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Abstract 

Poor countries are more heavily affected by extreme weather events and future 

climate change than rich countries. This discrepancy is sometimes known as an 

adaptation deficit. This paper analyses the link between income and adaptation to 

climate events theoretically and empirically. We postulate that the adaptation deficit is 

due to two factors: A demand effect, whereby the demand for the good “climate 

security” increases with income, and an efficiency effect, which works as a spill-over 

externality on the supply-side: Adaptation productivity in high-income countries is 

enhanced because of factors like better infrastructure and stronger institutions. Using 

panel data from the Munich Re natural catastrophe database we find evidence for both 

effects in two climate-related extreme events: tropical cyclones and floods. The 

demand effect is uniformly strong, but there is considerable variation in adaptation 

efficiency. We identify the countries where inefficiencies are largest. Lower 

adaptation efficiency is associated in particular with less government spending, an 

uneven income distribution and bad governance. The conclusion for policy is that 

international efforts to close the adaptation deficit have to include both inclusive 

growth policies (which boost adaptation demand) and dedicated adaptation support 

(which enhances spill-overs), the latter targeted at the countries with the highest 

adaptation inefficiencies. 
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1. Introduction  
There is broad agreement that low-income countries are more vulnerable to current 

climate variability and future climate change than rich countries (e.g. World Bank 

2013).  The insight is based partly on forward looking studies that assess the likely 

impact of future climate change (Tol 2002a, b, Parry et al. 2007) and partly on 

empirical evidence that looks at the impact of extreme climate events in the past 

(Kahn 2005, Noy 2009, Toya and Skidmore 2007). 

Various explanations have been proffered as to why this is the case. Some authors 

point to the higher exposure of low-income countries to climate risk, for example due 

to a semi-arid climate or the concentration of populations in hazard zones. Others 

highlight the high sensitivity of low-income countries to such risks because of their 

heavy reliance on agriculture. Both these factors clearly matter (Bowen et al. 2012; 

Schumacher and Strobl 2011). 

However, the most powerful explanation is arguably the existence of an adaptation 

deficit in low-income countries (the term is due to Burton 2009). Low-income 

countries are less able to deal with climate events because they lack the institutional, 

economic or financial capacity to adapt effectively (Tol and Yohe, 2007, Brooks et 

al., 2005, Barr et al., 2010).  

The aim of this paper is to shed further analytical and empirical light on the nature of 

this adaptation deficit. In particular, we ask whether the deficit is the result of 

inefficiencies in the provision of adaptation services or the rational allocation of 

scarce resources to more pressing needs.  

The answer is important because it informs the appropriate policy response to high 

climate vulnerability. Inefficiencies in the provision of adaptation services would call 

for measures to boost adaptation efficiency. If the main cause is different priorities 

within a tight budget, the right solution may be growth policies to loosen the budget 

constraint (Schelling  1992, 1997) – bearing in mind that certain types of growth can 

increase sensitivity to climate events (Bowen et al 2012).  

We argue that both these factors play a role. Income affects the level of climate 

security first through a demand effect and second through an efficiency effect. The 



demand effect is straightforward: If the good “climate security” – or adaptation – has 

a positive income elasticity, rich countries will demand more of it.  The efficiency 

effect works through an externality on the supply-side.  Rich countries have more of 

certain assets – such as strong social capital, sound institutions, high regulatory 

standards and good public services – which are welfare-enhancing in their own right, 

but also have spill-overs for climate security. That is, they make the production of the 

good “climate security” more efficient. 

We document the existence of the two effects empirically, using data on climate-

related natural disasters for a large number of countries between 1980 and 2008.  Our 

approach and aim are similar to Bakkensen (2013), Hsiang and Narita (2012), Kahn 

(2005) and Toya and Skidmore (2007), but we improve on those papers in several 

ways, including by using a superior data set.  

The Munich Re natural catastrophe data we use are considerably richer and less 

selective than the familiar EM-DAT data commonly used to estimate global disaster 

impacts (www.emdat.net). The NatCat database records all natural hazard events 

worldwide that result in property damage or personal injury. It contains more than 

31,000 disaster entries, including 17,500 unique entries with positive recorded loss. In 

comparison, EM-DAT contains 8,105 natural disaster entries for the period 1980 to 

2009, of which just 3,000 record a loss estimate (Neumayer et al, 2013). EM-DAT is 

also known to exhibit certain biases related to the way in which data are compiled 

(e.g. Gall et al. 2009). Events are registered only if one of the following criteria has 

been met: 10 or more people reported killed, a hundred or more people reported 

affected, a declaration of a state of emergency, or a call for international assistance.   

The superior coverage in the Munich Re data allows us to study disasters without 

undue concerns about potential biases in the data. It allows us to provide results not 

just for lives lost, as is customary, but also for asset damages, and to control 

systematically for disaster magnitude. Past studies in this area often fail to distinguish 

between climate events of different magnitude, or do so only partially. For example, 

Noy (2009), Kahn (2005), Keefer et al. (2011), Anbarci et al. (2005) and Schumacher 

and Strobl (2011) control for earthquake magnitude only, while Bakkensen (2013) 

and Hsiang and Narita (2012) include magnitude data for tropical cyclone events only. 

Nordhaus (2010), Mendelsohn et al. (2010), Hsiang (2010), and Strobl (2011) include 



hurricane magnitude data, but focus exclusively on the US. Neumayer et al. (2013) is 

one of the few papers to include global data for multiple disaster types, while 

controlling for magnitude in each case.  

Our paper differs from others in the analytical question we answer. The idea of using 

data on natural disaster losses to identify adaptation capacity goes back at least to Tol 

and Yohe (2002; 2007). However, those papers focus on testing the degree of 

substitutability between adaptation factors, while their analysis of natural disaster 

losses was limited, in part due to the use of cross-sectional data. Other contributions 

are concerned with effect of disasters on economic growth (e.g. Noy 2009, Strobl 

2010, 2011, McDermott et al. 2013) as opposed to explaining the severity of the 

disaster losses. There is also a strand of literature on the welfare impacts of economic 

“disasters” (Barro 2006, Gabaix 2008).  

