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Weather and Climate Models

e Global Circulation Models (GCMs): Computer representations of the
system on three dimensional grids.

* Weather: Atmosphere only. May cover only a limited region.
e Climate: Atmosphere + ocean + land surface + ???
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Source of Confidence in Forecasts

Weather Forecasting

Large archive of
forecast/verification pairs.

New, “out-of-sample”, data
gathered frequently.

The skill of the forecast is
relatively easily assessed.
(Even for probability forecasts.)

Confidence comes from
assessments of skill.

Climate Forecasting

Few forecast/verification pairs
exist for multi-decadal forecasts.
(Arguably none given the
timescales one which models are
updated.)

New, “out-of-sample” data will
only be available when it is of
only historical value.

And will be too few to assess the
skill of a probabilistic forecast.

Forecast skill can not be assessed.

Confidence comes from physical
basis of the models.



Decision Making in the Context of Climate Change

One might wish to know:

1. your risk now given that the past is known not to be a good
guide for the present let alone the future.

2. vyour risk in the future.

First consider (2) — the future.



If we had a perfect model:

* We could generate probabilities of future climate conditioned
on uncertainty in the state of climate today.

Attractors of a simple
model:
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We don’t have large
“initial-condition”
ensembles, and

And we don’t have a
perfect model.

— Indeed our models
are very far from
perfect.
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CMIP5 timeseries of Global Mean Temperature
through the 20t Century
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@ Over Up To Ten Years Lead Times a Simple Statistical
Model Out-Performs the GCMs

Skill of Global Mean Temperature Forecast
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@ Over Up To Ten Years Lead Times a Simple Statistical
Model Out-Performs the GCMs

Skill of Regional Mean Temperature Forecast
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Not the End of The Story

Global Mean Anual Temperature, 20th century
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They may not be
sufficiently realistic to
provide probability
predictions

BUT they all show warming
in response to increased
atmospheric greenhouse
gases.

They all demonstrate
warming and a world of
increased risks.

As we would expect from
physics.



Exploring Scenarios and Possible Outcomes

Greater exploration of
uncertainty in these
models helps us
understand the range
of possible outcomes.

Some (or all) impacts
could include the
possibility of zero
change. But they can’t
all do so together.
Global constraints
mean that climate
change poses an
immense threat to
society.
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So what do we do?

Don’t expect robust probabilities on multi-decadal timescales; particularly
at regional scales.

Support research to explore the space of possible models and impacts.

Use models (and scientific understanding) to tell stories of how the risk
events that your interested in may change.

Use observations to paint a picture of how probabilities have changed
from the past to now.
(Is that as good a basis as any for future changes in the short term?)

Support better understanding of how confidence can arise from
uncertainty.



Getting More From Observations

Observed minimum changes in summer temperature distributions at various quantiles:

Mapping Climate Change ..., Stainforth et al., Env.Res.Lett., 2013



Change in fraction of winter
nights above 0°C
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Confidence
From Uncertainty:
Interpreting
Climate predictions

Public and Policy PSS &
Communication Find out about:

* the different flavours of uncertainty

= why uncertainty isn’t the same as
wing nothing (or even
knowing nothing useful)

= how responding to climate
change is a one-shot bet

= why we need to communicate

about uncertainties
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