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Abstract. A model is introduced for the description of natural resources�price

paths, which, in contrast to the existing literature, captures non-linear trends by

means of a simple trigonometric function. This model is then compared by means

of a set of model selection criteria with a quadratic trend model and with a more

general one that nests both models. All models are estimated on the price series

of eleven major natural resources. In most cases, the trigonometric trend model is

selected as the one better �tting the data, providing evidence against the long-run

increase of the corresponding natural resource real prices, with interesting policy

implications.
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1 Introduction.

The implications of increased natural resource scarcity and its e¤ect on economic

growth have been discussed since the 18th century. Malthus (1798) and Ricardo

(1817) held that agricultural land scarcity implied strict limits on population

growth and the development of living standards. Harold Hotelling o¤ered his well-

known counterargument in his seminal article of 1931: Competitive �rms would

manage exhaustible resource stocks to maximize present-value pro�ts; competitive

extraction paths would therefore match those chosen by a social planner seeking

to maximize intertemporal social surplus; and subject to the caveat of social and

private discount rates equality; equivalence between competitive outcome and the

work of a rational social planner would be achieved. The Hotelling rule provides

the fundamental no-arbitrage condition that every competitive or e¢ cient resource

utilization path has to meet. In its basic form it indicates that along such a path

the price of an exhaustible resource has to grow with a rate that equals the interest

rate.

Hotelling�s theory was not empirically tested until the second half of the 20th

century. Slade and Thille (1997) categorized the existing empirical tests as (a)

price behaviour, (b) shadow price, and (c) Hotelling valuation tests. Extant em-

pirical tests showed mixed support. Barnett and Morse examined trends in the

prices and unit costs of extractive goods (including agricultural, mineral, and for-

est products) in the United States. Their �ndings suggested that natural resources

were becoming less scarce, not scarcer, in an economic sense. Smith (1979) em-

ployed an econometric analysis of annual (1900-1973) price data of four aggregate

resource groups and concluded that the trend in mineral prices was negative with
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the rate of decline decreasing over time in absolute magnitude. These results raised

the question if the basic Hotelling model is su¢ cient to explain the real world and

motivated economists to expand it by adopting more realistic assumptions and �t

the behaviour of real data.

Among others, Solow and Wan (1976) by assuming increasing extraction costs

and Pindyck (1978) by adopting unlimited potential reserves or the presence of un-

certainty (1980), demonstrated that Hotelling�s model is able to give expectations

for falling resource prices. Slade (1982) allowed for the presence of technological

progress which reduces the production cost and therefore the price paths for nonre-

newable natural resources can be U-shaped. Slade hypothesized that the declining,

�at and increasing price trends implicit in U-shaped price paths, come at di¤er-

ent points in the life cycle of the exhaustive resource. Berck and Roberts (1996)

suggested three cases where the prices can be expected to fall or stagnant, namely

�the depletion and progress case, the great abundance case and the environmen-

tal constraint case.�Their empirical �ndings suggest that it is more adequate to

consider that resource prices exhibit trend over short time of periods, while this

trending behaviour is not re�ected in the large samples. In a more recent paper

Slade and Thille (1997) acknowledge the fact that Slade�s model (1982) did not

receive much support by the subsequent data: �Since that time however, prices

have been increasingly volatile with large run-ups followed by equally large declines

but there is little evidence of sustained trends�(1997, pp. 688). In view of this

evidence, they developed another theoretical model (di¤erent than Slade 1982)

which is able to produce substantial periods of falling prices.

More recent studies also deal with the temporal properties of nonrenewable

resource prices testing whether prices exhibit deterministic or stochastic trends.
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Slade (1988), Berck and Roberts (1996) and Ahrens and Sharma (1997) �nd ev-

idence that many of natural resource commodity prices have a stochastic trend.

However, in a more recent paper, Lee, List and Strazicich (2006) reject stochastic

trend behavior under the alternative of a quadratic trend with two breaks.

This paper contributes to the literature reviewed above, by examining whether

natural resource prices exhibit oscillatory behavior, that is, periods of falling prices

followed by periods of increasing prices, which may again be followed by periods of

falling prices. If we show that the natural resource price model exhibits oscillatory

trends, then the polynomial trend function suggested in the literature, is not the

relevant one. It is worth mentioning that existing Hotelling based models can

support the existence of the oscillatory structure by modifying initial assumptions.

For example, consider the technological change that occurred in the beginning of

the twentieth century. This change may have caused the real prices to fall until they

reach the point at which the e¤ects of this change can no longer sustain a relatively

low price. From this point onwards, the real price starts increasing thus producing

the �rst U-shaped part in the overall picture of the behaviour of the real price.

