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Abstract

We construct and estimate a New Keynesian (NK) heterogeneous agents model with

Rational Expectations (RE) and bounded rationality (BR) agents in fixed proportions. BR

agents are anticipated utility learners and use simple heuristic rules to forecast aggregate

variables exogenous to their micro-environment. We study two information assumptions for

the RE agents: the standard perfect information (PI) case and the imperfect information (II

-involving Kalman-Filter learning) case. We show that II generates endogenous persistence

of decisions in response to unobserved exogenous shocks. We find (a) in a likelihood race the

RE model with II outperforms the pure (homogeneous) BR model which in turn outperforms

the pure RE with PI; (b) the composite RE(II)-BR with estimated proportions of RE and

BR agents, outperforms its RE(PI)-BR counterpart in terms of both a likelihood race and

the fit of the model second moments with those of the data. Our findings highlight the im-

portance of information assumptions in the empirical comparison of RE and BR NK models.
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1 Introduction

Around the same time that the New Keynesian (NK) model was emerging, macro-economists

began to explore formal models of bounded rationality (BR). An important early paper is Evans

and Ramey (1992), which embeds costly expectation technologies into a simple macroeconomic

model. Following this seminal paper a large literature has emerged that offers a learning al-

ternative to rational expectations (RE) and, in empirical applications, shows that this genre of

models can provide a better fit to macroeconomic data.

The pioneering work of Evans and Honkapohja (2001) assumes that agents know the min-

imum state variable (MSV) form of the equilibrium (equivalent to the saddle-path under RE)

and use direct observations or VAR estimates of these states to update their estimates each

period using a discounted least-squares estimator. Then a statistical learning equilibrium is

one where this perceived law of motion and the actual one coincide. Although this form of BR

responds to what many regard as an extreme assumption of model-consistent expectations, the

departure is often seen as only a modest one in that agents still need to know the MSV form of

the equilibrium. The defining characteristic of what we refer to as behavioural macro-models

is to limit the cognitive skills of at least a group of agents in the model and this is achieved by

introducing simple ‘heuristic’ learning rules which can be thought of as parsimonious forms of

forecasting rules (as in Branch and Evans, 2011). This is the approach to BR adopted in our

paper.1

We construct a heterogeneous RE-BR model with exogenous proportions or RE and BR

households and firms. Where we depart from the literature is in modelling the RE agents and

making a comparison between RE and BR models. In particular for the former we relax a

crucial information assumption that agents have perfect information (PI) of the state vector.

We construct and estimate a NK heterogeneous expectations behavioural model with fixed

proportions of BR and rational agents. The novelty of the paper lies in our comparisons of

different composites including the pure RE and BR cases; in particular we impose what we

term informational consistency where RE and BR agents in the model share the same imperfect

information (II) set as the econometrician estimating the model. Under II the RE solution

involves learning via a Kalman Filter alluded to in the paper’s title. In the absence of PI as

an endowment agent observe aggregate data (output and inflation with a lag, and the current

nominal interest rate) at time t and form expectations of unobserved current realizations of

shocks as a weighted average of their t-1 estimate updated by the Kalman gain of their prediction

error.

Apart from information assumptions, an important feature of our model is the choice of

learning behaviour for given proportions of RE and BR agents. We follow the anticipated utility

(henceforth AU) approach of Hommes et al. (2019) (which in turn follows the seminal work of

Kreps, 1998). Under AU agents are individually rational forming beliefs over the future infinite

time horizon of aggregate states and prices which are exogenous to their decisions. AU, also

known as the “infinite time-horizon” framework, is closely related to the “internal rationality”

(IR) approach of Adam and Marcet (2011) and Gerko (2018). Under both IR and AU agents

1The model is in the class of restricted perception equilibria where agents do not know the form of the RE
solution and there no E-learning takes place. Nor is it a Stochastic Consistent Expectations Equilibria which seek
a fixed point to equate the perceived and actual laws of motion as in Hommes and Zhu (2014) and Hommes et al.
(2023). Continuing with some other possible BR modelling approaches: k-level thinking in Garcia-Schmidt and
Woodford (2019) and Farhi and Werning (2019) proposes an iterated solution of temporary equilibria each based
on the AU approach. Another equilibrium concept is that of inattention and cognitive discounting proposed by
Gabaix (2020). This is closely related to finite-time horizon optimization in Woodford (2019)
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maximize utility, given their constraints and a set of probability beliefs about payoff-relevant

variables that are external. Then with IR, beliefs are model-consistent and take the form of a

well-defined probability measure over a stochastic process (the ‘fully Bayesian’ plan), whereas

AU beliefs treat parameters as random variables when they learn but as constants when they

formulate decision rules. See Eusepi and Preston (2011) for an RBC BR model with AU, Preston

(2005) and Woodford (2013) who adopt a similar NK framework as in this paper.2

Our choice of the AU approach for the behavioural model is just one of many we could

have taken to establish the importance of information assumptions in making a comparison

with a rational expectations model. In the book De Grauwe (2019) and a series of important

papers including De Grauwe (2011), De Grauwe (2012a), De Grauwe and Katwasser (2012)

and De Grauwe and Gerba (2018), the assumption of Euler Learning (EL) is made Under

EL agents are also individually forecasting their own one-period ahead decisions. Then in a

representative agent model these decisions seen by agents to be those in the aggregate economy

and therefore exogenous; see Branch and McGough (2018) for a recent discussion of the EL vs

AU approaches.3

A paper particularly close to ours is Massaro (2013) which presents a calibrated composite

heterogeneous expectations model of RE and AU agents with fixed proportions. He emphasizes

the need for policymakers to design robust rules that stabilize the economy across different

composite models; but here we focus on the informational assumptions made by the two sets of

agents and we seek empirical support for the modelling choices. We simultaneously relax the two

extreme RE and PI assumptions and examine the empirical evidence in the data for different

forms of agent-level learning. To the best of our knowledge, our paper is the first contribution

to the learning literature to estimate a version of DSGE heterogenous-agent learning model

with II as an additional/alternative source of learning. The central research question of this

paper is to study whether Kalman-filtering learning with RE can match bounded-rationality

in matching persistence seen in the data without explicitly constructing the further persistence

mechanisms such as habit in consumption and price-indexing in the model.

Our empirical findings are in line with the finding that BR and learning improves the model

fit and the persistence of the model (see, e.g., Milani, 2007 and De Grauwe, 2012b among

others). But RE under II remarkably outperforms all of the belief specifications under both

homogeneous and heterogeneous expectations. Our empirical results also demonstrate that our

basic NKmodels are able to generate strong persistence mechanisms via various forms of learning

without relying on the backward-looking inertial components in the model (DSGE models with

and without mechanical/ad-hoc persistence often struggle to reproduce the persistence in the

data). This implies that both hybrid BR models and RE with II can serve as alternative

approaches which can account for the persistence mechanisms seen in the data.

In summary, the main contributions of this paper are as follows: (a) we examine empiri-

cally the support for a composite RE-BR model of the AU type by Bayesian estimations with

fixed proportions of RE and BR(AU) agents; (b) in our comparisons of different composites

including the pure RE and BR cases, we impose informational consistency where RE and BR

agents in the model share the same imperfect information as the econometrician estimating

2Cogley and Sargent (2008) compares the IR vs AU and find that AU can closely approximate the fully
Bayesian optimization. There are other agent-level learning alternatives such as shadow value and finite-horizon
learning. See Branch et al. (2013), Woodford (2018), Evans and McGough (2018) and Jump and Levine (2019)
for reviews.

3AU also fits into the Agent-Based Modelling (ABM) framework: Sinitskaya and Tesfatsion (2015) introduce
forward-looking optimizing agents into an ABM model. They use essentially the AU concept which they refer to
as constructive rational decision-making.
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the model. We focus on a comprehensive empirical assessment and comparison of alternative

learning mechanisms. Furthermore, we carry out our estimations based on the sample period

encompassing the Great Moderation and check the robustness of the result against an extended

data set including the Great Recession.

The rest of the paper is structured as follows. Section 2 steps back to the non-linear founda-

tions of the model that is ultimately studied in linearized form. Section 3 describes the specific

market-consistent environment in which households and firms form their expectations. Section

4 examines the information assumptions that are made explicitly or implicitly in the RE and

boundedly rational forms of the NK model. Section 5 presents and discusses some simulation

properties of the RE-BR composite models with fixed proportions of RE and BR agents.

For the empirical analysis, Section 6 estimates the latter, alongside the pure BR and RE

models by Bayesian methods, and conducts a likelihood race. This section estimates the be-

havioural model in which the adaptive expectations assumption used by BR agents follows the

standard Brock-Hommes heuristic rules. It first assumes RE agents have PI regarding current

state variables. Then it adds an additional learning mechanism assuming that RE agents do

not observe all current state variables and only have an II set. Section 6.7 examines the ability

of these estimated variants of the NK model to match the second moments in the data. Section

6.8 examines the impulse response functions of the estimated model and discusses endogenous

persistence. Section 8 concludes the paper.4

2 The NK Model under RE and Bounded Rationality

Ultimately our analysis will be conducted in terms of linear RE and Behavioural mddels. But

first we step back to the underlying non-linear model and introduce the distinction between

internal decisions and aggregate macro-variables. We start with the non-linear RE model and

proceed from pure RE to pure BR in stages. The complete model setup and its balanced growth

steady state are summarized in Online Appendices A and B.

2.1 Households

Household j chooses savings and between work and labour supply. Let Ct(j) be consumption

and Ht(j) be the proportion of this available for work or leisure spent at the former. The

single-period utility we choose, compatible with a balanced growth steady state, is

Ut(j) = U(Ct(j), Ht(j)) = log(Ct(j))−
Ht(j)

1+ϕ

1 + ϕ

and the value function of the representative household at time t dependent on its assets B is

Vt(j) = Vt(Bt−1(j)) = Et

[ ∞∑
s=0

βsU(Ct+s(j), Ht+s(j))

]
(1)

The household’s problem at time t is to choose paths for consumption {Ct(j)}, labour supply

{Ht(j)} and holdings of financial savings to maximize Vt(j) given by (1) given its budget

4A separate Online Appendix contains details of the model solutions, robustness checks, identification results,
the II solution procedure and a further robustness check that re-estimates the models using an extended data
set.
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constraint in period t

Bt(j) = RtBt−1(j) +WtHt(j) + Γt − Ct(j)− Tt −
ϖ

2
(Bt−1(j)−B)2 (2)

where Bt(j) is the given net stock of real financial assets at the end of period t, Wt is the wage

rate, Tt are lump-sum taxes, Γt are profits from wholesale and retail firms owned by households.

