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A Trend Analysis of Normalized 
Insured Damage from Natural Disasters 
 

 
Abstract 

As the world becomes wealthier over time, inflation-adjusted insured damages from 

natural disasters go up as well. This article analyzes whether there is still a significant 

upward trend once insured natural disaster loss has been normalized. By scaling up 

loss from past disasters, normalization adjusts for the fact that a disaster of equal 

strength will typically cause more damage nowadays than in past years because of 

wealth accumulation over time. A trend analysis of normalized insured damage from 

natural disasters is not only of interest to the insurance industry, but can potentially be 

useful for attempts at detecting whether there has been an increase in the frequency 

and/or intensity of natural hazards, whether caused by natural climate variability or 

anthropogenic climate change. We analyze trends at the global level over the period 

1990 to 2008, over the period 1980 to 2008 for Germany and 1973 to 2008 for the 

United States. We find no significant trends at the global level, but we detect 

statistically significant upward trends in normalized insured losses from all non-

geophysical disasters as well as from certain specific disaster types in the United 

States and Germany. 
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1. Introduction 

Analyzing trends in natural disaster loss represents an important tool for attempts at 

detecting whether climate change has already started to have an effect on the 

frequency and/or intensity of natural disasters. Most of existing studies have looked at 

total economic loss (Pielke and Landsea 1998; Pielke et al. 1999, 2003, 2008; Brooks 

and Doswell 2001; Raghavan and Rajseh 2003; Nordhaus 2006; Vranes and Pielke 

2009; Schmidt, Kemfert and Höppe 2009; Barredo 2009). Fewer studies have 

analysed insured losses and all of them are confined to a specific hazard type in one 

country (Changnon and Changnon 1992; Changnon 2001, 2009a, 2009b; Crompton 

and McAeneney 2008).1 Yet, analyzing trends in insured losses is important for two 

reasons. First, insurance companies naturally worry most about insured losses and are 

interested in any trends in these losses quite independently of whether they are caused 

by natural climate variability or anthropogenic greenhouse gas emissions or other 

drivers. Second, insured losses are estimated with greater precision than total 

economic losses, which all other things equal should be beneficial since measurement 

error hampers statistical analysis and thus renders detecting statistically significant 

trends more difficult. 

Existing studies of total economic and insured loss have typically found no 

increasing trend over time after loss has been subjected to what is known as 

“normalization”. Normalization adjusts for the fact that a disaster of equal strength 

will typically cause more damage in the current period than in the past because there 

is typically more wealth potentially destroyable in the present compared to the past. 

Normalization thus adjusts nominal economic loss from past disasters upwards by 

multiplying past damage with a factor for inflation, for population growth and for 
                                                 
1  Hazards are events triggered by natural forces. They will turn into natural disasters if people 

are exposed to the hazard and are not resilient to fully absorbing the impact without damage to 
life or property (Schwab, Eschelbach and Brower 2007). 
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growth in wealth per capita, thus in effect estimating the damage a past disaster would 

have caused had it hit the same, but nowadays wealthier, area today. Without 

normalization, disaster loss is likely to trend upwards over time, not because disasters 

have necessarily become more frequent and/or more intensive, but simply because 

destroyable wealth has increased over time. For normalizaton of insured disaster 

losses, one additionally needs to adjust for changes in insurance penetration, i.e. the 

share of wealth covered by insurance, over time. The question, to be studied in this 

article, is therefore whether the results of existing studies which have analyzed trends 

in normalized total economic loss carry over to trend analysis in normalized insured 

losses. 

To our knowledge, this is the first article systematically analyzing trends in 

insured natural disaster loss for more than one hazard type and for a larger country 

sample. We do so at the global level, for developed countries, for specific types of 

disasters as well as for specific country/disaster type combinations. Section 2 explains 

the methodology of normalizing natural disaster loss. Section 3 describes our 

empirical research design and reports results from the analysis. Section 4 concludes. 