Papers that attempt to identify the determinants of disaster losses tend to focus 

narrowly on the relationship with income, along with various political economy 

stories (Anbarci et al. 2005, Hsiang and Narita 2012, Schumacher and Strobl, 2011, 

Keefer et al. 2011, and Neumayer et al. 2013). Our paper differs from these 

contributions by establishing a clear, if simple theoretical framework on the link 

between income and disaster loss. This allows us to construct country efficiency 

rankings and identify countries that perform particularly well or badly, given their 

income level, in terms of disaster management. 

The paper is structured as follows. Section 2 contains a simple theoretical model that 

introduces the two channels (demand and supply-side efficiency) through which 

income affects climate security.  Section 3 sets up our empirical model, the results of 

which are discussed in section 4. Section 5 discusses potential shortcomings and 

methodological refinements. Section 6 concludes. 

2. A simple theoretical model 

We can think of adaptation to climate events as a consumption choice between two 

goods. The first good is climate security, A, and satisfies our desire to be safe from 

environmental harm. Natural disasters cause hardship well beyond the foregone value 

of consumption, and this creates a willingness to pay for climate security. There is a 

significant literature on the mental health impacts of disasters, which finds conditions 



such as post-traumatic stress disorder (PTSD), depression and anxiety to be common 

amongst populations that have experienced and survived disasters (see the review by 

Norris et al. 2002). The second good is a composite consumption good, C, which 

represents all other goods and services. 

  

One might then construct a production possibility frontier that charts how units of 

consumption can be converted into units of climate security, subject to an overall 

budget constraint. However, to make the internal workings of this choice more overt, 

we model the decision explicitly as the interaction between the cost of producing A 

and the utility people derive from consuming it (for a dynamic model see Hallegatte 

2011). 

We start with a representative household and its utility function U = U(C, A). Utility 

has the usual properties, i.e., ; .  

Households have an exogenous income, Y, and they maximise utility subject to the 

budget constraint Y = C + πA, where π is the unit price of adaptation. The 

optimisation problem  yields the first-order condition 

, which can be solved for the optimal level of adaptation.  The demand 

function is 

                     (1) 

Differentiating the first-order condition, and remembering the second-order condition, 

confirms that  as one would expect. We are mostly interested in the 

first of the two derivatives. It is a standard income elasticity, although here we label it 

our demand effect. It tells us that as long as climate security is not an inferior good the 

demand for adaptation will go up as income rises. 

On the production side, climate security is delivered in a way that maximizes profit. 

The optimisation problem takes the form  The cost function, c, 

is convex in adaptation effort,  Costs also depend on an efficiency 

parameter, φ, which can be thought of as reflecting total factor productivity in the 

implicit production function.  We assume ;  .  The first-

order condition  can be solved for the supply function  



                     (2) 

where . The price effect is as expected. The derivative with respect to 

φ states that as production efficiency increases, costs come down and supply goes up. 

This is our efficiency effect. 

The link to income on the supply-side is created if efficiency levels depend on 

variables that are also loosely correlated with income, such as institutional quality, 

social capital and an effective public sector. Owing to a positive spill-over from 

income to production efficiency a rise in income would then be expected to increase 

the supply (or reduce the cost) of adaptation. The existence – and indeed the sign – of 

the efficiency effect cannot be determined a priori and must await empirical 

confirmation. The hypothesis is that adaptation efficiency depends on a vector of 

variables whose correlation with income is not perfect, so that the income and 

efficiency effects can be identified empirically. 

We are now in a position to calculate the market equilibrium by equating adaptation 

supply (equation 2) and demand (equation 1). More specifically we equate the inverse 

supply and demand functions  to eliminate the (unobserved) price and 

derive:  

                     (3) 

Equation (3) depicts the equilibrium relationship between climate security and income 

we wish to study – the adaptation deficit – and reintroduces the two channels through 

which an adaptation deficit might occur: An income effect,  that is positive as long 

as climate security is not an inferior good, and an efficiency effect, , which we 

suspect may have some link to income. By differentiating the market equilibrium 

condition  we confirm 

                      (4) 

Figure 1 summarises the two effects graphically, as an income-related shift in the 

demand for climate security and an efficiency related increase in the supply of climate 

security. 

 



 

 

Figure 1: The adaptation deficit as a function of income and efficiency effects 

 

3. From theory to empirics 

We now turn to the empirical estimation of equation (3), using data from the Munich 

Re natural catastrophe (NatCat) database.  

The NatCat database includes a total of some 31,000 individual entries. We restrict 

our attention to the period 1980 to 2008, for reasons of data quality and completeness, 

leaving us with a sample of some 20,000 observations, drawn from more than 200 

countries. The database includes 25 different event categories, but we focus our 

analysis on the two climate-related event categories that account for most disaster 

deaths and economic damages: floods and tropical cyclones. These two event 

categories account for 33% of the deaths and 43% of the economic damages in the 

database, and between them comprise over 5,400 entries. Because our explanatory 

variables are only available at an annual frequency, we aggregate the events data to 

the country-year level. This process leaves us with 2,277 country-year observations, 

comprised of 1,779 country-years with floods and 498 country-years with tropical 

cyclones.  



An immediate complication is that the data do not include adaptation effort, A, our 

variable of primary interest. What NatCat records instead is the actual damage of 

natural disasters, D. We overcome the problem by postulating the following 

relationship between adaptation effort and observed damages:  

                     (5) 

where I is a measure of the unmitigated physical impact of an event. From the disaster 

risk and climate change vulnerability literature (e.g., Field et al. 2012) we know that I 

is a function of the intensity or magnitude of an event (e.g. the wind speeds observed 

during a storm) and the sensitivity or exposure of society to events of given 

magnitude.  Equation (5) implies that as long as we control for the factors explaining 

I, observed damages will be a reasonable indicator of adaptation effort. 

Based on equations (3) and (5) we can now formulate the basic structure of our 

empirical problem: 

     (6) 

where i and t denote country and time subscripts, respectively, and  is the error 

term. We will estimate the equation separately for each hazard type, using OLS and 

negative binomial regressions. However, before we do so it is worth discussing the 

main variables. 

Our dependent variable,  , is measured in two ways: either as economic damages 

or as lives lost. Most of the existing literature concentrates on the human costs of 

disaster events (e.g. Kellenberg and Mobarak 2008, Anbarci et al. 2005, Kahn 2005). 