In order to allow for a wealth distribution heterogenous agents introduced later and to achieve

a stationary path for bond holdings we introduce a portfolio adjustment cost.5 Rt is the real

interest rate paid on assets held at the beginning of period t given by the Fischer equation

Rt =
Rn,t−1

Πt
(3)

where Rn,t and Πt are the nominal interest and inflation rates, respectively. Wt, Rn,t, Πt and

Γt are all exogenous to household j. As usual all real variables are expressed relative to the

price of final output. The standard first order conditions are

Et [Λt,t+1(j)Rt+1] = 1 +ϖ(Bt(j)−B)

UH,t(j)

UC,t(j)
= −Wt

where Λt,t+1(j) ≡ β
UC,t+1(j)
UC,t(j)

is the stochastic discount factor for household j, over the interval

[t, t+ 1]. For our choice of utility function UC,t =
1
Ct

and UH,t = −Hϕ
t so these become

βEt

[
Ct(j)Rt+1

Ct+1(j)

]
= 1 +ϖ(Bt(j)−B) (4)

Ct(j)Ht(j)
ϕ = Wt ⇒ Ht(j) =

(
Wt

Ct(j)

) 1
ϕ

(5)

The first-order conditions up to now are suitable for the RE solution. We now express the

solution in a form suitable for moving from a RE to a learning equilibrium. We consider the

limit as ϖ → 0. Solving (2) forward in time and imposing the transversality condition on debt

we can write

Bt−1(j) = PVt(Ct(j))− PVt(WtHt(j))− PVt(Γt) + PVt(Tt) (6)

where the present (expected) value of a series X ≡ {Xt+i}∞i=0 at time t is defined by

PVt(Xt) ≡ Et

∞∑
i=0

Xt+i

Rt,t+i
=

Xt

Rt
+

1

Rt
PVt(Xt+1) (7)

writing Rt,t+i ≡ RtRt+1Rt+2 · · ·Rt+i as the real interest rate over the interval [t− 1, t+ i].

The forward-looking budget constraint (6) holds for the representative household. If we

allow RE and BR agents to borrow from or lend to one another we must allow for Bt−1 ̸= 0.

5This as a modelling device similar to that used in open economies with home and foreign household as
pioneered by Schmitt-Grohe and Uribe (2003). We examine the limit as ϖ becomes very small so our choice
of real rather than nominal bond holding costs is immaterial. In fact, the wealth distribution effect does not
significantly change the equilibrium.
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Then in a symmetric equilibrium with Ct(j) = Ct and Ht(j) = Ht, (6) and (5) become

Bt−1 = PVt(Ct)− PVt

W
1+ 1

ϕ

t

C
1
ϕ

t

− PVt(Γt) + PVt(Tt)

Ht =

(
Wt

Ct

) 1
ϕ

Solving (4) forward in time and using the law of iterated expectation we have for i ≥ 1

1

Ct
= βiEt

[
Rt+1,t+i

Ct+i

]
; i ≥ 1 (8)

We now express the solution to the household optimization problem for Ct and Ht that

are functions of point expectations {EtWt+i}∞i=1, {EtRt+1,t+i}∞i=1 and {EtΓt+i}∞i=0 treated as

exogenous processes given at time t.6 With point expectations we use (8) to obtain the following

optimal decision for Ct+i given point expectations EtRt+1,t+i

Ct+i = Ctβ
iEtRt+1,t+i ; i ≥ 1 (9)

Et(Wt+iHt+i) =
(EtWt+i)

1+ 1
ϕ

C
1
ϕ

t+i

(10)

Substituting (9) and (10) into the forward-looking household budget constraint, using
∑∞

i=0 β
i =

1
1−β and EtRt,t+i = RtEtRt+1,t+i for i ≥ 1, we arrive at

Ct −RtBt−1

(1− β)
=

1

C
1
ϕ

t

(
W

1+ 1
ϕ

t +
∞∑
i=1

(β
1
ϕ )−i

(
EtWt+i

EtRt+1,t+i

)1+ 1
ϕ

)
+ Γt − Tt +

∞∑
i=1

Et(Γt+i − Tt+i))

EtRt+1,t+i

which can be written in recursive form as

Ct −RtBt−1

(1− β)
=

1

C
1
ϕ

t

(
W

1+ 1
ϕ

t +Ω1,t

)
+ Γt − Tt +Ω2,t (11)

Ω1,t ≡
∞∑
i=1

(β
1
ϕ )−i

(
EtWt+i

EtRt+1,t+i

)1+ 1
ϕ

= (β
1
ϕ )−1

(
EtWt+1

EtRt+1,t+1

)1+ 1
ϕ

+
Ω1,t+1

β
1
ϕEtRt+1

Ω2,t ≡
∞∑
i=1

Et(Γt+i − Tt+i)

EtRt+1,t+i
=

Et(Γt+1 − Tt+1)

EtRt+1,t+1
+

Ω2,t+1

EtRt+1

Consumption is then given by (11) assuming point expectations or by the symmetric form of

the Euler equation (4) under full rationality (i.e. households know symmetric nature of equilib-

rium with Ct(j) = Ct). Ct is a function of rational point expectations {EtWt+i}∞i=1, {EtRt,t+i}∞i=i

and {EtΓt+i}∞i=1 which can be treated as exogenous processes given at time t or as rational

model-consistent expectations. Since Etf(Xt) ≈ f(Et(Xt)); Etf(XtYt)) ≈ f(Et(Xt)Et(Yt)) up

to a first-order Taylor-series expansion, assuming point expectations is equivalent to using a

linear approximation (given below) as is usually done in the literature.

6Point expectations are implied in a full linearization of the model. However in our set-up non-linearity in de-
cisions given point expectations is retained which in a second-order perturbation solution allows the computation
of the household expected welfare and welfare-optimized Taylor-type rules. See Deak et al. (2023).
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2.2 Firms, Government Expenditures and Monetary Policy

This section sets out the wholesalers and the retail sector which optimizes using Calvo-pricing

contracts. We close the non-linear setup with resource and balanced government budget con-

straints, a monetary policy rule and by specifying the structural shocks in the economy. Whole-

sale firms employ a Cobb-Douglas production function to produce a homogeneous output

Y W
t = F (At, Ht) = AtH

α
t

where At is total factor productivity. Profit-maximizing demand for labour results in the first-

order condition

Wt =
PW
t

Pt
FH,t = α

PW
t

Pt

Y W
t

Ht
(12)

The retail sector costlessly converts a homogeneous wholesale good into a basket of differ-

entiated goods for aggregate consumption

Ct =

(∫ 1

0
Ct(m)(ζ−1)/ζdm

)ζ/(ζ−1)

(13)

where ζ is the elasticity of substitution. For each m, the consumer chooses Ct(m) at a price

Pt(m) to maximize (13) given total expenditure
∫ 1
0 Pt(m)Ct(m)dm. Assuming government ser-

vices are similarly differentiated, this results in a set of demand equations for each differentiated

good m with price Pt(m) of the form

Yt(m) =

(
Pt(m)

Pt

)−ζ

Yt (14)

where Pt =
[∫ 1

0 Pt(m)1−ζdm
] 1

1−ζ
. Pt is the aggregate price index. Ct and Pt are Dixit-Stigliz

aggregates – see Dixit and Stiglitz (1977).

Following Calvo (1983), we assume that there is a probability of 1 − ξ at each period that

the price of each retail good m is set optimally to PO
t (m). If the price is not re-optimized,

then it is held fixed. For each retail producer m, given its real marginal cost MCt =
PW
t
Pt

, the

objective is at time t to choose {PO
t (m)} to maximize discounted real profits

Et

∞∑
k=0

ξk
Λt,t+k

Pt+k
Yt+k(m)

[
PO
t (m)− Pt+kMCt+k

]
subject to (14), where Λt,t+k ≡ βk UC,t+k

UC,t
is the stochastic discount factor over the interval

[t, t+ k]. The solution to this is standard and given by

PO
t (m)

Pt
=

ζ

ζ − 1

Et
∑∞

k=0 ξ
kΛt,t+k (Πt,t+k)

ζ Yt+kMCt+k

Et
∑∞

k=0 ξ
kΛt,t+k (Πt,t+k)

ζ (Πt,t+k)
−1 Yt+k

Denoting the numerator and denominator by Jt and JJt, respectively, and introducing a mark-

up shock MSt to MCt, from Online Appendix D we write in recursive form

PO
t (m)

Pt
=

Jt
JJt

(15)
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Jt − ξEt[Λt,t+1Π
ζ
t+1Jt+1] =

1

1− 1
ζ

YtMCtMSt (16)

JJt − ξEt[Λt,t+1Π
ζ−1
t+1JJt+1] = Yt (17)

Using the fact that all resetting firms will choose the same price, by the Law of Large Numbers

we can find the evolution of inflation given by

1 = ξ (Πt−1,t)
ζ−1 + (1− ξ)

(
PO
t

Pt

)1−ζ

(18)

Price dispersion lowers aggregate output as follows. Market clearing in the labour market gives

Ht =
n∑

m=1

Ht(m) =
n∑

m=1

(
Yt(m)

At

) 1
α

=

(
Yt
At

) 1
α

n∑
m=1

(
Pt(m)

Pt

)− ζ
α

using (14). Hence equilibrium for good m gives Yt =
Y W
t
∆α

t
, where price dispersion is defined by

∆t ≡

(
n∑

m=1

(
Pt(m)

Pt

)− ζ
α

)

Assuming that the number of firms is large from Online Appendix E we obtain the following

dynamic relationship

∆t = ξΠ
ζ
α
t ∆t−1 + (1− ξ)

(
Jt
JJt

)− ζ
α

To close the model we first require total profits from retail and wholesale firms, Γt, is remitted

to households. This is given in real terms by

Γt = Yt −
PW
t

Pt
Y W
t︸ ︷︷ ︸

retail

+
PW
t

Pt
Y W
t −WtHt︸ ︷︷ ︸

Wholesale

= Yt − α
PW
t

Pt
Y W
t

using the first-order condition (12). Then to complete closure we have resource and balanced

government budget constraints

Yt = Ct +Gt = Ct + Tt

where Gt is an exogenous demand process, and a monetary policy rule for the nominal interest

rate given by the following implementable Taylor-type rule

log

(
Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+(1−ρr)

(
θπ log

(
Πt

Πtarg,t

)
+θy log

(
Yt
Y

)
+θdy log

(
Yt
Yt−1

))
+ϵMP,t

(19)

and ϵMP,t is an i.i.d. shock to monetary policy. Πtarg,t is a time-varying inflation target and

together with At, Gt, and MSt follows an AR(1) process. This completes the model.

