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A Trend Analysis of Normalized
|nsured Damage from Natural Disasters

Abstract

As the world becomes wealthier over time, inflatadjusted insured damages from
natural disasters go up as well. This article aregywhether there is still a significant
upward trend once insured natural disaster lossbhaa normalized. By scaling up
loss from past disasters, normalization adjuststiier fact that a disaster of equal
strength will typically cause more damage nowadags in past years because of
wealth accumulation over time. A trend analysisiofmalized insured damage from
natural disasters is not only of interest to theumance industry, but can potentially be
useful for attempts at detecting whether therelde®n an increase in the frequency
and/or intensity of natural hazards, whether causedatural climate variability or
anthropogenic climate change. We analyze trendiseaglobal level over the period
1990 to 2008, over the period 1980 to 2008 for Gerynand 1973 to 2008 for the
United States. We find no significant trends at tflebal level, but we detect
statistically significant upward trends in normatbizinsured losses from all non-
geophysical disasters as well as from certain Spedisaster types in the United

States and Germany.



1. Introduction

Analyzing trends in natural disaster loss represantimportant tool for attempts at
detecting whether climate change has already dtaxdehave an effect on the
frequency and/or intensity of natural disastersstvi existing studies have looked at
total economic loss (Pielke and Landsea 1998; Pietkal. 1999, 2003, 2008; Brooks
and Doswell 2001; Raghavan and Rajseh 2003; NosdBA06; Vranes and Pielke
2009; Schmidt, Kemfert and Hoppe 2009; Barredo 200®wer studies have
analysed insured losses and all of them are cahfine specific hazard type in one
country (Changnon and Changnon 1992; Changnon Zfl9a, 2009b; Crompton
and McAeneney 2008)Yet, analyzing trends in insured losses is impurfar two
reasons. First, insurance companies naturally wowgt about insured losses and are
interested in any trends in these losses quiteperadently of whether they are caused
by natural climate variability or anthropogenic gmbouse gas emissions or other
drivers. Second, insured losses are estimated wgidater precision than total
economic losses, which all other things equal ghbel beneficial since measurement
error hampers statistical analysis and thus rendetscting statistically significant
trends more difficult.

Existing studies of total economic and insured lbasge typically found no
increasing trend over time after loss has beenestdg to what is known as
“normalization”. Normalization adjusts for the fatttat a disaster of equal strength
will typically cause more damage in the currentgeethan in the past because there
is typically more wealth potentially destroyabletire present compared to the past.
Normalization thus adjusts nominal economic logsnfrpast disasters upwards by

multiplying past damage with a factor for inflatjofor population growth and for

! Hazards are events triggered by natural forcheyWwill turn into natural disasters if people

are exposed to the hazard and are not resiliéntlyoabsorbing the impact without damage to
life or property (Schwab, Eschelbach and Brower7200



growth in wealth per capita, thus in effect estimgthe damage a past disaster would
have caused had it hit the same, but nowadays mealtarea today. Without
normalization, disaster loss is likely to trend @pds over time, not because disasters
have necessarily become more frequent and/or nmbe@dive, but simply because
destroyable wealth has increased over time. Fomalzaton of insured disaster
losses, one additionally needs to adjust for chamgensurance penetration, i.e. the
share of wealth covered by insurance, over time {inestion, to be studied in this
article, is therefore whether the results of ergststudies which have analyzed trends
in normalizedtotal economic loss carry over to trend analysis in radizedinsured
losses.

To our knowledge, this is the first article systécaly analyzing trends in
insured natural disaster loss for more than onardatype and for a larger country
sample. We do so at the global level, for developaantries, for specific types of
disasters as well as for specific country/disaiyee combinations. Section 2 explains
the methodology of normalizing natural disastersloSection 3 describes our

empirical research design and reports results fremanalysis. Section 4 concludes.

