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Abstract

I propose a global gamemodel of runs with diagnostic investors and use it to study

temporary suspensions intended to provide a time-out for agents to digest incoming

information. Investors initially overreact to news and suspensions can mechanically

prevent them frommaking decisions based on biased beliefs. I show that during bad

times, when bad public news arrives and/or investment returns are low, such policy

actually amplifies runs. During good times, the opposite result arises. A small amount

of overreaction in beliefs about exogenous fundamentals can lead to large overreaction

in beliefs about the action of others in equilibrium.
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1 Introduction

Processing incoming news is a difficult task for humans and requires time. Recent work
points out that even professional forecasters systematically overreact to incoming news,
interpreting negative news as worse than it is and being overly optimistic after receiving
positive news, but those distortions tend to diminish as agents are given more time to
process their information (Bordalo et al., 2019, Bordalo, Gennaioli and Shleifer, 2022). A
large literature in asset pricing also documents the tendency of stock prices to initially
overreact to large shocks, with full reversal happening in a time horizon that can go from
minutes to years, depending on the context (De Bondt and Thaler, 1985, Fung, Mok and
Lam, 2000). Those patterns are consistent with diagnostic expectations models of belief
formation, such as those formalized in Bordalo et al. (2016).

This initial overreaction could help justify temporary suspensions that are prevalent in
financial markets around run-like events. Examples include: trading halts (also referred to
as circuit breakers), which are used by virtually every stock exchange in cases where many
speculators rush to trade in the same direction; suspension of flows in mutual funds, which
were prevalent in Europe after the COVID-19 shock; or the freezing of crypto accounts, which
were common after the run on Terra Luna.1 Defendants of such suspensions often point out
that agents need time to properly digest incoming news, as to avoid actions based on initial
overreactions, and temporarily prohibiting agents from acting could help in that dimension.

The behavioral arguments used to justify such policies are well summarized by Ackert,
Hao and Hunter (1997): “Exchange officials argue that circuit breakers curb the effects of over-
reaction in markets and restore financial confidence by providing market participants with a
cooling off period.” This resonates with the view of Nicholas Brady and Robert Glauber—two
prominent participants of the Brady Commission, whose recommendations were largely
responsible for the implementation of thosemechanisms in the US—who claim that trading
halts can “give participants a time-out to take a deep breath, evaluate the situation and per-
haps interrupt the sense of panic. With a brief time to think again, perhaps some sellers will
withdraw to the sidelines and value buyers will enter the market” (Brady and Glauber, 2020).
Despite the prevalence of suspensions intended to give financial markets participants a
time-out, mostly after negative shocks, there is a lack of formal treatments of the behavioral
arguments often used to justify them.

In this paper, I make two main contributions. First, I show how to embed diagnostic
1Of course, there are other considerations that are used to justify such suspensions, such as liquidity issues.
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expectations models of belief formation—in which agents overreact to both good and bad
news (Bordalo, Gennaioli and Shleifer, 2018)—into a global game similar to those used
to study different types of runs, such as asset market runs (Morris and Shin, 2004), bank
runs (Goldstein and Pauzner, 2005) and mutual fund runs (Chen, Goldstein and Jiang,
2010). Second, I use the model to provide a formal treatment of the behavioral arguments
used to justify suspensions in times of distress. In particular, I investigate under which
circumstances suspensions that temporarily prohibit agents from acting can attenuate runs,
considering that agents can better process incoming information as time passes.

The model can lead to substantial overreaction about endogenous variables, with diag-
nostic expectations having large effects on equilibrium outcomes even when agents’ beliefs
about exogenous fundamental variables are not far from rationality.

In terms of policy implications, I show that during bad times, when bad public news
arrives and/or expected investment returns are low, suspensions amplify runs, not attenuate
them. This happens even in cases where most agents are receiving negative news and
temporarily overreacting to it, and even though the only channel throughwhich suspensions
operate in the model is by curbing investors’ overreaction to incoming news. Hence, what
common wisdom claims to be a benefit of suspensions—allowing agents to better digest
information after the arrival of bad public news—can actually be a cost in a context of runs.
In fact, suspensions can only attenuate runs during good times, in which runs are already
less severe.

The result is driven by an endogenous mismatch between the effect of suspensions
on the average andmarginal investor. During bad times, suspensions can indeed induce
investors to make decisions under much more optimistic beliefs, on average. However,
precisely when that happens, they tend to worsen the beliefs of the agents that happen to
matter in equilibrium, the marginal investors (for reasons to be discussed).

I now further detail the model ingredients and the intuition behind the main results.

Amodel of runs with diagnostic investors. I start from the standard global gamemodel
of runs of Morris and Shin (2000). A continuum of investors have an investment of one
dollar and must decide whether to cancel (run) or renew it. Canceling the investment
imposes a negative externality on investors that stay: The payoff of renewing the investment
is decreasing in the proportion of investors that run. The payoff of renewing also depends
on ex-ante expected asset returns, which are common knowledge, and on a fundamental
shock that is not directly observed by agents.
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Investors have a prior about the fundamental shock and receive two pieces of informa-
tion: a private and a public signal. After observing both signals, investors do not update
their beliefs according to Bayes Rule, but instead form their posterior belief using diagnostic
expectations, as in Bordalo, Gennaioli and Shleifer (2018). Agents observing positive (com-
bined) signals then become overly optimistic about the fundamental shock, while agents
observing negative news become overly pessimistic. There is a parameter that measures
howmuch agents overreact to information. If that parameter equals zero, agents are rational
and the model is the same as the one in Morris and Shin (2000).

I first show under which conditions uniqueness of equilibrium is guaranteed. Diagnostic
expectations play in favor of guaranteeing a unique equilibrium. If the equilibrium is unique
under rational expectations, then it is unique under diagnostic expectations, but the con-
verse does not hold: under some parameters, the equilibrium is not unique under rational
expectations, but is so under diagnostic expectations. In equilibrium, agents receiving good
(bad) news are not only overly optimistic (pessimistic) about the fundamental shock but
also about the decision of other investors.

I also look at the limiting case where private information becomes infinitely precise and
show that the usual Laplacian property of global games—which states that beliefs about the
action of others are uniform at the equilibrium threshold—do not hold in my setting with
diagnostic investors, even for an arbitrarily small amount of overreaction. However, I show
how to replace that property for an equally tractable one for the purpose of computing the
equilibrium in the limiting case: With diagnostic expectations, beliefs about the proportion
of investors that run degenerate to 0 or 1 at the equilibrium threshold as private information
becomes infinitely precise (for almost all parameters). An implication is that a small amount
of overreaction in beliefs about the exogenous fundamental can lead to large overreaction
in beliefs about the action of others in equilibrium, having a large impact on equilibrium
outcomes.

Temporary suspensions. The model is then extended to include a subsequent stage where
expectations revert to rationality. Time is divided in three dates. At date 1, new information
(public and private signals) arrives, and agents update their beliefs using the diagnostic
model of belief formation. At date 2, sufficient time to process incoming information
has passed, and agents’ expectations become rational.2 At date 3, agents’ choices and
fundamentals become common knowledge and payoffs realize.

2It is not critical that expectations fully revert to rationality, only that the belief distortion is lower at date 2.
See Section 6.3.
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In the absenceof a suspension, a terminalwhere agents can send run/reneworders opens
at the beginning of date 1 and closes at the end of date 2. Agents derive some extra utility
frommoving early (date 1) rather than late (date 2), which reflects information processing
costs, attention frictions or different types of early mover advantages. Date 1 investors find
it optimal (using their distorted beliefs) to run or renew right after the arrival news, even
when their future (rational) self would choose something different. The equilibrium thus
captures the idea of “irrational panics” as an equilibrium outcome: Agents receive some
news, rush to conclusions and act on this information, even though their future selves may
regret their choice.

If an authority implements a suspension, investors are prohibited frommaking decisions
at date 1, while they are still diagnostic. Hence, a suspension guarantees agents will decide
when they have fully processed the incoming information. The authority observes the public
signal and wishes to minimize the expected number of agents that run. Deliberately, it is
assumed that the only effect through which suspensions affect investors is by forcing them
to “take a deep breath” before acting, mitigating their irrational overreactive behavior. Other
potential costs/benefits of suspensions (e.g., liquidity considerations) are ignored, as to
avoid confounders and to be transparent about whether the behavioral arguments often
invoked as a benefit of such policies are justified.

I show that the arrival of bad news (low realizations of the public signal) tends to make a
suspension amplify runs, and it is so precisely because suchpolicy helps to curb overreaction.
Suspensions amplify runs even in scenarios where most agents are receiving negative news
and overreacting to it. Also, when ex-ante investment returns are low, suspensions alsomake
runs more severe. Hence, suspensions are not desirable in bad times and in fact can only
prevent run behavior in good times (when the realization of public signals and/or ex-ante
returns are high, and hence runs are less severe).

How can a suspension amplify runs following the arrival of bad news? After very bad
public news arrives, it is likely that most investors have received negative news overall, after
combining their private and public information. Hence, given that they overreact to negative
news initially, imposing a suspension induces agents to be more optimistic at the time they
decide, on average. However, I show that whatmatters is not how such policy affects average
beliefs, but how it affects the beliefs of agents that are close to indifference in equilibrium,
the marginal investors, which are the ones more prone to changing their decision. The
identity of the marginal investors is an equilibrium object. Who are they when bad public
news arrives?
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Due to coordination motives, public signals play a critical role in the model, since they
anchor investors’ expectations about the behavior of other investors. After very bad public
information arrives, investors become very prone to running, even if they receive good
private information that offsets it. More precisely, for a given level of expected fundamentals,
an investor is more prone to running if she observed a low public signal and a high private
signal than if the converse holds. This is because the former is more pessimistic about what
other investors think (higher-order beliefs). Hence, in such bad public news scenario, agents
that are close to indifference between running or not are agents that overall received positive
news, and a suspensionmakes them stop being overly optimistic at the time they decide,
amplifying runs. Therefore, while such policy tends to improve average beliefs at the time
decisions are taken, it worsens the beliefs of the (few) agents that matter.

A similar intuition explains why suspensions amplify runs when ex-ante returns are
low, since in such cases investors have high incentives to run, and hence agents close to
indifference are those observing positive news overall.

I also discuss how the quality of the arriving information interacts with the effects of
suspensions. As long as coordination motives are sufficiently relevant—meaning that in-
vestors do not have a dominant action before observing their signals—the precision of the
arriving information does affect the ex-ante probability of a suspension being optimal. In
such case, for low ex-ante returns, more precise public information increases the probability
of a suspension being desirable and reduces it for high ex-ante returns. The opposite is true
regarding the effect of the precision of private information.

Alternative implications. The results also have implications that go beyond suspensions
in financial markets. For instance, intents to avoid perhaps unfavorable temporary over-
reaction to news can help explain why rating agencies and firms tend to disclose negative
information after markets are closed, as to give time for investors to better absorb the in-
coming information before acting on it (Patell andWolfson, 1982, Kraft, Xie and Zhou, 2020).
The results of this paper suggest that if the concern is that bad news can trigger a run on a
firm’s stock or debt, such policy may not have the intended effect.

Also, as discussed in Blank, Kwon and Tang (2023), different classes of investors present
different degrees of overreaction, and certain types of news are also prone to trigger more
overreaction. The results of this paper suggest that observing large runs is not more likely
for news/investors associated with large overreaction.

6



Extensions. I show that the main results remain unchanged under three alternative mod-
eling assumptions. First, I present the case where investors’ payoffs are a discontinuous
function of the proportion of agents that run and of the fundamental, as usual in games
of regime change. Second, I relax a parametric assumption that guarantees equilibrium
uniqueness, assuming that investors always play according to some extreme equilibrium
whenever there is multiplicity. Third, I present the case where expectations only partially
revert toward rationality.

Related literature. This paper is mainly related to two strands of literature. First, it relates
to the global games literature studying bank runs, market runs and coordination games in
general (for instance, Carlsson and Van Damme, 1993, Morris and Shin, 1998, Morris and
Shin, 2004, Rochet and Vives, 2004, Goldstein and Pauzner, 2005, Sakovics and Steiner, 2012).
Second, it relates to the literature that formalizes and incorporates diagnostic expectations
in different contexts (Gennaioli and Shleifer, 2010, Bordalo, Gennaioli and Shleifer, 2018,
Bordalo et al., 2019, Bordalo et al., 2021a, Bordalo et al., 2021b, Bianchi, Ilut and Saijo,
2022, Maxted, 2023 to name a few). The novel contribution here is to embed diagnostic
expectations into a standard model of runs and use it to study suspensions.

Another paper that introduces beliefs distortions in games that admit coordination
motives is Banerjee, Davis and Gondhi (2021). In particular, they introduce agents with
anticipatory utility into the quadratic game of Angeletos, Hellwig and Pavan (2007). Here,
motivated by my specific application, I focus on a different belief distortion (diagnostic
expectations) and on a different class of coordination games (global games), that became
widely popular to study financial fragility and runs.

Some recent work has explored the effects of circuit breakers in asset markets, both
theoretically and empirically. Magnani andMunro (2020) test in a laboratory experiment
whether circuit breakers work in a simple game of market runs and findmixed evidence that
depends on the quality of information available to agents. However, they do not explore
the behavioral arguments behind those policies that are the focus of this paper. While
methodologically very different, this paper is also related to the recent work of Chen et al.
(2023). They studyhowcircuit breakers affect the allocationof anasset between two investors
(a seller andabuyer) in adynamicmodel of tradingwithheterogeneousbeliefs. Here, instead,
the focus is on how such suspensions affect equilibrium outcomes in a context where run-
like behavior from a myriad of investors that strategically interact emerges. To generate
self-fulfilling runs, I then must assume that investors’ decisions are strategic complements,
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as in Morris and Shin (2004) and Eisenbach and Phelan (2023), which is crucial to most of
my results and is justified by the presence of different frictions discussed in the main text
that are likely to matter whenever run-like behavior is observed.

This paper is then broadly related to the literature studying different types of suspensions
in financialmarkets (other examples includeGorton, 1985, Kodres andO’Brien, 1994, Ackert,
Church and Jayaraman, 2001, Hautsch and Horvath, 2019), contributing to the debate by
theoretically analyzing the behavioral arguments often used to defend those policies during
runs.

Layout. Section 2 incorporates diagnostic expectations into a model of runs. Section 3
presents the equilibrium. Section 4 augments the model to allow beliefs to revert to ratio-
nality after some time. Section 5 studies the effects of temporary suspensions. Section 6
discusses extensions of the main model. Section 7 concludes. All proofs are in Appendix A.