Then at some later point, for example after the World War II, a new technological

change occurs (or a new discovery is made) which forces the real price to start

falling again. At this point a second U-shaped pattern starts forming which will

be eventually completed when the second technological wave gets exhausted. This

means that instead of a single U-shaped pattern in our long series of real prices,

we might be able to identify more than one U-shaped patterns, the number of

which may be determined by means of statistical criteria. This scenario is related

to the criticism that Mueller and Gorin (1985) applied to the single U-shaped

pattern of Slade (1982), according to which the technological progress does not
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evolve smoothly over time but occurs in discrete jumps. Moreover, these sequential

cycles may occur either around a constant mean or a linear or quadratic trend.

In the �rst case, the scarcity property is fully compensated by the technological

progress, whereas in the second case (of an upward sloping trend), the ability of

(the discrete jumps of) technological progress to alleviate the scarcity feature of

the real price is decreasing over time.

In particular, in this paper we analyze the prices of the main fuel and metal

resources that have been considered in the literature reviewed above, that is, the

prices of aluminum, copper, iron, lead, nickel, silver, tin, zinc, bituminous coal,

petroleum and natural gas. Then by using a a set of model selection criteria we �nd

that in most cases a trigonometric trend model, which supports oscillatory trends,

outperforms Slade�s (1982) quadratic trend model, as well as a more general one,

that nests both the trigonometric and quadratic models. These results provide

empirical support for the observation made by Smith (1979) that the estimated

polynomial coe¢ cients are unstable over time. The oscillatory cycles occur at a

very low frequency within the sample. This behaviour is manifested as a U-shaped

trend in the data whose curvature, however, is sinusoidal rather than quadratic.

Our results have implications for the validity of the natural resources scarcity

hypothesis, as well as long-run natural resource optimal pricing and conservation

policies. In particular, our results suggest that we should expect that in the long-

run, the natural resource real prices will not exhibit a monotonic trend, linear

or quadratic, but instead will oscillate around their mean. This result should be

internalized in natural resources pricing and conservation policies.
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2 Oscillatory Trends in Natural Resource Prices

Let yt denote the real price of the natural resource commodity i. We assume that

yt is equal to the sum of a deterministic, g(t; �) and a stochastic component ut;

yt = g(t; �) + ut: (1)

The deterministic component is a parametric function of time, t, with � denoting

the parameter(s) in g; whereas the stochastic component, ut; is a sequence of ran-

dom variables that may exhibit temporal dependence and heterogeneity. In this

set up, the applied researcher has to deal with the following two issues, referred to

as speci�cation and estimation problems. The speci�cation problem concerns the

choice of the function g. The estimation problem addresses the issue of conduct-

ing asymptotic inferences on � (estimation and hypothesis testing) in an optimal

way. In particular, in this stage, the applied researcher has to choose speci�c

testing procedures for hypothesis testing on � that retain their optimal properties

in the presence of various departures (some of which may be severe) of ut from

the iid benchmark. For example, ut might display a very high degree of persis-

tence together with unconditional and/or conditional heteroscedasticity. Next, the

speci�cation and estimation issues are analyzed in detail.

2.1 Trend Speci�cation

Following Slade (1982), the empirical literature has speci�ed g(t; �) as a quadratic

polynomial of t; that is

g(t; �) = c0 + c1t+ c2t
2: (2)
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In the context of this speci�cation, the following two competing hypotheses have

been tested:

Case I: c1 > 0 and c2 � 0: In this case, yt increases continuously with time in

either linear or quadratic fashion.

Case II: c1 < 0 and c2 > 0: In this case, yt initially decreases and then increases

with time, following a U-shaped pattern.

The second case allows for a period during which the real commodity price is

falling whereas the �rst case predicts a continuously increasing real price.

However, as mentioned in the Introduction, the polynomial model (2) restricts

severely the set of patterns that the trend in the real prices might follow. In

particular, this model does not allow the real price to exhibit oscillatory behav-

iour. These oscillations are likely to arise if the U-shaped pattern, that is periods

over which the real price is falling followed by periods of increasing price, occurs

repeatedly over time instead of once.