2. Normalizing natural disaster loss

The conventional approach to normalizing naturalasiier loss can be credited to
Roger Pielke Jr. and co-authors (see Pielke andidesn 1998, Pielke et al. 1999,
2003, 2008; Vraines and Pielke 2009). The typicplation to compute normalized

damage according to this approach is as follows:

DPdeflator, _Population, \Wealth per capit
S S aS (1)

Normalized Damage® = Damage, : _
GDPdeflator, Population, Wealth per capita,




wheres s the (chosen) year one wishes to normalizeéitothe year in which damage
occurred, the Gross Domestic Product (GDP) deflaidjusts for inflation (i.e.,
change in producer prices), while the remaining weorection factors adjust for
changes in population and wealth per capita. In theory, tlopytation and wealth
changes should be based on data from the exad affeated by the natural disaster
in question. However, in practice it is often impibée to determine the exact areas or
information on these areas is difficult or impo$sitn get, so scholars typically resort
to using data from the country or, if they cannireub-country administrative units
known to be affected (e.g., counties or state)di8s differ with respect to how
wealth per capita is measured. Some use data omalhe of capital stocks (e.g.,
Pielke and Landsea 1998; Brooks and Doswell 200ign& and Pielke 2009;
Schmidt, Kemfert and H6ppe 2009) or the value ofellimgs (Crompton and
McAneney 2008), others, often for lack of data, @ynuse GDP per capita (e.qg.,
Raghavan and Rajseh 2003; Pielke et al. 2003; Moii2006; Miller et al. 2008;
Barredo 2009). With more than one disaster per, yearmeasure of disaster loss per
year is the sum of normalized damages from ea@stisas per equation (1).
Neumayer and Barthel (2010) have criticized coneeaal normalization
methodology on the grounds that it adjusts foreddhces in wealth over time, but not
for differences in wealth across space at any pahttime. Conventional
normalization adjusts for the fact that a disadilex, say, the 1926 Great Miami
hurricane would have caused far more damage iit iMami nowadays since the
value of what can potentially become destroyedtie@asendously increased over this
time period (Pielke et al. 1999). At the same tirhewever, a hurricane that hits
Miami in any year will cause a much larger damdgmnta hurricane that hits in the

same year rural parts of Florida with much lowerpydation density and



concentration of wealth. Conventional normalizatamtounts for the former effect,
but not for the latter. It makes Miami in 1926 camble to Miami in 2010, but fails
to make Miami in whatever year comparable to ridlarida or other areas affected
by a particular natural disaster in that same y"aumayer and Barthel (2010) have
therefore developed an alternative normalizationthowology that additionally
adjusts for differences in space. However, for thethod to be applied in empirical
analysis, one would need information on the valfidneured wealth potentially
destroyable in any given area. Since this inforamais typically not available, we

follow the conventional normalization methodologythis paper.

3. Research Design

Contrary to Neumayer and Barthel (2010), in whicé gould study trends of all
economic losses over the period 1980 to 2009, pwailability of data during the
1980s on insurance premia needed for normalizatioerms of insurance penetration
means that our statistical tests are restricteédegeriod 1990 to 2008 for all analyses
but those for the United States and Germany, faclwive have data from 1973 and
1980, respectively, onwards. The disadvantage ioigbgsompelled to use a relatively
short time period is that, ceteris paribus, thetehdhe time series of annual loss data
the less likely any trend will be detected as statlly significant (the smalle, the
number of observations, the higher the standaat efrthe estimate). Also, the IPCC
(2007a: 942) defines climate in a narrow sensethasaverage weather, or more
rigorously, as the statistical description in terofsthe mean and variability of
relevant quantities” over a period of 20 to 30 geao our study period of 1973, 1980

or 1990 to 2008 may be too short to identify changeclimate.



Data on insured loss from natural disasters in namUSD comes from
Munich Re’s NatCat database. Munich Re also sugpplie with data on insurance
premia in a country. The NatCat database provideshighest quality data currently
available, but it is of course not perfect. Smallevasters may be somewhat under-
reported in the early periods relative to latengus. At Munich Re, several members
of staff scan daily international and regional sesrto compile information about
disaster events. Data are collected from a vaétgources including government
representatives, relief organisations and resetacitities. Information on insured
losses is based on information of insurance assmasaand insurance services as well
as on claims made by Munich Re’s customers, whiolrige the best approximation
to the actual damage. Initial reports on insurex$ds, which are usually available in
the immediate aftermath of a disaster, are oftghlhiunreliable. Therefore, data in
the NatCat database is updated continuously as awmérate information becomes
available, which might be even years after thesiésaevent. Our analysis ends in
2008, since these cases are closed to the largéshte(Munich Re, personal
communication).