2 AModel of Runs with Diagnostic Investors

I start by modeling the decision of agents to run on some investment when they do not
update their beliefs using Bayes rule, but instead have diagnostic expectations, as in Bordalo,
Gennaioli andShleifer (2018). In Section 4, I thenpropose a simple extensionof this setting to
capture the idea that agents’ beliefs converge toward rational expectations as time passes, as
commonly assumed and documented in the diagnostic expectations literature, which then
allows me to study the role of temporary suspensions. The model presented in this section
is the global game model of runs of Morris and Shin (2000), augmented with diagnostic
expectations.

Investors and payoffs. A continuum of risk-neutral investors indexed by 𝑖 ∈ [0, 1] must
decide whether to cancel or renew an investment. Canceling is labeled as action 𝑎𝑖 = 0
and also referred to as the decision to “run”. Renewing is labeled as 𝑎𝑖 = 1. Investors that
run recover the dollar amount invested initially, and hence their payoff is normalized to
one. The payment received by investors that renew their investment depends positively
on a fundamental shock (𝜂) and negatively on the proportion of agents that run (ℓ). For
tractability, I assume that the payoffs of investors that renew are linear, as in the rollover
game of Morris and Shin (2000), and hence are given by

𝑣 (𝜂, ℓ) = 𝑧 +𝜂 −𝛾ℓ, (1)
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where 𝛾 > 0 and 𝑧 ∈ ℝ.3 Hence, investment returns are the sum of the ex-ante returns
(𝑧) and the fundamental shock (𝜂), minus the externalities caused by those that run (𝛾ℓ).
When 𝑧 is high (low), we say that the economy is facing good (bad) times from an ex-ante
perspective.

The key economic force captured by the proposed payoffs is that of strategic comple-
mentarities: An investor’s incentive to run is increasing in the number of investors that run.
Strategic complementarities form the basis of traditional models of runs. In the context of
asset market runs (events in which many investors suddenly decide to sell an asset), strate-
gic complementarities can arise due to traders’ loss limits (Morris and Shin, 2004), relative
performance concerns (Morris and Shin, 2016), balance sheet constraints and liquidity
shocks (Eisenbach and Phelan, 2023), feedback effects (Goldstein, Ozdenoren and Yuan,
2013), or due to sufficiently strict margin requirements (Bernardo and Welch, 2004). In
the context of bank runs, strategic complementarities are a consequence of the costs early
liquidation imposes on banks’ assets (Morris and Shin, 2000, Goldstein and Pauzner, 2005).
In the context of runs on mutual funds, it arises when the net asset value of a fund does not
perfectly reflect the fire-sale penalties triggered by redemptions (Chen, Goldstein and Jiang,
2010). In the context of cryptocurrencies, it can also be reinforced by transaction motives
(Sockin and Xiong, 2022).

Without such strategic complementarities, run-like behavior—in the sense of an investor
canceling an investment because she believes others will do the same—would not emerge
in the first place, and hence this is a critical assumption for my analysis. The specific source
of those strategic complementarities is irrelevant for my results, which makes the analysis
portable across different models of runs. However, Appendix B presents in more detail two
specific applications that fit the proposed payoffs.

Information. The fundamental shock𝜂 (or fundamental, in short) is not observed and is
drawn from a normal distribution with mean zero and variance 1/𝜏0. Hence, agents share
a common prior𝜂 ∼ 𝑁 (0, 1/𝜏0). Each agent receives two pieces of news before deciding
whether to run: the realization of a public signal 𝑦 that is observed by everyone, and the
realization of a private signal 𝑥𝑖 . Each signal consists of the true fundamental plus some
noise:

𝑥𝑖 = 𝜂 + 𝜀𝑖 ,

3In Section 6.1, I show that the main results hold in a setting where 𝑣 (𝜂, ℓ) is a step function, as in games
of regime change.
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𝑦 = 𝜂 + 𝜔,

where 𝜀𝑖 ∼ 𝑁 (0, 1/𝜏𝑥 ) and is iid across agents, 𝜔 ∼ 𝑁
(
0, 1/𝜏𝑦

)
, and 𝜀𝑖 and 𝜔 are indepen-

dent. The parameters𝜏𝑥 ,𝜏𝑦 and𝜏0 are referred to as the precision of the signals and the prior.
Throughout the paper, I often use 𝜙 (·) andΦ (·) to denote the standard normal density and
distribution functions, respectively.

Beliefs updating. The only relevant deviation I make from a standard model of runs is
that agents in my setting do not update their beliefs about the fundamental𝜂 using Bayes
Rule, but instead, have distorted beliefs. I follow Bordalo, Gennaioli and Shleifer (2018) and
Bordalo et al. (2019) and assume that investors have diagnostic expectations.

Let agents’ beliefs after observing signals 𝑥𝑖 and 𝑦 be represented by a pdf 𝑓 𝜃 (𝜂 | 𝑥𝑖 , 𝑦 ),
and let 𝑓 (𝜂 | 𝑥𝑖 , 𝑦 ) be the conditional pdf given by Bayes Rule. Following Bordalo, Gennaioli
and Shleifer (2018), I assume that:

𝑓 𝜃 (𝜂 | 𝑥𝑖 = 𝑥, 𝑦 = 𝑦 ) = 𝑓 (𝜂 | 𝑥𝑖 = 𝑥, 𝑦 = 𝑦 ) R (𝜂, 𝑥, 𝑦 )𝜃 𝐶 , (2)

where
R (𝜂, 𝑥, 𝑦 ) = 𝑓 (𝜂 | 𝑥𝑖 = 𝑥, 𝑦 = 𝑦 )

𝑓 (𝜂 |𝑥𝑖 = 0, 𝑦 = 0)
is called the representativeness index, 𝜃 ≥ 0 denotes the strength of probability distortions,
and𝐶 is a constant that guarantees the distorted density 𝑓 𝜃 (·) integrates to one. Throughout
the paper, I often use hats to indicate a specific realization of a random variable, as above.

One of the key ideas behind formula (2) is that agents have limited and selectivememory
and that “representative types” come more easily to mind. To illustrate, suppose agents
are evaluating the probability of bankruptcy of a firm in the next year. The firm discloses a
financial report saying revenue fell relative to last year. To estimate how such report affects
the probability of bankruptcy, investors try to recall whether other firms that reported a
fall in revenue in the past went bankrupt in the subsequent year. However, due to limited
memory, the disclosure of some reports is forgotten by investors when doing these mental
calculations. Due to selective memory, investors are less likely to forget the disclosure of
reports of firms that later went bankrupt, so the events in which a firm went bankrupt after
disclosing a fall in revenue are oversampled in investors’ minds. That is, investors can better
recall situations that are more representative of bankruptcy. As a result, investors think the
disclosure of such report increases the probability of bankruptcy more than it actually does,
they overreact to negative news. If given more time to process the information, investors
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should be able to better recall the events they initially forgot, reducing the oversampling
problem. A similar logic implies that investors have a tendency to overreact to positive
news, for instance, overestimating the probability of a startup firm being the next Google
after observing positive earnings reports. See Tversky and Kahneman (1983) and Bordalo,
Gennaioli and Shleifer (2018) for further discussion of those concepts.

Equation (2) is standard in the literature because it captures well those effects in a
tractable manner. Whenever positive news arrives, say 𝑦 > 0 and 𝑥𝑖 > 0, the representative
index R is above one for𝜂 > 0 and below one for𝜂 < 0. Hence, compared to a Bayesian
agent, diagnostic agents put more weight on positive realizations of𝜂 and lower weight on
negative realizations when good news arrives, overreacting to that news. As positive signals
are representative of positive realizations of𝜂 , agents overweight the association between
positive values of the signals and positive values of the fundamental in their judgment, and
the opposite is true for negative signals.

Strategies and equilibrium definition. Since agents are not rational in my setting, I cannot
rely on standard definitions of equilibrium, such as Perfect Bayesian Equilibrium (PBE).
To deviate as little as possible from the restrictions imposed by PBE, I propose an equilib-
rium definition that would be equivalent to PBE if agents updated their beliefs about the
fundamental𝜂 using Bayes Rule and not the diagnostic rule (2).

A strategy for agent 𝑖 is defined as a measurable function 𝑔𝑖 (𝑥𝑖 , 𝑦 ) ↦→ {0, 1}, that is, it
is a map from the observed signals 𝑥𝑖 and 𝑦 to actions 𝑎𝑖 ∈ {0, 1}. A strategy profile is a
collection (𝑔𝑖 )𝑖∈[0,1] . For a given realization of the fundamental𝜂 and fixing a strategy profile
(𝑔𝑖 )𝑖∈[0,1] , investors can perfectly anticipate the proportion of investors that will run, which
is given by

ℓ̃ (𝜂) =
∫ 1

0

∫
X𝑖

√
𝜏𝑥𝜙

(√
𝜏𝑥 (𝑥 −𝜂)) 𝑑𝑥 𝑑𝑖 , (3)

where X𝑖 = {𝑥 : 𝑔𝑖 (𝑥, 𝑦 ) = 0} denotes the set of private signals for which an agent runs
(which possibly depends on the realization of 𝑦 ). However, agents do not update their beliefs
about𝜂 according to Bayes Rule, but according to (2). Hence, their distorted expected payoff
of renewing is given by

𝑉 𝜃 (𝑥𝑖 , 𝑦 ) =
∫ ∞

−∞

(
𝑧 +𝜂 −𝛾 ℓ̃ (𝜂)) 𝑓 𝜃 (𝜂 | 𝑥𝑖 , 𝑦 ) 𝑑𝜂. (4)

If 𝜃 = 0 the expression above is simply agents’ expected payoff of renewing the investment,
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after observing the signals and taking as given the strategies of others. With 𝜃 > 0, agents
have distorted beliefs about the fundamental, which also leads them to distort their beliefs
about the proportion of other agents running. For instance, if the distortion leads agents to
be too optimistic about𝜂 and agents renew only if they observe signals above a threshold,
then diagnostic beliefs lead agents to overestimate the mass of agents renewing, as their
optimistic belief about𝜂 implies they are too optimistic about others’ signals.

Having defined how agents distort their beliefs when computing their expected payoffs,
the definition of equilibrium follows naturally.

Definition 1. A strategy profile 𝑔𝑖 : (𝑥𝑖 , 𝑦 ) ↦→ {0, 1}, for all 𝑖 ∈ [0, 1], is a Diagnostic
Equilibrium if 𝑔𝑖 (𝑥𝑖 , 𝑦 ) = 1 implies𝑉 𝜃 (𝑥𝑖 , 𝑦 ) ≥ 1 and 𝑔𝑖 (𝑥𝑖 , 𝑦 ) = 0 implies𝑉 𝜃 (𝑥𝑖 , 𝑦 ) ≤ 1,
taking as given other agents’ strategies.

In other words, a Diagnostic Equilibrium is a Nash Equilibrium of the game where the
payoffof renewing is givenby𝑉 𝜃 (𝑥𝑖 , 𝑦 ) in (4). If 𝜃 = 0, thedefinition above is then equivalent
to that of a Perfect Bayesian Equilibrium in my setting.

A notation remark: In what follows, 𝔼𝜃 [𝜂 |𝑥𝑖 , 𝑦 ] represents the expectation of𝜂 for an
agent with beliefs given by (2), that is, 𝔼𝜃 [𝜂 |𝑥𝑖 , 𝑦 ] =

∫ ∞
−∞𝜂 𝑓 𝜃 (𝜂 | 𝑥𝑖 , 𝑦 ) 𝑑𝜂 . 𝔼 [𝜂 |𝑥𝑖 , 𝑦 ] is

reserved for the expectation of a rational agent: 𝔼 [𝜂 |𝑥𝑖 , 𝑦 ] =
∫ ∞
−∞𝜂 𝑓 (𝜂 | 𝑥𝑖 , 𝑦 ) 𝑑𝜂 .

3 Equilibrium

Before computing the equilibrium, I characterize the distribution of investors’ beliefs condi-
tional on their signals:

Lemma 1. After observing signals 𝑥𝑖 and 𝑦 , investors believe𝜂 is normally distributed with
mean 𝜇̃1 (𝑥𝑖 , 𝑦 ) and variance 1/𝜏1, where

𝜇̃1 (𝑥𝑖 , 𝑦 ) =
(1 + 𝜃 ) (

𝜏𝑥𝑥𝑖 + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦 , (5)

𝜏1 = 𝜏0 + 𝜏𝑥 + 𝜏𝑦 . (6)

As usual, normality of the information structure is inherited by agents’ diagnostic be-
liefs. Combined with the assumption of linear payoffs, this makes the analysis muchmore
tractable. Note that a Bayesian agent (𝜃 = 0) updates upwards his expectation of the funda-
mental, 𝜇̃1 (𝑥𝑖 , 𝑦 ), if and only if the weighted sum 𝜏𝑥𝑥𝑖 + 𝜏𝑦𝑦 of the private and public signal
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is above zero. Diagnostic agents (𝜃 > 0) also do so, but they overreact: After observing good
or bad combined signals they change their beliefs more.

The next proposition characterizes the equilibrium.

Proposition 1. Suppose that the following condition holds:

𝛾
𝜏0 + 𝜏𝑦 − 𝜃𝜏𝑥

1 + 𝜃

√︄
𝜏0 + 𝜏𝑥 + 𝜏𝑦

𝜏𝑥
(
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

) <
√
2𝜋. (7)

Then, the model has an essentially unique equilibrium, in which agents renew if 𝑥𝑖 > 𝑥∗ and
run if 𝑥𝑖 < 𝑥∗, where 𝑥∗ is the unique solution to

𝑧 + 𝜇̃1 (𝑥∗, 𝑦 ) −𝛾Φ

(√︂
𝜏1𝜏𝑥

𝜏1 + 𝜏𝑥 (𝑥∗ − 𝜇̃1 (𝑥∗, 𝑦 ))
)
= 1. (8)

Provided the equilibrium is unique, investors play a cutoff strategy: they renew if their
private signal is above a cutoff and run if it is below it, with this cutoff depending on the
realization of the public signal. I say that the equilibrium is “essentially” unique because
there is still multiplicity when agents observe a signal 𝑥𝑖 = 𝑥∗, in which case they are
indifferent between both actions. The left-hand side of (7) is strictly decreasing in 𝜏𝑥 , and
that condition is satisfied as 𝜏𝑥 becomes sufficiently large. Hence, as is usually the case in
global games, if agents’ private information is sufficiently precise, the equilibrium is unique.
If 𝜃 = 0 and𝛾 = 1, condition (7) boils down to the same condition for uniqueness found in
Morris and Shin (2000).