An interesting case that may arise in practice is the case in which the length of

the oscillatory cycles is very long. In such a case, there might be only one U-shaped

pattern even in a long data series. However, the curvature of this pattern will be

di¤erent than the quadratic one implied by (2). Indeed, a single U-shaped pattern

with quadratic curvature has totally di¤erent implications about the long-run be-

haviour of the real price than a U-shaped pattern with trigonometric curvature. In

the former case, the polynomial origin of the pattern implies that after the initial

fall, the real price will increase inde�nitely at a quadratic rate. On the contrary,

if the observed U-shaped pattern is just the two-thirds of a sinusoidal cycle that

is being formed, then the real price is expected to start falling in the near future

before it starts rising again.
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The preceding discussion suggests that the trend speci�cation (2) should be

augmented in a way that allows the real price to exhibit more than one full U-

shaped cycles. To this end, we suggest the following speci�cation:

g(t; �) = c0 + c1t+ c2t
2 + c3

�
sin

�
t

d

�
+ 1

�
+ c4t

�
sin

�
t

d

�
+ 1

�
; d > 0. (3)

The two extra terms, (sin( t
d
)+1) and t(sin( t

d
)+1) in (3) capture the potentially

oscillating behaviour of the real price. The parameter, d; controls for the number

of the sinusoidal cycles that are likely to be present in a sample of T observations.

For example, for T=100, the values of d equal to 7.5, 10, 15 and 30 corresponds to

approximately 2.1, 1.6, 1.06 and 0.5 cycles, respectively. It is worth noting that

the term c3(sin(
t
d
) + 1) with c3 < 0, and d = 30 produces a U-shaped pattern in a

series of 100 observations whose curvature, however, is di¤erent than the quadratic

curvature of (2) with c1 < 0 and c2 > 0: The second term, t(sin( td)+1) is included

in (3) to allow the amplitude of the oscillations to be time varying. The above

speci�cation nests various special cases among which the following three appear

to be the most interesting ones:

Case 1: The General Model, in which all the ci; i = 0; 1; 2; 3; 4 coe¢ cients are

di¤erent from zero. In this case, the trend function contains both polynomial

and oscillatory components, while the oscillations occur around a quadratic trend.

However, the long-run behaviour of the deterministic part of yt is governed by c2:

Case 2: The Polynomial Model, in which c3 = c4 = 0: This is the standard case

already analyzed in the literature, which is identical to (2). Again a positive

estimate of c2 is interpreted as favorable evidence for the scarcity hypothesis.

Case 3: The Oscillatory Model, in which c1 = c2 = 0: This case can be further
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decomposed into two additional subcases, according to whether the coe¢ cient c4

is equal to zero. Speci�cally, if both c3 and c4 are di¤erent from zero, then g(t; �)

exhibits trending-like behaviour (despite the fact that c1 = 0) due to the positivity

of the term multiplied by c4 and the changing amplitude of the oscillations over

time. We refer to this case as Oscillatory-I model. The second case, which is the

only case in which the trending behaviour of the real price is purely oscillatory

(with no polynomial or polynomial-like elements) occurs when c1 = c2 = c4 = 0

and c3 6= 0: In such a case, which we refer to as Oscillatory-II model, the amplitude

of the oscillations remains constant over time. Moreover, as already mentioned for

values of d; which are relatively large with respect to the sample size, and c3 < 0;

the Oscillatory-II model produces a single U-shaped pattern in the available data,

whose curvature however, is di¤erent than the one implied by the Polynomial

model. This U-shaped pattern observed in the available data is only the �rst part

of a more general sinusoidal pattern that has started to be formed. In spite of the

fact that we have detected a U-shaped pattern within our sample, we are entitled

to expect the real price to experience a long period of decrease in the future.

2.2 Implications of Trends Misspeci�cation

In this subsection we investigate the e¤ects of omitting the oscillatory terms,

(sin( t
d
) + 1) and t(sin( t

d
) + 1) from the estimated trend equation on the infer-

ences on the coe¢ cients c1 and c2 of the polynomial terms t and t2, respectively.

In other words, under the assumption that the correct trend speci�cation is given

by (3), we investigate the reliability of inferences on c1 and c2 that are produced

when the researcher has erroneously speci�ed the trend function (2). As will be
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shown below the inferences on c1 and c2 are severely distorted even under the

assumption that ut is an iid process.

To this end we have conducted a small Monte Carlo study as follows: The

simulated data are produced according to (1) with g(t; �) being given by (3) and

ut � iid N(0; �2u). As far as the parameter d is concerned, we consider four

alternative values, namely d = 7:5; 10; 15 and 30. For each value of d we use the

corresponding values obtained by estimating the parameters of (3) for aluminum,

as presented in Table 1. The simulated series are then produced by setting the

autoregressive parameter, �, equal to zero.