2.3 Recovering the NK Workhorse Model

We now show that the linearized form of the non-linear model about the steady state reduce

to the standard workhorse model in where rational expectations Etyt+1 and Etπt+1 or non-RE

E∗
t yt+1 and E∗

tπt+1 can be treated as expectations by individual households and firms respec-

7



tively of aggregate future output and inflation, respectively. We consider the linearized form

of the above set-up about a zero inflation and growth deterministic steady state. We also ig-

nore lending or borrowing between RE and BR agents. With RE the household j’s first-order

conditions take one of two forms. First, linearizing (11) we have

α1ct(j) = α2wt + α3(ω2,t + rt) + α4ω1,t (20)

ω1,t = α5Etwt+1 − α6Etrt+1 + βEtω1,t+1

ω2,t = (1− β)(γt − gt)− rt + βEtω2,t+1

γt =
1

γy
yt −

α

γy
(wt + ht)

from (11) where lower case variables xt ≡ log(Xt/X) where X is the steady state of Xt; cy ≡ C
Y ,

γy ≡ Γ
Y , gy ≡ G

Y and γt is exogenous profit per household (a function of aggregate consumption

and hours). Positive coefficients are given by α1 ≡ 1 + α
ϕcy

, α2 ≡ (1 − β)(1 + 1
ϕ)

α
cy
, α3 ≡ γy

cy
,

α4 ≡ βα
cy
, α5 ≡ (1− β)(1 + 1

ϕ) and α6 ≡ (1 + 1
ϕ). Alternatively from the Euler equation (4)

ct = Etct+1 − Etrt+1 (21)

in a symmetric equilibrium. Under RE (20) or (21) lead to the same equilibrium, but under

BR this is no longer the case.

Linearizing the household supply of hours decision, the resource constraint and the Fisher

equation we have

yt = (1− gy)ct + gygt (22)

rt = rn,t−1 − πt (23)

ht =
1

ϕ
(wt − ct) (24)

which completes the decisions of the household. Substituting out for ct from (22)

yt = Etyt+1 − (1− gy)Etrt+1 + gy(Etgt+1 − gt) (25)

Turning to the supply side, for the wholesale sector

yt = at + αht (26)

mct = wt − yt + ht (27)

For retail firm m, linearizing the pricing dynamics (15)–(17) about a zero net equation steady

state and solving forwards we have

pot (m)− pt = βξEt[πt+1 + pot+1(m)− pt+1] + (1− βξ)(mct +mst)

= Et

∞∑
i=0

(βξ)i[βξπt+i+1 + (1− βξ)(mct+i +mst+i)] (28)

Then in a symmetric equilibrium we have

πt =
(1− ξ)

ξ

(
Et

∞∑
i=0

(βξ)i[βξπt+i+1 + (1− βξ)(mct+i +mst+i)]

)
(29)
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where Et[πt+i+1] and Et[mct+i+mst+i] are expectations of aggregate inflation and real marginal

costs, both variables exogenous to individual price-setters. However, if price-setters know they

are identical they know the aggregate price level over non-optimizing and optimizing firms

pt(m) = ξpt−1 + (1− ξ)pot (m) (30)

to obtain in a symmetric equilibrium

pot (m)− pt = pot − pt =
ξ

(1− ξ)
(pt − pt−1) =

ξ

(1− ξ)
πt

Then substituting back into (28) we arrive at

πt =
(1− ξ)(1− βξ)

ξ
Et

∞∑
i=0

βi(mct+i +mst+i) (31)

which omits learning about aggregate inflation. Under RE, (29) and (31) are equivalent.

(31) is equivalent to

πt = βEtπt+1 + λ(mct +mst) (32)

where λ = (1−ξ)(1−βξ)
ξ which is the familiar linearized Phillips curve expressed in terms of the

real marginal cost mct and the mark-up shock mst. Substituting for the former from (26) and

(27) we arrive at

πt = βEtπt+1 + λ

(
1 + ϕ

α
(yt − at)−

gy
1− gy

gt +mst

)
(33)

where we note that yt − at is the output gap. Equations (25), (33) and the Taylor rule (19)

constitute the 3-equation NK RE model in output, inflation and the nominal interest rate

given exogenous shock processes for gt, mst and the monetary shock. A simpler form omits

government spending gt so gy = 0 and replaces the aggregate demand shock in (33) with an

exogenous process that can be thought of as a risk premium shock to the Fischer equation (23).

The form of Phillips curve (31) is often used in the behavioural NK literature (see, for

example, De Grauwe, 2012b), but as we have shown, this assumes that firms know they are

identical. In our BR model we use (20) and (29) which do not make this assumption.

3 AU Learning and Market-Consistent Information

With anticipated utility (AU) learning, our learning model is one where agents make fully opti-

mal decisions given their individual specification of beliefs, but have no macroeconomic model

to form expectations of aggregate variables. We draw a clear distinction between aggregate

and internal quantities so that identical agents in our model are not aware of this equilibrium

property (nor any others).

3.1 Forecasting Rules

To close the model, we need to specify the manner in which households and firms form their

expectations. To do so, we assume that variables which are local to the agents, in a geographical

sense, are observable within the period, whereas variables that are strictly macroeconomic are

only observable with a lag. This categorization regarding information about the current state

9



of the economy follows Nimark (2014). He distinguishes between the local information that

agents acquire directly through their interactions in markets and statistics that are collected and

summarized, usually by governments, and made available to the wider public.7 The policy rate

is announced by the central bank, so it is observed without a lag and it is common knowledge.

Given this, we assume an adaptive expectations forecasting rule given below by (35) and (36)

about variables external to agents’ decisions. Let xt = rt, rn,t, πt, wt, γt, gt, then household

expectations are given by

E∗
txt+i = E∗

txt+1 ; i ≥ 1 (34)

Expressing Etω1,t+1 and Etω2,t+1 in (20) as forward-looking summations and using (34), we

arrive at the individual learning consumption equation

α1ct = α2wt + α3(ω2,t + rt) + α4ω1,t

ω1,t =
1

1− β

[
α5E∗

twt+1 − α6(βE∗
t rn,t+1 − E∗

h,tπt+1)
]
− α6rn,t

ω2,t = (1− β)(γt − gt)− rt +
β

1− β
((1− β)(E∗

tγt+1 − E∗
t gt+1)− E∗

t rt+1)

which is now expressed in terms of one-step ahead forecasts by the standard adaptive expecta-

tions rule:8

E∗
txt+1 = E∗

t−1xt + λx(xt−j − E∗
t−1xt) ; x = w, rn, π, γ − g ; j = 0, 1 (35)

Households make inter-temporal decisions for their consumption and hours supplied given adap-

tive expectations of the wage rate, the nominal interest rate, inflation and profits. These macro-

variables may in principle be observed with or without a one-period lag (j = 1, 0), but as stated

earlier we assume j = 0 for market-specific variables wt, γt−gt, and j = 1 for aggregate inflation

πt. However we assume the current nominal interest rate, rn,t, is announced and therefore also

observed without a lag.

We distinguish household and firm expectations E∗
h,tπt+1, E∗

f,tπt+1. Then for retail firm m

E∗
tπt+i+1 = E∗

tπt+1 ; i ≥ 0

E∗
t (mct+i +mst+i) = E∗

t (mct+1 +mst+1) ; i ≥ 1

pot (m)− pt =
βξ

1− β
E∗
f,tπt+1 + (1− βξ)(mct +mst) +

β

1− β
E∗
t (mct+1 +mst+1)

where again one-step ahead forecasts are given by the adaptive expectations rule:

E∗
txt+1 = E∗

t−1xt + λx(xt−j − E∗
t−1xt) ; x = π, (mc+ms); j = 0, 1 (36)

Retail firms make inter-temporal decisions for their price and output given adaptive expectations

of the aggregate inflation rate and their post-shock real marginal shock wage rate. As before

these variables may be observed with or without a one-period lag (j = 1, 0), but for aggregate

inflation we assume j = 1 as for households, but j = 0 for the market-specific variable mct. Note

that we can in principle distinguish between households’ and firms’ expectations of inflation.

7His paper actually focuses on a third category, information provided by the news media, and allows for II in
the form of noisy signals, issues which go beyond the scope of our paper.