 

2. Normalizing natural disaster loss 

The conventional approach to normalizing natural disaster loss can be credited to 

Roger Pielke Jr. and co-authors (see Pielke and Landsea 1998, Pielke et al. 1999, 

2003, 2008; Vraines and Pielke 2009). The typical equation to compute normalized 

damage according to this approach is as follows: 

 

s s s s
t t

t t t

GDPdeflator Population Wealth per capita
Normalized Damage Damage

GDPdeflator Population Wealth per capita
= ⋅ ⋅ ⋅ (1) 
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where s is the (chosen) year one wishes to normalize to, t is the year in which damage 

occurred, the Gross Domestic Product (GDP) deflator adjusts for inflation (i.e., 

change in producer prices), while the remaining two correction factors adjust for 

changes in population and wealth per capita. In theory, the population and wealth 

changes should be based on data from the exact areas affected by the natural disaster 

in question. However, in practice it is often impossible to determine the exact areas or 

information on these areas is difficult or impossible to get, so scholars typically resort 

to using data from the country or, if they can, from sub-country administrative units 

known to be affected (e.g., counties or states). Studies differ with respect to how 

wealth per capita is measured. Some use data on the value of capital stocks (e.g., 

Pielke and Landsea 1998; Brooks and Doswell 2001; Vranes and Pielke 2009; 

Schmidt, Kemfert and Höppe 2009) or the value of dwellings (Crompton and 

McAneney 2008), others, often for lack of data, simply use GDP per capita (e.g., 

Raghavan and Rajseh 2003; Pielke et al. 2003; Nordhaus 2006; Miller et al. 2008; 

Barredo 2009). With more than one disaster per year, the measure of disaster loss per 

year is the sum of normalized damages from each disaster as per equation (1). 

Neumayer and Barthel (2010) have criticized conventional normalization 

methodology on the grounds that it adjusts for differences in wealth over time, but not 

for differences in wealth across space at any point of time. Conventional 

normalization adjusts for the fact that a disaster like, say, the 1926 Great Miami 

hurricane would have caused far more damage if it hit Miami nowadays since the 

value of what can potentially become destroyed has tremendously increased over this 

time period (Pielke et al. 1999). At the same time, however, a hurricane that hits 

Miami in any year will cause a much larger damage than a hurricane that hits in the 

same year rural parts of Florida with much lower population density and 
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concentration of wealth. Conventional normalization accounts for the former effect, 

but not for the latter. It makes Miami in 1926 comparable to Miami in 2010, but fails 

to make Miami in whatever year comparable to rural Florida or other areas affected 

by a particular natural disaster in that same year. Neumayer and Barthel (2010) have 

therefore developed an alternative normalization methodology that additionally 

adjusts for differences in space. However, for this method to be applied in empirical 

analysis, one would need information on the value of insured wealth potentially 

destroyable in any given area. Since this information is typically not available, we 

follow the conventional normalization methodology in this paper. 

 

3. Research Design 

Contrary to Neumayer and Barthel (2010), in which we could study trends of all 

economic losses over the period 1980 to 2009, poor availability of data during the 

1980s on insurance premia needed for normalization in terms of insurance penetration 

means that our statistical tests are restricted to the period 1990 to 2008 for all analyses 

but those for the United States and Germany, for which we have data from 1973 and 

1980, respectively, onwards. The disadvantage of being compelled to use a relatively 

short time period is that, ceteris paribus, the shorter the time series of annual loss data 

the less likely any trend will be detected as statistically significant (the smaller N, the 

number of observations, the higher the standard error of the estimate). Also, the IPCC 

(2007a: 942) defines climate in a narrow sense “as the average weather, or more 

rigorously, as the statistical description in terms of the mean and variability of 

relevant quantities” over a period of 20 to 30 years, so our study period of 1973, 1980 

or 1990 to 2008 may be too short to identify changes in climate. 