Since we study trends in insured rather than etahomic losses, we need to
adjust the conventional normalization methodologgresented by equation (1) by
adding an additional factor to control for changeghe insurance penetration as a

proxy for the share of wealth covered by insurgraecies:

DPdefl dDOpS a/VeaIth pC, dns penetration,

Norm.Ins.Loss’ =
5% = Loss GDPdefl, Pop, Wealth pc, Ins. penetration

)

For our global analysis, we use GDP per capita psogy for wealth as there is no

other measure of wealth available for all countrinsthe world. This is not



unproblematic. GDP has the advantage that it captwell potential economic loss
due to the interruption of economic operations essalt of a natural disaster, but it is
a relatively poor proxy for the physical wealth cdtopotentially destroyable by
disaster$. Whereas economic wealth is a stock, GDP is a f#ibwconomic activity.
Fortunately, despite GDP consisting in part ofmgible components such as services
with scant correspondence to the value of the phlsvealth stock, on the whole
GDP is highly correlated with it. But GDP can offilynction as a proxy for wealth
and typically understates it. Economists estimiageratio of the value of the physical
man-made or manufactured capital stock to GDRetedmewhere in between 2 and 4
for a typical macro-economy (D’Adda and Scorcu 20@ut this ratio will differ
from country to country and, more importantly, isnational macro-economic
average, which can differ more drastically acrosk-sountry units. It also only
captures the value of the physical capital stoclkedugor the production of
consumption goods and services, but not the vdlo¢her wealth held in the form of,
for example, residential property. Moreover, theréasing share of GDP consisting
of intangible components such as services, whichbiserved in many, but not all,
countries implies that the growth rate of GDP pagsover-estimates the growth rate
of the physical wealth stock. This will bias theults against finding a positive trend
since disasters from past periods are scaled up stoangly as a result of

normalization.

GDP might also be positively affected by largeadiers as repair and reconstruction increase
GDP.

3 It has also changed over time (see D'Adda andcdc@003), but Krugman (1992: 54f.)
concludes that “there is a remarkable constancth@fcapital-output ratio across countries;
there is also a fairly stable capital-output raticadvanced nations. These constancies have
been well known for a long time and were in facthat heart of the famous Solow conclusion
that technological change, not capital accumulai®the source of most growth.”



Keeping in mind that, for our global analysis, wee USDP per capita as a
proxy for wealth and that the product of populataord GDP per capita equals total

GDP, equation (2) modifies to:

DPdefl E§3DPS dns penetration,

Norm.Ins.Loss’ = L .
= 05 GDPdefl, GDPR Ins. penetration,

3)

Regrettably, there is no data available on inswegenetration as such for our
global analysis. For our global analysis, we uda da property and, where available,
also engineering insurance premia, which, if exggdgelative to GDP, can function
as a proxy for insurance penetration.. For Germamy the US, however, we have
data, including data for a longer time-series, @ulaset of property and engineering
premia as well as premia on motor physical damadech relate more directly to
insured values that can potentially be destroyeddtyral disasters and which we
therefore take in lieu of all property and engimeginsurance premia.

One problem with using insurance premia relatveGDP is that these can
change even if the share of insured wealth amohgedlth remains the same and
vice versa. Insurance premia can, for example, gdan response to changes in
insurance pay-outs resulting from changes in teguency and/or intensity of insured
loss events, constituting the requirement of “@&lequate pricing” in the insurance
industry. For example, premia have increased fotigwthe 2004/05 hurricane

seasons in parts of the US. But on the whole, atmmg property and engineering

* Only for the normalization of damage from temperathighs and temperature lows do we exclude
motor physical damage premia since vehicles camawhally be damaged by these hazards. A full list
of the detailed types of insurances, for which peeare included in the analysis for Germany and the
US, is available from the authors on request.



premia relative to GDP should in the long run byl dgarge represent an acceptable

proxy for changes in insurance penetration (Muiiteh personal communication).
Using insurance premia in a given year relativeotal GDP in the same year

as a proxy for insurance penetration in equatignt@al GDP drops out and using

2008 as our chosen base year for normalizatiorcanenrite:

2008 _ DPdefl s d nsurance premia, g

Norm.Ins.Lo = 4
B Loss GDPdefl,  Insurance premia, “)