8We construct a local variable γ − gt assumed to be observed at the local level. An alternative set-up would
be to assume gt = 0.
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3.2 Alternative Beliefs with Credibility

An extension to our behavioural model in this section is to generalize the adaptive expectations

forecasting rule to allow for partial credibility. The aim is to introduce more rationality in

beliefs with various degrees of credibility which should help improve the empirical performance

of the BR models. To set out a simplified version of the model, instead of assuming one-period

ahead adaptive expectations for Rn,t, we now allow agents to know the rule

Rn,t = Rρr
n,t−1X

1−ρr
t (37)

Xt ≡ Πθπ
t Y

θy
t (Yt/Yt−1)

θdy (38)

but still lack knowledge of the model that generates Πt and Yt.
9 Thus, E∗

tΠt+i = E∗
tΠt+1 and

E∗
tYt+i = E∗

tYt+1 as before and therefore E∗
tXt+i = E∗

tXt+1, but now agents’ beliefs perceive

nominal interest rate persistence with one-period ahead forecasts of Rn,t with

E∗
tRn,t+1 = Rρr

n,tE
∗
tX

1−ρr
t+1 (39)

which with complete credibility now replaces the adaptive expectations rule

E∗
tRn,t+j = E∗

tRn,t+1 = E∗
t−1Rn,t + λ1(Rn,t − E∗

t−1Rn,t); j ≥ 1 (40)

Partial credibility can be modelled by the following rule which is set up relative to a given

steady state

E∗
tRn,t+j/Rn = ωE∗

tRn,t+1/Rn = (Rn,t/Rn)
ρrE∗

t (Xt+1/X)1−ρr

+ (1− ω)(E∗
t−1Rn,t + λ1

(
Rn,t − E∗

t−1Rn,t)
)
/Rn ; j ≥ 1 (41)

where ωx = 0 reduces to the previous model, ωx = 1 assumes full credibility and ωx ∈ [0, 1],

where x = h, f , measures various degrees of credibility.

4 Rational Expectations: Perfect vs Imperfect Information

We now examine the information assumptions that are made explicitly or implicitly in the RE

and boundedly rational forms of the NK model. The linearized form of the NK model has the

following a state-space form that applies to both the PI and II cases:10[
zt+1

Etxt+1

]
= G

[
zt
xt

]
+H

[
Etzt
Etxt

]
+

[
B

0

]
ϵt+1 (42)

mA
t =

[
M1 M2

] [ zt
xt

]
+
[
M3 M4

] [ Etzt
Etxt

]
(43)

where zt is a (n − m) × 1 vector of predetermined variables at time t with z0 given, xt is a

m× 1 vector of non-predetermined variables at time t and mA
t is a vector of observable

macro-economic variables of the agents, which when we come to estimation will be the data

used by the econometrician. All variables are expressed as proportional deviations about a

9We can conceive this as a credibility assumption where the policymaker announces and commits to the rule.
10Levine et al. (2023) derive this result that applies to a general linear RE model such as the linearized form

of the NK model of Section 2.
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steady state. G, H, B and Mi, i = 1, 4 are fixed matrices, ϵt is a vector of random Gaussian

zero-mean shocks. RE under PI are formed assuming a full information set {zs, xs, ϵs}, s ≤ t

so that we can put H = M3 = M4 = 0 and [M1 M2] is the identity matrix. Note that the

expressions involving Etzt,Etxt arise from writing the original model in Blanchard-Kahn form

(42).

If the number of eigenvalues outside the unit circle is equal to the number of non-predetermined

variables, the system has a unique equilibrium which is also stable with saddle-path xt = −Nzt
where N will depend on the instrument rules incorporated into the set-up (42) (see Blanchard

and Kahn, 1980; Currie and Levine, 1993). Instability (indeterminacy) occurs when the num-

ber of eigenvalues of G + H outside the unit circle is larger (smaller) than the number of

non-predetermined variables. We proceed on the assumption that the determinacy-stability

condition holds.

For ease of notation we assume that if any variables are observed with measurement error,

then these variables are included in the state space, and the measurement errors are then part

of the vector ϵt. Given the fact that expectations of forward-looking variables depend on the

information set, it is hardly surprising that the absence of PI will impact on the path of the

system.

4.1 The RE Solution Under Perfect and Imperfect Information (PI and II)

A full derivation of the II solution for the general linear setup above is provided in Pearlman

et al. (1986). We now provide an outline solution starting with the PI solution. For this case we

assume (without seeking to justify this assumption) that the single agent directly observes all

elements of Yt, hence of (zt, xt) as an endowment. Hence zt,t = zt, xt,t = xt, and using standard

solution methods, there is a saddle path satisfying

xt +Nzt = 0 where
[
N I

]
(G+H) = ΛU

[
N I

]
(44)

where ΛU is a matrix with unstable eigenvalues. The saddlepath matrix N can be calculated

by standard techniques. If the number of unstable eigenvalues of (G + H) is the same as the

dimension of xt, then the system will be determinate.

Given this determinacy condition, after substituting for xt, a unique saddle-path stable RE

solution exists for the states under PI of the following form

zt = Azt−1 +Bεt (45)

where

A ≡ G11 +H11 − (G12 +H12)N (46)

Under II, the transformation of the non-linear model into the form (42) and (43) allows

us to apply the solution techniques originally derived in PCL. We briefly outline this solution

method below.

We first define matrices G and H in (42) conformably with zt and xt, and define two more

structural matrices F , J

G ≡

[
G11 G12

G21 G22

]
H ≡

[
H11 H12

H21 H22

]
(47)
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F ≡ G11 −G12G
−1
22 G21 J ≡ M1 −M2G

−1
22 G21 (48)

where F and J capture intrinsic dynamics in the system, that are invariant to expectations

formation. Both PCL and BGW show that the filtering problem is unaffected by these additional

terms.11

Following PCL, we apply the Kalman filter updating given by[
zt,t
xt,t

]
=

[
zt,t−1

xt,t−1

]
+K

[
mA

t −
[
M1 M2

] [ zt,t−1

xt,t−1

]
−
[
M3 M4

] [ zt,t
xt,t

]]

The single agent’s best estimate of (zt, xt) based on current information is a weighted average

of their best estimate using last period’s information and the new information mA
t . Thus the

best estimator of (zt, xt) at time t − 1 is updated by the “Kalman gain” K of the error in

the predicted value of the measurement. PCL show that K is solved endogenously as K =[
PAJ ′

−NPAJ ′

]
[(M1 −M2N)PAJ ′]−1, where PA is defined below in (55), but this version of the

Kalman gain is not directly incorporated into the solution for (zt, xt).

The unique saddle-path stable solution under II, as derived by Pearlman et al. (1986) for the

pre-determined and non-predetermined variables zt and xt, can then be described by processes

for the predictions zt,t−1 and for the prediction errors z̃t ≡ zt − zt,t−1:

Predictions : zt+1,t = A (zt,t−1 +KJz̃t) (49)

Prediction Errors : z̃t = QAz̃t−1 +Bεt (50)

Non-predetermined : xt = −N (zt,t−1 +KJz̃t)−G−1
22 G21 (I −KJ) z̃t (51)

Measurement Equation : mA
t = E (zt,t−1 +KJz̃t) (52)

where

K =PAJ ′ (JPAJ ′)−1
; QA = F [I −KJ ] (53)

F and J are as defined above in (48), K is an alternative Kalman gain matrix after stripping

out the predictable variation in the state variables zt+1 arising from dependence on xt. The

matrix A, defined in (46), is the autoregressive matrix of the states zt in the solution under PI.

We have introduced another non-structural matrix E defined by

E ≡ M1 +M3 − (M2 +M4)N (54)

which captures the impact of predictions and prediction errors for zt on observable variables.

B captures the direct (but unobservable) impact of the structural shocks εt and PA = E[z̃tz̃′t]
is the solution of a Riccati equation given by

PA = QAPAQA′
+BB′ (55)

To ensure stability of the solution PA, we also need to satisfy the convergence condition,

that QA has all eigenvalues in the unit circle. Since the matrix QA is also the autoregressive

matrix of the prediction errors z̃t in (50), this is equivalent to requiring that prediction errors

11By substituting from the second block of equations in (42), we can write zt = Fzt−1+

[
B
0

]
εt+1 plus

additional terms involving expectations formed at time t; and mA
t = Jzt+ additional terms likewise. Since all

expectational terms are known at time t, they do not affect the solution to the filtering problem.
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are stable. Since there is a unique solution of the Riccati equation under mild conditions that

satisfies this condition, it follows that the solution (49)–(52) is also unique thereby extending

this property of the PI BK solution to the II case.

We can thus see that the solution procedure above is a generalization of the BK solution for

PI and that the determinacy of the system is independent of the information set.

We finally note that the II solution can be transformed into the PI solution when the agent’s

information set is (zt, xt). Choose just a subset of the information, mt = Jzt, such that JB is

invertible. We then deduce from (55) that PA = BB′ and hence z̃t = Bεt. Substituting into

(49) yields zt+1,t = Azt,t−1 + ABεt = A(zt,t−1 + z̃t) = Azt. Adding this to z̃t+1 = Bεt+1 yields

zt+1 = Azt +Bεt+1, the PI solution.

4.2 Misperceptions about Shocks under II

Before turning to the heterogeneous composite expectations RE-BR model we first examine the

pure RE model under the two information assumptions PI and II. The model has 4 exogenous

AR(1) shocks for technology, the price mark-up, government spending and the inflation target.

We focus on the first three of these and in addition the i.i.d monetary shock. There is in

addition i.i.d measurements errors for output and inflation and an i.i.d shock to the trend. this

makes 8 shocks in total with only three observable variables. It follows from Section 4.3 that

RE solutions under PI and II must differ. A full examination of these differences is deferred to

Section 6.8; here we focus on the misperceptions of our selection of shocks under II.

Figures 1 and 2 compare the actual structural unobserved shock process xt with the agents

belief Et[xt] for each of the four processes in turn. In Figure 1 (a) under II the rational agents

mistake a technology shock for a combination of negative mark-up, monetary policy and govern-

ment spending shocks. Given their observations of lagged output and inflation and the current

nominal interest rate these beliefs obtained by Kalman Filter learning constitute a RE saddle-

path stable equilibrium. In Figure 1 (b) A far less extreme confusion takes place with a price

mark-up shock that is perceived only temporarily as a negative technology and monetary policy

shocks alongside a boost to government spending.

The i.i.d monetary policy shock in Figure 2 (a) is barely picked up at all and perceived

of a combination of small shocks to technology, the price mark-up and government spending.

Finally in Figure 2 (b), the government spending shock is almost completely picked up but there

remains a misperception of a small expansionary monetary policy that cancels out a temporary

negative technology and positive mark-up shocks.

4.3 When PI and II RE Solutions Differ and Heuristic Forecasting Rules

We now pose the question: given the agents’ and econometrician’s information set, under what

conditions do the RE solutions under agents’ different the information sets PI and II actually

differ? When can the both agents and econometrician infer the full state vector, including

shocks?