6 

Data on insured loss from natural disasters in nominal USD comes from 

Munich Re’s NatCat database. Munich Re also supplied us with data on insurance 

premia in a country. The NatCat database provides the highest quality data currently 

available, but it is of course not perfect. Smaller disasters may be somewhat under-

reported in the early periods relative to later periods. At Munich Re, several members 

of staff scan daily international and regional sources to compile information about 

disaster events. Data are collected from a variety of sources including government 

representatives, relief organisations and research facilities. Information on insured 

losses is based on information of insurance associations and insurance services as well 

as on claims made by Munich Re’s customers, which provide the best approximation 

to the actual damage. Initial reports on insured losses, which are usually available in 

the immediate aftermath of a disaster, are often highly unreliable. Therefore, data in 

the NatCat database is updated continuously as more accurate information becomes 

available, which might be even years after the disaster event. Our analysis ends in 

2008, since these cases are closed to the largest extent (Munich Re, personal 

communication). 

Since we study trends in insured rather than total economic losses, we need to 

adjust the conventional normalization methodology represented by equation (1) by 

adding an additional factor to control for changes in the insurance penetration as a 

proxy for the share of wealth covered by insurance policies: 

 

.
. .

.
s s s s s

tt
t t t t

GDPdefl Pop Wealth pc Ins penetration
Norm Ins Loss Loss

GDPdefl Pop Wealth pc Ins penetration
= ⋅ ⋅ ⋅ ⋅  (2) 

 

For our global analysis, we use GDP per capita as a proxy for wealth as there is no 

other measure of wealth available for all countries in the world. This is not 
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unproblematic. GDP has the advantage that it captures well potential economic loss 

due to the interruption of economic operations as a result of a natural disaster, but it is 

a relatively poor proxy for the physical wealth stock potentially destroyable by 

disasters.2 Whereas economic wealth is a stock, GDP is a flow of economic activity. 

Fortunately, despite GDP consisting in part of intangible components such as services 

with scant correspondence to the value of the physical wealth stock, on the whole 

GDP is highly correlated with it. But GDP can only function as a proxy for wealth 

and typically understates it. Economists estimate the ratio of the value of the physical 

man-made or manufactured capital stock to GDP to lie somewhere in between 2 and 4 

for a typical macro-economy (D’Adda and Scorcu 2003). But this ratio will differ 

from country to country and, more importantly, is a national macro-economic 

average, which can differ more drastically across sub-country units.3 It also only 

captures the value of the physical capital stock used for the production of 

consumption goods and services, but not the value of other wealth held in the form of, 

for example, residential property. Moreover, the increasing share of GDP consisting 

of intangible components such as services, which is observed in many, but not all, 

countries implies that the growth rate of GDP possibly over-estimates the growth rate 

of the physical wealth stock. This will bias the results against finding a positive trend 

since disasters from past periods are scaled up too strongly as a result of 

normalization. 

                                                 
2  GDP might also be positively affected by large disasters as repair and reconstruction increase 

GDP. 
3  It has also changed over time (see D’Adda and Scorcu 2003), but Krugman (1992: 54f.) 

concludes that “there is a remarkable constancy of the capital-output ratio across countries; 
there is also a fairly stable capital-output ratio in advanced nations. These constancies have 
been well known for a long time and were in fact at the heart of the famous Solow conclusion 
that technological change, not capital accumulation, is the source of most growth.” 
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Keeping in mind that, for our global analysis, we use GDP per capita as a 

proxy for wealth and that the product of population and GDP per capita equals total 

GDP, equation (2) modifies to: 

 

.
. .

.
s s s s

tt
t t t

GDPdefl GDP Ins penetration
Norm Ins Loss Loss

GDPdefl GDP Ins penetration
= ⋅ ⋅ ⋅   (3) 

 

Regrettably, there is no data available on insurance penetration as such for our 

global analysis. For our global analysis, we use data on property and, where available, 

also engineering insurance premia, which, if expressed relative to GDP, can function 

as a proxy for insurance penetration.. For Germany and the US, however, we have 

data, including data for a longer time-series, on a subset of property and engineering 

premia as well as premia on motor physical damage, which relate more directly to 

insured values that can potentially be destroyed by natural disasters and which we 

therefore take in lieu of all property and engineering insurance premia.4 

 One problem with using insurance premia relative to GDP is that these can 

change even if the share of insured wealth among all wealth remains the same and 

vice versa. Insurance premia can, for example, change in response to changes in 

insurance pay-outs resulting from changes in the frequency and/or intensity of insured 

loss events, constituting the requirement of “risk adequate pricing” in the insurance 

industry. For example, premia have increased following the 2004/05 hurricane 

seasons in parts of the US. But on the whole, changes in property and engineering 