Interestingly, (7) also depends on the strength of diagnostic expectations, 𝜃 . One can
verify that the left-hand side of (7) is strictly decreasing in 𝜃 , and hence diagnostic expecta-
tions play in favor of guaranteeing uniqueness. In fact, one can easily construct an example
where the equilibrium is not unique with 𝜃 = 0 but it is so for a sufficiently large 𝜃 . In what
follows, to rule out multiplicity, I assume that (7) holds even if 𝜃 = 0, that is,

𝛾
(
𝜏0 + 𝜏𝑦

) √︄ 𝜏0 + 𝜏𝑥 + 𝜏𝑦
𝜏𝑥

(
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

) <
√
2𝜋. (A1)

This type of assumption is standard in global games and delivers tractability. Still, in Section
6.2, I show that the main results survive if (A1) is violated and one focuses on extreme
equilibria.
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3.1 Limiting Case: The Breakdown of Laplacian Beliefs

I now further explore the implications of the diagnostic equilibrium for a limiting case where
agents receive infinitely precise private signals (𝜏𝑥 → ∞). This is a limit often emphasized
in the global games literature, since it yields a tractable characterization of the equilibrium
threshold. In particular, it is a known result in traditional global games that, in such a
limiting case, the agent observing a signal 𝑥𝑖 equal to the equilibrium cutoff 𝑥∗ (themarginal
investor) holds a uniform belief about the proportion of agents choosing a given action,
implying 𝔼 [ ℓ | 𝑥𝑖 = 𝑥∗, 𝑦 = 𝑦 ] = 1/2 (see Morris and Shin, 2003 for details). This is called the
Laplacian property.

The Laplacian property also holds in my setting with 𝜃 = 0, as the model boils down to
Morris and Shin (2000) in that case. Hence, with 𝜃 = 0 and 𝜏𝑥 → ∞, the marginal investor
𝑥∗ can be found by solving the indifference condition

𝑧 + 𝑥∗ −𝛾
1
2
= 1,

which implies that the equilibrium threshold is given by 𝑥∗ = 1 − 𝑧 +𝛾/2.
I now show that with 𝜃 > 0 the Laplacian property no longer holds for almost all param-

eters, even for 𝜃 arbitrarily small, but it can be replaced for an equally tractable condition.

Proposition 2. Suppose 𝜏𝑥 → ∞ and denote by 𝑥∗ the equilibrium cutoff strategy. Then:

1. For 𝑧 < 1 +𝛾/2, the investor observing 𝑥𝑖 = 𝑥∗ is indifferent between both actions if she
believes that ℓ = 0with probability one, and hence the equilibrium cutoff 𝑥∗ solves

𝑧 + (1 + 𝜃 ) 𝑥∗ = 1.

2. For 𝑧 > 1 +𝛾/2, the investor observing 𝑥𝑖 = 𝑥∗ is indifferent between both actions if she
believes that ℓ = 1with probability one, and hence the equilibrium cutoff 𝑥∗ solves

𝑧 + (1 + 𝜃 ) 𝑥∗ −𝛾 = 1.

3. For 𝑧 = 1 +𝛾/2, the equilibrium cutoff is 𝑥∗ = 0.

In other words, for low values of 𝑧 , the marginal investor behaves as if she is certain that
everyone else will renew. For high values of 𝑧 , beliefs about the action of others jump to the
other extreme, and she behaves as if she is certain everyone else will run. That is, beliefs
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about the action of others become degenerate at one of the extremes (except for the non-
generic case 𝑧 = 1 +𝛾/2). Also, using Lemma 1, note that lim𝜏𝑥→∞ 𝔼 [𝜂 | 𝑥𝑖 , 𝑦 ] = (1 + 𝜃 ) 𝑥𝑖 ,
and so investors’ first-order beliefs about the fundamental are still overly optimistic in the
limit.

Intuitively, when 𝑧 is low, the marginal investor must be someone observing good news.
Since the agent overreacts to its signal, she is very certain the fundamental is above the
observed signal when 𝜏𝑥 is large and hence expects almost everyone to have observed a
signal above hers. In the limit with 𝜏𝑥 → ∞, the marginal investor believes ℓ = 0 with
certainty, even though a rational agent would believe that ℓ = 1/2 in expectation, as implied
by uniform beliefs. A similar argument explains the result for high values of 𝑧 . Therefore,
even a small amount of overreaction in beliefs about the exogenous fundamental can lead
to large overreaction in beliefs about the action of others.

FromProposition2 and thediscussionabove, it follows thatwhen𝜏𝑥 → ∞ and 𝑧 ≠ 1+𝛾/2,
the equilibrium with 𝜃 = 0 is different from the equilibrium with 𝜃 → 0. This is because
the belief of the marginal investor about the action of others does not converge to the belief
of a rational investor as 𝜃 approaches zero, even though the belief about the fundamental
converges to rationality. This stark result is only true when𝜏𝑥 → ∞, but the general message
that small overreaction about the exogenous fundamental can lead to large overreaction
about the action of others applies more broadly to cases where agents receive sufficiently
precise signals.

4 Reversion to Rationality

I now extend the model of Section 2 to capture the idea that, following the arrival of news,
investors’ beliefs revert, at least partially, toward rational expectations as time passes. This
assumption is common in the diagnostic expectations literature and is consistent with data
on expectations (Bordalo et al., 2019). It also squares with indirect inference on expectations
dynamics based on stock prices, which shows that reversions tend to occur after prices
overreact following large shocks, and substantial reversion can happen even within hours
(see Amini et al., 2013 for an overview). But most importantly for the purpose of this paper,
this assumption lies at the heart of the behavioral arguments used to justify suspensions in
financial markets, which claim that investors need to take some time to “digest the news”
and “cool down” after the arrival of negative information.
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To give the best possible chance for the behavioral arguments about suspensions to
work, and also to lighten the exposition, in this section I consider the extreme case that
beliefs fully revert to rational expectations in the time horizon considered, but the results
remain unchanged if this reversion is only partial, as shown in Section 6.3.

I divide time in three dates, 1, 2 and 3. Date 1 is interpreted as the date at which new
information arrives: Investors start date 1 holding the same prior and receive signals 𝑥𝑖 and
𝑦 about𝜂 as in Section 2, then updating their beliefs using the diagnostic rule (2). Date 2
is interpreted as the date at which investors’ beliefs revert to rationality after the arrival of
news, and hence they hold beliefs about𝜂 that are consistent with Bayes Rule.4 A terminal
to send cancel/renew orders opens right after signals are received at date 1 and closes at
the end of date 2. At date 3, agents’ choices and fundamentals become common knowledge
and payoffs realize. The timeline is summarized below.

Nature
draws η

Agents receive signals xi
and y and update beliefs

using diagnostic rule

Terminal to send
cancel/renew
orders opens

Beliefs revert to
rationality

Investors’ choices
are observed and

payoffs realize

Terminal to send
cancel/renew
orders closes

Date 1 Date 2 Date 3
Time

Figure 1: Timeline with reversion to rational expectations.

We can frame the problemof investors at date 1 as that of choosing between three actions:
cancel (0), renew (1) or wait (𝑊 ). If an investor at date 1 chooses to wait, then at date 2 the
investor must finally decide whether she will run or renew. If an investor at date 1 chooses
to run or renew, then there is no decision to be made at date 2.

A strategy for investor 𝑖 at date 1 is defined as amap 𝑔1,𝑖 (𝑥𝑖 , 𝑦 ) ↦→ {0, 1,𝑊 }. A strategy for
investor 𝑖 at date 2, after choosing𝑊 at date 1, is a map 𝑔2,𝑖 (𝑥𝑖 , 𝑦 ) ↦→ {0, 1}. The proportion
of agents that run at either of the two dates is still denoted by ℓ, and for a given 𝜂 , it is
still given by (3), but now with the set of private signals that lead investors to run given
byX𝑖 ≡

{
𝑥 : 𝑔1,𝑖 (𝑥, 𝑦 ) = 0

} ∪ {
𝑥 : 𝑔2,𝑖 (𝑥, 𝑦 ) = 0 and 𝑔1,𝑖 (𝑥, 𝑦 ) =𝑊

}
, to capture that agents

can run at dates 1 or 2.
I assume that investors that wait pay a cost 𝛿 > 0, which captures earlymover advantages.

This cost can reflect an information processing cost, due to the fact that investors who have
not made a decision at date 1 will remain processing the information they received. It could

4The assumption of full reversion to rationality is made only for expositional purposes. In Section 6.3, I
show that themain results remain unchanged if expectations only partially revert toward rational expectations,
that is, if agents still hold diagnostic beliefs at date 2, but with a reduced 𝜃 .
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also reflect an attention friction: Investors who do not decide at date 1, right after the arrival
of news, may forget to do so afterward with some probability, which is costly.5

Beyond the utility cost of waiting, the final payment received by investors is the same:
Investors that run get 1 and those who renew get 𝑣 (𝜂, ℓ) in (1). However, the way they
compute their expected payoffs depends on the date at which they are deciding: At date
1, agents compute their expected payment of renewing using (4), while agents at date 2
compute it according to

𝑉 (𝑥𝑖 , 𝑦 ) =
∫ ∞

−∞

(
𝑧 +𝜂 −𝛾 ℓ̃ (𝜂)) 𝑓 (𝜂 | 𝑥𝑖 , 𝑦 ) 𝑑𝜂. (9)

Note that investors at date 1 play a gamewith their future selves at date 2, since they have
a different payoff function. Hence, treating investor 𝑖 playing at date 1 as one player, and
investor 𝑖 playing at date 2 after observing wait from its date-1 counterpart as a different
player, we can define an equilibrium as a Nash Equilibrium of the game where: (i) date-1
players’ payoffs are given by (4) if they play renew, 1 if they play run, and if they play wait,
payoffs are given by (4) minus 𝛿 in case their date-2 self renews, and by 1 − 𝛿 if their date-2
self runs; (ii) date-2 players’ payoffs, after observing wait, are given by (9) minus 𝛿 if they
renew and 1 − 𝛿 if they run.6 Alternatively, one could define the equilibrium as one where
each date-1 player is naive and does not anticipate his date-2 self will have a different payoff,
and all the results that follow would be unchanged.

The next proposition characterizes the equilibrium in this game.

Proposition 3. In equilibrium, the cancel/renew decision is taken at date 1 and investors
behave as in Proposition 1: They renew if 𝑥𝑖 > 𝑥∗ and run if 𝑥𝑖 < 𝑥∗, where 𝑥∗ is given by (8).

This result is straightforward. Date-1 investors can either make a decision today or
delegate it to a future self that has a different utility from theirs, further incurring a cost 𝛿 .
Hence, waiting at date 1 is strictly dominated under the beliefs of date-1 investors.

The model and the equilibrium presented here capture well the notion that agents can
irrationally panic after the arrival of news, possibly taking actions that they would regret
if they kept processing the incoming information—that is, choosing something at date 1
that goes against the will of their date-2 selves. For some parameters and realization of the

5This cost is not critical, but simplifies the exposition by breaking indifference in some cases. If 𝛿 = 0 all
the results regarding the optimality of suspensions still hold.

6I could define it as a Subgame Perfect Equilibrium as well, given the sequential play of date-1 and date-2
selves, but it is equivalent to Nash Equilibrium in this setting.
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signals, in equilibrium it happens that a date-1 agent runs when her date-2 self would renew.
But it is also true that the opposite can happen for a different set of signals and parameters:
a date-1 investor renews when her date-2 self would like to run. This is because diagnostic
agents overreact to both positive and negative news.

The discussion above suggests that a regulatormay, in some circumstances, benefit from
preventing agents from acting while they did not have enough time to fully come to their
senses with respect to the incoming information. Next, I analyze under which circumstances
temporarily suspending the receipt of new orders attenuates runs.

5 Temporary Suspensions

I now add an authority to the model of Section 4, who can prohibit agents from making
decisions at date 1. In other words, the authority can suspend the terminal at date 1, thus
forcing agents to decide onlywhen their expectations have reverted to rationality. That is, the
authority can force investors to choose waiting at date 1. By now, it should not be surprising
that such an authority can effectively decide whether agents’ decisions will be governed by
diagnostic or rational expectations. Figure 2 shows the timeline when a suspension is in
place.

Nature
draws η

Agents receive signals xi
and y and update beliefs

using diagnostic rule

Terminal to send
cancel/renew
orders opens

Beliefs revert to
rationality

Investors’ choices
are observed and

payoffs realize

Terminal to send
cancel/renew
orders closes

Date 1 Date 2 Date 3
Time

Figure 2: Timeline when a suspension is in place.

Such policy is akin to classical trading halts in stock markets, mutual fund suspensions
observed during the COVID-19 crisis, or the recent temporary suspension of crypto plat-
forms, which froze investors’ accounts.

The authority has no information other than the prior and the public signal and its
objective is to minimize the expected number of agents that run. Since I want to discuss
whether a suspension is optimal or not from the perspective of a rational authority, I assume
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the authority has rational expectations.7 Formally, the authority loss is defined as

L =

∫ ∞

−∞
ℓ̃ (𝜂) 𝑓 (𝜂 |𝑦 ) 𝑑𝜂,

where 𝑓 (𝜂 |𝑦 ) is the conditional belief given by Bayes Rule, and the map ℓ̃ (𝜂) depends on
the strategy profile played by investors, as defined in Section 4. The authority anticipates
how a suspension affects the strategy profile played in equilibrium, and hence it anticipates
that, in equilibrium, the map ℓ̃ (𝜂) is not the same with and without a suspension. The next
proposition shows under which conditions such a suspension attenuates runs, and Figure 3
summarizes it.

Proposition 4. A suspension attenuates runs in good times and amplifies them in bad times:
The authority implements a suspension if 𝑧 > 𝑧∗, does not implement it if 𝑧 < 𝑧∗, and is
indifferent when 𝑧 = 𝑧∗, where

𝑧∗ = 1 +𝛾Φ
(
−𝑦𝜏𝑦

√︄
𝜏0 + 𝜏𝑥 + 𝜏𝑦(

𝜏0 + 2𝜏𝑥 + 𝜏𝑦
)
𝜏𝑥

)
. (10)

Moreover, the authority is less prone to implementing a suspension after bad public news
arrives: 𝜕𝑧

∗
𝜕𝑦

< 0.