(TABLE 1 AROUND HERE)

Next, for each simulated series we estimate the model that employs the trend

function c00 + c
0
1t + c

0
2t
2 instead of the correct one given by (3), thus being a

misspeci�ed model. Table 2 reports the rejection rates of the null hypotheses

c01 = c1 and c02 = c2 with c1 and c2 as in Table 1. Moreover, we report the

empirical size for testing the null hypothesis that ut is a serially uncorrelated

process, that is, for testing � = 0 in the context of an AR(1) model for the error

term, ut = �ut�1+ �t: The number of replications is equal to 5000 and the size, T ,

of the sample is set equal to 100 and 200.

(TABLE 2 AROUND HERE)

As expected, severe size distortions are present for all sample sizes under con-

sideration. Moreover, the empirical size of the t-test for testing the hypothesis

10



� = 0 is increasing with the sample size, reaching the value of 100% for a sample

size of T=200. This means that the omitted oscillatory terms from the estimated

trend model cause the researcher to erroneously conclude that yt exhibits a sub-

stantial degree of persistence, whereas in fact yt is serially uncorrelated. In fact,

the test misinterprets the deterministic oscillation that characterizes the residuals

of the estimated model (which is the result of the omitted terms) as stochastic

cycles which are �captured� by estimates of �, which appear to be statistically

di¤erent from zero.

2.3 Identi�cation of the Trend Function

The preceding analysis has shown that the omission of the oscillatory terms may

produce misleading inferences concerning the coe¢ cients of the polynomial terms

in the trend function. In this subsection, we investigate the extent to which the

information criteria suggested by Akaike (1973), Schwarz (1978) and Hannan and

Quinn (1979), denoted by AIC, SIC and HQ respectively, are capable of detecting

the correct model within a set, M, of competitive models which consists of the

General, the Polynomial, the Oscillatory-I and the Oscillatory-II models de�ned

above.

One feature that distinguishes AIC from SIC or HQ concerns the question

of whether the true model is actually included in M. If it is, the SIC and HQ

consistently select the true model, that is, the selection rate of the true model

approaches 100% as the sample size increases. On the other hand, if the true

model is not included in M, then AIC tends to select the best approximating

model to the true one. Put it di¤erently, AIC, as opposed to SIC and HQ, was not
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designed to consistently estimate the true model. Inconsistency of AIC, however, is

not always treated as an unpleasant feature of the selection procedure, especially

in cases where the true model is not expected to belong to M. According to

Shibata (1983), �Inconsistency does not imply a defect of the selection procedure,

but rather the inevitable concomitant of balancing under�tting and over�tting

risks.�In the case under study, if oscillations of any form are present in the trend

function (even if they are of di¤erent parametric form than the one speci�ed in

(3)) then AIC is expected to display a tendency towards selecting a model which

contains oscillatory terms (that is one among the General, the Oscillatory-I and

the Oscillatory-II models) over the polynomial model at a higher frequency than

SIC or HQ. On the contrary, if such oscillations are absent and the trend function

displays solely polynomial-type behaviour then SIC and HQ are expected to select

the true polynomial model (2) at a higher frequency than AIC.

To investigate these issues, we conduct a Monte Carlo study as follows: Con-

cerning the trend function, we examine four alternative scenarios: (i) g(t; �) follows

the General model, (ii) g(t; �) follows the Polynomial model (c3 = c4 = 0), (iii)

g(t; �) follows the Oscillatory-I model (c1 = c2 = 0), and (iv) g(t; �) follows the

Oscillatory-II model (c1 = c2 = c4 = 0). For each scenario, we examine the per-

centages by which the AIC, SIC and HQ select the correct model between the four

models mentioned above. The number of replications is equal to 5000 and the

sample size, T , is set 100 and 200. The models are estimated by Generalised Least

Squares (GLS), in which the error term is assumed to follow an AR(1) process,

ut = �ut�1 + vt. In this setting the researcher is assumed to have full information

on the true parametric structure of the error. Additional experiments, in which

the order, p, of the AR(p) speci�cation in GLS is di¤erent than the true lag order
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of the autoregressive representation of ut, have also been conducted, with results

similar to those of the �full information�case. Concerning the parameters, �, of

the trend functions, we explored many alternative parameter settings, covering the

majority of cases that present either theoretical or empirical interest. For brevity,

we report the results for the case in which the parameters of the data generat-

ing process equal to these of Table 1. The results, reported in Table 3 may be

summarized as follows:

(TABLE 3 AROUND HERE)

(i) When the series is generated by the General model and T=100, all criteria

seem to be biased towards the Polynomial model. This bias is signi�cantly higher

for SIC, reaching a selection of the Polynomial model for 85% of the simulated

series when d=10. AIC exhibits the best performance in selecting the true General

model for all values of d, followed by HQ. However, when d=7.5 or d=10, both AIC

and HQ select the Polynomial model for more than 50% of the simulated series,

while the same holds for SIC for all the values of d. When the sample size increases

to T=200, in which case there are more than one cycles in the data even for d=30,

all three criteria select the true General model with frequency practically equal to

100%.