                                                 
4 Only for the normalization of damage from temperature highs and temperature lows do we exclude 
motor physical damage premia since vehicles can not normally be damaged by these hazards. A full list 
of the detailed types of insurances, for which premia are included in the analysis for Germany and the 
US, is available from the authors on request. 
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premia relative to GDP should in the long run by and large represent an acceptable 

proxy for changes in insurance penetration (Munich Re, personal communication).5 

Using insurance premia in a given year relative to total GDP in the same year 

as a proxy for insurance penetration in equation (3), total GDP drops out and using 

2008 as our chosen base year for normalization, we can write: 

 

2008 2008 2008. . tt
t t

GDPdefl Insurance premia
Norm Ins Loss Loss

GDPdefl Insurance premia
= ⋅ ⋅   (4) 

 

Normalization equation (4) is the one we use in our global analysis. The loss data in 

the NatCat database and the data on insurance premia are in USD. We converted them 

into local currencies applying exchange rate data provided to us by Munich Re to 

ensure we use the same exchange rates Munich Re uses to convert from local 

currency values into USD. With all data in local currency, we therefore also use the 

GDP deflator of the country itself for our normalization purposes. Since for an 

aggregate analysis of more than one country one needs to make normalized insured 

loss comparable across countries, in the final step we then re-converted the 

normalized insured losses from local currencies into USD.6 

For Germany and the US, not only do we have a longer time-series of data on 

insured losses, but also GDP or income data are available for sub-national 

                                                 
5 For Germany, researchers at Munich Re undertook an analysis of the relationship between premia and 
total sum of insured values and found the two to be very highly correlated over time. For the US, due to 
lack of data no similar analysis could be undertaken. Most likely, if data had been available such an 
analysis would have shown a lower correlation because of market cycles and premia adjustments after 
large disasters (Munich Re, personal communication). 
6 Alternatively, one can keep all values in USD and then apply the US GDP deflator for normalization 
purposes. The two approaches lead to practically identical results. 



10 

administrative units, i.e. on a more fine-grained spatial resolution.7 The NatCat 

database provides a geo-reference of the disaster center which allows us to match 

each disaster with the sub-national administrative unit in which it occurred. For 

Germany, our spatial resolution is on the NUTS3 level (corresponds to ‘Landkreise’ 

and ‘Kreisfreie Städte’). Total GDP in constant Euros is provided by Cambridge 

Econometrics (2010). We converted insured losses into Euro using the exchange rate 

used by Munich Re. Since the analysis for Germany is thus in local currency units, we 

also used the GDP deflator for Germany and normalized damage is expressed in 

Euros.8 

For the US, we have access to two alternative measures of wealth. Our first 

measure is personal per capita income data taken from BEA (2010), at the county 

level.9 Our second measure is a combination of information on the number and value 

of housing units, with data at the state level. Data on housing units up to year 2000 are 

taken from the National Historical Geographical Information System (NHGIS 2010), 

estimates for later years are obtained from the US Census Bureau (2010a). Median 

home value data is available until 2000 and taken from the US Census Bureau 

(2010b). Both data on housing units and median house values are available on a 

decadal basis for earlier years. Linear interpolation was used to fill the gaps. Values 

on median home values for years after 2000 are obtained by linear extrapolation of all 

                                                 
7 GDP growth on a country level can be a poor approximation for changes in wealth in the affected area 
of a disaster. For instance, while GDP in Germany grew over the whole study period, GDP actually 
decreased in some parts of Eastern Germany after reunification. 
8 Since we use GDP at different levels of spatial resolution for calculating insurance penetration on the 
one hand and for wealth adjustment on the other for Germany and the US, GDP does not drop out of 
equation (3). As a consequence, equations (2) and (3) rather than equation (4) are used for normalizing 
insured losses in Germany and the US. 
9 Personal income is defined as the income received by all persons from all sources before the 
deduction of personal taxes (BEA 2010) and reported in current USD and converted into constant 
values with the US GDP deflator. Results are almost identical if we use GDP data at the state level 
from the same source instead 
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previous values. To adjust losses both to the changes in the number and the median 

value of housing units, the following equation is used: 

 

.
. .