To address this question we consider the data series mt = [yt, πt, rn,t]
′. We assume these

are also the observations of the agents so mA
t = mt in (43). Observing these three time-series

under RE may enable agents (and the econometrician) to back out the shocks and by expressing

mt as an infinite VAR (Fernandez-Villaverde et al., 2007 and Levine et al., 2012). This is the

case of invertibility. A necessary condition is that the number of shocks equals the number of

observables. In the NK model there are 3 variables in the observations and 4 exogenous AR(1)
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Figure 1: Estimated Pure RE: Misperceptions About the Shocks under II. The
graphs compare the actual structural unobserved shock process xt with the agents
belief Et[xt]. Technology and Price mark-up Shocks.
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Figure 2: Estimated Pure RE: Misperceptions About the Shocks under II. The
graphs compare the actual structural unobserved shock process xt with the agents
belief Et[xt]. Monetary Policy and Government Policy Shocks.
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processes (At, Gt, MSt, Πtarg,t). For now let us drop one of these shocks to give a square system

which may be invertible.

To derive the necessary and sufficient conditions for invertibility, write the RE solution for

both PI and II set out in the previous sub-section as the following VARMA process

st = Ãst−1 + B̃ϵt (56)

mt = Ẽst−1 = C̃st−1 + D̃ϵt (57)

where C̃ ≡ ẼÃ and D̃ ≡ ẼB̃.

For the PI case, given the informational assumptions set out above, we have, straightfor-

wardly, st = zt, Ã = A, B̃ = B, Ẽ = E. For the II case, we have

st =

[
zt,t−1

z̃t

]
(58)

Ã ≡

[
A AKJ

0 QA

]
(59)

B̃ ≡

[
0

B

]
(60)

Ẽ ≡
[
E EKJ

]
(61)

where K, QA and E are as defined in (53) to (55).

Because we have three shocks and three observables, the matrix D̃ is square. Assume

now it is also non-singular which is only possible if mt are observations without lags. Then

ϵt = D̃−1(mt − C̃zt−1) and substituting into (56) and denoting the lag operator by L, we have

[(I − (Ã− B̃D̃−1C̃)L]zt = B̃D̃−1mt (62)

Hence combining (56)–(62) we have

zt =
∞∑
i=0

(Ã− B̃D̃−1C̃)iB̃D̃−1mt−i (63)

mt = C̃
∞∑
i=1

(Ã− B̃D̃−1C̃)iB̃D̃−1mt−i + D̃ϵt (64)

Convergence of the summations in (63) and (64) requires that the matrix (Ã− B̃D̃−1C̃) has all

eigenvalues within the unit circle. Then equation (64) is an infinite VAR for the three observables

mt = [yt, πt, rn,t]
′ which is estimatable from output, inflation and interest rate data.12 It follows

that the RE forecast is

Etmt+1 = C̃

∞∑
i=0

(Ã− B̃D̃−1C̃)iD̃−1mt−i (65)

12See Levine et al. (2023) for a full treatment of invertibility under PI or II.
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whereas the adaptive heuristic rules (66) and (67)

E∗
t yt+1 =

∞∑
i=0

λi
yyt−i ; or E∗

t yt+1 =
∞∑
i=1

λi
yyt−i (66)

E∗
tπt+1 =

∞∑
i=0

λi
ππt−i ; or E∗

tπt+1 =
∞∑
i=1

λi
ππt−i (67)

for the two cases of non-lagged and lagged data for output and inflation. These we can see

are parsimonious representations of (65) so we can interpret the heuristic rules as parsimonious

forecasting models in which non-rational agents choose under-parameterized predictors (see

Branch and Evans, 2011).

We conclude that unless shock processes are either known or observed then at best with the

number of shocks equal to the number of observables and no lags in the latter, a well-specified

forecasting rule in the form of an infinite VAR is available.13 Otherwise the VARMA solution

(56)–(57) is not invertible. In fact none of these conditions are satisfied in the set-up we consider

when we come to estimation: we have more shocks than observables, our heuristic rules assume

aggregate variables are observed with a lag14 and there are extra i.i.d. shocks that to consider

in the form of measurement errors and a shock to trend. Neither the econometricians nor the

agents can back out the shock processes from their information set and it is this feature that

drives the wedge between PI and II.

5 Heterogeneous Expectations: Persistence through Bounded

Rationality

Now we turn to the heterogeneous expectations model with BR(AU) agents alongside RE agents

with fixed proportions of each type. We assume all RE agents know the composite model. In

addition we impose informational inconsistency by assuming they have the same II set as the

BR(AU) agents. The latter do not know the model, but do make individually optimal decisions

given individual observations of the states and belief formations. The composite RE-BR model

then has an equilibrium (in non-linear form)

Hd
t = nh,t (H

s
t )

RE + (1− nh,t) (H
s
t )

BR

Ct = nh,t (Ct)
RE + (1− nh,t) (Ct)

BR = Yt −Gt

P o
t

Pt
= nf,t

(
P o
t

Pt

)RE

+ (1− nf,t)

(
P o
t

Pt

)BR

Zero net wealth in aggregate implies that nh,tB
RE
t = −(1−nh,t)B

BR
t . We consider the properties

of the model with fixed exogenous proportions of RE and BR agents.

For our model of BR with AU, Figure 3 plots the impulse response functions (IRFs) with

standard parameters for the rule for a shock to monetary policy under fast and slow learning.

Figures 1 and 2 in Online Appendix E show IRFs for the technology and mark-up shocks. Not

surprisingly fast learning sees an IRF converge faster to the RE case, but in either case BR

introduces more persistence compared with RE. This suggests that this feature should lead to

13Approximating the infinite lag with a finite one introduces a further degree of misspecification.
14Bullard and Eusepi (2014) also examine learning with lagged observations which is distinct from rational

expectations with II considered in this paper.
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Figure 3: RE vs RE-BR Composite Expectations with nh = nf = 0.5, λx = 0.25, 1.0;
Taylor rule with ρr = 0.7, θπ = 1.5 and θy = 0.3, θdy = 0; Monetary Policy Shock

a better fit of the data without relying on other persistence mechanisms (shocks, habit or price

indexing). This we examine in the estimation of our model.15

6 Bayesian Estimation

We now turn to the estimation of an empirical NK behavioural model which differs from the

linearized form used up to now in two respects. First, we retain the Gt shock process but drop

the risk premium RSt. Second, we assume that the steady state about which the perturbation

solution is computed has a non-zero net growth and inflation. The former is stochastic and given

by gt = (1 + g) exp(ϵAtrend) − 1 where ϵAtrend is a shock to technology trend. The estimation

then is conducted to be consistent with the long-term trend of output and inflation in the data

used in the estimation.

6.1 The Models and Observables

We estimate five models with wealth distribution (Table 1). For the RE agents in either the

‘pure’ or composite RE model, we assume and compare the PI or II sets as discussed in Section

4. composite model with RE(II) and BR(AU) learning

6.2 The Models and Observables

We estimate five models with wealth distribution (Table 1). For the RE agents in either the

‘pure’ or composite RE model, we assume and compare the PI or II sets as discussed in Section

4.

15The stability properties of the model are examined in the WP version of the paper.
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Model Description

Pure RE(PI) NK RE model under PI

Pure BR(AU) NK model with AU learning

Comp RE(PI)-BR(AU) Composite model with RE(II) and BR(AU) learning

Pure RE(II) NK RE model solved and estimated under II

Comp RE(II)-BR(AU) Composite model with RE(II) and BR(AU) learning

Table 1: Summary of Estimated Models

Bayesian methods are employed using Dynare adapted to handle II.16 The sample period is

1984:1-2008:2, a subset of that used in Smets and Wouters (2007), which is also used extensively

in the empirical and RBC literature. These observable variables are the log differences of real

GDP (GDPt) and the GDP deflator (DEFt), and the federal funds rate (FEDFUNDSt). All

series are seasonally adjusted and taken from the FRED Database available through the Federal

Reserve Bank of St.Louis and the US Bureau of Labour Statistics.

6.3 The Measurement Equations and Priors

The corresponding measurement equations for the 3 observables are17 D(logGDPt) ∗ 100
log(DEFt/DEFt−1) ∗ 100
FEDFUNDSt/4 ∗ 100

 =


log
(

Yt

Y t

)
− log

(
Yt−1

Y t−1

)
+ trend + ϵy,t − ϵy,t−1 + ϵA,t

log
(
Πt
Π

)
+ consπ + ϵπ,t

log
(
Rn,t

Rn

)
+ consr


where constants trend, consπ and consr are related to the steady state of our model by log(1+

g) = trend/100, Π = consπ/100 + 1 and Rn = Π
βg

= Π(1+g)
β = consr/100 + 1, respectively.18

We introduce measurement errors on two observables, output and inflation (ϵy,t and ϵπ,t) so

in total there are 3 variables in the observations, 4 exogenous AR(1) processes (At, Gt, MSt,

Πtarg,t) and 4 further i.i.d. shocks including measurement errors, ϵMP,t, ϵAtrend,t and ϵy,t, ϵπ,t.
19

Thus there are 8 shocks and 3 observables meaning that the invertibility condition discussed

in Section 4 is not satisfied. Structural parameters [ζ, α] are fixed with standard choices from

the DSGE literature. These parameters are necessary to solve and linearize the models but are

problematic for identification.

For the remainder of parameters gamma and inverse gamma distributions are used as priors

when non-negativity constraints are necessary, and beta distributions for fractions or probabil-

ities. Normal distributions are used when more informative priors seem to be necessary. The

values of priors are in line with those in Smets and Wouters (2007). For the Taylor rule param-

eter on inflation the prior is set to obey the Taylor principle is centred at the value suggested

by Taylor. The beta distribution we use on the adaptive expectations learning parameters λx

and ωx also restricts it to the open unit interval with support of 0.28 standard deviation, which

is the highest value for a beta distribution, to impose more prior uncertainty. For all these

16Levine et al. (2020) provides full details of this addition to Dynare.
17Yt = GDPt, Y t =trend and trend growth =log Y t−log Y t−1 = log(1+g)+ϵA,t. ϵy,t and ϵπ,t are measurement

equations for output and inflation, respectively.
18This implies that β is determined empirically as β =

(
consπ+100
consr+100

)
(1 + g).