(ii) In the case that the true model is the Polynomial, SIC is the best performing

criterion followed by HQ and AIC. SIC seems to work well even when the sample is

small, with a correct model selection for at least 92% of the simulated series for any

value of d. Even AIC, which is the worst performing criterion, selects the correct

model at a rate of at least 73%. When T=200, the rate of correct model selection

13



is practically 100% for SIC and at least 93% for HQ. However, AIC remains biased

towards the General model, which is selected with a rate of around 20%, while the

correct, Polynomial model, is selected at a rate of around 80%. As expected, in

this case, the performance of all three criteria is invariant to the value of d.

(iii) When the true model is the Oscillatory-I and T=100, the performances

of all three criteria are similar, with rates of selecting the correct model of about

50%�55% when d=7.5 and d=10, at most 23% when d=15 and at least 70% when

d=30. It is worth mentioning that when d=15, all criteria select the Oscillatory-II

model at a rate of more than 50%. When T=200, and d=7.5, 10 and 30, SIC

emerges again as the best performing criterion with almost 100% rates of correct

model selection, while HQ follows with corresponding rates of at least 93%. When

T=200 and d=15, the rate of correct model selection drops to 63% for SIC and 75%

for HQ, these criteria being biased towards the Oscillatory-II model. AIC exhibits

rates of correct model selection that range from 72%�81%, while it remains biased

towards the General model.

(iv) When the series are generated by the Oscillatory-II model and T=100, the

rates of correct model selection range between 62% and 66% for AIC, 89% and

93% for SIC, and 78% and 82% for HQ. When T=200, a 5%�10% improvement is

observed for AIC and HQ, while SIC selects the correct model at a rate of at least

96% for all values of d.

(v) Very interesting conclusions are obtained by aggregating the results in

two main categories, the �rst involving the models that have a polynomial trend

(General and Polynomial) and the second consisting by the models that do not

have a polynomial trend. Then we observe that when the true model is the General

or the Polynomial, all three criteria identify the existence of a polynomial trend
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at rates of more than 88% even when T=100. In particular, AIC exhibits the

best performance, identifying the existence of a polynomial trend in at least 96%

of the cases when d=7.5 or 10, and with a 100% success when d=15 or d=30.

When T=200, all three criteria exhibit practically a 100% success in identifying

the polynomial trend.

(vi) When the true data generating process does not involve a polynomial trend

(Oscillatory-I and Oscillatory-II models), things are not so clear cut. Although in

all cases the three criteria do not select models that have a polynomial trend at

rates of at least 57%, SIC and HQ exhibit some bias towards the Polynomial model

when T=100, while when T=200, AIC performs worst among the three criteria,

selecting models that do not have a polynomial trend approximately 80% of the

trials.

Combining these remarks we may conclude to the following three �rules of

thumb�concerning model selection using AIC, SIC and HQ, between the compet-

ing models under consideration for the empirically relevant case of T=100:

(a) When all criteria select Oscillatory-I or -II models then it is highly probable

that the true generating process of the series has an oscillatory trend and does not

have a quadratic trend.

(b) The same holds (probably with a slightly lower con�dence) when SIC and

HQ select Oscillatory-I or -II models and AIC selects the General model.

(c) When all criteria select the General model, then it is highly probable that

the true generating process of the series has both quadratic and oscillatory trends.

These rules of thumb do not depend on the value of d and, although they do

not cover all possible combinations, they concern the cases for which conclusions

may be drawn with a relatively high conviction.
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3 Empirical Results

We focus on the prices of the main fuel and mineral resources (see also Slade,

1982, Berck and Roberts, 1996, and Ahrens and Sharma, 1997, among others).

Historical real prices (at constant 1998 U.S. dollars) for aluminum, copper, iron,

lead, nickel, silver, tin and zinc were obtained from U.S. Geological Survey for the

period 1900�2010, while historical real prices for bituminous coal, petroleum and

natural gas (at constant 2005 U.S. dollars) were collected from Energy Information

Administration for the periods 1949�2010, 1900�2010 and 1922�2010, respectively.