.
s s s s s

tt
t t t t

GDPdefl Units MedVal Ins penetration
Norm Ins Loss Loss

GDPdefl Units MedVal Ins penetration
= ⋅ ⋅ ⋅ ⋅  (5) 

 

In line with existing normalization studies, to test for the existence of a trend, 

the annual sum of normalized disaster losses from each year is regressed on a linear 

year variable and an intercept: 

 

2008
tNormalized Insured Loss  = α0 + β1yeart  + tε     (6) 

 

A trend is statistically significant if the null hypothesis that β1 is equal to zero can be 

rejected at the ten percent level or lower. Robust standard errors are employed in all 

estimations. 

 

4. Results from an Analysis of Trends in Normalized Insured Losses 

In this section, we present the results from our analysis of trends in normalized 

insured losses. We start with our global analysis, before analyzing in more detail 

insured losses in the US and Germany. Figure 1 displays the non-normalized, i.e. 

merely deflated annual insured losses caused by all types of natural disasters from 

1980 to 2008. The analysis covers 19,367 disasters, of which 2,553 resulted in a 

known insured loss. Over the whole period, there is a positive and statistically 

significant trend. The coefficient indicates an average annual increase of 1.4bn USD. 

However, while the size of the coefficient is hardly affected if the sample is restricted 
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to start from 1990, the trend loses its significance. As mentioned already, shorter 

time-series make the detection of a statistically significant trend less likely. 

There is no statistically significant trend if we adjust insured losses for the 

changes in potentially destroyable insured losses, i.e. if we normalize insured disaster 

loss (Figure 2). Losses before 1990 are not shown since we have data on insurance 

premia only for few countries before 1990. The analysis still covers 11,988 disasters, 

with 1,636 of them resulting in a known damage claim to insurance companies.  

Some natural hazards will be practically unaffected by climate change and are 

therefore irrelevant if one wants to detect whether a potential climate change already 

has lead to increased insured damages. In Figure 3, we therefore excluded geophysical 

disasters (earthquakes, land slides, rock falls, subsidence, volcanic eruptions, and 

tsunamis) and only include the following disaster types: blizzards, hail storms, 

lightning, local windstorms, sandstorms, tropical cyclones, severe storms, tornados, 

winter storms, avalanches, flash floods, general floods, storm surges, cold and heat 

waves, droughts, winter damages, and wildfires. As before, no significant trend is 

discernible. Similarly, we do not find a significant trend if we constrain our analysis 

to non-geophysical disasters in developed countries, which cover Organisation of 

Economic Co-operation and Development (OECD) and other high-income countries, 

according to World Bank classification (Figure 4).10 

Convective events, i.e. flash floods, hail storms, tempest storms, tornados, and 

lightning, deserve closer attention since these are possibly affected by global warming 

(Trapp et al. 2007, 2009; Kuntz et al. 2009). Figure 5a shows that there is no 

significant trend in global insured losses for these peril types. Similarly, there is no 

                                                 
10 We show no graphs for developing countries separately as insurance penetration is very low and 
insurance coverage is typically restricted to major cities in middle- and upper middle-income 
developing countries. 
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significant trend in insured losses for storm events (Figure 5b), tropical cyclones 

(Figure 5c) or precipitation-related events (Figure 5d). 

