Learning about Bond Prices

Albert Marcet¹ Ken Singleton²

¹CREI, ICREA, BSE, UPF

²Stanford University

January 18, 2024

Learning and Bond price volatility:

- Many studies on stock price volatility, fewer on bond price volatility
- We learnt a lot abut stock prices using models where agents learn about prices (internal rationality).
- Recent literature studies the role of expectations on many aspects of the economy.
- How much can we learn about bond yields using models of internally rational learning?

Roadmap

1 Yields Data, Some Puzzles

2 Literature

3 A Model

Internal Rationality

5 A Simple Model of Learning about the Slope

- Sample 1983:12 to 2019:12.
- Monthly data, US government bonds
- Nominal zero-coupon yields
- Surveys: Reuters' Blue Chip Financial Forecasters survey on expected bond yields.
- One-year maturities, leads, forecasting horizons.

Table 1: Yields 1st and 2d moments

	1 <i>y</i>	2 <i>y</i>	3 <i>y</i>	5 <i>y</i>	7 <i>y</i>	10 <i>y</i>
$\widehat{\mathbf{Y}}^n$	388.83	417.23	441.39	481.19	510.89	541.69
$\widehat{\sigma}_{\mathbf{Y}^n}$	289.15	294.34	291.41	281.62	272.50	258.74
$\widehat{corr}(Y^n)_{-1y}$	0.89	0.90	0.91	0.93	0.93	0.93

Hard to reconcile with RE and reasonable serial correlation of expected inflation.

Failure of Expectations Hypothesis

$$Y_{t+1y}^{n-1} - Y_t^n = \alpha^n + \beta^n \frac{Y_t^n - Y_t^1}{n-1} + U_t^n$$

EH says β 's ≈ 1

Table 2: Failure of Expectations Hypothesis

	2 <i>y</i>	3 <i>y</i>	5 <i>y</i>	7 <i>y</i>	10 <i>y</i>
$\widehat{\beta}^n$	-0.31	-0.50	-0.99	-1.28	-1.67
t-stat	-0.43	-0.60	-1.21	-1.56	-2.16

horizon = 1y here and in all tables below n means "n years"

(1)

Let Q_t^n be the price of a zero-coupon bond of maturity n. Define excess bond returns

$$imes r_{t+1y}^n = log\left(rac{Q_{t+1y}^{n-1}}{Q_t^n}
ight) - log\left(rac{1}{Q_t^1}
ight)$$

Or, in terms of yields $Y_t^n \equiv -\frac{\log(Q_t^n)}{n}$

$$xr_{t+1y}^{n} = -(n-1)Y_{t+1y}^{n-1} + nY_{t}^{n} - Y_{t}^{1}$$

Failure of EH: "Modern" version

EH can also be expressed in terms of xr forecasts:

$$xr_{t+1y}^{n} = \alpha_{n}^{xr} + b_{n}^{xr}\frac{Y_{t}^{n} - Y_{t}^{1}}{n-1} + U_{t}^{n}$$

EH implies b^{xr} 's ≈ 0 .

LHS are marginal profits from investing in long bonds.

Table 3: Failure of EH "modern" version

	2 <i>y</i>	3 <i>y</i>	6 <i>y</i>	8 <i>y</i>	11 <i>y</i>
\widehat{b}_n^{xr}	0.61	2.54	10.69	15.87	24.17
t – stat	0.52	1.14	2.40	2.87	3.54
R^2	0.32	1.59	6.00	7.88	10.41

High volatility of excess bond returns

$$xr_{t+1y}^{n} = log\left(rac{Q_{t+1y}^{n-1}}{Q_{t}^{n}}
ight) - log\left(rac{1}{Q_{t}^{1}}
ight)$$

Table 4: Excess Returns volatility

maturity <i>n</i>	2 <i>y</i>	Зу	5 <i>y</i>	7 <i>y</i>	10 <i>y</i>
$\widehat{\sigma}_{xr^n}$	136.60	256.20	455.74	636.45	880.10