As far as measurement units are concerned, we have used $/ton for aluminum,

copper, iron, lead, nickel, tin, zinc and bituminous coal, $/kgr for silver, $/barrel

for petroleum and $/(1000 cubic feet) for natural gas.

First, we present the results that are based on the three information criteria

under consideration, namely AIC, SIC and HQ. The competing models are the

ones de�ned above, namely the General, Polynomial, Oscillatory-I and Oscillatory-

II models. All of the four models are estimated by GLS, for each of the eleven

commodities. The error term, ut, is assumed to follow either an AR(1) or an AR(2)

or an ARMA(1,1) process. The results from these three alternative speci�cations

are largely the same, and therefore we discuss the results only for the AR(1) case.

Before we present our results, a few remarks on the selected method for ac-

counting for the serial correlation of the error term are in order: In particular,

instead of the parametric GLS corrections, we could alternatively employ non-

parametric corrections, such as the ones suggested by Newey and West (1987).

The employment of these methods requires the applied researcher to make several

choices concerning the kernel (e.g. Bartlet, Parzen or Quadratic Spectral) and the
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truncation lag or bandwidth parameter, ST . To this end, Andrews (1991) demon-

strated that the Quadratic Spectral kernel is the best with respect to an asymptotic

truncated mean square error criterion in the class of kernels that necessarily gen-

erate positive semi-de�nite estimators of the covariance matrix in �nite samples.

The bandwidth parameter, ST , may be selected by data dependent methods, such

as the parametric methods suggested by Andrews (1991), or the non-parametric

ones suggested by Newey and West (1994). Furthermore, Andrews and Monahan

(1992) found that prewhitening of ut is likely to improve the performance of the

nonparametric estimators in �nite samples.

However, in the empirical problem under study we have observed that the error

term ut exhibits a very high degree of persistence. In such a case, the nonparamet-

ric corrections are likely to produce misleading inferences on the trend coe¢ cients,

even when the sample size is quite large. In his Monte Carlo study, Vogelsang

(1998) found that when ut is a near-to-unit root process, the nonparametric cor-

rections produce Wald tests that su¤er from severe size distortions. As the largest

root, �, approaches unity, the empirical sizes become very large and deteriorate

with the sample size, since the unit-root asymptotics become dominant. On the

other hand, the parametric GLS corrections exhibit much better properties, pro-

ducing test statistics with empirical sizes very close to their corresponding nominal

ones. Moreover, when � is close to one, GLS was found to exhibit very good power

properties (see also Canjels and Watson, 1997).

The GLS-based results, tabulated in Table 4, may be summarized as follows:

(i) For seven commodities, namely, for copper, iron, lead, silver, tin, zinc and

natural gas, all criteria select either Oscillatory-I or Oscillatory-II models. There-

fore, the conditions required by rule of thumb (a) are satis�ed. This implies that
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evidence suggests existence of oscillatory trends and absence of quadratic trends

in the real prices of these commodities.

(ii) For nickel, AIC selects the General model, while both HQ and SIC select

the Oscillatory-II model. These are the conditions required by rule of thumb (b),

which implies existence of an oscillatory trend and absence of a quadratic trend in

nickel�s real price as well.

(iii) For coal, all criteria select the General model, that is, the conditions re-

quired by rule of thumb (c) are satis�ed. This, in turn, implies that the real price

of coal exhibits both quadratic and oscillatory trends. Moreover, the choice of

d=7.5 in the selected model corresponds to a pattern with multiple U-shapes.

(iv) As far as aluminum is concerned, AIC selects the General model, while SIC

and HQ select the Polynomial model. The results of the Monte Carlo simulations

(Table 3) do not support a speci�c model for this case, although they o¤er some

evidence of a quadratic trend in the real price of aluminum.

(v) Finally, AIC and HQ select the polynomial model for the real price of petro-

leum, while SIC selects the Oscillatory-II model with d=30. Examining carefully

the results of the Monte Carlo simulations in Table 3, we observe that SIC selects

the speci�c model only when the true model is indeed the Oscillatory-II. On the

other hand, there is a small but not negligible probability that AIC and HQ select

the Polynomial model, while the series is generated by an Oscillatory-II model

with d=30. Therefore, this combination of selected models can be interpreted as

an indication of oscillatory trend (and not a quadratic one) in the real price of

petroleum.