As mentioned already, a statistically significant trend is harder to establish for 

a shorter time-series. Hence, we separately analyzed in some detail natural disasters 

occurring in the two countries for which data on insured losses and insurance premia 

are available for the longest time period, namely the United States and Germany, 

which are also major insurance markets of course. Figure 6a illustrates normalized 

insured losses from non-geophysical disasters that occurred in the United Stated over 

the period 1973 to 2008. Losses normalized using changes in personal income as a 

proxy for changes in wealth are shown in the upper panel, while we used the 

alternative proxy of changes in the number and value of housing units to adjust losses 

in the lower panel. The results for both approaches are virtually identical. Moreover, 

in non-reported analysis we found that results are very similar if we use GDP changes 

at the country rather than at the state level. We take this as evidence for the robustness 

of the results in our global analysis for which we had to resort to changes in GDP at 

the country level as a proxy for changes in wealth. We find a positive trend in 

normalized insured losses from non-geophysical disasters in the US, which is 

statistically significant at the 5 percent level. This remains true if the large outlier due 

to hurricane Katrina in 2005 is excluded.  

In the remaining analysis of insured losses in the US, we examine specific 

subsets of the non-geophysical disasters. Figure 6b shows that there is also a 

statistically significant upward trend if the analysis is restricted to convective events, 

i.e. flash floods, hail storms, tempest storms, tornados, and lightning. There is also a 

positive trend in insured damage from US flooding events, which includes both flash 

floods and general floods (Figure 6c). The same is true for events caused by 
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temperature highs (Figure 6d). There is however, no significant trend for events 

caused by temperature lows (Figure 6e). If we look at winter storms (Figure 6f), 

which also include snow storms and blizzards, we find a significant upward trend. 

The same is true for all storms, which besides winter storms include convective 

storms (hail storm, tempest storms, tornado, lightning), sand storms and storm surges 

(figure 6g). Focusing on hurricanes, an upward trend in insured losses is found, which 

is statistically significant at the 10 percent level (Figure 6h). This is consistent with 

results on total economic loss from US hurricanes reported in Schmidt, Kemfert and 

Höppe (2009).  

Turning to Germany, the trend in insured loss from non-geophysical disasters 

is significant at the 10 percent level (figure 7a), despite the volatility introduced by 

the four strong loss spikes in 1984 (predominantly caused by Munich hail storm), 

1990 (predominantly winter storm series), 2002 (predominantly river flooding along 

the Elbe, Danube and contributory rivers and a winter storm in late October) and 2007 

(predominantly winter storm Kyrill). If these events are excluded, the trend becomes 

significant at the one percent level. For convective events (figure 7b), however, no 

such significant trend can be established unless the large outlier from 1984 (Munich 

hail storm) is dropped from the analysis. Figure 7c, which shows normalized loss 

from flooding similarly demonstrates by just how much single outliers, like the 

massive damage caused by the floods in 2002, can dominate the entire picture. 

However, with or without this outlier, there is no significant trend. Contrarily, there is 

a trend, which is significant at the 10 percent level, in normalized insured loss from 

winter storms (figure 7d). The trend becomes significant at the 5 percent level (p-

value 0.025) if the large outlier from 1990 is dropped from the analysis. There is 

similarly a significant upward trend for the category of all storms (figure 7e). Note 
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that for Germany hurricanes are irrelevant and there are very few events related to 

temperature highs and temperature lows. These disaster types are therefore not 

included in our analysis for Germany. 

 

5. Conclusion 

In this article, we have analyzed whether one can detect a trend in data on insured 

damage from natural disasters. Insurance companies are naturally worried about 

climate change as the predicted increase in the frequency and/or intensity of natural 

hazards is likely to lead to higher economic and, ceteris paribus, higher insured 

damage in the future, unless defensive mitigating measures make exposed wealth less 

vulnerable to the impact of disasters. Whilst we have not found any evidence that 

normalized insured damage has trended upward at the global level, for developed 

countries and independently of the type of disaster looked at, our finding of an 

upward trend in insured losses from non-geophysical disasters and certain specific 

disaster types in the US, the biggest insurance market in the world, and in Germany 

represents a finding to be taken seriously in the risk analysis undertaken by insurance 

and re-insurance companies. 