Relatively few studies have used economic damages as the outcome of interest 

(Exceptions include Schumacher and Strobl, 2011, and Neumayer et al. 2013). This 

reflects, at least in part, concerns about the reliability of economic damage estimates 

in publicly available datasets like EM-DAT. The Munich Re database in contrast 

benefits from the unique perspective of the world’s largest re-insurance company, 

who make it their business to obtain accurate estimates of the damages caused by 

natural disasters. That said, there is still likely to be greater measurement error in the 

damages series than for lives lost, even in our dataset.  



On the right-hand side the equation includes three types of explanatory variables. The 

first set of controls,  , is a vector of variables to normalize the intensity of events 

and the exposure of countries to events, as suggested by equation (5). The intensity of 

events is controlled by top wind speed in the case of tropical cyclones and by local 

precipitation in the case of floods. The data on top wind speeds are obtained from the 

Munich Re database. It has been shown that losses associated with tropical cyclones 

generally increase with the cube of the top wind speed (Emanuel, 2005). We therefore 

take the cubed power of top wind speed as our measure of tropical cyclone intensity. 

In the case of floods, no intensity variables are included in the Munich Re database, 

and we use precipitation data from Neumayer et al. (2013) instead.  

Exposure of a country is controlled by population, in the case of disaster deaths, and 

by GDP in the case of economic damages. GDP represents the flow of income derived 

from productive assets in the economy and should therefore represent a reasonable 

proxy for the value of the capital stock. We also include land area as a measure of 

impact density. The intuition is that, for a given population size or GDP, a larger land 

area reduces the likelihood that a disaster event will strike a heavily populated or 

asset-rich zone. The final exposure variable is a time trend to capture changes over 

time in technology or disaster reporting (which are common across countries).  

The second element of the equation is the income variable, , which measures the 

demand effect. We also include disaster propensity (from Neumayer et al., 2013) as a 

further determinant of demand. This variable captures the average exposure of a 

country to a given disaster type over the long-term. A higher long-term exposure 

increases the incentive to undertake costly adaptation measures. Disaster propensity is 

therefore a relevant component of the demand effect. Hsiang and Narita (2012), 

Schumacher and Strobl (2011), Keefer et al. (2011), and Neumayer et al. (2013) have 

all shown that disaster losses are negatively associated with hazard exposure.   

The third element of equation (6) is a vector of variables associated with the 

efficiency effect, . These include measures of institutional quality, income 

inequality (the Gini coefficient), education (primary school enrolment rates), health 

(life expectancy), government expenditure (as a % of GDP), openness (trade as a % of 

GDP), and financial sector development (private sector credit/GDP). While the choice 

of variables to include is in part intended to capture those most frequently included in 



the existing literature, we ultimately include a richer set of explanatory variables than 

is customary in the literature. 

Most of our explanatory variables are obtained from the World Bank’s World 

Development Indicators database, and are available at an annual frequency over our 

entire sample period. One exception is the Gini coefficient, which is calculated only 

sporadically. For this reason, we use the average of the available observations for each 

country, taking comfort from the fact that Gini values vary considerably more 

between countries than within countries over time. 

Institutional quality is measured using Political Risk Services ICRG data, which 

offers the longest available time series; beginning in 1984 (thus the regressions that 

include these data start in 1985). We include both the aggregate political risk measure, 

and separately, its 12 constituent elements (we only report results for individual sub-

components where significant). Alternative measures of institutional quality, such as 

the World Bank’s Worldwide Governance Indicators (Kaufmann et al. 2010) and 

Country Policy and Institutional Assessments (CPIA) or the Polity IV measure of 

democracy, are not available for a sufficient number of countries or years. As a 

robustness check, we ran regressions including country averages of these alternative 

variables. They do not change the qualitative nature of the results we report below. 

We use lagged values for most of the explanatory variables (excluding disaster 

magnitude) in order to avoid any potential endogeneity bias.   

4. Empirical results 

Our calculations distinguish between two measures of impact (lives lost, economic 

damages) and two types of hazards (floods, cyclones).  The outcome is four sets of 

regressions, the results of which we report in Tables 1-4.  The layout of the tables 

reflects the three sets of explanatory variables identified in equation (5). That is, we 

have controls for intensity and exposure, variables explaining demand, and variables 

measuring efficiency spillovers.  In each of the tables the first column reports results 

of regressions that include only the event normalisation and demand effects. In 

columns 2, 3 and 4 we include the efficiency spillover variables, initially excluding 

the Political Risk variable, because it restricts the sample to years since 1985 

(inclusive). We then include the aggregate Political Risk variable in column 3 and, 



finally, replace this aggregate measure with its 12 subcomponents in the regressions 

reported in column 4.  

 

A. Disaster deaths 

Tables 1 and 2 are concerned with disaster deaths as the outcome of interest. The 

tables show that both the magnitude and population variables are highly significant 

predictors of disaster fatalities. The time trend for deaths from flood events is 

significant and negative, indicating that these have been reduced over time, holding 

other variables constant. The time trend is also negative for deaths from tropical 

cyclones (although only significant in one model specification). 

 

The results for the demand variables are as expected, with higher GDP per capita and 

higher hazard exposure being associated with a lower number of deaths from 

disasters. This relationship is robust to the inclusion of the efficiency variables.  

To give a sense of the magnitude of the observed effects, a 10% rise in GDP per 

capita reduces fatalities from floods by around 1.4% at the median value of loss.  The 

coefficients in the tropical cyclones regressions are of similar magnitude (ranging 

between -0.56 and -0.78). However, the median number of deaths from tropical 

cyclones in our sample is considerably higher; a 10% rise in GDP per capita reduces 

median deaths from tropical cyclones by between 0.5 and 0.7%. (To derive an 

elasticity, we divide the coefficient by the total number of deaths, for an expression of 

the form (per cent change in death) / (per cent change in income). The elasticity varies 

depending on the point at which it is evaluated. We chose the median number of 

deaths). 

 

Turning to the efficiency variables, we find that higher income inequality (as captured 

by a country’s average Gini coefficient) is associated with more deaths from disasters. 

This relationship is strongest and most robust for flood events. For tropical cyclones, 

the Gini is only significant for the model without institutional variables. We also find 

that better quality political institutions (as measured by the aggregate Political Risk 

variable) reduce disaster deaths, although the aggregate measure is only marginally 

significant for floods and is not significant for tropical cyclones. (A higher score on 

this variable indicates lower risk). 