According to the previous remarks and the results of Table 4, the evidence

supports that the real prices of copper, lead, silver, tin, nickel, petroleum and
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natural gas are better described by the Oscillatory-II model. In other words, the

amplitudes of their oscillatory trends remain constant throughout our sample. On

the other hand the real price of zinc seems to be better described throughout

our sample by either the Oscillatory-II model, or the Oscillatory-I model, where

the value of c4 is negative and statistically signi�cant. Therefore, the empirical

evidence does not support an increasing trend (either linear or quadratic) in their

real price of eight out of the eleven natural resources under study, namely, in the

price of copper, lead, silver, tin, zinc, nickel, petroleum and natural gas. On the

other hand, evidence supports the existence of both oscillatory and polynomial

(linear or quadratic) trends in the real prices of iron and coal. Finally, the analysis

provides some evidence that the real price of aluminum follows a quadratic trend

without rejecting, however, the simultaneous existence of an oscillatory trend as

well.

(TABLE 4 AROUND HERE)

4 Conclusions

This paper revisits the literature on the long-run trend of natural resource real

prices. Simple price models that support oscillatory trend behavior are introduced

and tested against the standard quadratic (polynomial) trend price model sup-

ported by the relevant literature, via the model selection criteria of Akaike (AIC),

Scharz (SIC) and Hannan and Quinn (HQ).

In order to assess the performance of the model selection criteria, a Monte Carlo

study is conducted involving models with either a polynomial or an oscillatory
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trend, as well as a more general model that nests both oscillatory and polynomial

trend models. The results of the Monte Carlo simulations reveal cases where the

combination of the selections made by AIC, SIC and HQ, supports with relatively

high conviction the existence of oscillatory trends only. When, however, the three

criteria select the general model, the results of the Monte Carlo study support the

existence of both polynomial and oscillatory trends.

The aforementioned models are then estimated using the series of real prices

of eleven major natural resource commodities. For each commodity, the models

selected by AIC, SIC and HQ are obtained. For nine commodity price series,

namely, for copper, iron, lead, silver, tin, zinc, natural gas, petroleum and nickel,

the combinations of the selected models fall into the category where the results of

the Monte Carlo study do not support the existence of quadratic trends. For the

seven of these nine commodities, namely for copper, lead, silver, tin, nickel, petro-

leum and natural gas, the simplest oscillatory model is selected, which excludes

linear trends and increasing oscillation amplitudes, while the oscillatory models

selected for zinc do not involve an increasing linear trend as well. On the other

hand, both a quadratic and an oscillatory trend are identi�ed for the real price of

coal. As far as aluminum is concerned, the selected models do not fall into a high

conviction category, although there is some evidence that its real price follows a

trend that has at least a polynomial component.

Given the very simple structure of the oscillatory models introduced in this

study, even the more general model that nests the polynomial and the oscillatory

models is quite simple. However, it is worth noting that for the majority of the

commodity prices under consideration, an oscillatory model was selected against

the more general one. The evidence against the existence of a polynomial compo-
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nent in the trend of the natural resource real prices has strong implications for the

debate on increasing, or not, natural resources scarcity, and as a consequence, on

developing policy interventions for optimal long-run natural resource pricing and

conservation.
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Tables
Table 1. Estimated Parameters of the General model for Aluminum (d = 7:5,

10, 15 and 30).
d

Estimated Parameters 7.5 10 15 30
c0 11.353 15.675 16.733 18.676
c1 -0.246 -0.362 -0.366 -0.577
c2 0.002 0.002 0.002 0.003
c3 1.479 -0.912 -0.989 -2.077
c4 -0.026 0.025 -0.009 0.090
� 0.627 0.626 0.590 0.590
�2u 1.347 1.348 1.331 1.330
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Table 2. Misspeci�cation E¤ects from Omitting Oscillatory Components (5%
Empirical Sizes)

T = 100 T = 200
H0: c01 = c1 c02 = c2 � = 0 c01 = c1 c02 = c2 � = 0

d
7.5 86.52 36.88 9.48 45.86 0 100
10 48.3 4.58 8.38 30.44 0 100
15 29.42 11.38 47.78 0.02 0.02 100
30 100 77.34 50.72 0 0 100
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Table 3. Performance of Information Criteria: Percent Selections of the
Competitive Models (%, rounded to the nearest integer)

A. True models have polynomial terms (General, Polynomial)
T AIC SIC HQ

d 7.5 10 15 30 7.5 10 15 30 7.5 10 15 30
True=Gen. 43 41 74 72 8 10 32 31 22 23 56 54