19The monetary policy rules for the nominal interest rate and the AR(1) processes we use in the estimation
are specified in Online Appendix B. The AR(1) models introduce 4 AR coefficients [ρA, ρG, ρMS , ρπ] and 4 i.i.d.
shocks [ϵA,t, ϵG,t, ϵMS,t, ϵπ,t].
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beta distribution parameters, we centre the prior density in the middle of the unit interval.

For the parameters for the proportions of rationality nh and nf , we draw our priors from an

interval nh, nf ∈ [0, 1]. Our prior mean nh, nf = 0.5 lies at the mid-point of this range which

is uniformly distributed. A common theme in papers that study empirical RBC/DSGE models

is the difficulty in pinning down the parameter of labour supply elasticity ϕ. Inference on the

inverse Frisch elasticity of labour supply has been found susceptible to model specifications,

and exhibiting wide posterior probability intervals. So we assume a normal distribution with

mean 2.0 and standard deviation of 0.5 for the parameter which is well within the range of point

estimates reported in the RBC and labour literature.

6.4 Posterior Simulations, Identification

The posterior mode and the Hessian matrix are obtained via standard numerical optimization

routines. The latter is then used in the Metropolis-Hastings (MH) algorithm to generate a sam-

ple from the posterior distribution. For each estimated model, two parallel chains of 1,000,000

random draws are used in the Monte-Carlo Markov Chain Metropolis-Hastings (MCMC-MH)

algorithm. We run an iterative process of MCMC simulations in order to calibrate the scaling

factor to achieve the desired rate of acceptance which is key for the speed of convergence of the

MCMC-MH chains, which are also sensitive to the number of MCMC iterations. The former

ensures that more of the parameter region is searched more regularly, but at the expense of

reducing the acceptance ratio. In this estimation the number of draws we choose is sufficient to

allow for convergence.20

Based on the prior information, we first conduct some pre-estimation identification diag-

nostics and report them in detail in Online Appendix F. The aim of this exercise is to scan

the parameters we choose to estimate in terms of their identification in our models. We focus

this exercise on the most general Comp RE-BR(AU) model and on the identification evaluation

at the point values of the prior means and from a Monte Carlo sample drawn from the prior

space. Our checks are also performed for the identification evaluation at the point values of

the posterior means. To focus on the case when weak identification arises, Figure 9 in Online

Appendix F also shows the identification strength and sensitivity component in the moments

using the composite RE-BR priors and estimation results. Although, no parameter identifica-

tion difficulties are detected from both the prior space and across the estimated parameters,

the sensitivity strength in the moments of a few parameters at their posterior mean point is

relatively weak. In light of the findings, we perform a number of robustness checks.

6.5 Bayes Factor Comparison

We first focus on Pure RE, Pure BR(AU) and Comp RE(PI)-BR(AU) when RE agents have

a PI set. We employ the Bayes Factor (BF) from the model marginal likelihoods to gauge the

relative merits across the three models in Table 2.

The BR models - Pure BR(AU) and Comp RE(PI)-BR(AU) - all substantially outperform

their RE counterpart which is firmly rejected by the data. Formally, using the Bayesian sta-

tistical language of Kass and Raftery (1995), a BF, the quotient of the probabilities reported,

greater than 100 (marginal log-likelihood difference over 4.61) offers “decisive evidence”. Thus,

we have decisive support for the pure BR and some composite behaviour from the US data we

observe. The BF difference between the non-RE models is also strong.

20To formally test and to check the convergence, besides calibrating the acceptance rate, we use the convergence
indicators recommended by Brooks and Gelman (1998) and Gelman et al. (2004).
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Model Pure RE(PI) Pure BR(AU) Comp RE(PI)-BR(AU)

LL 1656 1666 1672

Prob 0.0000 0.0034 0.9966

Table 2: Log-likelihood Values and Posterior Model Odds: RE Agents with PI

Next we assume an II set for the RE agents: It = [Ys−1,Πs−1, Rn,s], s ≤ t. An important

point to stress is that this is the same information set we assume for BR agents when they come

to update their heuristic rule. In this sense, we now have informational consistency across BR

and RE agents, and also with the econometrician estimating the model. This feature we believe

is new for the heterogeneous behavioural NK model literature. The results for the likelihood

race are reported in Table 3.

Model Pure RE(II) Pure BR(AU) Comp RE(II)-BR(AU)

LL 1692 1666 1708

Prob 0.0000 0.0000 1.0000

Table 3: Log-likelihood Values and Posterior Model Odds: RE Agents with II

A very similar picture emerges when comparing the RE model with the behavioural alterna-

tives. Two results are worth noting. First, RE with imperfect information (Pure RE(II)) wins

the likelihood race against both Pure BR(AU) and Pure RE(PI). Again, in formal Bayesian

language, the RE(II) model decisively dominates the pure BR-AU-learning model and, not sur-

prisingly, decisively dominates RE(PI) - a finding that is consistent with that in Levine et al.

(2012). The second interesting result is that, when the composite heterogenous expectations

model is estimated assuming the same II information set for everyone (Comp RE(II)-BR(AU)),

it generates the highest log-likelihood value and outperforms all the completing models in fitting

the data. In Section 6.7, we examine whether the ability to match second moments of the data

is able to provide more evidence.

6.6 Parameter Estimation Results

Table 4 contains summary statistics of the posterior distributions of the NK models. We report

posterior means of the parameters of interest and 95% probability intervals alongside the poste-

rior marginal likelihoods for all 7 models so far: Pure RE(PI), Pure BR(AU), Comp RE(PI)-BR

with n = 0.5, 0.1, Comp RE(PI)-BR(AU), Pure RE(II) and Comp RE(II)-BR(AU). As expected,

the RE solutions yield the estimates that are in the range often found in the existing literature.

The BR solution equilibrium we propose departs from the standard RE solutions and allows

a process of adaptive learning driven by the speed of learning parameter λx ∈ [0, 1] for the

household and firms, respectively.

Focusing on the parameter characterizing the degree of price stickiness, ξ, the mean esti-

mates report an average price contract duration of around 2.70 and 3.45 quarters for BR and

RE(PI)-BR. Their estimated 95% intervals imply that price contracts change in the ranges of

∈ (2.33, 3.23) and ∈ (2.94, 4.00) suggesting that the firms of BR and RE-BR economies change

prices as frequently as once every 2.33 quarters. The estimated contract length is shorter in the

non-pure-RE models.

Interesting to note that, assuming very diffuse priors on the learning parameters λx, we find

22



Parameter Notation Prior distribution Pure RE(PI) Pure BR(AU) RE(PI)-BR(n=0.1)RE(PI)-BR(n=0.5)RE(PI)-BR(AU) Pure RE(II) RE(II)-BR(AU)

DensityMeanS.D/df

Calvo prices ξ B 0.50 0.10 0.77 [0.73:0.81] 0.63 [0.57:0.69] 0.66 [0.61:0.71] 0.70 [0.64:0.76] 0.71 [0.66:0.75] 0.84 [0.80:0.87] 0.67 [0.59:0.74]
Labour supply elasticityϕ N 2.00 0.50 0.54 [0.26:0.85] 0.70 [0.16:1.20] 0.52 [0.12:0.90] 0.65 [0.18:1.11] 1.24 [0.53:1.85] 2.88 [1.64:4.14] 3.86 [2.77:4.97]

Adaptive learning
Learning ∈ [0, 1] λh B 0.50 0.28 - 0.20 [0.13:0.26] 0.21 [0.14:0.27] 0.23 [0.17:0.30] 0.27 [0.12:0.35] - 0.04 [0.01:0.07]
Learning ∈ [0, 1] λf B 0.50 0.28 - 0.05 [0.01:0.09] 0.05 [0.01:0.08] 0.17 [0.04:0.29] 0.03 [0.01:0.05] - 0.08 [0.00:0.16]
Credibility ∈ [0, 1] ωh B 0.50 0.28 - 0.95 [0.90:1.00] 0.95 [0.88:1.00] 0.94 [0.87:1.00] 0.93 [0.86:1.00] - 0.96 [0.91:1.00]
Credibility ∈ [0, 1] ωf B 0.50 0.28 - 0.52 [0.12:0.99] 0.52 [0.11:0.99] 0.50 [0.03:0.92] 0.43 [0.00:0.84] - 0.53 [0.13:0.99]

Proportion of rationality
Rational households nh U 0.5 0.2887 1.00 0.00 0.10 0.50 0.45 [0.42:0.50] 1.00 0.95 [0.92:0.97]
Rational firms nf U 0.5 0.2887 1.00 0.00 0.10 0.50 0.04 [0.00:0.10] 1.00 0.16 [0.00:0.51]

Interest rate rule
Inflation θπ N 1.50 0.25 1.58 [1.38:1.79] 1.42 [1.10:1.75] 1.36 [1.10:1.63] 1.91 [1.65:2.16] 1.57 [1.33:1.80] 1.97 [1.68:2.27] 2.14 [1.83:2.43]
Output θy N 0.12 0.05 0.04 [-0.00:0.08]0.13 [0.07:0.18] 0.09 [0.04:0.14] 0.10 [0.05:0.14] 0.01 [-0.05:0.07] 0.19 [0.12:0.24] 0.14 [0.08:0.19]
Output growth θdy N 0.12 0.05 0.22 [0.18:0.27] 0.08 [0.03:0.13] 0.09 [0.04:0.13] 0.09 [0.04:0.14] 0.11 [0.07:0.15] 0.12 [0.04:0.19] 0.22 [0.15:0.29]
Interest rate smoothing ρr B 0.75 0.10 0.76 [0.71:0.80] 0.35 [0.26:0.44] 0.39 [0.33:0.45] 0.35 [0.28:0.43] 0.32 [0.25:0.40] 0.41 [0.31:0.51] 0.41 [0.31:0.50]