When we include the 12 subcomponents of the Political Risk measure (column 4 of 

each table), one consistent finding is that disaster deaths are reduced in countries with 

a better Investment Profile. (We only report coefficients for subcomponents that were 

significant in the regressions). This variable includes assessments of factors that affect 

risk to investments, including contract viability, the risk of expropriation, profit 

repatriation and payment delays. Deaths from floods are also lower in countries with a 

lower risk of religious tension or religious interference in politics. For tropical 

cyclones, the number of deaths is lower in countries with lower risk of military 

influence in politics and lower risk of external conflict (including external diplomatic 

and political pressure, such as withholding of aid, trade restrictions and other forms of 

sanctions).  

 

One other consistent result is that a higher ratio of government expenditure to GDP 

reduces the number of deaths from both floods and tropical cyclones. Although the 

variable measures government consumption (not investment), it seems to capture the 

relative provision of public goods, such as climate protection.   

 

The results for the other variables that we include are somewhat inconsistent across 

the two disaster categories. For tropical cyclones higher primary school enrolment 

rates reduce disaster deaths. However, for floods, there is some evidence that higher 

school enrolment rates are associated with an increased number of deaths, although 

this is not a consistent finding across model specifications. We also experimented 

with a range of different measures of education participation, including secondary and 

tertiary enrolment rates, net (as opposed to gross) enrolment rates, and also female-

only enrolment rates. None of these alternatives changed the qualitative results, nor 

did their inclusion produce more significant or consistent results. 

 

Life expectancy and trade openness do not appear to matter for disaster deaths. 

However, higher credit-to-GDP ratios appear to be associated with an increased 

number of lives lost, although again for flood events this finding is not consistently 

significant across model specifications. This result may appear surprising at first, 

since previous studies (e.g. Noy 2009, McDermott et al. 2013) have found that greater 

financial sector development mitigates the growth impacts of disasters.  It appears that 

access to credit primarily matters for recovery and reconstruction (as emphasised by 



McDermott et al. 2013), therefore affecting the indirect impacts of disasters on 

economic growth. On the direct impacts of disasters it could be that two opposing 

effects are at work. On the one hand, higher credit availability may help finance risk 

reduction measures, thus reducing impact, but on the other hand, large credit-to-GDP 

ratios may be associated with housing developments in vulnerable locations such as 

on flood plains. It is also worth noting that a number of these variables (government 

expenditure, credit/GDP and life expectancy in particular) are highly correlated with 

GDP per capita, which could explain some of the variation in results. 

 

B. Economic Damages 

Turning to the results for economic damages (presented in Tables 3 and 4), we see 

again that the magnitude and total GDP (normalisation) variables are highly 

significant predictors of economic damages from both floods and tropical cyclones.  

Having controlled for the value of assets exposed (total GDP), higher GDP per capita 

is associated with lower damages from these climate-related disasters, as our model 

predicts. The estimated coefficients from these regressions are directly comparable as 

damage elasticities, given that the regressions are specified in log-log form. Thus, the 

coefficients on GDP per capita indicate that a 10% rise in GDP per capita reduces 

economic damages from flood events by between 3 and 5%, and from tropical 

cyclones by between 5 and 19%. 

 

The propensity measures have the correct sign, higher propensity being associated 

with lower losses from a given disaster event, but are not significant in most 

specifications. It has been shown that people respond differently to the propensity of 

high versus low intensity events (e.g. Bakkensen, 2013). The insignificance of the 

propensity measures could therefore be the result of competing effects from past 

experiences of low versus high intensity events. This is something we are exploring in 

more detail in extensions to this research currently under way. 

 

While we find a significant income effect in each model specification, the efficiency 

effect (i.e. production externalities and income spill-overs) appears to be less 

pronounced in the case of assets as compared with lives lost. For floods, the only 



consistently significant efficiency variables are the Gini and life expectancy, with 

both showing counter-intuitive signs.  

 

The negative coefficient on the Gini variable indicates that higher inequality is 

associated with lower economic damages from floods. This change in sign for the 

Gini coefficient between the regressions for deaths from floods and those for 

economic damages from floods is an intriguing finding. The sharp contrast in the 

effects of inequality for lives lost as opposed to assets destroyed could be evidence of 

a location effect. For example, poor people tend to live in more vulnerable locations, 

such as on flood plains (Albala-Bertrand, 1993; Anbarci et al. 2005). This segregation 

effect is likely to be more pronounced in unequal societies. Thus, inequality puts a 

greater number of people in harm’s way, but because poor households own relatively 

little, inequality may also be associated with a lower value of assets exposed.  An 

alternative interpretation is that the economic losses suffered by poorer people are not 

counted in official figures, either because they lack formal insurance and record 

keeping of assets, or because (in an unequal society) economic losses suffered by the 

poor are simply ignored, whereas deaths are less easy to ignore (see e.g. Hallegatte et 

al. 2010). 

 

For tropical cyclones, the Gini coefficient is as expected, with higher inequality 

increasing economic losses. The positive coefficients on the aggregate political risk 

measure and its ‘socioeconomic conditions’ and ‘ethnic tensions’ subcomponents, 

indicate that better institutions (or lower political risk) based on these measures, are 

associated with higher economic damages from tropical cyclones. There is also, again, 

some evidence that both higher credit/GDP and life expectancy are associated with 

higher economic losses. Greater trade openness, on the other hand, reduces losses 

from cyclone events. 

 

C. Country efficiency rankings 

For policy purposes it would be interesting to know more about the relative adaptation 

efficiency of countries, as countries with lower efficiency spillovers may require 

additional technical assistance. 



The country efficiency rankings, presented in Tables 5 and 6, are based on the 

regression results discussed in the preceding section. We calculate an efficiency index 

for each country, based on a weighted sum of the efficiency variables found to be 

statistically significant predictors of the number of people killed for each disaster 

category. The weights are the coefficients from the regressions reported above. The 

rankings presented in Tables 5 and 6 represent country averages over the sample 

period. 