As in the interpretation of trends in all economic losses, much caution is 

required in correctly interpreting our findings. In particular, we cannot normalize for 

changes in mitigating measures, which, if increasingly undertaken over time, would 

reduce countries’ vulnerability to the impact of natural disasters and thus bias the 

analysis against finding significant upward trends. What the results tell us is that, 

based on the very limited time-series data we have for most countries, there is no 

statistically significant evidence so far for a significant upward trend in normalized 

insured loss from natural disasters outside the US and Germany. One cannot infer 
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from our analysis that there have not been more frequent and/or more intensive 

weather-related natural disasters in other places. In addition to our inability to take 

into account defensive mitigating measures undertaken by rational individuals and 

governments, which could translate into lower insured damage compared to the 

damage in the absence of defensive mitigation, the time period 1990 to 2008 may 

simply be too short to find significant trends in our global analysis. It is noteworthy 

that for the US and Germany, for which we can analyze normalized loss from, 

respectively, 1973 and 1980 onwards, we do find a significant increase in normalized 

insured losses for some relevant disaster types over time. 

By the same token, we warn against taking the findings for the US and 

Germany as conclusive evidence that climate change has already caused more 

frequent and/or more intensive natural disasters affecting this country. To start with, 

one needs to be careful in attributing such a trend to anthropogenic climate change, 

i.e. climate change caused by man-made greenhouse gas emissions. Our findings 

reported in this article could be down to natural climate variability that has nothing to 

do with anthropogenic climate change. Such natural climate variability may well 

explain our finding of a significant upward trend in insured loss from hurricanes in the 

US, for example. It is less plausible as a potential explanation for the significant 

upward trends in convective events and flooding events, however. 

Alternatively, our findings of upward trends could be driven by insurance 

penetration representing a poor proxy for the share of insured wealth potentially 

destroyable. However, in further analysis of overall economic loss, rather than merely 

insured loss, for which one does not need to include a correction factor for insurance 

penetration, we found for the same time period and using otherwise the same 

methodology that trends in total economic loss for Germany and the US resemble 
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those for trends in insured loss (detailed results available upon request).11 Insurance 

penetration as such is thus unlikely to be the main driver behind the upward trend in 

insured losses.  

As another potential contributing factor, there are some drivers of change on 

the insurance side that might have contributed to more expensive disasters and are 

hard to quantify. For instance, insured losses can also be influenced by changes in 

insurance claims handling procedures and the costs of these. Such changes could have 

had an effect on insured losses over the past decades, but are very difficult to 

quantify.  

Lastly, our findings could be driven by reporting bias if insured loss from 

early periods is systematically under-reported and thus under-represented in our 

analysis. However, for the US and Germany a significant reporting bias regarding the 

more substantial losses is much less likely than for other countries, given these are 

two of the biggest insurance markets in the world.  

Our findings are interesting, but before any firm conclusions can be drawn 

from them, more research is needed to analyze which of these potential explanatory 

factors, of which anthropogenic climate change is but one possibility, or which 

combination of factors drive the observed upward trends. With these caveats in mind, 

our findings only provide tentative evidence that anthropogenic climate change may 

possibly already have triggered more frequent and/or more intensive relevant natural 

disasters affecting Germany as well as the US and thus, ironically, the biggest emitter 

of greenhouse gas emissions in the world. 

                                                 
11 The estimated p-values of the coefficients for the year variable are typically higher, possibly 
corroborating the argument that insured loss is measured with greater precision, but we find significant 
upward trends in total economic loss for six of the ten cases in which we find significant trends for 
insured loss and, with the exception of events from temperature highs in the US, in the other cases the 
estimated coefficients are not far from being statistically significantly different from zero. 
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Figure 1: Global deflated insured losses from natural disasters 

 

Note: 19,367 disasters, thereof 2,553 with a known insured loss for whole period, 14,876 (1,855) for 

the period from 1990. 
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Figure 2: Global normalised insured losses from all disasters 

 

Note: 11,988 disasters, thereof 1,636 with a known insured loss. 
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Figure 3: Global normalised insured losses from non-geophysical disasters 

 

Note: 10,434 disasters, thereof 1,531 with a known insured loss. 
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Figure 4: Normalised insured losses from non-geophysical disasters in developed 

countries 

 

Note: 5,538 disasters, thereof 1,416 with a known insured loss; developed countries cover OECD 

countries and other high-income countries according to World Bank classification. 
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Figure 5a: Global normalized insured losses from convective events  

 

Note: 3,783 disasters, thereof 770 with a known insured loss; Includes damages from flash floods, hail 

storms, tempest storms, tornados, and lightning. 
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Figure 5b: Global normalized insured losses from storm events (not including tropical 

cyclones) 

 

Note: 3,971 disasters, thereof 1,032 with a known insured loss; Includes damages from winter storms 

(winter storm and blizzard/ snow storm), convective storms (hail storm, tempest storm, tornado, and 

lightning), sand storms, local windstorms, and storm surges. 