AR(1) coefficients
Technology ρA B 0.50 0.20 0.62 [0.40:0.84] 0.95 [0.90:0.99] 0.95 [0.91:0.99] 0.96 [0.92:0.99] 0.92 [0.87:0.99] 0.50 [0.18:0.83] 0.51 [0.17:0.85]
Government spending ρG B 0.50 0.20 0.94 [0.92:0.97] 0.50 [0.17:0.83] 0.50 [0.16:0.82] 0.51 [0.14:0.80] 0.45 [0.14:0.80] 0.88 [0.84:0.91] 0.85 [0.80:0.90]
Price mark-up ρMS B 0.50 0.20 0.39 [0.30:0.47] 0.97 [0.94:0.99] 0.97 [0.95:0.99] 0.97 [0.95:0.99] 0.96 [0.94:0.99] 0.97 [0.95:0.99] 0.97 [0.96:0.99]
Inflation target ρπ B 0.50 0.20 0.99 [0.98:1.00] 0.92 [0.87:0.98] 0.96 [0.94:0.99] 0.96 [0.94:0.99] 0.98 [0.96:0.99] 0.76 [0.68:0.83] 0.76 [0.61:0.95]

Standard deviation of shocks
Technology trend ϵAtrend IG 0.10 2.00 0.47 [0.41:0.52] 0.37 [0.29:0.45] 0.34 [0.26:0.42] 0.34 [0.26:0.42] 0.29 [0.21:0.37] 0.48 [0.42:0.54] 0.48 [0.42:0.54]
Technology ϵA IG 0.10 2.00 0.07 [0.02:0.12] 0.54 [0.46:0.61] 0.53 [0.45:0.60] 0.53 [0.45:0.60] 0.52 [0.45:0.58] 0.06 [0.02:0.10] 0.07 [0.03:0.11]
Government spending ϵG IG 0.10 2.00 2.34 [1.93:2.74] 0.10 [0.02:0.18] 0.17 [0.02:0.44] 0.17 [0.02:0.44] 0.08 [0.02:0.14] 3.18 [2.43:3.91] 4.57 [3.83:5.79]
Price mark-up ϵMS IG 0.10 2.00 0.09 [0.02:0.17] 1.35 [0.95:1.75] 1.05 [0.75:1.35] 1.05 [0.75:1.35] 1.42 [0.96:1.87] 1.95 [1.18:2.74] 2.50 [1.89:3.10]
Inflation target ϵπ IG 0.10 2.00 0.05 [0.03:0.06] 0.19 [0.14:0.25] 0.20 [0.17:0.24] 0.20 [0.17:0.24] 0.18 [0.15:0.22] 0.19 [0.15:0.22] 0.13 [0.06:0.19]
Monetary policy ϵMP IG 0.10 2.00 0.22 [0.18:0.25] 0.07 [0.03:0.11] 0.05 [0.03:0.07] 0.05 [0.03:0.07] 0.06 [0.03:0.08] 0.05 [0.03:0.08] 0.10 [0.03:0.18]

Price contract length 1
1−ξ - - - 4.35 2.70 2.94 3.33 3.45 6.25 3.03

Marginal likelihood 1655.838984 1666.473189 1673.903923 1671.310091 1672.140275 1691.799452 1708.046087

Table 4: Bayesian Prior and Posterior Distributions for RE, BR and Composite
RE-BR Models: Perfect Information (PI) and Imperfect Information (II) Assumptions for
RE Agents. For all estimated models we use observations with a lag and the information set
for lag 1 case at time t is It = {Yt−1,Πt−1, Rn,t}. n = nh = nf = 0.1, 0.5 are also imposed in
this estimation. The trend or mean of the data variables are calculated directly from the data
and not estimated with the rest of the model. The steady state is consistent with these values.

that the data is very informative about these parameters, strengthening the strong empirical

support from the observations for the learning processes in the BR and RE-BR economies which

improve on RE without consistent information assumptions. This observation also applies to

the estimated proportions of rational or BR agents. In addition, none of the estimated λx is

very close to 0, suggesting that some form of information without RE is relevant for updating

and learning in the 5 BR models. For example, our estimates suggest that some fast learning

takes place in the household sector (λh is around 0.20-0.27), although when agents have the

same II set λh has become much smaller (0.04). The explanation is clear: with RE(II), learning

from lagged information becomes less relevant.

For the policy rule, we find that for the behavioural models there is a low degree of per-

sistence in the nominal interest rate which is much lower than observed in the literature. The

responses to output (θy, θdy) are very low, in some cases, nearly non-existent, while the feedback

to inflation (θπ) is strong, implying a stronger concern from the monetary authorities about in-

flation variability, relative to the moments in output, which is caused by the varying forecast

behaviours from agents’ heterogenous expectations.

The estimates of the AR(1) coefficients show that the inflation target and price mark-up

shocks are significantly inertial. With BR in the model, the exogenous price mark-up shock

volatility contributes the most to the variation in the data and the monetary/fiscal policy

volatility matters much less for this aspect of the fit. Assuming II in the model, the govern-

ment spending volatility has increased significantly. The price mark-up shock (the uncertainty

interval) is sightly larger than that of the RE model because the expectation heterogeneity

in the model increases inflation volatility (uncertainty) and acts as a persistent force in this
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behavioural economy in the inflation fluctuations (this is also evident in Section 6.7 when we

examine the implied model moments).

Overall, the parameter estimates are reasonably robust across information specifications, de-

spite the fact that the II alternative leads to a much better model fit based on the corresponding

posterior marginal likelihood. It is interesting to note that the point estimates of almost every

single parameter under II are tighter and more strongly determined compared with the case

under PI which this helps to explain its superior performance in the likelihood race.

6.7 Matching Second Moments

In this sub-section, we examine the model second moments, which has been a standard practice

for researchers in the RBC tradition. We consider second moments and autocorrelations in turn.

We mainly focus our analysis on the baseline RE model with its II variant, the behavioural BR

and the outperforming composite models.

In terms of matching volatility the behavioural composite RE(II)-BR(AU) is able to match

precisely the interest rate standard deviation in the data and performs very well at matching the

data, whereas the pure RE model (including Comp RE(PI)-BR(AU)) performs rather poorly

at capturing inflation and interest rate volatility, lying well-outside the 95% confidence bands.

However, for the behavioural composite, there is room for improvement in matching inflation

volatility. The model’s ability of matching inflation moments is distorted, generating more

volatility in inflation than the data and as noted this can be explained by the role played

by the more volatile pricing shock (ϵMS) found in the estimated models which gives rise to

the amplification effects on inflation dynamics caused by the expectation heterogeneity in the

behavioural economy. The pure BR model is able to reduce this volatility while still matching

output well.

Standard Deviation
Output Inflation Interest rate

US Data 0.58 0.24 0.61
(0.50, 0.69) (0.21, 0.27) (0.55, 0.70)

Pure RE(PI) 0.80 0.88 0.86
Pure BR(AU) 0.68 0.84 0.71
Comp RE(PI)-BR(AU) 0.66 1.68 1.29
Pure RE(II) 0.74 0.66 0.76
Comp RE(II)-BR(AU) 0.66 0.39 0.60

Cross-correlation with Output
US Data 1.00 -0.12 0.22

(-) (-0.31, 0.10) (0.02, 0.39)
Pure RE(PI) 1.00 0.04 -0.04
Pure BR(AU) 1.00 -0.02 0.00
Comp RE(PI)-BR(AU) 1.00 -0.02 -0.01
Pure RE(II) 1.00 -0.01 0.01
Comp RE(II)-BR(AU) 1.00 -0.07 -0.03

Table 5: Selected Second Moments (At the Posterior Means): For the empirical mo-
ments computed from the data set the bootstrapped 95% confidence bounds based on the sample
estimates are presented in parentheses.

Table 5 also reports the cross-correlations of the 3 observable variables vis-a-vis output.

All the estimated models except Pure RE(PI) do well and predict the correct sign for the

output-inflation cross-correlation and the best performing Comp RE(II)-BR(AU) is also highly
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successful in reproducing the co-movement in the data. However, in terms of the output-interest

rate correlation, all models perform poorly and most have the wrong sign although the RE(II)

assumption improves in this dimension, getting the correct sign and closer to the bootstrapped

95% lower bound. Overall, the strength of the composite-II behaviour in reproducing business

cycles lies in the output and interest rate moments as the estimated model matches most of the

US data and the empirical moments are captured well-within the 95% uncertainty bands.

If we look at the autocorrelations up to 10 lags in Figure 4, the picture is also somewhat

mixed. Overall, it shows very good goodness-of-fit of the RE-BR composite under II to data

in terms of successfully capturing the autocorrelations up to many lags. Almost all of the

moments are inside the 95% confidence intervals of the empirical moments of autocorrelations,

which leads to some confidence in the estimated models. Model RE with PI and II is the most

problematic one in reproducing the output autocorrelations at the first two and three orders,

ACF lying outside of the lower interval and having the wrong sign. In addition, the implies

moments from Pure RE(PI) and Comp RE(PI)-BR(AU) are well-outside the 95% confidence

intervals over the entire ACF horizon.
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Figure 4: Autocorrelations of Observables in the Actual Data and in the Estimated
Models: The approximate 95% confidence bands are constructed using the large-lag standard
errors (see Anderson, 1976).

On the other hand, the two models estimated under II, namely, Comp RE(II)-BR(AU)

and Pure RE(II), are capable of generating the persistence seen in inflation and interest rate

than the BR special case and the reason for this lies in the estimated learning mechanism of

the adaptive expectations scheme in, for example, forecasting inflation movements from their

RE(PI) counterparts. These autocorrelations are able to reproduce an important stylized fact,

namely the persistence of aggregate inflation usually observed in empirical data, generating

much inertia in the time path to match the actual inflation (also shown in the IRF predictions

below). This is more effective than the pure RE case with II learning and/or exogenous shock

dynamics which generates too much inertia. Finally, switching the information set from PI to

II for the RE model produces a little more persistence, captured by the implied correlograms

of inflation.21 The analysis shows an improved ability of the DSGE model with II and BR

21The findings are generally in line with those in Jang and Sacht (2016), who conduct an empirical investigation
on moment matching using a bounded rationality behavioural model à la De Grauwe (2011) estimated by the
Simulated Method of Moments for the Euro Area. They find that their results can mimic the real data well,
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behaviour to generate endogenous propagation mechanisms, in particular, how they capture

the autocorrelation dynamics and output volatility. This explains the improved overall model

fit in the comparison section.