To build intuition, it is useful to inspect the effect of suspensions on agents’ beliefs
at the time they act, from the point of view of the authority. For a given realization of 𝜂 ,
define Δ𝑖 = 𝔼 [𝜂 | 𝑥𝑖 , 𝑦 ] − 𝔼𝜃 [𝜂 | 𝑥𝑖 , 𝑦 ] as the “change in beliefs” from date 1 to 2 for an agent
observing signals 𝑥𝑖 and 𝑦 . This reflects how much a suspension improves (or worsens)
agent 𝑖 ’s expectations about the fundamental at the time she decides. Using Lemma 1 and
𝑥𝑖 = 𝜂 + 𝜀𝑖 , we can write it as

Δ𝑖 = −𝜃
[
𝜏𝑥 (𝜂 + 𝜀𝑖 ) + 𝜏𝑦𝑦

𝜏0 + 𝜏𝑥 + 𝜏𝑦

]
.

After observing the public signal, the authority believes that𝜂 ∼ 𝑁
(

𝜏𝑦 𝑦

𝜏0+𝜏𝑦 ,
1

𝜏0+𝜏𝑦

)
. Hence the

expected change in beliefs from the authority’s standpoint is

𝔼 [Δ𝑖 | 𝑦 ] = − 𝜃𝜏𝑦

𝜏0 + 𝜏𝑦 𝑦 . (11)

7However, the results that follow also hold if the authority holds diagnostic beliefs, and the proofs remain
unchanged.
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Suspension attenuates runs

Suspension amplifies runs

Figure 3: Regions where a suspension amplifies/attenuates runs.

After some algebra, we can also compute the probability the authority assigns to an agent
improving its belief:

Pr (Δ𝑖 > 0| 𝑦 ) = Φ

(
−𝑦𝜏𝑦

√︄
𝜏0 + 𝜏𝑥 + 𝜏𝑦
𝜏𝑥

(
𝜏0 + 𝜏𝑦

) ) . (12)

Equation (11) tells us that after negative news arrives (𝑦 < 0), the authority expects
agents to be more optimistic at date 2 than at date 1 on average (𝔼 [Δ𝑖 | 𝑦 ] > 0). Equation
(12) implies that if public news is sufficiently bad, it is expected that almost all agents will
improve their beliefs about the fundamental at date 2 (lim𝑦→−∞ Pr (Δ𝑖 > 0| 𝑦 ) = 1). Those
results are in a way expected. When unfavorable public news arrives, it is likely that most
agents have received negative news when combining their private and public signals. Since
agents overreact to negative news, expectations are more pessimistic, on average, under
diagnostic expectations. This suggests that a suspension could be beneficial, since it makes
agents more optimistic on average at the time they decide whether to run and is in line with
the arguments presented in the introduction to justify suspensions in financial markets.

However, the argument so far misses two important points: (i) What matters is not
how such policies affect average beliefs or the beliefs of most agents, but how it affects the
behavior of the agents more likely to change their decisions; (ii) In equilibrium, as public
news worsens, the agents more likely to change their decisions become agents that received
better news when combining their public and private signals.
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Point (i) implies that agents that are close to indifference in equilibrium under diagnos-
tic expectations are those that the authority should pay attention to. That is, agents that
observed a private signal 𝑥𝑖 close to the equilibrium cutoff without a suspension 𝑥∗ may
change their decision when they stop overreacting; agents that are far from the cutoff are
very decided and unlikely to change their minds. I refer to the investor observing 𝑥𝑖 = 𝑥∗as
the marginal investor, or more broadly, to those observing 𝑥𝑖 close to 𝑥∗as the marginal
investors, where 𝑥∗ is the equilibrium cutoff without a suspension.

Point (ii) says that, aspublicnewsworsens, the identity ofmarginal investors also changes
in equilibrium, becoming agents that received better newswhen combining their public and
private signals: The distorted expectation of the marginal investor without a suspension,
𝔼𝜃 [𝜂 |𝑥∗, 𝑦 ], is a decreasing function of 𝑦 .8 When agents anticipate that others observed
worse news, they are relatively more prone to running, even holding constant their expec-
tations about the fundamental. The reason is that they become more pessimistic about
the proportion of agents that renew, as they know others observed a bad public signal. For
instance, if the public and private signals are equally precise, an agent observing 𝑥𝑖 = 1 and
𝑦 = −1 is more prone to running than an agent observing 𝑥𝑖 = −1 and 𝑦 = 1. Both hold the
same belief about the fundamental, but the former is more pessimistic about what others
think about the fundamental (higher-order beliefs). Hence, as long as agents are not ex-ante
very prone to renewing (𝑧 > 1 +𝛾 ), sufficiently bad news makes the few agents that receive
positive news overall the marginal ones. Point (ii) can be seen as a natural generalization
of the so-called publicity multiplier of Morris and Shin (2003) for a setting with diagnostic
agents.

Taken together, points (i) and (ii) imply that, after very bad public news arrives, it is
likely that the agents that matter to the authority are the few that received positive news. A
suspension, precisely because it curbs overreaction, will then worsen the beliefs of those
key agents at the time they decide, further increasing the size of the run, even if almost all
agents are receiving negative news and overreacting to it.

In short, the argument relies on the fact that suspensions tend to have a very different
effect on the average investor (which is an exogenous object) and the marginal investor

8Using (5) and (8) we can write:

𝑧 + 𝜇̃∗
1 −𝛾Φ

(√︂
𝜏1𝜏𝑥

𝜏1 + 𝜏𝑥

( (
𝜏0 + 𝜏𝑦 − 𝜃𝜏𝑥

)
𝜇̃∗
1

𝜏𝑥 (1 + 𝜃 ) − 𝜏𝑦

𝜏𝑥
𝑦

))
= 1,

where 𝜇̃∗
1 = 𝔼𝜃 [𝜂 |𝑥∗, 𝑦 ]. Taking derivatives, one can see that the right-hand side of the equation above is

strictly increasing in 𝜇̃∗
1 and 𝑦 , implying the claimmade in the text.
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Figure 4: Change in beliefs from date 1 to 2 for the average andmarginal investor.

Notes. “Average investor” refers to an investor 𝑗 observing a private signal 𝑥𝑗 = 𝔼 [𝑥𝑖 | 𝑦 ], which implies
Δ𝑗 = 𝔼 [Δ𝑖 | 𝑦 ]. “Marginal investor” refers to an investor 𝑘 observing 𝑥𝑘 = 𝑥∗, where 𝑥∗ is the equilibrium
cutoff without a suspension, and hence Δ𝑘 = 𝔼 [𝜂 | 𝑥∗, 𝑦 ] − 𝔼𝜃 [𝜂 | 𝑥∗, 𝑦 ]. The following parameters were used:
𝜏0 = 𝜏𝑥 = 𝜏𝑦 = 𝛾 = 1, 𝑧 = 3/2, 𝜃 = 1/2.

(which is determined in equilibrium), and particularly so for low and high realizations of the
public signal. This is graphically shown with an example in Figure 4, which depicts how the
beliefs of the average andmarginal investor change as agents stop overreacting, for different
observations of the public signal.

Proposition 4 also shows that, for a given realization of the public signal, lower ex-ante
investment returns make the authority less prone to suspending. This comes from the fact
that, when the investment is ex-ante very unprofitable, agents are very inclined to run, and
hence the marginal investor will be an agent that observed positive news overall.

The results discussed here also explain why a suspension attenuates runs when ex-ante
returns are high and/or public news is good: In such cases, themarginal investor is someone
observingnegative news, for the reasons alreadydiscussed. Of course, if suspensions implied
other costs (for reasons outside mymodel), the authority would not find them optimal in
good scenarios where most agents would not run regardless of the policy (high 𝑧 and/or 𝑦 ).

Finally, note that when 𝑧 is above 1 + 𝛾 , there is no realization of 𝑦 able to dissuade
the authority from implementing a suspension. Similarly, for 𝑧 < 1, the authority always
prefers not to implement it.9 Those are the cases in which investors have a dominant choice

9This follows from lim𝑦→∞ 𝑧∗ = 1 and lim𝑦→−∞ 𝑧∗ = 1 +𝛾 .
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before receiving their signals, and hence coordination motives are less strong. In such cases,
changes in 𝑦 still affect the beliefs of the marginal investor in the direction emphasized
above, but it is never enough to revert the authority’s decision.

5.1 Information Quality and Suspensions

I now further explore some comparative statics on the information structure. The analysis
so far assumes policymakers can alter investors’ beliefs simply by forcing them to take
some time to absorb incoming information, but take the information received by agents as
given. Another common policy used by policymakers to affect beliefs in a context of runs is
information disclosure, which aims at directly affecting the type and quality of information
received by investors (Iachan and Nenov, 2015, Ahnert and Kakhbod, 2017). If the quality of
the information arriving improves, is it more likely that a suspension is desirable? As shown
below, the answer depends on the type of information improving (private vs public) and on
how vulnerable to runs the economy is from an ex-ante perspective (ex-ante investment
returns).

For 𝑧 ∈ (1, 1 +𝛾 ), let 𝑦 ∗ be the realization of the public signal that makes the authority
indifferent between suspending or not. Using Proposition 4, it is given by

𝑦 ∗ = −Φ−1
(
𝑧 − 1
𝛾

)
1
𝜏𝑦

√︄ (
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

)
𝜏𝑥

𝜏0 + 𝜏𝑥 + 𝜏𝑦 . (13)

The ex-ante probability of a suspension being desirable for 𝑧 ∈ (1, 1 +𝛾 ) is then

Pr (𝑦 > 𝑦 ∗) =
∫ ∞

−∞

[
1 −Φ

(√︁
𝜏𝑦 (𝑦 ∗ −𝜂)

)] √
𝜏0𝜙

(√
𝜏0𝜂

)
𝑑𝜂.

For 𝑧 ∉ (1, 1 +𝛾 ) this probability is either zero or one (see Figure 3). The next proposi-
tion shows how Pr (𝑦 > 𝑦 ∗) is affected by the quality of the information that arrives in the
complementary case.

Proposition 5. Consider 𝑧 ∈ (1, 1 +𝛾 ). Then,

1. If 𝑧 < 1 +𝛾/2, 𝑑 Pr(𝑦>𝑦 ∗)
𝑑𝜏𝑦

> 0 and 𝑑 Pr(𝑦>𝑦 ∗)
𝑑𝜏𝑥

< 0;

2. If 𝑧 > 1 +𝛾/2, 𝑑 Pr(𝑦>𝑦 ∗)
𝑑𝜏𝑦

< 0 and 𝑑 Pr(𝑦>𝑦 ∗)
𝑑𝜏𝑥

> 0.
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That is, if ex-ante returns are high, suspensions are more likely to be desirable when
investors receive private information of high quality and public information of low quality—
provided coordinationmotives are strong and agents do not have a dominant action ex ante
(1 < 𝑧 < 1 +𝛾 ). When ex-ante returns are low, the opposite result arises.

To gather intuition, it is useful to first inspect an extreme case. Suppose 𝜏𝑦 = 0, so
that the public signal is ignored by agents, and 𝑧 ∈ (1, 1 +𝛾/2). An investor observing
𝑥𝑖 = 𝔼 [𝜂] = 0 (neutral news) has beliefs that are not distorted. For her to renew, it must
then be that 𝔼 [ℓ |𝑥𝑖 = 0] > 1−𝑧

𝛾
> 0.5 (since 𝑧 < 1 +𝛾/2). However, she believes that half of

the agents observed a signal above her. Therefore, the marginal investor must be someone
observing positive news (𝑥𝑖 > 0). A suspension is then not optimal with probability one, as
the realization of the public signal has no effect on the equilibrium behavior of investors
and the identity of the marginal investor.

Now suppose𝜏𝑦 increases, and hence investors no longer ignore the public signal in their
decisions. Now, if a sufficiently high public signal realizes, investors become very optimistic
about the action of others, and even an investor that observes a quite negative private signal
and updates her belief downward may now be willing to renew simply because it is more
optimistic about what others think about the fundamental. The marginal investor then
becomes an investor that observed negative news overall with positive probability, in which
case a suspension attenuates runs. A similar reasoning helps understand why Pr (𝑦 > 𝑦 ∗)
decreases with 𝜏𝑦 for 𝑧 > 1 +𝛾/2.

An increase in the precision of the private signal makes agents put less weight on the
public signal, and hence an increase in 𝜏𝑥 has an effect similar to a reduction in 𝜏𝑦 , which
explains why 𝑑 Pr(𝑦>𝑦 ∗)

𝑑𝜏𝑦
and 𝑑 Pr(𝑦>𝑦 ∗)

𝑑𝜏𝑥
have opposite signs.

Magnani andMunro (2020) simulate a simple model of asset market runs in a laboratory
and find that the effectiveness of circuit breakers depends crucially on the quality of the
public information available to agents. Mymodel with diagnostic investors shows that the
quality of private information is also important and predicts that the result should go in a
direction opposed to that of public information. Also, the model predicts opposed effects
depending on how prone to run agents are ex ante (captured by ex-ante returns 𝑧 in my
model), a dimension not explored in their experiment.
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5.2 Other Implications

The results presented go beyond the policy exercise emphasized in this paper. I now discuss
some of the implications of alternative interpretations of the model and results.

After-hours disclosure of information. Manymarket participants—such as firms, rating
agencies and equity analysts—choose to disclose information aftermarkets are closed (Patell
and Wolfson, 1982, Kraft, Xie and Zhou, 2020), and this practice has been recommended
by regulators as a way to avoid disruptions (ESMA, 2014). One often emphasized rationale
behind it is to give time for information to disseminate and be absorbed by market partici-
pants. The results in this paper suggest that if regulators are concerned about a run on a
firm’s debt or stock after the disclosure of bad news, such practice may have unintended
consequences.

Which kind of news can trigger runs? It has been previously argued that different types of
newsmay lead to different degrees of overreaction bymarket participants. Strong candidates
to trigger overreaction are news about temporary shocks, long-term prospects, industry
developments and salient events in general (Blank, Kwon and Tang, 2023, Afrouzi et al.,
2023). The results in this paper suggest that news about those events are less likely to trigger
large runs.

Investor heterogeneity and financial fragility. As documented by Blank, Kwon and Tang
(2023), there is variability in howmuch different types of investors overreact to news. This
paper suggests that markets with more rational (sophisticated) investors are not necessarily
less prone to suffer financial crises (understood here as run episodes). This complements
the findings of Maxted (2023), who shows diagnostic agents can improve financial stability
in a macroeconomic model with financial frictions. Here, I show that similar results obtain
in a model of runs.