28 

Figure 5c: Global normalized insured losses from tropical cyclones 

 

Note: 798 disasters, thereof 167 with a known insured loss. 
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Figure 5d: Global normalized insured losses from precipitation-related events 

 

Note: 4,014 disasters, thereof 223 with a known insured loss; Includes damages from flooding (flash 

flood and general flood) and mass movement (rock falls, landslides, and avalanches). 
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Figure 6a: Normalized insured losses of non-geophysical disasters in the United 

States using changes in personal income (top) and changes in value of housing units 

(bottom) 

 

Note: 2,674 disasters, thereof 1,277 with a known insured loss. 
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Figure 6b: Normalized insured losses from convective events in the United States 

using changes in personal income (top) and changes in value of housing units 

(bottom)  

 

Note: 1,646 disasters, thereof 916 with a known insured loss; Includes damages from flash floods, hail 

storms, tempest storms, tornados, and lightning. 
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Figure 6c: Normalized insured losses from flooding in the United States using 

changes in personal income (top) and changes in value of housing units (bottom) 

 

Note: 337 disasters, thereof 63 with a known insured loss; Includes damages from flash floods and 

general floods. 

 

 

 



33 

Figure 6d: Normalized insured losses from temperature highs in the United States 

using changes in personal income (top) and changes in value of housing units 

(bottom) 

 

Note: 340 disasters, thereof 65 with a known insured loss; Includes damages from heat waves, droughts 

and wild fires. 
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Figure 6e: Normalized insured losses from temperature lows in the United States 

using changes in personal income (top) and changes in value of housing units 

(bottom) 

 

Note: 60 disasters, thereof 33 with a known insured loss; Includes damages from winter damages and 

cold waves. 
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Figure 6f: Normalized insured losses from winter storms in the United States using 

changes in personal income (top) and changes in value of housing units (bottom) 

 

Note: 214 disasters, thereof 122 with a known insured loss; Includes damages from winter storms, 

blizzards and snow storms. 



36 

Figure 6g: Normalized insured losses from all storms in the United States using 

changes in personal income (top) and changes in value of housing units (bottom) 

 

Note: 1,756 disasters, thereof 1,034 with a known insured loss; Includes damages from winter storms, 

blizzards, snow storms, hail storms, tempest storms, tornado, lightning, sand storms and storm surges. 
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Figure 6h: Normalized insured losses from hurricanes in the United States using 

changes in personal income (top) and changes in value of housing units (bottom) 

 

Note: 113 disasters, thereof 82 with a known insured loss. 
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Figure 7a: Normalized insured losses of non-geophysical disasters in Germany  

 

Note: 577 disasters, thereof 268 with a known insured loss. 
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Figure 7b: Normalized insured losses from convective events in Germany 

 

Note: 323 disasters, thereof 146 with a known insured loss; Includes damages from flash floods, hail 

storms, tempest storms, tornados, and lightning. 
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Figure 7c: Normalized insured losses from flooding in Germany  

 

Note: 94 disasters, thereof 22 with a known insured loss; Includes damages from flash floods and 

general floods. 
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Figure 7d: Normalized insured losses from winter storms in Germany  

 

Note: 112 disasters, thereof 86 with a known insured loss; Includes damages from winter storms, 

blizzards and snow storms. 
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Figure 7e: Normalized insured losses from all storms in Germany  

 

Note: 416 disasters, thereof 239 with a known insured loss; Includes damages from winter storms, 

blizzards, snow storms, hail storms, tempest storms, tornado, lightning, sand storms and storm surges.. 

 

 

 