 

The country rankings for flood events produce a recognisable pattern, with 

predominantly Northern European countries towards the top, while those at the lower 

end of the rankings include fragile states, such as Haiti and Zimbabwe. Somewhat 

more surprising, perhaps, is the relatively low ranking, given its wealth, of the United 

States, which ranks below average, alongside China, India, Cote d’Ivoire and 

Nicaragua. This reflects a moderately high income inequality and low government 

spending in that country. It is notable that a number of authors have emphasized the 

role of social inequalities in exacerbating the human impacts of hurricane Katrina 

(e.g. Atkins and Moy 2005, Elliott and Pais 2006, and Tierney 2011). Bakkensen 

(2013) also calls the US a “damage outlier”. 

 

Another surprising ranking is that of Bangladesh, a country which, in spite of its 

poverty, has put significant effort into reducing its vulnerability to disasters. This may 

be because our measure only captures general government expenditures, rather than 

dedicated disaster management spend. Harder to explain is the relatively strong 

performance of a number of sub-Saharan African countries, e.g. Tanzania, Burkina 

Faso, Ghana, Malawi and Botswana, which all feature in the rankings alongside the 

likes of Japan, the Netherlands, France, the UK, and New Zealand. 

 

The country rankings for tropical cyclones are based on a much smaller sample, since 

cyclones only affect a relatively small number of countries. However, the pattern that 

emerges from the rankings based on tropical cyclones is quite similar to that from 

floods. For countries that feature in both rankings, those with high adaptive capacity 

for flood events also have relatively high adaptive capacity for tropical cyclone 

events. This is reflected in the high degree of rank correlation between the country 



efficiency rankings for the two event categories (Spearman’s rho=0.7454, N=36, p-

value=0.0000).  

 

5. Methodological discussion 

We next explore some methodological issues to test the validity of our findings.  A 

first question to ask is whether there might have been a superior, alternative model 

specification. One potential alternative to measure the efficiency component of the 

model would be stochastic frontier analysis (developed by Aigner et al. 1977, and 

Meeusen and van den Broeck 1977). Stochastic frontier analysis has been used in 

numerous papers on the productive or cost efficiency of firms. However, the approach 

was primarily designed to measure production inefficiencies across firms that are 

relatively homogenous (e.g. a sample of firms all operating in the same sector). It is 

less appropriate for cross-country comparisons involving large variation in economic 

and social conditions (Greene, 2004), although there are cross-country applications 

(e.g. Greene 2005). The application of stochastic frontier analysis to our natural 

disaster data also poses a number of methodological/conceptual challenges, such as a 

lack of data on input costs (e.g. how much is spent on climate protection measures) 

and the large proportion of zeros in the casualty data, which require a model capable 

of handling non-normally distributed outcome variables (such as the negative 

binomial model that we use).  

A second question to ask is whether there are methodological issues with the 

specification we did choose. The regressions involving economic damages as the 

outcome variable are estimated by standard OLS regressions, with a log-log model 

specification. For the regressions with number of deaths as the outcome of interest, 

estimation by OLS would not be appropriate, given the distribution of disaster 

fatalities. Estimation is therefore by negative binomial regression. This model is 

preferred to a Poisson model due to the over-dispersion of the disaster fatalities data 

(the mean of this series is 337, with a standard deviation of 4,678) and is also 

consistent with the existing literature (e.g. Keefer et al. 2011, Kellenberg and 

Mobarak 2008). We also experimented with alternative estimators to the negative 

binomial, notably a Poisson QMLE estimator, and the results are consistent.  



Another alternative would be the zero-inflated negative binomial (ZINB) model, 

given the relatively large number of zeros in the data. However, the ZINB model 

assumes that the data are the result of two distinct underlying processes, whereby a 

proportion of the observed zeros are the result of some distinct category within the 

data for which the probability of zero is 1 (see Keefer et al. 2011). Given that our data 

are drawn from a database of natural disaster events, which by their very definition 

pose a threat to human life, an assumption of zero probability of death, even for a 

subset of the data, would seem too strong 

Measuring production efficiency is complex and there may be omitted variables in the 

efficiency vector φ. Our model includes all the standard variables offered in the 

literature (Noy 2009, Toya and Skidmore 2007, Tol and Yohe 2007). This gives us 

some comfort that there are no obvious measurable omissions, although intangible 

factors such as a country’s “risk culture” are of necessity excluded.  

We did not include country fixed effects for the simple reason that some of the 

differences in efficiency across countries that we are interested in are likely to evolve 

relatively slowly over time. Including country fixed effects would therefore not allow 

us to identify the efficiency effect. To understand the implications of this choice we 

repeated the analysis using country fixed effects. As a general pattern, we found the 

efficiency variables lost significance in these regressions, although there were some 

exceptions. For example, government spending remained significant in the regression 

for economic damages from flood events. The sub-components of the institutional 

quality index were also significant in some of the regressions, but not consistently so. 

These results indicate, as anticipated, that the identified efficiency effect is 

predominantly due to between-country (cross-sectional), rather than within-country 

differences. This is not surprising, given that the variation in institutional quality, for 

example, is much greater between countries than within countries over time. 

Similarly, differences in the Gini coefficient are entirely absorbed by the inclusion of 

the country fixed effects, since we only have sufficient data to use country averages 

for this variable. We note that a similar pattern was found in relation to the income 

effect when we included country fixed effects, with the coefficient on GDP per capita 

insignificant in many of the regressions or substantially smaller in magnitude where it 

remained significant. As an alternative, we also ran regressions including region fixed 



effects, based on eight distinct regions. The results from these regressions were 

qualitatively similar to those reported here. 

Another concern is whether we control appropriately for the intensity of events, that 

is, the completeness of vector I.   The destructiveness of storms in particular has many 

dimensions – including wind speed, rainfall, forward velocity, radius of maximum 

winds etc. (Strobl, 2010) – which we are unable to capture fully. Similarly, the 

intensity of a flood event is unlikely to be fully captured by local precipitation data, as 

other factors such as local topography are also relevant. Our disaster magnitude 

variables are thus, of necessity, rough proxies for the true intensity of the experienced 

event. However, as our magnitude variables are highly significant predictors of 

disaster losses they represent an improvement on omitting this factor from the 

analysis entirely.  

The way differences in exposure are controlled for needs to strike a balance between 

accuracy and exogeneity. By choosing population and land mass as the main controls 

we opt for variables that are clearly exogenous. Other measures of people and assets 

at risk, e.g., those located in hazard zones, may offer a more precise description of 

exposure and sensitivity, but the decision to locate in hazard zones is arguably 

influenced by the desire to manage the risks involved. That is, it reflects endogenous 

adaptive behaviour. We have included a time trend, which captures trends in location 

behaviour over time that are common across countries. We also experimented with 

specifications that included urbanisation as an additional control, but found this 

variable to be insignificant.  This gives us some reassurance that differences in 

exposure and sensitivity are adequately controlled for. 