100 Pol. 53 57 26 28 80 85 67 69 70 73 44 46
OsI 4 2 0 0 12 5 1 0 8 4 0 0
OsII 0 0 0 0 0 0 0 0 0 0 0 0

True=Gen. 100 100 100 100 98 99 98 100 100 100 100 100
200 Pol. .0 0 0 0 2 1 2 0 0 0 0 0

OsI 0 0 0 0 0 0 0 0 0 0 0 0
OsII 0 0 0 0 0 0 0 0 0 0 0 0
Gen. 24 23 25 24 3 3 3 3 10 10 11 11

100 True=Pol. 73 74 75 76 92 92 97 97 86 86 89 89
OsI 3 3 0 0 4 5 0 0 4 4 0 0
OsII 0 0 0 0 1 0 0 0 0 0 0 0
Gen. 20 20 19 20 1 1 1 1 6 7 6 6

200 True=Pol. 80 80 81 80 99 99 99 99 94 93 94 94
OsI 0 0 0 0 0 0 0 0 0 0 0 0
OsII 0 0 0 0 0 0 0 0 0 0 0 0

B. True models do not have any polynomial terms (Oscillatory-I and -II)
T AIC SIC HQ

d 7.5 10 15 30 7.5 10 15 30 7.5 10 15 30
Gen. 14 16 16 18 1 2 1 2 6 6 6 8

100 Pol. 27 27 5 12 25 26 2 14 27 29 4 13
True=OsI 53 54 23 70 50 56 11 84 55 58 18 79
OsII 6 3 56 0 24 16 86 0 12 7 72 0
Gen. 19 20 19 19 1 1 1 1 7 7 6 6

200 Pol. 0 0 0 0 0 0 0 0 0 0 0 0
True=OsI 81 80 72 81 99 99 63 99 93 93 75 94
OsII 0 0 9 0 0 0 36 0 0 0 19 0
Gen. 17 14 12 15 1 1 1 1 6 4 4 5

100 Pol. 2 10 12 11 1 5 5 4 2 8 9 7
Os.I 15 14 14 9 5 5 4 3 10 10 8 6

True=OsII 66 62 62 65 93 89 90 92 82 78 79 82
Gen. 13 12 12 12 0 0 0 0 3 3 2 2

200 Pol. 0 3 2 0 0 1 1 0 0 2 2 0
Os.I 15 14 14 15 3 3 3 3 9 7 8 9

True=OsII 72 71 72 73 97 96 96 97 88 88 88 89
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Table 4. Natural Resource Prices: Model Selection and Estimation (p-values
below)

Metal Criteria Model c0 c1 c2 c3 c4 � d
ALUMINUM AIC Gen. 18.676 -0.577 0.003 -2.077 0.090 0.590 30

0.004 0.197 0.389 0.779 0.065 0.000
HQ, SIC Pol. 13.451 -0.280 0.002 0.661

0.000 0.000 0.000 0.000
COAL AIC, HQ, Gen. 0.584 -0.012 0.000 -0.054 0.000 0.839 7.5

SIC 0.000 0.000 0.000 0.024 0.279 0.000
COPPER AIC, HQ, OsII 2.761 0.847 0.801 7.5

SIC 0.000 0.063 0.000
NATURAL GAS AIC, HQ, OsII 0.065 -0.030 0.721 30

SIC 0.000 0.000 0.000
IRON AIC, HQ, OsI 0.827 -0.418 0.009 0.808 10

SIC 0.000 0.000 0.000 0.000
LEAD AIC, HQ, OsII 1.245 0.194 0.777 7.5

SIC 0.000 0.164 0.000
NICKEL AIC Gen. 4.884 -2.240 0.019 21.440 0.260 0.637 30

0.697 0.013 0.019 0.140 0.009 0.000
HQ, SIC OsII 15.912 -3.784 0.760 30

0.000 0.067 0.000
PETROLEUM AIC, HQ, Pol. 0.192 -0.005 0.000 0.804

0.079 0.216 0.031 0.000
SIC OsII 0.621 -0.266 0.860 30

0.000 0.002 0.000
SILVER AIC, HQ, OsII 162.510 90.690 0.719 10

SIC 0.006 0.043 0.000
TIN AIC, HQ, OsII 18.977 -4.404 0.851 15

SIC 0.000 0.056 0.000
ZINC AIC, SIC OsI 1.459 0.482 -0.005 0.598 7.5

0.000 0.012 0.017 0.000
HQ OsII 1.440 0.214 0.663 10

0.000 0.220 0.000
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