6.8 Posterior Impulse Responses and Endogenous Persistence

As shown above from the estimated models and the moment analysis, both the heuristic rules

and RE-II learning mechanisms introduces more dynamics (persistence) into the model solu-

tions. As a result, the empirical models incorporating either form of endogenous learning can

significantly outperform the standard RE-PI model in the likelihood comparison. The empirical

IRFs from the estimated models in this section support these conclusions. In Figures 5 and 7,

relaxing PI in particular introduces more persistence compared with RE-PI, generating more

hump-shaped trajectories after the system is shocked. This suggests this feature should lead to

a better fit of the data without relying on other model internal inertia mechanisms.
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Figure 5: Estimated Impulse Responses – Technology Shock
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Figure 6: Estimated Impulse Responses – Mark-up Shock

slightly outperforming the linear RE counterpart in some of the moments, or are at least as good as the RE
model in terms of providing fits for auto- and cross-covariances of the data.
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Figure 7: Estimated Impulse Responses – Monetary Policy Shock
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Figure 8: Estimated Impulse Responses – Government Spending Shock

The IRFs also attempt to address the difficulty of generating reasonable endogenous per-

sistence in DSGE frameworks and replicating the observed business cycle stylized facts. As

already seen in Table 4, our baseline RE model with II learning statistically dominates all other

models. Relaxing 50% pure rationality in the baseline model with the general heuristic learning

rule also performs well. Model fit can be much improved without resorting to building a large

number of frictions and shocks, offering a parsimonious approach while relaxing the extreme

RE and PI. Of particular interest for the evaluation of using internal propagation mechanisms,

relaxing full rationality leads to a reduction in the estimated degree of price stickiness ξ. In

addition, relaxing the RE and PI restrictions generally leads to a reduction in the estimated

persistence of the shock processes (e.g. ρA or ρπ in particular).

We also find that the lagged interest rate is highly significant in the estimated policy rule, but

the estimated inertia is much reduced when BR and II are introduced, suggesting a reduction

in the persistence needed in the rule. The monetary policy volatility matters much less for

explaining the data variation aspect of the fit when the model is no longer pure RE. Overall

taking the results reported in Sections 6, 6.7 and 6.8, we can capture business cycle movements

without having to assume either highly autocorrelated shocks, high policy rule persistence

and/or the presence of endogenous inertia in the model due to, for example, habit formation in
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consumption and lengthy price-setting contracts. This contrasts with standard DSGE models

in a RE-PI environment.

6.9 Robustness Checks

In order to ensure robustness of our main results, we further estimate and evaluate a number of

additional models and subject our data to a wide array of tests. Online Appendix F conducts

additional model estimations to check our results (i.e. the likelihood comparisons) across dif-

ferent BR specifications with alternative prior specifications on the speed of learning parameter

λx (e.g. priors with a looser precision) and parameters values (with λx centered at the prior

mean and with the proportions nh = nf = n = 0.5, 0.1 being fixed to the values we used in the

simulation analysis22).

7 Endogenous Proportions of Rational and Non-Rational Agents

Up to now we assume that proportions of rational and non-rational agents ny,t and nπ,t are

exogenous. As in Massaro (2013), in the estimation and main conclusions that follow, we retain

this assumption, but in this sub-section we explore the extension that endogenizes these decision

by agents. Following Brock and Hommes (1997) and the reinforcement learning literature in

generalize these can be chosen as follows:

nx,t =
exp(−γΦRE

x,t ({xt}))
exp(−γΦRE

x,t ({xt})) + exp(−γΦAE
x,t ({xt}))

(68)

where −ΦRE
x,t ({xt)}) and −ΦAE

x,t ({xt)}) are ‘fitness’ measures respectively of the forecast per-

formance of the rational and non-rational predictor of outcome {xt} = {yt}, {πt} given by a

discounted least squares error predictor

ΦRE
x,t ({xt}) = µREΦ

RE
x,t−1({xt}) + (1− µRE)([xt − Et−1 xt]

2 + Cx) (69)

ΦAE
x,t ({xt}) = µAEΦ

AE
x,t−1({xt}) + (1− µAE)[xt−j − E∗

t−1−j xt−1]
2 ; j = 0, 1 (70)

where ρRE and ρAE capture the memory of the agents forming RE and AE (a measure of

forgetfulness of past observations). Cx represents the relative costs of being rational in learning

about variable xt. Thus the proportion of rational agents in the steady state is given by

nx =
exp(−γCx)

exp(−γCx) + 1

which is pinned down by the γCx.

A complete treatment of the model would require a departure from the linear Kalman Filter

solution for the II case for which we exploit the closed-form saddlepath solution that Pearlman

et al. (1986) shows both exists and is unique. We have also exploited the convenience of linear

Bayesian estimation. In what follows we confine ourselves to the RE PI case and use the linear

estimates obtained up to now.

22As part of the robustness check, we also compare different values of n = nf = nh ∈ [0, 1], and as n → 0 we
gradually reduce rationality in the model. We find that, as expected, as n decreases, the empirical support of the
model improves gradually from the pure RE to the pure behavioural model. In this analysis, we systematically
estimate and compare the different models with a grid of values for n ∈ [0, 1] and find robust results and only
report the fixed n = 0.1, 0.5 in Online Appendix F.
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Agents with reinforcement learning now have proportions of rational households (nh,t) and

firms (nf,t) are given by (68). Table 6 provides a third order perturbation solution of non-linear

NK RE(PI) -BR Model. We use the Bayesian estimation of the linear model in Section 6 where

the model is linearized and the proportions nh,t and nf,t are fixed. Non-linear estimation would

be required to pin down the parameters nh, nf in the steady state, and µRE,BR
h , µRE,BR

f and

γ in the reinforcement learning process and goes beyond the scope of this paper. So here we

impose them as reported in the table. We also scale the estimated standard deviations of the

shocks using a parameter σ = 1, 2.

Variable Stochastic Mean Standard Deviation (%) Skewness Kurtosis
Ct
C 0.9993 2.47 0.2792 0.0371
Ht
H 1.0002 0.19 0.0192 0.0327
Wt
W 0.9996 2.15 0.2771 0.0215
Πt
Π 0.9999 0.46 0.0159 0.0645

Rn,t

Rn
0.9999 0.46 0.0070 0.0651

ΦRE
h,t − Ch -0.000065 0.000020 -0.7589 0.9487

ΦAE
h,t -0.000084 0.000054 -1.8238 5.7852

ΦRE
f,t − Cf -0.000011 0.000009 -0.7203 0.7834

ΦAE
f,t -0.000069 0.000053 -2.2156 8.8686

nh,t(γ = 1;σ = 1) 0.093301 0.000004 1.8039 6.0897

nf,t(γ = 1;σ = 1) 0.098603 0.000004 2.2688 9.2725

nh,t(γ = 100;σ = 1) 0.094221 0.003634 1.8039 6.0897

nf,t(γ = 100;σ = 1) 0.101751 0.004303 2.2688 9.2725

nh,t(γ = 1000;σ = 1) 0.102506 0.036343 1.8039 6.0897

nf,t(γ = 1000;σ = 1) 0.130105 0.043030 2.2688 9.2725

nh,t(γ = 1000;σ = 2) 0.129993 0.146939 1.8403 6.6096

nf,t(γ = 1000;σ = 2) 0.224367 0.174046 2.3668 10.5098

Table 6: Third Order Solution of the Estimated NK RE(PI)-BR Model; µRE
h = µBR

h =
µRE
f = µBR

f = 0; γ = 1, 100, 1000

The main results from these simulations are as follows. First, that reinforcement learning

introduces high kurtosis and skewness23 in macro variables. Second, reinforcement learning

coupled with higher volatility of exogenous shocks results in the numbers of rational agents

increasing from the estimated deterministic steady state value of 0.093 and 0.099 to 0.13 and

0.22 for households and firms respectively in the stochastic steady state. Third, given that

bounded rationality is a welfare-reducing friction in these models it follows that volatility can

actually be welfare-increasing in our homogeneous expectations setting.

23The absence of kurtosis in the standard NK model, often highlighted in the literature (see, for example,
De Grauwe (2012a)) is in part simply the consequence of linearization and non-normality is a feature of higher
order approximations.
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8 Conclusions

This paper studies an NK behavioural model for which boundedly rational beliefs of economic

agents are about payoff-relevant macroeconomic variables that are exogenous to their decision

rules. In a Bayesian estimation of the RE-BR composite model with exogenous proportions

of RE and BR agents, informational assumptions are central to the paper. In comparisons of

different composites including the pure RE and BR cases, we impose what we term informational

consistency where RE and BR agents in the model share the same II as the econometrician

estimating the model. We contrast this with the standard assumption that RE agents have PI

of the current state variables.

We find in a likelihood race that the pure RE model with II outperforms the pure BR

model which in turn outperforms the pure RE with PI. When we examine the behavioural

composite model with a general heuristic forecasting rule, we find that the composite RE(II)-BR

estimated model, with estimated proportions of RE and BR agents, outperforms its RE(PI)-BR

counterpart in terms of both a likelihood race and the fit of model second moments with those of

the data. These results suggest that persistence can be injected into the NK model to improve

data fit in two contrasting ways: bounded-rationality with learning through heuristic rules, or

retaining RE but with II and Kalman-filtering learning.

Our results for the workhorse NKmodel suggest a new perspective for the macro/NK/learning

literature. Avenues for future work could embed the RE-BR composite model into a richer NK

model along the lines of Smets and Wouters (2007), extend the linear Kalman Filter to accom-

modate the non-linearity in reinforcement learning and use non-linear estimation methods to

identify a number of parameters that cannot be identified using linear Bayesian estimation. The

latter two non-linear extensions are major challenges. Future work could also examine optimal

monetary policy and follow Geweke and Amisano (2012) and Deak et al. (2019) and estimate

an optimal pool of RE(II) and RE-BR composites to be used to design a robust rule across BR

model variants discussed in the Introduction.
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