6 Extensions

I now show that the main results of the paper are similar under a few alternative modeling
assumptions.
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6.1 AModel of Regime Change with Diagnostic Investors

Consider a model with the same assumptions as the model of Section 2, except for the fact
that now the payoff of renewing is given by

𝑣 (𝜂, ℓ) =

𝑧 if𝛾ℓ ≤ 𝜂,

𝛼𝑧 if𝛾ℓ > 𝜂,
(14)

where 𝑧 > 1, 𝛼𝑧 < 1 and 𝛾 > 0. Similar payoffs arise in games of regime change (e.g.,
Angeletos, Hellwig and Pavan, 2007, Sakovics and Steiner, 2012, Iachan and Nenov, 2015).
For convenience, when𝛾ℓ ≤ 𝜂 I say that the investment succeeded, and when𝛾ℓ > 𝜂 I say
that it failed.

The next proposition is analogous to Proposition 1.

Proposition 6. Suppose that the following condition holds:

𝛾
𝜏0 + 𝜏𝑦 − 𝜃𝜏𝑥

(1 + 𝜃 ) √𝜏𝑥
<
√
2𝜋. (15)

Then, the model has an essentially unique equilibrium, in which agents renew if 𝑥𝑖 > 𝑥∗, run
if 𝑥𝑖 < 𝑥∗, and the investment fails iff𝜂 < 𝜂∗, where 𝑥∗ and𝜂∗ are the unique solution to

𝛾Φ
(√
𝜏𝑥 (𝑥∗ −𝜂∗)) = 𝜂∗, (16)

𝑧 − (1 − 𝛼) 𝑧Φ
(√︁

𝜏0 + 𝜏𝑥 + 𝜏𝑦
(
𝜂∗ − (1 + 𝜃 ) (

𝜏𝑥𝑥
∗ + 𝜏𝑦𝑦

)
𝜏0 + 𝜏𝑥 + 𝜏𝑦

))
= 1. (17)

Note that the left-hand side of (15) is strictly decreasing in 𝜃 . Hence, to guarantee the
equilibrium is unique for every 𝜃 ≥ 0, I impose the following assumption throughout this
subsection:

𝛾
𝜏0 + 𝜏𝑦√

𝜏𝑥
<
√
2𝜋. (A2)

This assumption then plays the same role as assumption (A1) in the main model.

6.1.1 Suspensions

Now consider the model used in Sections 4 and 5, but with the payoffs of investing replaced
by (14). Given the payoff structure, the authority might only care about the size of a run up
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to the point that it affects whether the investment fails or succeeds. Hence, it makes sense
to generalize the payoff of the authority, so now I assume that it minimizes

L =

∫ ∞

−∞
𝛽

(
ℓ̃ (𝜂) ,𝜂 )

𝑓 (𝜂 |𝑦 ) 𝑑𝜂,

where 𝛽 (ℓ,𝜂) is a (weakly) increasing function. I also assume that 𝛽 (ℓ,𝜂) is not always
constant on ℓ: for every𝜂 , there exists ℓ1 and ℓ2, with ℓ2 > ℓ1, such that 𝛽 (ℓ2,𝜂) > 𝛽 (ℓ1,𝜂).
For instance, if 𝛽 (ℓ,𝜂) = ℓ, we have the same objective as in Section 5. If, however, 𝛽 (ℓ,𝜂) =
−𝑧 for ℓ ≤ 𝜂/𝛾 , and 𝛽 (ℓ,𝜂) = −𝛼𝑧 for ℓ > 𝜂/𝛾 , then the authority objective is equivalent to
maximizing expected investment returns.

The next result is analogous to Proposition 4.

Proposition 7. The authority implements a suspension if 𝑧 > 𝑧∗, does not implement it if
𝑧 < 𝑧∗, and is indifferent when 𝑧 = 𝑧∗, where

𝑧∗ =
[
1 − (1 − 𝛼)Φ

(
𝜂
√︁
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)]−1
, (18)

and𝜂 solves𝛾Φ
(
−√𝜏𝑥

(
𝜏𝑦
𝜏𝑥
𝑦 +𝜂

))
= 𝜂 . Moreover, 𝑑𝑧

∗
𝑑𝑦

< 0.

6.2 EquilibriumMultiplicity

In this section, I consider the same model presented in Sections 4 and 5, except for the
fact that here I do not assume that condition (A1) necessarily holds. Hence, there may be
multiple equilibria. To compute how policies affect equilibrium outcomes, one now needs
an equilibrium selection criterion, which I discuss below.

As defined before, for a given public signal 𝑦 , I say that 𝑥∗ is a cutoff strategy if investors
renew if 𝑥𝑖 > 𝑥∗ and run if 𝑥𝑖 < 𝑥∗, and that 𝑥∗ is a symmetric cutoff equilibrium if all
investors playing the cutoff strategy 𝑥∗ is an equilibrium. Given that investor’s payoffs of
renewing are strictly increasing in their own private signal, an investor that believes others
will follow a cutoff strategy will best-respond by playing a cutoff strategy (see the proof of
Proposition 1 for details).

Let then 𝐵𝑅 (𝑥) be the optimal cutoff strategy of an investor that believes all others are
playing according to a cutoff strategy 𝑥 (𝐵𝑅 stands for best-response). I say that 𝑥∗ is a stable
cutoff equilibrium if 𝐵𝑅 (𝑥∗) = 𝑥∗ and 𝐵𝑅 ′ (𝑥∗) < 1. The latter condition is necessary and
sufficient for the best-response dynamics to locally converge to the fixed point 𝑥∗. Writing
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the payoff of renewing as in (19) in Appendix A, one can easily verify that a stable cutoff
equilibrium always exists in the model of Section 2, even if (A1) is violated.

In what follows, the largest and smallest stable cutoff equilibrium denotes the symmetric
cutoff equilibrium with the largest and smallest cutoff 𝑥∗, respectively, among all symmetric
cutoff equilibria. I then define two selection criteria:

S1: Investors always play according to the largest stable cutoff equilibrium;

S2: Investors always play according to the smallest stable cutoff equilibrium.

The next proposition generalizes the results in Proposition 4.

Proposition 8. Suppose that either S1 or S2 holds. Then, there is a 𝑧∗∗ such that the authority
implements a suspension if 𝑧 > 𝑧∗∗ and does not implement it if 𝑧 < 𝑧∗∗. Moreover, 𝑧∗∗ is a
decreasing and non-constant function of the public signal 𝑦 .

Note that it cannot be guaranteed that 𝑧∗∗ is strictly decreasing in 𝑦 , but themain insights
remain.

6.3 Partial Reversion to Rationality

Now consider the same model of Sections 4 and 5, except for the following deviation: At
date 1, agents hold beliefs given by (2) with 𝜃 = 𝜃1 > 0, and at date 2, they hold beliefs given
by (2), with 𝜃 = 𝜃2 ∈ (0, 𝜃1). That is, now investors still hold diagnostic beliefs at date 2, but
beliefs distortions are smaller than at date 1. The next proposition shows the main result of
the paper remains unchanged.

Proposition 9. The results in Proposition 4 continue to hold in the model where beliefs only
partially revert toward rationality.

7 Final Remarks

This paper makes twomain contributions, a methodological one and a normative one.
On themethodological front, the paper shows how to parsimoniously combine standard

models of coordination failures (global games) with models of belief formation that depart
from rationality (diagnostic expectations). Themodel provides novel insights on the interac-
tion of strategic complementarities and overreaction. In particular, I show that even when
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overreaction about exogenous variables is small, overreaction about endogenous ones can
be large, implying that even a small amount of overreaction can have a sizable effect on
equilibrium outcomes. The proposed model could serve as a starting point to study other
problems where coordination and overreaction are important.

On the normative front, the model is used to derive insights about suspensions intended
to provide a time-out to investors when they are prone to run an investment. The key novel
insight is that an often emphasized potential benefit of suspensions during bad times—
namely forcing investors to act only after overreaction to incoming information fades—can
actually be a cost in a setting with strategic complementarities.

Naturally, there are certainly other costs/benefits of suspensions driven by channels
not present in mymodel. It is beyond the scope of this paper to conduct a full cost-benefit
analysis of suspensions. Instead, the normative goal here is to characterize under which
circumstances the effects of suspensions that operate through curbing overreaction to
news—a channel frequently invoked by defendants of those policies—attenuate or amplify
runs. Starting from the proposed model, future research could study how other policies
aimed at promoting liquidity and financial stability interact with investors’ overreaction.

A Proofs

A.1 Proof of Lemma 1

Standard Bayesian updating implies that𝜂 conditional on observing a private signal 𝑥𝑖 and
a public signal 𝑦 is normally distributed with mean 𝜏𝑥𝑥𝑖+𝜏𝑦 𝑦

𝜏0+𝜏𝑥+𝜏𝑦 and variance
(
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)−1.
Hence:

𝑓 (𝜂 | 𝑥𝑖 = 𝑥, 𝑦 = 𝑦 ) =
√︂
𝜏0 + 𝜏𝑥 + 𝜏𝑦

2𝜋
exp

{
−𝜏0 + 𝜏𝑥 + 𝜏𝑦

2

(
𝜂 − 𝜏𝑥𝑥 + 𝜏𝑦𝑦

𝜏0 + 𝜏𝑥 + 𝜏𝑦

)2}
.

29



Using (2) we get:

𝑓 𝜃 (𝜂 | 𝑥𝑖 = 𝑥, 𝑦 = 𝑦 ) =
√︂
𝜏0 + 𝜏𝑥 + 𝜏𝑦

2𝜋
exp

{
−𝜏0 + 𝜏𝑥 + 𝜏𝑦

2

(
𝜂 − 𝜏𝑥𝑥 + 𝜏𝑦𝑦

𝜏0 + 𝜏𝑥 + 𝜏𝑦

)2}

·


exp

{
−𝜏0+𝜏𝑥+𝜏𝑦

2

(
𝜂 − 𝜏𝑥𝑥+𝜏𝑦 𝑦

𝜏0+𝜏𝑥+𝜏𝑦

)2}
exp

{
−𝜏0+𝜏𝑥+𝜏𝑦

2 𝜂2
}


𝜃

𝐶 .

Letting𝐶 = exp
{
−1
2
𝜃 (1+𝜃 )(𝜏𝑥𝑥+𝜏𝑦 𝑦)2

𝜏0+𝜏𝑥+𝜏𝑦

}
and simplifying above, we get the density of a normal

distribution with mean 𝜇̃1 (𝑥𝑖 , 𝑦 ) and variance 1/𝜏1. □

A.2 Proof of Proposition 1

Fix a realization of the public signal 𝑦 . I say that 𝑥∗ is a cutoff strategy if investors renew
if 𝑥𝑖 > 𝑥∗ and run if 𝑥𝑖 < 𝑥∗, and that 𝑥∗ is a symmetric cutoff equilibrium if all investors
playing the cutoff strategy 𝑥∗ is an equilibrium. Suppose all agents play according to a cutoff
strategy 𝑥∗. In such case, for a given𝜂 , ℓ is equal to

ℓ̃ (𝜂) = Φ
(√
𝜏𝑥 (𝑥∗ −𝜂)) .

Denote by ℎ (𝑥, 𝑥∗) the distorted expected payoff of renewing of an agent that observes a
private signal 𝑥 and believes others are playing a cutoff strategy 𝑥∗. Using Lemma 1, we can
write it as:

ℎ (𝑥, 𝑥∗) = 𝑧 + 𝜇̃1 (𝑥, 𝑦 ) −𝛾

∫ ∞

−∞
Φ

(√
𝜏𝑥 (𝑥∗ −𝜂)) √︁𝜏1𝜙 (√︁

𝜏1 (𝜂 − 𝜇̃1 (𝑥, 𝑦 ))
)
𝑑𝜂.

Now let 𝑘 =
√
𝜏1 (𝜂 − 𝜇̃1 (𝑥)) and apply a change of variables to the integral above:

ℎ (𝑥, 𝑥∗) = 𝑧 + 𝜇̃1 (𝑥, 𝑦 ) −𝛾

∫ ∞

−∞
Φ

(√
𝜏𝑥 (𝑥∗ − 𝜇̃1 (𝑥, 𝑦 )) −

√︂
𝜏𝑥

𝜏1
𝑘

)
𝜙 (𝑘 ) 𝑑𝑘.

Using the known fact that for any constants 𝑎 and 𝑏 ,
∫ ∞
−∞Φ(𝑎 + 𝑏𝑘 )𝜙 (𝑘 )𝑑𝑘 = Φ

(
𝑎√
1+𝑏2

)
:

ℎ (𝑥, 𝑥∗) = 𝑧 + 𝜇̃1 (𝑥, 𝑦 ) −𝛾Φ

(√︂
𝜏1𝜏𝑥

𝜏1 + 𝜏𝑥 (𝑥∗ − 𝜇̃1 (𝑥, 𝑦 ))
)
. (19)
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One can easily verify that ℎ (𝑥, 𝑥∗) is strictly increasing in 𝑥 . Hence, the optimal response of
an agent that believes otherswill play a cutoff strategy is to play a cutoff strategy𝑥∗∗ satisfying
ℎ (𝑥∗∗, 𝑥∗) = 1. Hence, a necessary and sufficient condition for 𝑥∗ to be an equilibrium is
ℎ (𝑥∗, 𝑥∗) = 1, that is, (8)must hold. A cutoff equilibriumexists, since lim𝑥∗→∞ ℎ (𝑥∗, 𝑥∗) = ∞
and lim𝑥∗→−∞ ℎ (𝑥∗, 𝑥∗) = −∞. A sufficient condition for (8) to have a unique solution is
that its RHS is strictly increasing in 𝑥∗. Differentiating the RHS of (8), one gets the following
sufficient condition for equilibrium uniqueness in symmetric cutoff strategies:

𝜕𝜇̃1 (𝑥∗, 𝑦 )
𝜕𝑥𝑖

−𝛾𝜙

(√︂
𝜏1𝜏𝑥

𝜏1 + 𝜏𝑥 (𝑥∗ − 𝜇̃1 (𝑥∗, 𝑦 ))
) √︂

𝜏1𝜏𝑥

𝜏1 + 𝜏𝑥

(
1 − 𝜕𝜇̃1 (𝑥∗, 𝑦 )

𝜕𝑥𝑖

)
> 0,

∀𝑥∗ ∈ ℝ. (20)

Replacing (6) and 𝜕𝜇̃1 (𝑥∗,𝑦 )
𝜕𝑥𝑖

=
(1+𝜃 )𝜏𝑥
𝜏0+𝜏𝑥+𝜏𝑦 in (20) and using that the maximum of the standard

normal density is 1/√2𝜋 , it suffices to check whether

(1 + 𝜃 ) 𝜏𝑥
𝜏0 + 𝜏𝑥 + 𝜏𝑦 − 𝛾√

2𝜋

√︄ (
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)
𝜏𝑥

𝜏0 + 2𝜏𝑥 + 𝜏𝑦

(
1 − (1 + 𝜃 ) 𝜏𝑥

𝜏0 + 𝜏𝑥 + 𝜏𝑦

)
> 0,

which simplifies to (7).
It remains to show that all equilibria are symmetric cutoff equilibria. For a given 𝑦 , my

equilibrium definition is equivalent to Nash Equilibrium in the game where the payoff of
renewal is given by (4) and strategies are maps 𝑑 : 𝑥𝑖 ↦→ {0, 1}. I now show that there is
an essentially unique strategy profile surviving iterated elimination of strictly dominated
strategies (IESDS hereafter), which then implies that all Nash Equilibria are symmetric cutoff
equilibria. What follows extends the uniqueness arguments in Morris and Shin (2000) to my
setting with diagnostic investors.