Our analysis has focused on two specific disaster categories, floods and tropical 

cyclones. Other important climate-related disasters are not included, notably droughts, 

heat waves and wind storms. There has been some work on the economic impact of 

heat waves (Martin et al. 2011), but the data to do so systematically is lacking. A 

disaster category that is amenable to systematic analysis, and in fact accounts for a 

large proportion of disaster losses, is earthquakes. Earthquakes are of less interest 

here, given our focus on climate-related adaptation, and they already feature 

prominently in the literature (e.g. Anbarci et al. 2005, and Keefer et al. 2011). 

Nevertheless, a cross-check may be informative. Repeating our analysis on 



earthquakes, we found results on the normalization and demand variables in line with 

the existing literature, which reports a strong demand effect. However, the analysis of 

adaptive efficiency to earthquake events is complicated by the fact that small-scale 

damages from relatively minor earthquakes appear to be essentially random (as 

argued by Neumayer et al. 2013). Kellenberg and Mobarak (2008) have also argued 

that the links between human behavioural choices and exposure to risk are not as 

strong for earthquakes as for floods and windstorms.  

5.  Conclusions 

This paper analyses the link between income and adaptation to past and future climate 

events.  It is widely accepted that poor countries are more heavily affected by extreme 

weather events and hence future climate change than rich countries. The discrepancy 

has even been given its own name: the adaptation deficit.  We argue theoretically that 

the adaptation deficit is due to two factors: A demand effect, whereby the demand for 

the good “climate security” increases with income, and an efficiency effect, which 

works as a spill-over externality on the supply-side. Because of these spill-overs, 

adaptation productivity is enhanced in the socio-economic context of high-income 

economies.   

We find empirically that there is a strong demand effect. A 10 per cent increase in 

income (GDP per capita) reduces the economic damages from climate disasters by 

between 3% and 5%, or perhaps as much as 19% in the case of cyclones. The income 

elasticity on disaster-related fatalities is lower – perhaps because the protection of 

lives is a priority at all levels of income – but still significant. 

We find considerable variation in the efficiency effect. Adaptation efficiency is not 

uniform, even after controlling for income. There are instances of adaptation 

inefficiency.  In particular, the strength of efficiency spill-overs varies with 

government spending (a measure of investment in adaptation-related public goods), 

institutional quality and income distribution, although the dynamics on this last 

variable are quite complex.  

This has important policy implications. If adaptation efficiency was perfectly 

correlated with income, there would be no need for special adaptation measures, only 

for policies that boost income. The unevenness of the efficiency effect confirms that 



closing the adaptation deficit in fact requires a combination of general measures 

aimed at promoting growth and development and dedicated assistance targeted at 

enhancing spill-over effects. The results also point to a preference for certain types of 

development, in particular inclusive growth that also reduces income inequalities and 

development models that emphasise institutional quality. 

We identify the countries where the efficiency spill-overs are weakest, and where the 

need for adaptation assistance may therefore be the strongest. The list of priority 

countries includes many of the most vulnerable states, and as such is fairly intuitive.  

But it also contains some surprises, including countries such as Bangladesh that are 

often associated with good disaster risk management. However, the list should be 

treated with caution as methodological and data problems prevent a reliable 

identification.  

Research on the link between economic growth and resilience to climate risk is still 

patchy, and there is scope for much further analysis. One important question which 

has not been addressed is how income changes the sensitivity of economies to climate 

events. We account for this crudely by controlling for either GDP or population size. 

However, there are much richer dynamics at work of how trends like economic 

diversification, urbanization and migration to coasts affect the long-term vulnerability 

of countries to climate risk. 
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Table 1: Numbers killed by flood events 
Negative binomial regression Dependent Variable: Number Killed  
 (1) (2) (3) (4) 
     
“Normalisation”     
Magnitude 0.320*** 0.328*** 0.436*** 0.451*** 
 (0.04) (0.04) (0.04) (0.04) 
Population 0.703*** 0.810*** 0.790*** 0.726*** 
 (0.08) (0.10) (0.09) (0.09) 
Area (Km2) -0.047 -0.107 -0.089 -0.130** 
 (0.09) (0.08) (0.08) (0.07) 
Time trend -0.043*** -0.045*** -0.034*** -0.031** 
 (0.01) (0.01) (0.01) (0.01) 
     
“Demand”     
GDPpc -0.691*** -0.684*** -0.659*** -0.683*** 
 (0.07) (0.10) (0.11) (0.11) 
Flood Propensity -0.139* -0.271*** -0.404*** -0.368*** 
 (0.07) (0.08) (0.08) (0.08) 
     
“Efficiency”     
Gini (avg.)  1.480*** 1.324*** 1.309*** 
  (0.43) (0.43) (0.48) 
Pol. risk   -0.931*  
   (0.54)  
     Gov. stability    0.543* 
    (0.32) 
     Investment Profile    -0.962*** 
    (0.33) 
     Relig. in Politics    -0.675*** 
    (0.26) 
School enrol. (prim.)  0.979** 0.589 0.771 
  (0.45) (0.42) (0.54) 
Credit/GDP  0.209 0.214 0.311** 
  (0.16) (0.13) (0.12) 
Life exp  0.785 2.052* 1.186 
  (1.15) (1.05) (1.21) 
Trade  -0.143 -0.160 -0.279 
  (0.19) (0.22) (0.22) 
Gov. exp.  -0.794*** -0.785*** -0.678** 
  (0.27) (0.28) (0.28) 
     
Constant 82.870*** 74.847*** 54.567** 50.709* 
 (19.65) (19.08) (24.01) (28.13) 
     
Obs. 1634 1294 1038 1038 
Countries 148 130 113 113 
     
Standard errors (clustered at the country level) in parentheses. Explanatory variables entered in logs 
and (with the exception of Magnitude, Area and Gini) lagged one period. * p<0.10, ** p<0.05, *** 
p<0.01.



