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Motivation
� Asymmetric information between debt servicers and borrowers
stands in the way of e¢ cient contract modi�cation.
) A need for policy intervention.

� During Home A¤ordable Modi�cation Program (HAMP),
after the 2008 �nancial crisis,
�policymakers have attempted to give incentives for servicers
to gather information dynamically from borrowers;
�however, takeup rates for such policies were low (Agarwal,
et. al., 2017, JPE).

� During the 2020 COVID pandemic,
�policymakers implemented a blanket forbearance;
� since it was not targeted, it was ine¢ cient and encouraged
strategic forbearance (Bandyopadhyay, 2023).

This paper: a novel targeted quantitative solution to the problem
of e¢ cient contract modi�cation under asymmetric information.



Our Framework

� We use a model-free methodology (no assumptions are made).
� We derive an optimal reinforcement-learning (RL) policy by
maximizing the mortgage servicer�s lifetime reward purely
based on past servicer�s actions given a certain delinquency
state of the borrower.

� We treat the borrower as an adversary in the RL paradigm.
� The servicer

� uses soft information about the borrower�s current
circumstances

� chooses an optimal strategy for the most e¢ cient contract
modi�cation for better outcome

� preempts moral hazard emanating from the borrower�s
adversarial behavior
) The borrower�s cooperation increases.



Our Findings

� We show that by using soft information, the servicer can
provide targeted relief for the most e¢ cient contract
modi�cation.

� Our novel responsiveness score helps the servicer to target
borrowers with higher propensity to communicate and
negotiate.
) Ad hoc conventional "sticks and carrots" approach can be
avoided.

� Cooperation from responsive borrowers enables a �nal
resolution.

� With a very low discount rate, a higher learning rate leads to
a faster convergence and implements the optimal RL policy.

� Given a high learning rate, the discount rate does not a¤ect
the rate of convergence or the optimal RL policy.



Related Literature on Optimal RL policy

� Barberis and Jin (2022) is the only paper that considers a RL
policy in �nance.

� They compare a RL policy of investor behavior with and
without model assumptions.

� In their model, the investor allocates wealth between two
assets, a risk-free asset and the stock market.

� They �nd that the model-based system puts heavy weight on
recent returns, while the model-free system puts substantially
more weight on distant past returns.



Relation to Literature on Renegotiation

1. Optimality of contracts and their outcomes:

� Aghion et. al. (1994), Hart and Moore (1998).

2. Asymmetric information and moral hazard and their role in
renegotiation:

� Roberts, Su� (2008), Garleanu (2009)

3. Debt renegotiation as a bargaining game between debtholders
and management (shareholders):

� Bergman (1991)

4. Frictions from covenant violations leading to renegotiation

� Anderlini and Felli (2001)



Reinforcement Learning
� RL is an area of machine learning concerned with how
software agents ought to take actions in an environment in
order to maximize some notion of cumulative reward.

� RL is one of three basic machine learning paradigms,
alongside supervised learning and unsupervised learning.

� It di¤ers from supervised learning in that it needs not label
input/output pairs and correct sub-optimal actions explicitly.
Instead the focus is on �nding a balance between exploration
(of uncharted territory) and exploitation (of current
knowledge).

� The environment is typically stated in the form of a Markov
decision process (MDP), because many RL algorithms for this
context utilize dynamic programming techniques.

� Main di¤erence between classical dynamic programming and
RL algorithms: RL does not assume knowledge of an exact
mathematical model of the MDP and targets large MDPs
where exact methods become infeasible.



De�ning a RL problem

� Markov property: Current state completely characterizedns
the state of the world

� De�ne a tuple of objects (S ;A;R;P; 
)
�S : set of possible states (capital, productivity)
�A: set of possible actions (consumption choices)
�R: distribution of reward given (state, action) pair (utility
level)
�P: transition probability, i.e., distribution over next state
given (state, action) pair (next period capital and shock)
�
: discount factor



Markov Decision Process
� Markov decision process is a mathematical formulation of RL
problem

� At time t = 0, environment samples initial state s0 � p (s0)
� Then, for t = 0;T
- Agent selects action at
- Environment samples reward rt � R (� j st ; at)
- Environment samples next state st+1 � P (� j st ; at)
- Agent receives reward rt and next state st+1

� Google DeepMind learns to play Atari.
https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk


Policy Function

� A policy � is a function from S to A that speci�es what
action to take in each state

� Objective: �nd policy �� that maximizes cumulative
discounted reward

P
t>0 


t rt .