Suppose all investors 𝑗 ≠ 𝑖 follow the strategy of running regardless of the observed
signal 𝑥𝑗 . Then, investor 𝑖 strictly prefers to renew when she observes 𝑥𝑖 > 𝜁1 and strictly
prefers to run if 𝑥𝑖 < 𝜁1, where 𝜁1 satisfies lim𝑥∗→∞ ℎ (𝜁1, 𝑥∗) = 𝑧 + 𝜇̃1 (𝜁1) − 𝛾 = 1, since
ℎ (·) is strictly increasing in its first argument. Given that payoffs (4) are strictly decreasing
in ℓ̃ (𝜂), any strategy prescribing running when observing 𝑥𝑖 > 𝜁1 is a strictly dominated
strategy. Now consider the game where we remove strategies that satisfy 𝑑 (𝑥𝑖 ) = 0 for
some 𝑥𝑖 > 𝜁1 from investors’ strategy space. Suppose, all investors 𝑗 ≠ 𝑖 play the cutoff
strategy 𝜁1. Again, investor 𝑖 strictly prefers to run (renew) if 𝑥𝑖 < 𝜁2 (𝑥𝑖 > 𝜁2), where 𝜁2
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satisfies ℎ (𝜁2, 𝜁1) = 1. Using the same arguments as before, this implies that running after
𝑥𝑖 > 𝜁2 is part of a strictly dominated strategy in this modified game. Moreover, 𝜁2 < 𝜁1,
since ℎ (·) is strictly increasing in the first argument and strictly decreasing in the second.
Continuing to eliminate strictly dominated strategies, one constructs a strictly decreasing
sequence 𝜁𝑛 . Such sequence has a lower bound, since whenever 𝑥𝑖 is below the 𝑥 that solves
𝑧 + 𝜇̃1 (𝑥, 𝑦 ) = 1, investors strictly prefer to run regardless of what others do. Therefore, it
converges to some 𝜁∞ so that any strategy that prescribes running for some 𝑥𝑖 > 𝜁∞ does not
survive IESDS. Moreover, since ℎ (𝜁𝑘+1, 𝜁𝑘 ) = 1, for all 𝑘 ≥ 1, we have that ℎ (𝜁∞, 𝜁∞) = 1.

Starting with the assumption that all players 𝑗 ≠ 𝑖 follow the strategy of always renewing,
regardless of their signal and following steps analogous to those in the previous paragraph,
one obtains a strictly increasing sequence 𝜉𝑛 that converges to some 𝜉∞ such that: (i) strate-
gies that prescribe renewing for 𝑥𝑖 < 𝜉∞ do not survive IESDS; (ii) ℎ (𝜉∞, 𝜉∞) = 1. However,
given (7), there is a unique 𝑥∗ satisfying ℎ (𝑥∗, 𝑥∗) = 1 and hence 𝜉∞ = 𝜁∞. Therefore, any
strategy that survives IESDS is a cutoff strategy, with the cutoff given by the unique solution
to ℎ (𝑥∗, 𝑥∗) = 1. □

A.3 Proof of Proposition 2

As shown in the proof of Proposition 1, the payoff of renewing when observing the signal
𝑥𝑖 = 𝑥∗ and when others play the cutoff strategy 𝑥∗ is given by the LHS of (8), which can be
written as

𝑔 (𝑥∗,𝜏𝑥 ) ≡ 𝑧 + (1 + 𝜃 ) (
𝜏𝑥𝑥

∗ + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦 −𝛾Φ
©­«
√︄ (

𝜏0 + 𝜏𝑥 + 𝜏𝑦
)
𝜏𝑥

𝜏0 + 2𝜏𝑥 + 𝜏𝑦

(
𝑥∗ − (1 + 𝜃 ) (

𝜏𝑥𝑥
∗ + 𝜏𝑦𝑦

)
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)ª®¬ .
Therefore, using L’Hopital’s rule,

lim
𝜏𝑥→∞ 𝑔 (𝑥∗,𝜏𝑥 ) =


𝑧 + (1 + 𝜃 ) 𝑥∗ −𝛾 , if 𝑥∗ < 0,

𝑧 + (1 + 𝜃 ) 𝑥∗ −𝛾/2, if 𝑥∗ = 0,

𝑧 + (1 + 𝜃 ) 𝑥∗, if 𝑥∗ > 0.

Since the indifference condition 𝑔 (𝑥∗,𝜏𝑥 ) = 1 holds at the equilibrium cutoff strategy 𝑥∗,
we get the desired result. □
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A.4 Proof of Proposition 3

Fixing any strategy profile of date-1 and date-2 investors, any investor at date 1 strictly
prefers to decide between renewing and running himself than waiting, since waiting is
equivalent to delegating the decision to his date-2 self, which at best will lead to its preferred
option between actions 0 and 1 but will imply a cost 𝛿 . That is, waiting after some signals is
a strictly dominated strategy for date-1 investors. Hence, we can eliminate those strategies
from the strategy space. The game becomes identical to that of Section 2 from the point of
view of date-1 investors, and hence in equilibrium they play according to the cutoff strategy
𝑥∗ of Proposition 1. □

A.5 Proof of Proposition 4

For notational convenience, define

𝑞 (𝑥∗, 𝜃 , 𝑧) = 𝑧 + (1 + 𝜃 ) (
𝜏𝑥𝑥

∗ + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦

−𝛾Φ
©­«
√︄ (

𝜏0 + 𝜏𝑥 + 𝜏𝑦
)
𝜏𝑥

𝜏0 + 2𝜏𝑥 + 𝜏𝑦

(
𝑥∗ − (1 + 𝜃 ) (

𝜏𝑥𝑥
∗ + 𝜏𝑦𝑦

)
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)ª®¬ , (21)

which is the LHS of (8) after replacing 𝜇̃1 (𝑥∗, 𝑦 ) and 𝜏1. Condition (A1) implies that
𝑞 (𝑥∗, 𝜃 , 𝑧) is strictly increasing in 𝑥∗. Note that, with a suspension, investors play as in
Proposition 1 assuming 𝜃 = 0. Let 𝑥∗𝑒𝑞 (𝜃 ) be the equilibrium cutoff of Proposition 1 for
a given 𝜃 . Denote by 𝑥∗

𝑅
and 𝑥∗

𝐷
the equilibrium cutoffs with and without a suspension,

respectively. By Proposition 1, we have 𝑞
(
𝑥∗𝑒𝑞 (𝜃 ) , 𝜃 , 𝑧

)
= 1 for all 𝜃 ≥ 0, and, using

Proposition 3, 𝑥∗
𝑅
= 𝑥∗𝑒𝑞 (0) and 𝑥∗𝐷 = 𝑥∗𝑒𝑞 (𝜃 ). Taking derivatives of 𝑞 (·) with respect to 𝜃 :

𝜕𝑞 (𝑥∗, 𝜃 , 𝑧)
𝜕𝜃

=
(
𝜏𝑥𝑥

∗ + 𝜏𝑦𝑦
)

·
𝛾𝜙

(√︂
(𝜏0+𝜏𝑥+𝜏𝑦 )𝜏𝑥
𝜏0+2𝜏𝑥+𝜏𝑦

(
𝑥∗ − (1+𝜃 )(𝜏𝑥𝑥∗+𝜏𝑦 𝑦)

𝜏0+𝜏𝑥+𝜏𝑦

)) √︂
(𝜏0+𝜏𝑥+𝜏𝑦 )𝜏𝑥
𝜏0+2𝜏𝑥+𝜏𝑦 + 1

𝜏0 + 𝜏𝑥 + 𝜏𝑦 , (22)

andhence sgn
(
𝜕𝑞
𝜕𝜃

)
= sgn

(
𝜏𝑥𝑥

∗ + 𝜏𝑦𝑦
)
. Suppose𝜏𝑥𝑥∗𝑒𝑞 (0)+𝜏𝑦𝑦 > 0. Then,∀𝑥∗ ≥ 𝑥∗𝑒𝑞 (0) and

∀𝜃 ≥ 0, 𝜕𝑞 (𝑥
∗,𝜃 ,𝑧)
𝜕𝜃

> 0. Hence, since 𝜕𝑞 (𝑥∗,𝜃 ,𝑧)
𝜕𝑥∗ > 0, ∀𝑥∗ and ∀𝜃 ≥ 0 (by (A1)), 𝑥∗𝑒𝑞 (𝜃 ) < 𝑥∗𝑒𝑞 (0),

∀𝜃 > 0, which implies that 𝑥∗
𝐷

< 𝑥∗
𝑅
. Similarly, if 𝜏𝑥𝑥∗𝑒𝑞 (0) + 𝜏𝑦𝑦 < 0, then ∀𝑥∗ ≤ 𝑥∗𝑒𝑞 (0)
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and ∀𝜃 ≥ 0, 𝜕𝑞 (𝑥
∗,𝜃 ,𝑧)
𝜕𝜃

< 0. Hence, in that case, 𝑥∗𝑒𝑞 (𝜃 ) > 𝑥∗𝑒𝑞 (0), ∀𝜃 > 0, implying 𝑥∗
𝐷
> 𝑥∗

𝑅
.

Suppose now 𝜏𝑥𝑥
∗
𝑒𝑞 (0) + 𝜏𝑦𝑦 = 0. Then 𝑞

(
𝑥∗𝑒𝑞 (0) , 𝜃 , 𝑧

)
does not depend on 𝜃 , and hence

𝑥∗𝑒𝑞 (𝜃 ) = 𝑥∗𝑒𝑞 (0), ∀𝜃 ≥ 0, and so 𝑥∗
𝑅
= 𝑥∗

𝐷
. Hence, a suspension increases (decreases) the

equilibrium cutoff iff 𝑥∗
𝑅
= 𝑥∗𝑒𝑞 (0) is above (below) −𝜏𝑦

𝜏𝑥
𝑦 . For any given𝜂 , the mass of agents

running is a strictly increasing function of the cutoff strategy followed by investors. Higher
values of 𝑧 imply lower values of 𝑥∗

𝑅
, since 𝜕𝑞

𝜕𝑧
> 0 and 𝜕𝑞

𝜕𝑥∗ > 0. Therefore, 𝑧∗ is characterized
by the value of 𝑧 such that 𝑥∗

𝑅
= −𝜏𝑦

𝜏𝑥
𝑦 :

𝑞

(
−𝜏𝑦
𝜏𝑥

𝑦 , 0, 𝑧∗
)
= 𝑧∗ −𝛾Φ

(
−𝑦𝜏𝑦

√︄
𝜏0 + 𝜏𝑥 + 𝜏𝑦(

𝜏0 + 2𝜏𝑥 + 𝜏𝑦
)
𝜏𝑥

)
= 1, (23)

yielding (10). The last statement follows directly from (10). □

A.6 Proof of Proposition 5

Given the symmetry properties of the normal distribution, we can rewrite Pr (𝑦 > 𝑦 ∗) as

Pr (𝑦 > 𝑦 ∗) =
∫ ∞

−∞
Φ

(√︁
𝜏𝑦 (𝜂 − 𝑦 ∗)

) √
𝜏0𝜙

(√
𝜏0𝜂

)
𝑑𝜂. (24)

Therefore,

𝑑 Pr (𝑦 > 𝑦 ∗)
𝑑𝜏𝑦

=

∫ ∞

−∞

(
𝜂 − 𝑦 ∗

2𝜏𝑦
− 𝑑𝑦 ∗

𝑑𝜏𝑦

) √︁
𝜏𝑦𝜙

(√︁
𝜏𝑦 (𝜂 − 𝑦 ∗)

) √
𝜏0𝜙

(√
𝜏0𝜂

)
𝑑𝜂,

where, by differentiating (13),

𝑑𝑦 ∗

𝑑𝜏𝑦
=

[
𝜏2𝑦 +

(
2𝜏0 + 7𝜏𝑥

2

)
𝜏𝑦 + (𝜏0 + 2𝜏𝑥 ) (𝜏0 + 𝜏𝑥 )

] √
𝜏𝑥Φ−1

(
𝑧−1
𝛾

)
√︁
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

(
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)3/2
𝜏2𝑦

. (25)

After some algebra, one can conclude that for some scaling constant Σ > 0,
Σ
√
𝜏𝑦𝜙

(√
𝜏𝑦 (𝜂 − 𝑦 ∗)) √𝜏0𝜙 (√

𝜏0𝜂
)
is the density of a normal random variable with mean

𝜏𝑦 𝑦
∗

𝜏0+𝜏𝑦 . Hence,
𝑑 Pr (𝑦 > 𝑦 ∗)

𝑑𝜏𝑦
=
1
Σ

[
𝑦 ∗

2
(
𝜏0 + 𝜏𝑦

) − 𝑦 ∗

2𝜏𝑦
− 𝑑𝑦 ∗

𝑑𝜏𝑦

]
.
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Replacing 𝑦 ∗ and 𝑑𝑦 ∗
𝑑𝜏𝑦

using (13) and (25) and simplifying, we get

𝑑 Pr (𝑦 > 𝑦 ∗)
𝑑𝜏𝑦

= − 1
Σ

Φ−1
(
𝑧−1
𝛾

)
𝜏𝑥

2𝜏2𝑦
(
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)3/2 (
𝜏0 + 𝜏𝑦

) √︃(
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

)
𝜏𝑥

·
[ (
2𝜏0 + 4𝜏𝑦

)
𝜏2𝑥 + 3

(
𝜏0 + 7

3
𝜏𝑦

) (
𝜏0 + 𝜏𝑦

)
𝜏𝑥 +

(
𝜏0 + 2𝜏𝑦

) (
𝜏0 + 𝜏𝑦

)2]
.