 
Table 2: Numbers killed by tropical cyclones 
Negative binomial regression Dependent Variable: Number Killed  
 (1) (2) (3) (4) 
     
“Normalisation”     
Magnitude 1.039*** 0.984*** 1.107*** 1.120*** 
 (0.12) (0.12) (0.11) (0.12) 
Population 0.832*** 0.793*** 0.907*** 1.028*** 
 (0.13) (0.11) (0.14) (0.14) 
Area (Km2) -0.608*** -0.617*** -0.565*** -0.515*** 
 (0.12) (0.10) (0.11) (0.14) 
Year (time trend) -0.029 -0.029 -0.046** -0.028 
 (0.02) (0.02) (0.02) (0.02) 
     
“Demand”     
GDPpc -0.563*** -0.783*** -0.732*** -0.570*** 
 (0.09) (0.13) (0.15) (0.17) 
Cyclone Propensity -0.488*** -0.382*** -0.443*** -0.508*** 
 (0.11) (0.09) (0.08) (0.09) 
     
“Efficiency”     
Gini (avg.)  1.858** 1.446 0.528 
  (0.76) (1.04) (1.01) 
Pol. risk   -0.702  
   (0.69)  
     Investment Profile    -1.405* 
    (0.74) 
     Ext. Conflict    -1.665** 
    (0.69) 
     Milit. in Politics    -1.366*** 
    (0.51) 
     Democracy    1.006* 
    (0.59) 
School enrol. (prim.)  -1.313* -1.972** -2.695** 
  (0.73) (0.82) (1.31) 
Credit/GDP  0.812*** 0.669* 0.455* 
  (0.27) (0.37) (0.25) 
Life exp  1.534 2.971 0.522 
  (2.32) (2.90) (3.13) 
Trade  -0.323 -0.008 0.365 
  (0.31) (0.32) (0.33) 
Gov. exp.  -1.477*** -1.483*** -1.937*** 
  (0.38) (0.33) (0.64) 
     
Constant 54.082 49.120 81.534** 58.627 
 (38.90) (36.97) (40.95) (47.63) 
     
Obs. 341 287 251 251 
Countries 44 38 36 36 
     
Standard errors (clustered at the country level) in parentheses. Explanatory variables entered in logs 
and (with the exception of Magnitude, Area and Gini) lagged one period. * p<0.10, ** p<0.05, *** 
p<0.01. 



 
 
Table 3: Economic Damages from Flood Events 
 Dependent Variable: Economic 

Damages 
 

 (1) (2) (3) (4) 
     
“Normalisation”     
Magnitude 0.687*** 0.733*** 0.845*** 0.832*** 
 (0.05) (0.06) (0.06) (0.06) 
Total GDP 0.885*** 0.543*** 0.703*** 0.713*** 
 (0.12) (0.12) (0.12) (0.12) 
Area (Km2) -0.055 0.139 0.121 0.082 
 (0.09) (0.10) (0.10) (0.09) 
Time trend -0.023** -0.022 -0.060*** -0.020 
 (0.01) (0.01) (0.02) (0.02) 
     
“Demand”     
GDPpc -0.317* -0.384** -0.498** -0.496*** 
 (0.17) (0.16) (0.20) (0.18) 
Flood Propensity -0.166 -0.051 -0.166 -0.140 
 (0.11) (0.12) (0.13) (0.12) 
     
“Efficiency”     
Gini (avg.)  -2.202*** -2.269*** -2.073*** 
  (0.64) (0.70) (0.73) 
Pol. risk   0.796  
   (0.65)  
     Investment Profile    -1.349** 
    (0.52) 
     Milit. in Politics    0.722* 
    (0.37) 
School enrol. (prim.)  0.107 -0.012 0.129 
  (0.45) (0.56) (0.60) 
Credit/GDP  0.016 0.006 -0.001 
  (0.16) (0.20) (0.19) 
Life exp  4.655*** 4.068*** 4.025*** 
  (1.15) (1.41) (1.46) 
Trade  -0.179 0.014 -0.005 
  (0.38) (0.42) (0.41) 
Gov. exp.  0.037 -0.314 -0.525 
  (0.33) (0.38) (0.41) 
     
Constant 26.376 19.044 92.072*** 16.855 
 (18.13) (26.63) (33.99) (39.82) 
     
Obs. 1634 1294 1038 1038 
Countries 148 130 113 113 
     
Standard errors (clustered at the country level) in parentheses. Explanatory variables entered in logs 
and (with the exception of Magnitude, Area and Gini) lagged one period. * p<0.10, ** p<0.05, *** 
p<0.01.  



 
Table 4: Economic Damages from Tropical Cyclones 
 Dependent Variable: Economic 

Damages 
 

 (1) (2) (3) (4) 
     
“Normalisation”     
Magnitude 1.409*** 1.481*** 1.581*** 1.650*** 
 (0.18) (0.16) (0.14) (0.14) 
Total GDP 0.871*** 0.813*** 1.104*** 0.812*** 
 (0.21) (0.18) (0.13) (0.15) 
Area (Km2) -0.312 -0.573*** -0.711*** -0.718*** 
 (0.19) (0.16) (0.17) (0.13) 
Time trend 0.015 0.021 -0.015 0.066 
 (0.02) (0.02) (0.03) (0.04) 
     
“Demand”     
GDPpc -0.474* -1.305*** -1.856*** -1.211*** 
 (0.26) (0.25) (0.34) (0.30) 
Cyclone Propensity -0.115 -0.170 -0.272 -0.263* 
 (0.19) (0.18) (0.17) (0.15) 
     
“Efficiency”     
Gini (avg.)  4.171** 3.558** 4.481*** 
  (1.68) (1.68) (1.54) 
Pol. risk   2.874*  
   (1.42)  
     Socioec. 
Condition 

   2.994*** 

    (0.79) 
     Investment Profile    -2.171* 
    (1.24) 
     Ethnic Tensions    1.274* 
    (0.70) 
School enrol. (prim.)  -0.329 -2.733 -0.846 
  (1.56) (2.06) (2.44) 
Credit/GDP  1.391*** 0.961** 0.398 
  (0.35) (0.42) (0.35) 
Life exp  6.574* 9.249** 4.204 
  (3.43) (3.78) (3.36) 
Trade  -1.324** -1.274** -1.818*** 
  (0.60) (0.57) (0.50) 
Gov. exp.  0.490 0.639 0.900 
  (0.83) (0.93) (1.07) 
     
Constant -59.578 -102.364** -40.900 -176.56** 
 (41.37) (48.61) (67.61) (79.02) 
     
Obs. 341 287 251 251 
Countries 44 38 36 36 
     
Standard errors (clustered at the country level) in parentheses. Explanatory variables entered in logs 
and (with the exception of Magnitude, Area and Gini) lagged one period. * p<0.10, ** p<0.05, *** 
p<0.01.  
     