Normalization equation (4) is the one we use inglabal analysis. The loss data in
the NatCat database and the data on insurancegeeamin USD. We converted them
into local currencies applying exchange rate datwiged to us by Munich Re to
ensure we use the same exchange rates Munich Retaiseonvert from local
currency values into USD. With all data in localremcy, we therefore also use the
GDP deflator of the country itself for our normaliion purposes. Since for an
aggregate analysis of more than one country ondsneemake normalized insured
loss comparable across countries, in the final step then re-converted the
normalized insured losses from local currencies WBD°

For Germany and the US, not only do we have a lotige-series of data on

insured losses, but also GDP or income data arelabla for sub-national

® For Germany, researchers at Munich Re undertoanalysis of the relationship between premia and
total sum of insured values and found the two todrg highly correlated over time. For the US, due
lack of data no similar analysis could be undemakdost likely, if data had been available such an
analysis would have shown a lower correlation beeaf market cycles and premia adjustments after
large disasters (Munich Re, personal communication)

® Alternatively, one can keep all values in USD #meh apply the US GDP deflator for normalization
purposes. The two approaches lead to practicadiytidal results.



administrative units, i.e. on a more fine-graingshtial resolutiord. The NatCat
database provides a geo-reference of the disastgercwhich allows us to match
each disaster with the sub-national administratim& in which it occurred. For
Germany, our spatial resolution is on the NUTSZldeorresponds to ‘Landkreise’
and ‘Kreisfreie Stadte’). Total GDP in constant &urns provided by Cambridge
Econometrics (2010). We converted insured lossiesEnro using the exchange rate
used by Munich Re. Since the analysis for Germartlgus in local currency units, we
also used the GDP deflator for Germany and normdlidamage is expressed in
Euros®

For the US, we have access to two alternative mesasaf wealth. Our first
measure is personal per capita income data taken BEA (2010), at the county
level? Our second measure is a combination of informatiorthe number and value
of housing units, with data at the state level.a0at housing units up to year 2000 are
taken from the National Historical Geographicaloimhation System (NHGIS 2010),
estimates for later years are obtained from theGQg8sus Bureau (2010a). Median
home value data is available until 2000 and takemfthe US Census Bureau
(2010b). Both data on housing units and median dhaxzdues are available on a
decadal basis for earlier years. Linear interpofatvas used to fill the gaps. Values

on median home values for years after 2000 arar@utdy linear extrapolation of all

" GDP growth on a country level can be a poor agpration for changes in wealth in the affected area
of a disaster. For instance, while GDP in Germargwgover the whole study period, GDP actually
decreased in some parts of Eastern Germany aéteification.

8 Since we use GDP at different levels of spatisbhation for calculating insurance penetration loa t
one hand and for wealth adjustment on the otheGemmany and the US, GDP does not drop out of
equation (3). As a consequence, equations (2) @nther than equation (4) are used for normaizin
insured losses in Germany and the US.

® Personal income is defined as the income recebsedill persons from all sources before the
deduction of personal taxes (BEA 2010) and repoitedurrent USD and converted into constant
values with the US GDP deflator. Results are alnmbsttical if we use GDP data at the state level
from the same source instead

10



previous values. To adjust losses both to the adwngthe number and the median

value of housing units, the following equation s&d:

DPdefl d)nitss d\/ledVaIS dns. penetration,

Norm.Ins.Loss’ =
5% = Loss GDPdefl, Units MedVal, Ins. penetration,

()

In line with existing normalization studies, tottésr the existence of a trend,
the annual sum of normalized disaster losses frach gear is regressed on a linear

year variable and an intercept:

Normalized Insured Loss™® = o + fiyear, + &, (6)

A trend is statistically significant if the null pgthesis thap; is equal to zero can be
rejected at the ten percent level or lower. Roktetdard errors are employed in all

estimations.

4. Resultsfrom an Analysisof Trendsin Normalized Insured L osses

In this section, we present the results from oualymis of trends in normalized
insured losses. We start with our global analysefore analyzing in more detail
insured losses in the US and Germany. Figure llajispghe non-normalized, i.e.
merely deflated annual insured losses caused bty@dls of natural disasters from
1980 to 2008. The analysis covers 19,367 disastérsvhich 2,553 resulted in a
known insured loss. Over the whole period, thereaipositive and statistically
significant trend. The coefficient indicates anrage annual increase of 1.4bn USD.