Therefore, if 𝑧 > 1 +𝛾/2,Φ−1
(
𝑧−1
𝛾

)
> 0 and 𝑑 Pr(𝑦>𝑦 ∗)

𝑑𝜏𝑦
< 0. If 𝑧 < 1 +𝛾/2, thenΦ−1

(
𝑧−1
𝛾

)
< 0

and 𝑑 Pr(𝑦>𝑦 ∗)
𝑑𝜏𝑦

> 0.
Now differentiate (24) with respect to 𝜏𝑥 :

𝑑 Pr (𝑦 > 𝑦 ∗)
𝑑𝜏𝑥

= −
∫ ∞

−∞

𝑑𝑦 ∗

𝑑𝜏𝑥

√︁
𝜏𝑦𝜙

(√︁
𝜏𝑦 (𝜂 − 𝑦 ∗)

) √
𝜏0𝜙

(√
𝜏0𝜂

)
𝑑𝜂.

Differentiating (13) we get

𝑑𝑦 ∗

𝑑𝜏𝑥
= −

[
2𝜏2𝑥 + 4 (

𝜏0 + 𝜏𝑦
)
𝜏𝑥 +

(
𝜏0 + 𝜏𝑦

)2]
Φ−1

(
𝑧−1
𝛾

)
2𝜏𝑦

(
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)3/2 √︃(
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

)
𝜏𝑥

.

Therefore, 𝑑 Pr(𝑦>𝑦
∗)

𝑑𝜏𝑥
> 0 if 𝑧 > 1 +𝛾/2, and 𝑑 Pr(𝑦>𝑦 ∗)

𝑑𝜏𝑥
< 0 if 𝑧 < 1 +𝛾/2. □

A.7 Proof of Proposition 6

Fix a realization of the public signal 𝑦 and suppose all investors play according to some
cutoff strategy 𝑥∗, as defined in the proof of Proposition 1. Then, the investment fail iff
𝜂 < 𝜂∗, where𝜂∗ is given by the unique solution to (16). In what follows, I write𝜂∗ as𝜂∗ (𝑥∗)
to emphasize that (16) implicitly defines𝜂∗ as a function of 𝑥∗. Using the implicit function
theorem:

𝑑𝜂∗

𝑑𝑥∗
=

𝛾
√
𝜏𝑥𝜙

(√
𝜏𝑥 (𝑥∗ −𝜂∗ (𝑥∗)))

𝛾
√
𝜏𝑥𝜙

(√
𝜏𝑥 (𝑥∗ −𝜂∗ (𝑥∗))) + 1 > 0.

Denote by𝐻 (𝑥, 𝑥∗) the distorted expected payoff of renewing of an agent that observes a
private signal 𝑥 and believes others are playing a cutoff strategy 𝑥∗. Using Lemma 1:

𝐻 (𝑥, 𝑥∗) = 𝑧 − (1 − 𝛼) 𝑧Φ
(√︁

𝜏0 + 𝜏𝑥 + 𝜏𝑦
(
𝜂∗ (𝑥∗) − (1 + 𝜃 ) (

𝜏𝑥𝑥 + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦

))
.
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Since𝐻 (𝑥, 𝑥∗) is strictly increasing in 𝑥 , 𝑥∗ is a cutoff equilibrium iff𝐻 (𝑥∗, 𝑥∗) = 1. Using
(16), note that lim𝑥∗→∞𝜂∗ (𝑥∗) = 𝛾 and lim𝑥∗→−∞𝜂∗ (𝑥∗) = 0. An equilibrium then exists,
since lim𝑥∗→∞𝐻 (𝑥∗, 𝑥∗) = 𝑧 > 1 and lim𝑥∗→−∞𝐻 (𝑥∗, 𝑥∗) = 𝛼𝑧 < 1. In the proof of Proposi-
tion 1, the argument used to show that a cutoff satisfying ℎ (𝑥∗, 𝑥∗) = 1 was the essentially
unique equilibrium relied only on two properties of the function ℎ (𝑥, 𝑥∗), namely that: (i)
ℎ (𝑥, 𝑥∗) was strictly increasing in 𝑥 ; (ii) 𝑟 (𝑥∗) ≡ ℎ (𝑥∗, 𝑥∗) was strictly increasing in 𝑥∗. If
𝐻 (𝑥, 𝑥∗) and 𝑅 (𝑥∗) ≡ 𝐻 (𝑥∗, 𝑥∗) satisfy (i) and (ii), respectively, then the same arguments
used in the proof of Proposition 1 imply the desired result, after replacing ℎ (·) by𝐻 (·) in
that proof. That𝐻 (𝑥, 𝑥∗) is strictly increasing in 𝑥 is straightforward. To show the second
property, first I differentiate 𝑅 (𝑥∗):

𝑑𝑅

𝑑𝑥∗
= (1 − 𝛼) 𝑧𝜙

(√︁
𝜏0 + 𝜏𝑥 + 𝜏𝑦

(
𝜂∗ (𝑥∗) − (1 + 𝜃 ) (

𝜏𝑥𝑥 + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦

))
· √︁𝜏0 + 𝜏𝑥 + 𝜏𝑦 [ (1 + 𝜃 ) 𝜏𝑥

𝜏0 + 𝜏𝑥 + 𝜏𝑦 − 𝑑𝜂∗

𝑑𝑥∗

]
.

Since 𝜙 (𝑘 ) ≤ 1/√2𝜋 , we have that 𝑑𝜂∗
𝑑𝑥∗ ≤ 𝛾

√
𝜏𝑥

𝛾
√
𝜏𝑥+

√
2𝜋
. Hence, a sufficient condition for 𝑑𝑅

𝑑𝑥∗ > 0,
for all 𝑥∗, is

(1 + 𝜃 ) 𝜏𝑥
𝜏0 + 𝜏𝑥 + 𝜏𝑦 >

𝛾
√
𝜏𝑥

𝛾
√
𝜏𝑥 +

√
2𝜋

,

which after rearranging yields condition (15). □

A.8 Proof of Proposition 7

Define𝑄 (𝑥∗, 𝜃 , 𝑧) as

𝑄 (𝑥∗, 𝜃 , 𝑧) = 𝑧 − (1 − 𝛼) 𝑧Φ
(√︁

𝜏0 + 𝜏𝑥 + 𝜏𝑦
(
𝑘 (𝑥∗) − (1 + 𝜃 ) (

𝜏𝑥𝑥
∗ + 𝜏𝑦𝑦

)
𝜏0 + 𝜏𝑥 + 𝜏𝑦

))
,

where 𝑘 (𝑥∗) denotes the 𝜂∗ that solves (16) for a given 𝑥∗. Replacing the reference to (8)
in Proposition 3 by (16) and (17), one can see that the result and its proof also apply to
the model of this section. Hence, letting 𝑥∗

𝑅
and 𝑥∗

𝐷
denote the equilibrium cutoff with

and without a suspension, respectively, by Proposition 6, we have that𝑄
(
𝑥∗
𝑅
, 0, 𝑧

)
= 1 and

𝑄
(
𝑥∗
𝐷
, 𝜃 , 𝑧

)
= 1. Taking derivatives of𝑄 (·) with respect to 𝜃 :

𝜕𝑄

𝜕𝜃
=

(
𝜏𝑥𝑥

∗ + 𝜏𝑦𝑦
) (1 − 𝛼) 𝑧√

𝜏0 + 𝜏𝑥 + 𝜏𝑦 𝜙
(√︁

𝜏0 + 𝜏𝑥 + 𝜏𝑦
(
𝑘 (𝑥∗) − (1 + 𝜃 ) (

𝜏𝑥𝑥
∗ + 𝜏𝑦𝑦

)
𝜏0 + 𝜏𝑥 + 𝜏𝑦

))
,
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and hence sgn
(
𝜕𝑄
𝜕𝜃

)
= sgn

(
𝜏𝑥𝑥

∗ + 𝜏𝑦𝑦
)
. Moreover, note that𝑄

(
−𝜏𝑦
𝜏𝑥
𝑦 , 𝜃 , 𝑧

)
= 1 for some

𝜃 ≥ 0 implies𝑄
(
−𝜏𝑦
𝜏𝑥
𝑦 , 𝜃 , 𝑧

)
= 1 for all 𝜃 ≥ 0. Given those properties of𝑄 (·), one can then

repeat the same arguments in the proof of Proposition 3, replacing 𝑞 (·) by𝑄 (·), to show
that 𝑧∗ is now given by

𝑄

(
−𝜏𝑦
𝜏𝑥

𝑦 , 0, 𝑧∗
)
= 𝑧∗ − (1 − 𝛼) 𝑧∗Φ

(
𝑘

(
−𝜏𝑦
𝜏𝑥

𝑦

) √︁
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)
= 1.

Letting𝜂 = 𝑘
(
−𝜏𝑦
𝜏𝑥
𝑦
)
, we get (18). Moreover,

𝑑𝑧∗

𝑑𝑦
=

(1 − 𝛼) 𝜙 (√
𝜏0 + 𝜏𝑥 + 𝜏𝑦𝜂

) √
𝜏0 + 𝜏𝑥 + 𝜏𝑦[

1 − (1 − 𝛼)Φ
(
𝑘

(
−𝜏𝑦
𝜏𝑥
𝑦
) √

𝜏0 + 𝜏𝑥 + 𝜏𝑦
)]2 𝑑𝜂𝑑𝑦 .

Applying the implicit function theorem to𝛾Φ
(
−√𝜏𝑥

(
𝜏𝑦
𝜏𝑥
𝑦 +𝜂

))
= 𝜂 , we get 𝑑𝜂

𝑑𝑦
< 0, which

then proves the last statement. □

A.9 Proof of Proposition 8

The notation in this proof follows the notation used in the proofs of Propositions 1 and 4. I
start by representing the stability requirement differently. Using (19) and Lemma 1, we can
find 𝐵𝑅 (𝑥) by solving

𝑧 + (1 + 𝜃 ) (
𝜏𝑥𝐵𝑅 (𝑥) + 𝜏𝑦𝑦

)
𝜏1

−𝛾Φ

(√︂
𝜏1𝜏𝑥

𝜏1 + 𝜏𝑥

(
𝑥 − (1 + 𝜃 ) (

𝜏𝑥𝐵𝑅 (𝑥) + 𝜏𝑦𝑦
)

𝜏1

))
= 1.

By the implicit function theorem we have

𝐵𝑅 ′ (𝑥) =
𝛾𝜙

(√︃
𝜏1𝜏𝑥
𝜏1+𝜏𝑥

(
𝑥 − (1+𝜃 )(𝜏𝑥𝐵𝑅 (𝑥)+𝜏𝑦 𝑦)

𝜏1

)) √︃
𝜏1𝜏𝑥
𝜏1+𝜏𝑥

(1+𝜃 )𝜏𝑥
𝜏1

[
1 +𝛾𝜙

(√︃
𝜏1𝜏𝑥
𝜏1+𝜏𝑥

(
𝑥 − (1+𝜃 )(𝜏𝑥𝐵𝑅 (𝑥)+𝜏𝑦 𝑦)

𝜏1

)) √︃
𝜏1𝜏𝑥
𝜏1+𝜏𝑥

] .
Using (21), one can verify that 𝐵𝑅 ′ (𝑥) < 1 ⇐⇒ 𝜕𝑞 (𝑥,𝜃 ,𝑧)

𝜕𝑥∗ > 0.
Proposition 3 and its proof still apply once one additionally specifies that 𝑥∗ is the largest

(if S1 holds) or the smallest (if S2 holds) solution to (8) that satisfies 𝜕𝑞 (𝑥∗,𝜃 ,𝑧)
𝜕𝑥∗ > 0 in its

statement. Moreover, with a suspension, investors play according to the largest (if S1 holds)
or smallest (if S2 holds) cutoff 𝑥∗ that satisfies 𝜕𝑞 (𝑥∗,𝜃 ,𝑧)

𝜕𝑥∗ > 0 and (8) evaluated at 𝜃 = 0.
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In the remainder of the proof, I assume S1 holds, since the proof under S2 follows
analogous steps. Let 𝑥∗

𝑆1 (𝜃 , 𝑧) denote the largest 𝑥∗ satisfying
𝜕𝑞 (𝑥∗,𝜃 ,𝑧)

𝜕𝑥∗ > 0 and 𝑞 (𝑥∗, 𝜃 , 𝑧) =
1, for an arbitrary 𝜃 ≥ 0. Hence, given a parameter 𝜃 > 0, 𝑥∗

𝑆1 (0, 𝑧) and 𝑥∗𝑆1 (𝜃 , 𝑧) represent
the selected equilibrium cutoff with and without a suspension, respectively. Moreover, if
𝑥∗
𝑆1 (0, 𝑧) < 𝑥∗

𝑆1 (𝜃 , 𝑧), then a suspension is optimal for the authority; if 𝑥∗
𝑆1 (0, 𝑧) > 𝑥∗

𝑆1 (𝜃 , 𝑧)
, then a suspension is not optimal.

Using (22), note that if 𝜏𝑥𝑥∗ + 𝜏𝑦𝑦 > 0, then 𝜕𝑞 (𝑥†,𝜃 ,𝑧)
𝜕𝜃

> 0, ∀𝑥† ≥ 𝑥∗ and ∀𝜃 ≥ 0.