� Formally,

�� = argmax
�
E

"X
t>0


t rt j �
#
;

where s0 � p (s0), at � � (� j st), st+1 � p (� j st) :
� Following a policy produces sample trajectories (or paths) s0,
a0, r0, s1, a1, r1,...



Value Function and Q-Learning

� How good is a state?
� The value function at state s is the expected cumulative
reward from following the policy from state s:

V � (s) = E

"X
t>0


t rt j s0 = s; �
#

� How good is a state-action pair?
� The Q-value function at state s and action a is the expected
cumulative reward from taking action a in state s and then
following the policy

Q� (s; a) = E

"X
t>0


t rt j s0 = s; a0 = a; �
#



Bellman Equation
� The optimal Q-value function Q� is the maximum expected
cumulative reward achievable from a given (state, action) pair:

Q� (s; a) = max
�
E

"X
t>0


t rt j s0 = s; a0 = a; �
#

� Q� satis�es the Bellman equation

Q� (s; a) = Es 0�E

�
r + 
max

a0

�
Q�
�
s 0; a0

�
j s; a

��
� Intuition: if the optimal state-action values for the next time
step Q� (s 0; a0) are known, then the optimal strategy is to take
the action that maximizes the expected value of
r + 
max

a0
Q� (s 0; a0).

� The optimal policy �� corresponds to taking the best action
in any state as speci�ed by Q�.



Solving for Optimal Policy

� Value iteration algorithm: Use Bellman equation as an
iterative update

Qi+1 (s; a) = Es 0�E

�
r + 
max

a0

�
Qi
�
s 0; a0

�
j s; a

��
Qi will converge to Q� as i ! in�nity.

� What is the problem with this?
Not scalable. Must compute Q (s; a) for every state-action
pair. If state is current game state pixels, computationally
infeasible to compute for entire state space!



Solving for Optimal Policy: Q-Learning

� Use a function approximator to estimate the action-value
function

Q (s; a; �) � Q� (s; a)

�: function parameters, weights.

� If the function approximator is a deep neural network ) deep
Q-learning!

� Remember: want to �nd a Q-function that satis�es the
Bellman equation.



RL in Economics

� Surveys: Arthur (1991), Singh (1991), Charpentier et al.
(2020), Mosavi et al. (2020).

� Financial-market simulator (Wiese et al., 2019)
� Portfolio choice with atomistic investors (Li and Hoi, 2014)
� Portfolio choice with non-atomistic investors (Spooner et al.,
2018)

� Bounded rationality
�RL leads to bounded rationality (Leimar & McNamara,
2019);
�RL is suitable for studying boundedly rational agents (Abel,
2019);
�Local thinking (Gabaix, 2014)

� Single �rm dynamics (Erev and Roth, 1998)



RL in Economics (cont.)

� Stochastic games
�Zero-sum games with two players (Littman, 1994)
�One-parameter RL (Erev and Roth, 1998)

� Auctions and real-time bidding
�RL for describing the bid decision process (Schwind, 2007)
�RL for designing a bidding strategy (Cai et al., 2017, Zhao
et al., 2018)
�RL for designing optimal auctions (Feng et al., 2018).

� Oligopoly and dynamic games
�Experience-based equilibrium (Fershtman and Pakes, 2012)
�Repeated Cournot games (Waltman and Kayman, 2008)

� Computational economics (Chen et al., 2021)



Data

� Proprietary administrative data for 23,693 loans from 09/2017
to 3/2020.
�detailed information on residential mortgage performance
collected from daily mortgage servicing logs.
�also includes text communications between the borrowers
and servicers.

