manuscript in terms of the additional information gained22

from multi-model combination with the best and second best ranked23

models, respectively.24

• Table 3 shows the statistics of each of the four simulation models’25

forecast performance in rank ordered according to Ignorance score for26

each forecast of Nino3.4 index at November launch. It appears the27

1
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IFS(ECMWF) and HadGEM2(UKMO) comes first or second much28

more often than the other two models.29

• Ignorance score of each model from ENSEMBLES relative to persis-30

tence forecasts as a function of lead time at November launch for both31

Nino3.4 index and MDR index is shown in Figure 6. In Figure 7d &32

8d of the main manuscript, results after lead time 7 were not presented33

in order to conveniently compare with the rest of the panels of Figure34

7 & 8. Results for the whole range of lead time is presented here in35

Figure 6.36

• Rank continuous probability score of each model from ENSEMBLES37

for the Nino3.4 index relative to climatological forecast at November38

launch is illustrated in Figure 7. The results are consistent with the39

evaluation using Ignorance score (See Figure 2d of the main manuscript).40
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Figure 1: Ignorance score of each model from DEMETER for the Nino3.4
index relative to climatology as a function of lead time in months using true
leave-one-out cross-validation. Zero Ignorance indicates a model has no skill
relative to climatology and negative relative Ignorance scores suggest a model
is more skillful than climatology. Bootstrap resampling intervals (the vertical
bars) reflect the 5% to 95% range as estimated from 512 resamples. All mod-
els, with the exception of ECHAM5(MPI) are significantly more skillful than
climatology at most lead times, particularly for forecasts launched in Au-
gust and November. Note that ECHAM5(MPI) significantly under perform
climatology at short lead for forecasts launched in August.
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Figure 2: Ignorance score of each model from ENSEMBLES for the Nino3.4
index relative to the equivalent DEMETER forecasts as a function of lead
time in months using true cross-validation. Zero Ignorance indicates an
ENSEMBLES model has no skill relative to the corresponding DEMETER
model and negative relative Ignorance scores suggest the ENSEMBLES
model is more skillful than that of the corresponding DEMETER model.
Bootstrap resampling intervals (the vertical bars) reflect the 5% to 95% range
as estimated from 512 resamples. ENSEMBLES models typically demon-
strate improvements, of up to one bit in some cases, over their corresponding
DEMETER models. ECHAM5(INGV) is an exception to this improvement
and is shown to perform worse in ENSEMBLES than its DEMETER version.
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Figure 3: Ignorance score of each model from ENSEMBLES relative to cli-
matology as a function of lead time in months using true leave-one-out cross-
validation for forecasts of the Nino3.4 index. The four different panels show
the hindcasts initialized in February, May, August and November. Zero Ig-
norance indicates a model has no skill relative to climatology and negative
relative Ignorance scores suggest a model is more skillful than climatology.
Bootstrap resampling intervals (the vertical bars) reflect the 5% to 95% range
as estimated from 512 resamples. Skill is generally reduced compared to the
median cross-validation procedure (Figure 2. in the manuscript). The boot-
strap resampling intervals are also widened in some cases.
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Figure 4: Ignorance score of each model from ENSEMBLES relative to cli-
matology as a function of lead time in months using true leave-one-out cross-
validation for forecasts at Main Development Region. The four different
panels show the hindcasts initialized in February, May, August and Novem-
ber. Zero Ignorance indicates a model has no skill relative to climatology
and negative relative Ignorance scores suggest a model is more skillful than
climatology. Bootstrap resampling intervals (the vertical bars) reflect the
5% to 95% range as estimated from 512 resamples. Skill is generally re-
duced compared to the median cross-validation procedure (Figure 3. in the
manuscript). The bootstrap resampling intervals are also widened in some
cases.
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Figure 5: Ignorance score of each two-model forecast combination, as la-
belled, relative to a) the IFS(ECMWF) forecast; b) the HadGem2(UKMO)
forecast, at each lead time for forecasts of the Nino3.4 index, launched in
November. In each case the inividual models are also blended with the cli-
matological distribution (dressing and blending parameter values are fitted
using median cross-validation protocol). Bootstrap resampling intervals (the
vertical bars) reflect the 5% to 95% range as estimated from 512 resamples.
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Model Lead time 1 2 3 4 5 6 7

ECMWF

No. Rank 1 18 14 14 12 20 22 16
% of Rank 1 43.9% 34.2% 34.2% 29.3% 48.8% 53.7% 39.0%

% of Rank 1 or 2 75.6% 75.6% 68.3% 56.1% 63.4% 70.7% 73.2%
p(x >= No.Rank1) 0.006 0.122 0.122 0.318 0.001 0.001 0.033

UKMO

No. Rank 1 17 24 23 22 11 9 18
% of Rank 1 41.5% 58.5% 56.1% 53.7% 26.8% 21.9% 43.9%

% of Rank 1 or 2 70.7% 82.9% 82.9% 73.1% 63.4% 78.1% 75.6%
p(x >= No.Rank1) 0.015 0.000 0.000 0.000 0.452 0.730 0.006

CNRM

No. Rank 1 5 2 2 6 7 6 4
% of Rank 1 12.2% 4.9% 4.9% 14.6% 17.1% 14.6% 9.8%

% of Rank 1 or 2 39.0% 22.0% 22.0% 39.0% 39.0% 26.8% 31.7%
p(x >= No.Rank1) 0.987 1.000 1.000 0.964 0.917 0.964 0.996

IFMK

No. Rank 1 1 1 2 1 3 4 3
% of Rank 1 2.4% 2.4% 4.9% 2.4% 7.3% 9.8% 7.3%

% of Rank 1 or 2 14.6% 19.5% 26.8% 31.7% 34.2% 24.4% 19.5%
p(x >= No.Rank1) 1.000 1.000 1.000 1.000 0.999 0.996 0.999

Table 3: Four simulation models’ forecast performance is rank ordered ac-
cording to Ignorance score for each forecast of Nino3.4 index at November
launch. The number of times each model rank the first, the percentage of
each model rank the first and the percentage of each model rank the first or
second. p(x >= No.Rank1) is the probability that the number of times a
model rank the first no less than the observed No. Rank 1 assuming all four
models are equally good.
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Figure 6: Ignorance score of each model from ENSEMBLES for a) the
Nino3.4 index; b) the MDR index, relative to persistence forecast as a func-
tion of lead time in months for November launch. Bootstrap resampling
intervals (the vertical bars) reflect the 5% to 95% range as estimated from
512 resamples.
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Figure 7: Rank continuous probability score of each model from ENSEM-
BLES for the Nino3.4 index relative to climatological forecast as a function
of lead time in months for November launch. Bootstrap resampling inter-
vals (the vertical bars) reflect the 5% to 95% range as estimated from 512
resamples.
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