Suppose that 𝜏𝑥𝑥∗𝑆1 (0, 𝑧) + 𝜏𝑦𝑦 > 0. Then, ∀𝑥† ≥ 𝑥∗
𝑆1 (0, 𝑧) and ∀𝜃 ≥ 0, 𝜕𝑞 (𝑥†,𝜃 ,𝑧)

𝜕𝜃
> 0

and 𝑞
(
𝑥†, 0, 𝑧

) ≥ 1 (otherwise 𝑥∗
𝑆1 (0, 𝑧) would not be the largest equilibrium with 𝜃 = 0,

given lim𝑥∗→∞ 𝑞 (𝑥∗, 0, 𝑧) = ∞). This implies 𝑞
(
𝑥†, 𝜃 , 𝑧

)
> 1, ∀𝑥† ≥ 𝑥∗

𝑆1 (0, 𝑧) and ∀𝜃 > 0.
Hence, 𝑥∗

𝑆1 (0, 𝑧) > 𝑥∗
𝑆1 (𝜃 , 𝑧), ∀𝜃 > 0, and a suspension is not optimal. Now suppose

that 𝜏𝑥𝑥∗𝑆1 (0, 𝑧) + 𝜏𝑦𝑦 < 0. An analogous reasoning shows that a suspension is optimal,

since 𝑥∗
𝑆1 (0, 𝑧) < 𝑥∗

𝑆1 (𝜃 , 𝑧). Since
𝜕𝑞 (𝑥∗𝑆1 (𝜃 ,𝑧),𝜃 ,𝑧)

𝜕𝑥∗ > 0, 𝜕𝑞 (𝑥∗,𝜃 ,𝑧)
𝜕𝑧

> 0, ∀𝑥∗, and 𝑞
(
𝑥†, 𝜃 , 𝑧

) ≥
1, ∀𝑥† ≥ 𝑥∗

𝑆1 (𝜃 , 𝑧), an increase in 𝑧 decreases the equilibrium cutoff, and so 𝑥∗
𝑆1 (𝜃 , 𝑧)

is strictly decreasing, but possibly discontinuous, in 𝑧 . Moreover, lim𝑧→∞ 𝑥∗
𝑆1 (𝜃 , 𝑧) =

−∞ and lim𝑧→−∞ 𝑥∗
𝑆1 (𝜃 , 𝑧) = ∞. Hence, 𝑧∗∗ is uniquely determined by the condition:

𝑥∗
𝑆1 (0, 𝑧∗∗ − 𝜖) > −𝜏𝑦

𝜏𝑥
𝑦 and 𝑥∗

𝑆1 (0, 𝑧∗∗ + 𝜖) < −𝜏𝑦
𝜏𝑥
𝑦 , for all 𝜖 > 0.

I nowshow that 𝑧∗∗ isweaklydecreasing in 𝑦 . For a given 𝑦 , define the following increasing
transformation of 𝑥∗: 𝜇∗

1 = 𝜇1 (𝑥∗, 𝑦 ). We can then write 𝑞 (𝑥∗, 0, 𝑧) in terms of 𝜇∗
1:

𝑞 (𝑥∗, 0, 𝑧) = 𝑞
(
𝜇∗
1, 𝑧, 𝑦

)
= 𝑧 + 𝜇∗

1 −𝛾Φ
©­«
√︄ (

𝜏0 + 𝜏𝑥 + 𝜏𝑦
)
𝜏𝑥

𝜏0 + 2𝜏𝑥 + 𝜏𝑦

( (
𝜏0 + 𝜏𝑦

)
𝜇∗
1 − 𝜏𝑦𝑦

𝜏𝑥

)ª®¬ . (26)

For a given 𝑧 and 𝑦 , let𝑤𝑆1 (𝑧, 𝑦 ) = 𝜇1
(
𝑥∗
𝑆1 (0, 𝑧) , 𝑦

)
. Hence,𝑤𝑆1 (𝑧, 𝑦 ) is the largest 𝜇∗

1 that

satisfies 𝑞
(
𝜇∗
1, 𝑧, 𝑦

)
= 1 and 𝜕𝑞 (𝜇∗

1,𝑧,𝑦)
𝜕𝜇∗

1
> 0 (since 𝜕𝑞 (𝑥∗,0,𝑧)

𝜕𝑥∗ > 0 ⇐⇒ 𝜕𝑞 (𝜇∗
1,𝑧,𝑦)

𝜕𝜇∗
1

> 0). Also,
𝑤𝑆1 (𝑧, 𝑦 ) is strictly decreasing in 𝑧 , since 𝑥∗

𝑆1 (0, 𝑧) is strictly decreasing in 𝑧 . We can also
define 𝑧∗∗ as the unique value of 𝑧 that satisfies: 𝑤𝑆1 (𝑧 − 𝜖, 𝑦 ) > 0 and𝑤𝑆1 (𝑧 + 𝜖, 𝑦 ) < 0,
for all 𝜖 > 0 (hereafter condition D1). Consider an increase in 𝑦 from 𝑦1 to 𝑦2 > 𝑦1, and
denote by 𝑧∗∗1 and 𝑧∗∗2 the values of 𝑧∗∗ associated to 𝑦1 and 𝑦2, respectively. Note that
𝑞

(
𝜇∗
1, 𝑧, 𝑦

)
is strictly increasing in 𝑦 . Moreover,𝑞

(
𝜇∗
1, 𝑧, 𝑦1

) ≥ 1,∀𝜇∗
1 ≥ 𝑤𝑆1 (𝑧, 𝑦1) (otherwise

𝑤𝑆1 (𝑧, 𝑦1) would not be the largest 𝜇∗
1 satisfying 𝑞

(
𝜇∗
1, 𝑧, 𝑦1

)
= 1 and 𝜕𝑞 (𝜇∗

1,𝑧,𝑦1)
𝜕𝜇∗

1
> 0, since

lim𝜇∗
1→∞ 𝑞

(
𝜇∗
1, 𝑧, 𝑦

)
= ∞). Hence, 𝑤𝑆1 (𝑧, 𝑦2) < 𝑤𝑆1 (𝑧, 𝑦1) , since 𝑞

(
𝜇∗
1, 𝑧, 𝑦2

)
> 1,∀𝜇∗

1 ≥
𝑤𝑆1 (𝑧, 𝑦1), and so𝑤𝑆1 (𝑧, 𝑦 ) is strictly decreasing in 𝑦 . Suppose by contradiction that 𝑧∗∗2 >
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𝑧∗∗1 . Then it must be that for all 𝜖 > 0

𝑤𝑆1
(
𝑧∗∗1 − 𝜖, 𝑦1

)
> 𝑤𝑆1

(
𝑧∗∗2 − 𝜖, 𝑦1

)
> 𝑤𝑆1

(
𝑧∗∗2 − 𝜖, 𝑦2

)
> 0,

𝑤𝑆1
(
𝑧∗∗2 + 𝜖, 𝑦2

)
< 𝑤𝑆1

(
𝑧∗∗2 + 𝜖, 𝑦1

)
< 𝑤𝑆1

(
𝑧∗∗1 + 𝜖, 𝑦1

)
< 0.

But then, 𝑧 = 𝑧∗∗2 satisfies condition D1 when 𝑦 = 𝑦1, which contradicts that 𝑧∗∗ is uniquely
defined. To show that 𝑧∗∗ is not independent of 𝑦 , using (26), note that lim𝑦→∞𝑤𝑆1 (𝑧, 𝑦 ) =
1−𝑧 and lim𝑦→−∞𝑤𝑆1 (𝑧, 𝑦 ) = 1+𝛾−𝑧 , implying lim𝑦→∞ 𝑧∗∗ = 1 and lim𝑦→−∞ 𝑧∗∗ = 1+𝛾 . □

A.10 Proof of Proposition 9

The proof is identical to that of Proposition 4, with a few adjustments. First, 𝑥∗
𝑅
is nowdefined

as 𝑥∗
𝑅
= 𝑥∗𝑒𝑞 (𝜃2) and 𝑥∗

𝐷
as 𝑥∗

𝐷
= 𝑥∗𝑒𝑞 (𝜃1). Second, in the text below equation (22), 𝑥∗𝑒𝑞 (0)

should be replaced by 𝑥∗𝑒𝑞 (𝜃2) and “∀𝜃 > 0” should be read as “∀𝜃 > 𝜃2”. Finally, one should

note that 𝑞
(
−𝜏𝑦
𝜏𝑥
𝑦 , 0, 𝑧∗

)
= 𝑞

(
−𝜏𝑦
𝜏𝑥
𝑦 , 𝜃2, 𝑧

∗
)
, and so (10) is still obtained by solving (23). □

B Models of Runs that Yield Linear Payoffs

B.1 Asset Market Runs

Previous work has shown different mechanisms that generate strategic complementarities
and runs in assetmarkets. It usually requires the combination of a negatively sloped residual
demand curve for the asset (which is a cornerstone of the market microstructure literature)
with another friction or shock. In Morris and Shin (2004), the latter is loss limits for the
traders. In Morris and Shin (2016) it is relative performance concerns. In Eisenbach and
Phelan (2023), it is liquidity shocks and balance sheet constraints. In Bernardo andWelch
(2004), strategic complementarities also arise if investors face sufficiently strict margin
requirements.10 In Goldstein, Ozdenoren and Yuan (2013), such complementarities emerge
in cases where firms’ capital providers learn from trading activity. Here, I present a model
similar to Morris and Shin (2016) that yields the linear payoffs used in Section 2.

There is a continuum [0, 1] of asset managers (investors) indexed by 𝑖 , each holding
one unit of a risky asset. The risky asset pays a stochastic cash flow 𝑟 at the final date (long
run). However, investors may decide to liquidate it prematurely at the initial date (short

10See equation (7) in their paper.
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run), before asset maturity. In such case, they sell it to a market maker that meets orders
sequentially, with each seller’s position on the line being uniformly distributed. The market
maker follows a linear demand schedule with intercept 𝛼 and slope 𝛽 > 0:

𝑝 = 𝛼 − 𝛽𝑞,

where 𝑝 denotes the price of the asset and 𝑞 is the quantity purchased by the market maker.
Such demand schedule arises naturally when the market maker has constant absolute risk
aversion (see Bernardo and Welch, 2004) or faces quadratic inventory costs for the risky
asset (see Eisenbach and Phelan, 2023). The expected price paid to an investor selling the
asset when a fraction ℓ also sells is then

𝑝𝑒 = 𝛼 − 𝛽
ℓ

2
. (27)

Investors that sell their asset invest their sale revenue in a bond that pays back the principal
with no interest at the final date. Since the bond is risk-free, it is always priced at par.

Investors in the model care about two things: (i) their long-term returns (the cash flow
delivered at the final date) and (ii) their marked-to-market short-run performance relative
to other investors. More specifically, investors’ final payoff is given by

𝑢𝑖 = 𝑐𝑖 − 𝜆𝐼𝑖 ,

where𝜆 > 0, 𝑐𝑖 denotes the long-run cash flow obtained by investor 𝑖 and 𝐼𝑖 is themass of in-
vestors that hold assets with amarket value strictly higher than investor 𝑖 , right after all trade
takes place in the short run. That is, 𝐼𝑖 captures howmany investors “beat” investor 𝑖 in the
short-run performance ranking. Such relative performance concerns can capture different
types of agency and information frictions (see Morris and Shin, 2016 for a discussion).

This implies that the expected payoff of selling the asset, conditional on ℓ, is given by

𝑢𝑆 = 𝑝𝑒 − 𝜆
ℓ

2
. (28)

Note that even if an investor 𝑖 sells, she still expects amass ℓ/2 to sell before her, 𝔼 [𝐼𝑖 ] = ℓ/2.
Conditional on ℓ and 𝑟 , the expected payoff of not selling is

𝑢𝑁𝑆 = 𝑟 − 𝜆ℓ. (29)
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If an investor 𝑖 does not sell, her holdings of the risky asset are priced according to themarket
maker demand 𝑝 = 𝛼 − 𝛽𝑞 , and hence virtually all investors who have sold the asset hold
perform better than her in the short run, 𝐼𝑖 = ℓ.

Using (27), (28) and (29), we can write the relative payoff of not selling as

Δ𝑢 (𝑟 , ℓ) = 𝑢𝑁𝑆 − 𝑢𝑆 = 𝑟 − 𝛼 −
(
𝜆 − 𝛽

2

)
ℓ. (30)

Hence, if 𝜆 > 𝛽 , strategic complementarities arise: Investors’ incentives to sell increase
when others sell the assets. Moreover, relative payoffs are linear in the realized returns and
on the proportion of investors taking a given action, and hence the model of Section 2 can
nest the asset runs model presented here (defining the fundamental shock as the distance
between 𝑟 and its expected value). Another example of a model of asset runs that yields
similar linear payoffs is Eisenbach and Phelan (2023).

B.2 Bank Runs

Strategic complementarities are a common feature of models with bank runs. In some
applications, strategic complementarities are not global (see Goldstein and Pauzner, 2005),
but usually such local deviations from strategic complementarities have little effect on
equilibrium outcomes, while greatly complicating the use of global games techniques.
Morris and Shin (2000) propose a simplified version of the bank run model of Diamond and
Dybvig (1983) that yields linear relative payoffs, as in Section 2. Here, I sketch a version of
their model, referring the reader to their paper for a more complete description.

There is a continuum of consumers with mass 1 + 𝜆, where 𝜆 > 0. They have one unit of
the numeraire good deposited in a bank and no other source of income. Consumers can
be patient or impatient, and at the beginning of date 𝑡 = 1 they find out their type. If a
consumer is impatient, her utility is given by 𝑢 (𝑐1) = log (𝑐1) and if its patient her utility
is 𝑢 (𝑐1 + 𝑐2) = log (𝑐1 + 𝑐2), where 𝑐𝑡 denotes their consumption at date 𝑡 ∈ {1, 2}. The
probability of being impatient is 𝜆

1+𝜆 .
The bank holds two types of assets. First, it has one unit of a divisible asset that pays one

unit of the numeraire good at 𝑡 = 1 if liquidated prematurely and 𝑅𝑒−𝑞 units at 𝑡 = 2 if not
liquidated, where 𝑞 denotes the fraction of the asset liquidated at 𝑡 = 1,𝑅 > 0 represents the
asset gross returns, and 𝑒−𝑞 reflects the costs of premature liquidation. Moreover, the bank
holds 𝜆 units of a storage asset that pays one unit of the good at 𝑡 = 1, to satisfy the liquidity
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needs of impatient consumers. On the liability side, the bank has issued a demand-deposit
contract that allows consumers to get one unit of the good at date 1 upon withdrawing, and
the final return 𝑅𝑒−𝑞 at date 2 for those that wait.

For impatient consumers, the optimal strategy is to withdraw. For patient consumers,
it depends on beliefs about asset returns and the choice of others. Denote the mass of
patient consumers that withdraw by ℓ. For a given 𝑅 and ℓ, the payoff of not withdrawing
is 𝑢

(
𝑅𝑒−ℓ

)
= log (𝑅) − ℓ. The payoff of withdrawing is 𝑢 (1) = 0. Letting 𝑟 = log (𝑅), the

relative payoff of not withdrawing versus withdrawing is then Δ𝑢 (𝑟 , ℓ) = 𝑟 − ℓ. Hence, the
relative payoff is linear on a fundamental defined as the logarithm of asset returns 𝑟 and on
the proportion of agents withdrawing, and there are strategic complementarities.
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