 
Table 5: Country Efficiency Rankings: Floods 

 
 

  

Index > +1 
Czech Republic 
Denmark 
Sweden 
Slovak Republic 
Norway 
 

Finland 
Slovenia 
Bulgaria 
Hungary 
Poland 
 

Croatia 
Ukraine 
Latvia 
Germany 
Belarus 
 

Austria 
Belgium 
Yemen, Rep. 
Albania 
 

+0.5 < Index < +1  
Tanzania 
Netherlands 
France 
Mongolia 
Romania 
 

Azerbaijan 
Estonia 
Ghana 
Burkina Faso 
Canada 
 

Japan 
Armenia 
Malawi 
Luxembourg 
Botswana 
 

New Zealand 
Italy 
United Kingdom 

0 < Index < +0.5  
Moldova 
Togo 
Greece 
Australia 
Zambia 
Suriname 
 

Kazakhstan 
Uganda 
Congo, Dem. Rep. 
Spain 
Russian Federation 
Korea, Rep. 
 

Gabon 
Ireland 
Jamaica 
Congo, Rep. 
Syrian Arab Republic 
Angola 
 

Portugal 
Ethiopia 
Papua New Guinea 

0 > Index > -0.5     
Costa Rica 
Guyana 
Liberia 
Gambia, The 
Niger 
Sri Lanka 
 

Morocco 
Israel 
Trinidad and Tobago 
Kenya 
Mexico 
Cote d'Ivoire 
 

Uruguay 
China 
Jordan 
United States 
India 
Cameroon 
 

Madagascar 
Switzerland 
Mozambique 
Nicaragua 

-0.5 > Index > -1  
Turkey 
Tunisia 
Senegal 
Namibia 
Peru 
 

Algeria 
Guinea 
Mali 
Paraguay 
Egypt, Arab Rep. 
 

Argentina 
Brazil 
Vietnam 
Colombia 
Bolivia 
 

Philippines 
Indonesia 

Index < -1     
Zimbabwe 
Honduras 
Venezuela, RB 
El Salvador 
Bangladesh 
 

Ecuador 
Panama 
Chile 
South Africa 
Thailand 
 

Guatemala 
Pakistan 
Dominican Republic 
Iran, Islamic Rep. 
Malaysia 
 

Haiti 

Rankings based on results in column 4 of Table 1 (using data on numbers killed). The index has been 
normalised to have mean zero and standard deviation of 1. Higher index scores indicate greater 
efficiency in reducing disaster deaths. Table based on average values of the index over the sample 
period. 
 



Table 6: Country Efficiency Rankings: Tropical Cyclones 
 

 
  

Index > +0.5  
Brazil 
Russia 

Canada 
Portugal 
 

New Zealand 
Jamaica 
 

 

+0.5 > Index > 0 
Australia 
Spain 
 

Trinidad and Tobago 
Costa Rica 
 

Mexico 
Morocco 
 

Japan 
China 

0 > Index > -0.5 
United States 
Colombia 
 

Malaysia 
Korea, Rep. 
 

Iran, Islamic Rep. 
Papua New Guinea 
 

Sri Lanka 
 

-0.5 > Index > -1    
India 
Philippines 
Madagascar 
 

Vietnam 
El Salvador 
Honduras 
 

Dominican Republic 
Venezuela, RB 
Nicaragua 
 

Indonesia 
Mozambique 

Index < -1     
Thailand 
 

Guatemala 
 

Haiti 
 

Bangladesh 

Rankings based on results in column 4 of Table 2 (using data on numbers killed). The index has been 
normalised to have mean zero and standard deviation of 1. Higher index scores indicate greater 
efficiency in reducing disaster deaths. Table based on average values of the index over the sample 
period. 
 



 
Annex 
Summary statistics 

lnprop_sum~s        3143    6.225331    2.035659  -3.506558   10.41865

lnsum_prec~s        3075    2.979665    2.059817  -5.703783   8.817218

lnprop_t3_~d         468    16.85829    1.461118   11.31801   18.83224

lnt3_top_w~d         449    14.16641    1.220815   10.85555   16.90861

    lnschpri        2672    4.582171    .2487458   2.623302   5.438579

                                                                      

    lncredit        2815      3.4848    .9697314  -.3815606   5.766635

   lnlifeexp        3172    4.196053    .1510344   3.616543   4.412884

     lntrade        2937    3.965616    .6136801  -1.031157   6.063667

    lngovexp        2872    2.598754    .4009645   .3185919   3.772283

   lnpolrisk        2314    4.137009    .2676731   2.335052   4.574711

                                                                      

  lngini_avg        2900    3.663599    .2266152   3.175551   4.235772

lngdppc~1995        2956    7.799839    1.591082   4.485685   11.44553

lngdp_u~1995        2956    24.64413    2.362038   16.12891    30.0007

lndis_l~1995        3208    .6663024    3.574607  -4.887403   11.77232

  dis_deaths        3208    336.8017     4677.55          0     160105

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

 
Correlations 

    lnschpri     0.2833   0.2602   0.1271   0.2648   0.0686   0.0528   0.4461   0.2225   1.0000

    lncredit     0.6860   0.7033  -0.2995   0.6026   0.4112  -0.0636   0.6233   1.0000

   lnlifeexp     0.5989   0.7867  -0.2879   0.6156   0.2800   0.0750   1.0000

     lntrade    -0.4357  -0.0493   0.1121   0.1720   0.0680   1.0000

    lngovexp     0.2814   0.4957  -0.2190   0.4111   1.0000

   lnpolrisk     0.4690   0.6979  -0.2732   1.0000

  lngini_avg    -0.4106  -0.2876   1.0000

lngdppc~1995     0.6781   1.0000

lngdp_u~1995     1.0000

                                                                                               

               lngdp_~5 lngdpp~5 lngini~g lnpolr~k lngovexp  lntrade lnlife~p lncredit lnschpri

 