However, while the size of the coefficient is hgrdffected if the sample is restricted

11



to start from 1990, the trend loses its signifiands mentioned already, shorter
time-series make the detection of a statisticagjpiicant trend less likely.

There is no statistically significant trend if wejast insured losses for the
changes in potentially destroyable insured lossesif we normalize insured disaster
loss (Figure 2). Losses before 1990 are not shomge sve have data on insurance
premia only for few countries before 1990. The gsialstill covers 11,988 disasters,
with 1,636 of them resulting in a known damagenaléd insurance companies.

Some natural hazards will be practically unaffedigclimate change and are
therefore irrelevant if one wants to detect wheth@otential climate change already
has lead to increased insured damages. In Figuve &)erefore excluded geophysical
disasters (earthquakes, land slides, rock fallbsidence, volcanic eruptions, and
tsunamis) and only include the following disastgpets: blizzards, hail storms,
lightning, local windstorms, sandstorms, tropicgtlones, severe storms, tornados,
winter storms, avalanches, flash floods, genemd$, storm surges, cold and heat
waves, droughts, winter damages, and wildfires.b&fre, no significant trend is
discernible. Similarly, we do not find a signifi¢amend if we constrain our analysis
to non-geophysical disasters in developed countidsch cover Organisation of
Economic Co-operation and Development (OECD) aherolhigh-income countries,
according to World Bank classification (Figure'3).

Convective events, i.e. flash floods, hail stortesjpest storms, tornados, and
lightning, deserve closer attention since thesgassibly affected by global warming
(Trapp et al. 2007, 2009; Kuntz et al. 2009). Fegglia shows that there is no

significant trend in global insured losses for theeril types. Similarly, there is no

19 We show no graphs for developing countries seplrats insurance penetration is very low and
insurance coverage is typically restricted to magities in middle- and upper middle-income
developing countries.
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significant trend in insured losses for storm esefiigure 5b), tropical cyclones
(Figure 5c¢) or precipitation-related events (Figbidg.

As mentioned already, a statistically significaneind is harder to establish for
a shorter time-series. Hence, we separately aragilyzeome detail natural disasters
occurring in the two countries for which data osured losses and insurance premia
are available for the longest time period, namély United States and Germany,
which are also major insurance markets of courggur€ 6a illustrates normalized
insured losses from non-geophysical disastersat@irred in the United Stated over
the period 1973 to 2008. Losses normalized usirang@és in personal income as a
proxy for changes in wealth are shown in the uppanel, while we used the
alternative proxy of changes in the number andevaluhousing units to adjust losses
in the lower panel. The results for both approadresvirtually identical. Moreover,
in non-reported analysis we found that resultsvarg similar if we use GDP changes
at the country rather than at the state level. &e this as evidence for the robustness
of the results in our global analysis for which ke to resort to changes in GDP at
the country level as a proxy for changes in wealte find a positive trend in
normalized insured losses from non-geophysical stesa in the US, which is
statistically significant at the 5 percent levehiSremains true if the large outlier due
to hurricane Katrina in 2005 is excluded.

In the remaining analysis of insured losses in W& we examine specific
subsets of the non-geophysical disasters. Figurest@iws that there is also a
statistically significant upward trend if the anglyis restricted to convective events,
i.e. flash floods, hail storms, tempest stormspados, and lightning. There is also a
positive trend in insured damage from US floodingres, which includes both flash

floods and general floods (Figure 6¢). The samdruge for events caused by

13



temperature highs (Figure 6d). There is however,sigmificant trend for events
caused by temperature lows (Figure 6e). If we lablkwinter storms (Figure 6f),
which also include snow storms and blizzards, we fa significant upward trend.
The same is true for all storms, which besides evirstorms include convective
storms (hail storm, tempest storms, tornado, ligign sand storms and storm surges
(figure 69). Focusing on hurricanes, an upwarddrennsured losses is found, which
is statistically significant at the 10 percent lle¢i/éigure 6h). This is consistent with
results on total economic loss from US hurricarg®rted in Schmidt, Kemfert and
Hoppe (2009).