Excess volatility of yields, Intuition

$$Q_t^n = Q_t^1 E_t^{\mathbb{Q}} \left(Q_{t+1}^{n-1} \right)$$
$$= E_t^{\mathbb{Q}} \left(\prod_{i=0}^{n-1} Q_{t+i}^1 \right)$$

where ${\mathbb Q}$ refers to "risk-neutral" distribution. Taking log-linear approximation

$$Y_t^n \approx E_t^{\mathbb{Q}}\left(\frac{\sum_{i=0}^{n-1}Y_{t+i}^1}{n}\right)$$

therefore we expect $\sigma_{Y_t^n} < \sigma_{Y_t^1}$

Furthermore

$$\begin{aligned} xr_{t+1}^{n} &= nY_{t}^{n} - (n-1)Y_{t+1}^{n-1} - Y_{t}^{1} \\ &\approx (E_{t}^{\mathbb{Q}} - E_{t+1}^{\mathbb{Q}})\left(\sum_{i=1}^{n-1}Y_{t+i}^{1}\right) \end{aligned}$$

so $\sigma_{\mathbf{x}\mathbf{r}_t^n}^2$ variance of a change in expectations, so it should be small.

- Much recent work on surveys about asset prices
- Giacoletti, Laursen and Singleton (2020) and Singleton (2021) AFA Presidential Address (GLS) :
 - Describe investor bond yield expectations
 - Investors (consensus) bond yield expectations are on average similar to those arising from an affine model with principal components

Adam, Marcet, Beutel (2017) Let \mathcal{E} denote survey expectations. Consider a regression like EH but with expectations in left hand side

$$\mathcal{E}_t(xr_{t+1y}^n) = \alpha_n^{\mathcal{E}} + b_n^{\mathcal{E}}\frac{Y_t^n - Y_t^1}{n-1} + U_t^{n,\mathcal{E}}$$

Under RE $b_n^{xr} = b_n^{\mathcal{E}}$.

Related to Coibion and Gorodnichenko approach, two differences: -CG work with differenced regression

-CG introduce forecast errors or forecast updates on the RHS

RE Regressions

$$xr_{t+1y}^{n} = \alpha_{n}^{xr} + b_{n}^{xr}\frac{Y_{t}^{n} - Y_{t}^{1}}{n-1} + U_{t}^{n,xr}$$
$$\mathcal{E}_{t}(xr_{t+1y}^{n}) = \alpha_{n}^{\mathcal{E}} + b_{n}^{\mathcal{E}}\frac{Y_{t}^{n} - Y_{t}^{1}}{n-1} + U_{t}^{n,\mathcal{E}}$$

Table 5: RE Regressions

	2 <i>y</i>	3 <i>y</i>	6 <i>y</i>	8 <i>y</i>	11 <i>y</i>
$\widehat{b}_n^{ imes r}$	0.61	2.54	10.69	15.87	24.17
$\widehat{b}_n^{\mathcal{E}}$	0.16	0.80	2.50	1.27	3.69
t-stat $b_n^{ imes r} = b_n^{\mathcal{E}}$	0.37	0.76	1.75	2.47	2.70

Surveys underestimate the role of the slope in predicting xr_{t+1y}^n t - stat rejects RE, more strongly for long maturities Test would be valid for any regressor in the information set at t

Marcet and Singleton

RE Regressions, additional versions

Alternative regressors:

- $-PC_t^2$: 2d Estimated Principal Component
- $-\widehat{s}_t$: Investor's estimate of underlying slope according to our model

regressor		2 <i>y</i>	3 <i>y</i>	6 <i>y</i>	8 <i>y</i>	11y
	\widehat{b}_n^{xr}	0.06	0.13	0.43	0.61	0.89
PC_t^2	$\widehat{b}_n^{\mathcal{E}}$	0.02	0.05	0.14	0.13	0.19
	t-stat $b_n^{ extsf{xr}} = b_n^{\mathcal{E}}$	0.85	1.11	1.98	2.57	2.87
	$\widehat{b}_n^{\times r}$	1.04	2.16	9.14	13.90	22.67
$\widehat{\mathbf{s}}_{t-3}$	$\widehat{b}_n^{\mathcal{E}}$	0.41	0.57	0.28	-2.28	-2.86
	t-stat $b_n^{ imes r} = b_n^{\mathcal{E}}$	0.77	0.95	2.12	2.79	3.08
$\widehat{\mathbf{s}}_t, \widehat{\mathbf{s}}_{t-3}$	p-value $b_n^{ imes r} = b_n^{\mathcal{E}}$	0.70	0.59	0.09	0.01	0.00