� This data set is from a servicer which has 15% of the national
market share of Ginnie Mae Early Buyout loans in terms of
deal �ow. ) Sizable proportion of all loans.

� In addition, we use proprietary data from Epsilon at the
household level (100 million US households in total).
�allows us to capture the spending patterns, demography,
relocation, and several other aspects of these borrowers.



Possible Transitions During Life of Mortgage



Deliquency States

State Loans
L30D Current or less than 30 days delinquent.

W30-60D Within 30 to 60 days of delinquency.
W60-90D Within 60 and 90 days of delinquency.
W90-120D In default after 90 days of delinquency with ongoing

payments after missing 3 months of payments
B120D Already beyond 120 days of delinquency.

BK The borrower has �led for bankruptcy.
Frclsr Have entered the foreclosure (FC) proceedings.
PIF Already paid in full.
REO Repossessed by the original lender/servicer

representing the lender.
ShrtSal Auctioned in public market for short sale.



Action Space

Examples of Actions De�nition
Pending claim (PC) The servicer has �led for a HUD claim.

Modi�cation in review (Mod) The ongoing phase of active negotiation
between borrowers and servicers.

No Action (NA) The servicer has taken no action.
Pending foreclosure (PF) A foreclosure process about to close in the

completion near future.
Real Estate Owned (REO) The process is which the lender or the

has gained back possession of the property
after o¤ering deed-in-lieu (DIL).

Bankruptcy The ongoing bankruptcy �led the borrower, ch. 11
servicer for a renegotiation or ch. 7 for a complete
liquidation of assets.

Not referred for Not o¤ering a loan modi�cation to the borrower
short re�nance based on the servicer�s discretion.



Cross-Sectional Results and Motivation for RL

We created a time-invariant measure, Responsiveness, which is a
cumulative distribution function of the following �ve random
variables:

1. Months of Delinquency: higher scores for less deliquent:
�Paid Ahead := 4, Current := 3, 1 month behind := 2, ...

2. Loan Deliquency Status: lower scores for more adverse status:
�Current := 6, 30 days delinquent := 5, 60 days delinquent := 4, ...

3. Known Inbound Calls: sum of all known Inbound
communications from inception.

4. Inbound calls from borrowers as a return to the servicer�s
Outbound calls: number of return Inbound calls by the borrowernumber of Outbound calls of the servicer

5. Information Content: Reasons for the calls:
�Forbearance, Foreclosure moratorium, Loan modi�cation.



Responsiveness Vs Months of Delinquency



Responsiveness Vs Inbound per Outbound Calls



Responsiveness Vs Short Term Liability



Responsiveness Vs Net Worth and Investment
Resources



Responsiveness Vs Household Age



Variable Importance
Importance

Responsiveness Relative Scaled Percentage

1 modi�cation date 1075.59 1.00 0.17
2 original �co 441.61 0.41 0.07
3 current rate 439.89 0.41 0.07
4 current �co 412.80 0.38 0.07
5 orig ltv 291.95 0.27 0.05
6 original rate 288.24 0.27 0.05
7 foreclosure stage 269.14 0.25 0.04
8 year home built 265.78 0.25 0.04
9 buy a house rank 257.29 0.24 0.04
10 bankrupcy delay 252.61 0.23 0.04
11 home loan rank 252.50 0.23 0.04
12 move residence rank 228.07 0.21 0.04
13 move residence date 209.98 0.20 0.03
14 ... ... ... ...



Conventional Qualitative (Stick-Carrot) Policy
� Steps:

1) Information related to title, foreclosure, bankruptcy, property is
sequentially received.

2) Combined legal grades are determined.

� Grades from A to E re�ect the likelihood of loss, as well as the
time/cost/complexity involved in addressing the concerns.
� Grade A: non-issue from risk standpoint; no discount.
� Grade B: no material risk of loss; covered by valid insurance.
� Grade C: moderate risk of loss; a signi�cant discount
(10-25%).

� Grade D: require litigation or signi�cant expenditures to
resolve; a substantial discount (50-90%).

� Grade E: nearly certain to result in complete loss.