Turning to Germany, the trend in insured loss froon-geophysical disasters
is significant at the 10 percent level (figure 7@@spite the volatility introduced by
the four strong loss spikes in 1984 (predominantysed by Munich hail storm),
1990 (predominantly winter storm series), 2002 dpreinantly river flooding along
the Elbe, Danube and contributory rivers and aeviatorm in late October) and 2007
(predominantly winter storm Kyrill). If these everdre excluded, the trend becomes
significant at the one percent level. For convecivents (figure 7b), however, no
such significant trend can be established unlesdatge outlier from 1984 (Munich
hail storm) is dropped from the analysis. Figure which shows normalized loss
from flooding similarly demonstrates by just how chusingle outliers, like the
massive damage caused by the floods in 2002, camndte the entire picture.
However, with or without this outlier, there is significant trend. Contrarily, there is
a trend, which is significant at the 10 percenelein normalized insured loss from
winter storms (figure 7d). The trend becomes sigaiit at the 5 percent level (p-
value 0.025) if the large outlier from 1990 is doed from the analysis. There is

similarly a significant upward trend for the categof all storms (figure 7e). Note

14



that for Germany hurricanes are irrelevant andettege very few events related to
temperature highs and temperature lows. These teis@&gpes are therefore not

included in our analysis for Germany.

5. Conclusion

In this article, we have analyzed whether one cated a trend in data ansured
damage from natural disasters. Insurance compariesnaturally worried about
climate change as the predicted increase in tlguémecy and/or intensity of natural
hazards is likely to lead to higher economic anetews paribus, higher insured
damage in the future, unless defensive mitigatiegsares make exposed wealth less
vulnerable to the impact of disasters. Whilst weehaot found any evidence that
normalized insured damage has trended upward agltial level, for developed
countries and independently of the type of disakieked at, our finding of an
upward trend in insured losses from non-geophydgicsdsters and certain specific
disaster types in the US, the biggest insuranc&ehan the world, and in Germany
represents a finding to be taken seriously in ikle analysis undertaken by insurance
and re-insurance companies.

As in the interpretation of trends in all econonesses, much caution is
required in correctly interpreting our findings. particular, we cannot normalize for
changes in mitigating measures, which, if increglginndertaken over time, would
reduce countries’ vulnerability to the impact oftural disasters and thus bias the
analysis against finding significant upward trend¢hat the results tell us is that,
based on the very limited time-series data we Havemost countries, there is no
statistically significant evidence so far for arsfggant upward trend in normalized

insured loss from natural disasters outside thead® Germany. One cannot infer

15



from our analysis that there have not been morquéet and/or more intensive
weather-related natural disasters in other plakcesddition to our inability to take

into account defensive mitigating measures undentdky rational individuals and

governments, which could translate into lower iesudamage compared to the
damage in the absence of defensive mitigation tithe period 1990 to 2008 may
simply be too short to find significant trends iarglobal analysis. It is noteworthy
that for the US and Germany, for which we can amalypormalized loss from,

respectively, 1973 and 1980 onwards, we do findmifscant increase in normalized
insured losses for some relevant disaster typestone.

By the same token, we warn against taking the ffigslifor the US and
Germany asconclusive evidence that climate change has already cause@ mo
frequent and/or more intensive natural disasteectfig this country. To start with,
one needs to be careful in attributing such a ttendnthropogenic climate change,
i.e. climate change caused by man-made greenhasemissions. Our findings
reported in this article could be down to natutahate variability that has nothing to
do with anthropogenic climate change. Such nataliatate variability may well
explain our finding of a significant upward tremdinsured loss from hurricanes in the
US, for example. It is less plausible as a potérgiglanation for the significant
upward trends in convective events and floodinghesyenowever.

Alternatively, our findings of upward trends coub@ driven by insurance
penetration representing a poor proxy for the stledréensured wealth potentially
destroyable. However, in further analysis of oMezabnomic loss, rather than merely
insured loss, for which one does not need to irelaidorrection factor for insurance
penetration, we found for the same time period asthg otherwise the same

methodology that trends in total economic loss Garmany and the US resemble
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those for trends in insured loss (detailed resam@ilable upon request).Insurance
penetration as such is thus unlikely to be the rdaiver behind the upward trend in
insured losses.

As another potential contributing factor, there soene drivers of change on
the insurance side that might have contributed twenexpensive disasters and are
hard to quantify. For instance, insured losses alaa be influenced by changes in
insurance claims handling procedures and the obskese. Such changes could have
had an effect on insured losses over the past dscdiit are very difficult to
quantify.