� "Carrot": an overly conservative grade (e.g., grade A) prices
the servicer out of every trade.

� "Stick": an overly aggressive grade (e.g., grade E) results in
undersized returns.



Designing RL-optimal Policy
� We design an optimal policy which is stricter than carrots and
more considerate than sticks.

� To derive optimal RL policy, we maximize pro�t of the
servicer.

� RL can extract the best course of action towards the borrower
assuming he is an adversary agent (Goodfellow et. al., 2014).

� We simulate housing market environment using our
proprietary data about borrowers�spending habits,
demography, income bracket, real-time unemployment status,
etc.

� We compare our optimal policy with the current ad hoc
qualitative methodology used by the servicer.

� For each loan and for each month, we have the actual action
(strategy undertaken) by the servicer.

� A clear dollar di¤erence in collections between our optimal RL
policy and current heuristic servicer�s action provides a direct
support to our quantitative approach.



Servicer�s Problem

� The servicer maximizes a Q-value

Q� (s; a) = max
fatg

E0

"
TX
t=1


t rt

#

� In our analysis, reward

rt =
Servicer�s collections in a given month t

Original balance of loans

� We bucket the reward variable into groups of equal width.
�We discretaize because Q learning cannot handle continuous
variables.



Q-Leaning Algorithm
� Assume that at time t in state s = st , the algorithm takes an
action at = a. This leads to reward rt+1 and state st+1 at
time t + 1.

� At time t, the algorithm�s initial estimate of Q� (s; a) is
Qt (s; a).

� At t + 1, we update Q� (s; a) as

Qt+1 (s; a) = Qt (s; a)+�t

�
rt + 
max

a0
Qt
�
st+1; a0

�
� Qt (s; a)

�
�t : learning rate.

� An action at = a in state s = st at time t is chosen
probabilistically: probability is an increasing function of its Q
value

p (at = a; st = s) =
exp [�Qt (s; a)]P
a0
exp [�Qt (s; a0)]

� : exploration parameter.



RL-Optimal, Harsh and Lenient Policies



Comparison of Policies in Terms of Flexibility



Transition Matrix from a State-Action Pair



Learning Rate

Learning rate � =0.99 � =0.95 � =0.9 � =0.8 � =0.7 � =0.6

L30D Mod Mod Mod Mod Mod Mod
W30-60D NA NA Mod NRSR NA NA
W60-90D NA NA Mod NA NA NA
W90-120D FC FC Mod Mod FC Mod
B120D Mod Mod Mod Mod Mod Mod
BK FC PC PC PC PC NA
FC DIL DIL REO DIL DIL DIL
Mod=modi�cation in review; NA=no action; NRSR=not referred for
short re�nancing; FC=Pend FC completion; DIL=deed in lieu



Discounting

# iterations N = 104 N = 104 N = 105 N = 105

Discount factor 
 = 0:99 
 = 0:01 
 = 0:99 
 = 0:01

L30D Mod Mod Mod Mod
W30-60D NA NA NA NA
W60-90D NA NA NA NA
W90-120D FC FC FC FC
B120D Mod Mod Mod Mod
BK FC PC NA NA
FC DIL DIL DIL DIL
Mod=modi�cation in review; NA=no action; FC=Pend FC completion;
DIL=deed in lieu



Conclusion
� Because of information asymmetry at the loan level, the
servicers have anecdotally used a sticks or carrots approach.

� We measure the responsiveness of borrowers based on our
unique administrative data set of text communications
between the borrowers and servicers.

� We provide evidence that more responsive borrowers
cooperate upon communication with them.

� This enables us to document the most e¢ cient transition
among delinquency states during the life of a loan.

� This requires a dynamic setting to evaluate an optimal
servicer�s strategy, mostly aligned with the lender.

� We show divergence in learning based on decreasing learning
rates.
� For high learning rates, the discount factor does not matter )
can mitigate di¤erences in the existing viewpoints on beliefs.

� Past experiences do not dominate the RL-optimal actions of an
agent in a high learning environment.



Thank you!