Lastly, our findings could be driven by reportin@a$ if insured loss from
early periods is systematically under-reported #mas under-represented in our
analysis. However, for the US and Germany a sicgmifi reporting bias regarding the
more substantial losses is much less likely thanotber countries, given these are
two of the biggest insurance markets in the world.

Our findings are interesting, but before any fironclusions can be drawn
from them, more research is needed to analyze wifithese potential explanatory
factors, of which anthropogenic climate change ug bne possibility, or which
combination of factors drive the observed upwaedds. With these caveats in mind,
our findings only providdentative evidence that anthropogenic climate change may
possibly already have triggered more frequent antMare intensive relevant natural
disasters affecting Germany as well as the US lansl ironically, the biggest emitter

of greenhouse gas emissions in the world.

™ The estimated p-values of the coefficients for ylear variable are typically higher, possibly
corroborating the argument that insured loss isswmeal with greater precision, but we find significa
upward trends in total economic loss for six of the cases in which we find significant trends for
insured loss and, with the exception of events ftemperature highs in the US, in the other cases th
estimated coefficients are not far from being staially significantly different from zero.
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Figure 1: Global deflated insured losses from ratdisasters
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Coeff. of year: 1.424 1.259

t-value: 3 061 1323

p-value: .005 203

Note: 19,367 disasters, thereof 2,553 with a knanvgwired loss for whole period, 14,876 (1,855) for

the period from 1990.
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Figure 2: Global normalised insured losses frondisthsters

120
|

100
|

80
1

40

Normalised insured losses in billion USD of 2008
20 B0
|

T T T T
1990 1995 2000 2005
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Note: 11,988 disasters, thereof 1,636 with a knowsnored loss.
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Figure 3: Global normalised insured losses from-geophysical disasters
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Figure 4: Normalised insured losses from non-gesigly disasters in developed

countries
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Figure 5a: Global normalized insured losses fromveotive events
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Note: 3,783 disasters, thereof 770 with a knownried loss; Includes damages from flash floods, hail

storms, tempest storms, tornados, and lightning.
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Figure

5b: Global normalized insured losses froonnstevents (not including tropical

cyclones)
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(winter storm and blizzard/ snow storm), convectiterms (hail storm, tempest storm, tornado, and

lightning), sand storms, local windstorms, andrstsurges.
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Figure 5c: Global normalized insured losses frampitral cyclones
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Figure 5d: Global normalized insured losses froacmitation-related events
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Figure 6a: Normalized insured losses of non-gedphldisasters in the United

States using changes in personal income (top) lagdges in value of housing units

(bottom)
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Figure 6b: Normalized insured losses from convectivents in the United States

using changes in personal income (top) and chaingedue of housing units

(bottom)
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Figure 6¢: Normalized insured losses from floodim¢he United States using

changes in personal income (top) and changes ue\alhousing units (bottom)
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Figure 6d: Normalized insured losses from tempeeatighs in the United States

using changes in personal income (top) and changedue of housing units

(bottom)
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Figure 6e: Normalized insured losses from tempegdaws in the United States

using changes in personal income (top) and changedue of housing units

(bottom)
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Figure 6f: Normalized insured losses from wintersts in the United States using

changes in personal income (top) and changes ue\ailhousing units (bottom)
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Figure 6g: Normalized insured losses from all s®mthe United States using

changes in personal income (top) and changes ue\ailhousing units (bottom)
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Figure 6h: Normalized insured losses from hurrisanghe United States using

changes in personal income (top) and changes ue\alhousing units (bottom)
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Figure 7a: Normalized insured losses of non-geaphalydisasters in Germany

Normalised insured losses in billion Euro of 2008

P e — | =
T T T
1980 1985 1990 1995 2000 2005
Year
Coeff. of year: .042
t-value: 1.985
p-value: .057

Note: 577 disasters, thereof 268 with a known iaduoss.

38



Figure 7b: Normalized insured losses from convectivents in Germany
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Figure 7c: Normalized insured losses from floodm@&ermany
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Figure 7d: Normalized insured losses from winterrss in Germany
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Figure 7e: Normalized insured losses from all seimmGermany
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