Table 6: RE Regressions

Roadmap

Yields Data, Some Puzzles

2 Literature

3 A Model

Internal Rationality

5 A Simple Model of Learning about the Slope

- Difficult to match EH-failure and volatilities with standard equilibrium asset pricing models. High volatility of xr documented since Shiller (1979) but very rarely addressed.
- Much progress has been made:
 - Time-varying reward for risk: Dai and Singleton (2002), Wachter (2006), Gabaix (2008), Bansal and Shaliastovich (2013)
 - Bayesian/RE: agents disagree about forecast of inflation but they know the pricing function: Xiong and Yan (2010), Buraschi and Whelan (2022), Buraschi and Jiltsov (2007), Ehling Gallmeyer, Heyerdahl-Larsen and Illeditsch (2018).

- Tables 1-4 remain hard to explain. Giglio et al (2018) argue standard models can't explain observations.
- Tables 5-6 are a new puzzle
- It matters whether the model is RE with time-varying risk or learning!!!

Literature, Adaptive Learning, partial information and bond yields

- Sinha (2009), Piazzesi and Schneider (2006), Laubach, Tetlow, and Williams (2007) models of adaptive learning about how macro variables or inflation influence bond prices.
- Ellison Tischbirekz (2017) beauty contest.

Improve match of the data under Internal Rationality.

- investors have a *consistent system of beliefs* about bond prices
- investors are *fully rational* given their beliefs.

A "minor" deviation from standard RE paradigm

Beliefs about bond prices are not RE, but the are quite good in equilibrium:

- close to RE beliefs
- model converges to RE
- "close" to the true distribution, (hard to reject using observed data)
- investors' beliefs match some features of expectations surveys

Roadmap

1 Yields Data, Some Puzzles

2 Literature

3 A Model

Internal Rationality

5 A Simple Model of Learning about the Slope

A model of bond prices

N zero-coupon nominal bonds of maturity n = 1, ..., N

Bond prices $Q_t = \left[Q_t^1, ..., Q_t^N\right]'$.

Homogeneous investors with $E_0^{\mathcal{P}} \sum_{t=0}^{\infty} \delta^t u(c_t)$

Investor beliefs represented by \mathcal{P} .

All bonds with n > 1 are resold one period after being purchased. Budget constraint:

$$P_t c_t + \sum_{n=1}^{N} Q_t^n B_t^n = w_t P_t + \sum_{n=1}^{N} Q_t^{n-1} B_{t-1}^n$$

 $Q_{t}^{0} = 1$

A model of Bond Prices

Assume bond limits:

$$\overline{B} \ge B_t^n \ge \underline{B} \tag{2}$$

Inflation process:

$$\log P_t - \log P_{t-1} \equiv \pi_t = \mu(1-\rho) + \rho \pi_{t-1} + \eta_t^{\pi}$$

 $\eta_t^{\pi} \sim \mathcal{N}(\mathbf{0}, \sigma_{\eta^{\pi}}^2), \text{ iid.}$

Equilibrium conditions:

$$Q_t^n = \delta E_t^{\mathcal{P}} \left(\frac{u'(c_{t+1})}{u'(c_t)} \frac{P_t}{P_{t+1}} Q_{t+1}^{n-1} \right) \text{ for } n \ge 2$$

The short rate Y_t^1 is exogenous, given by

$$Y_t^1 = -\log(\delta) + \pi_t^e + \xi_t$$

 ξ_t a mean-zero exogenous process (policy shock). So bond limit is binding for n = 1.

Roadmap

Yields Data, Some Puzzles

2 Literature

3 A Model

Internal Rationality

5 A Simple Model of Learning about the Slope

Investors' probability space under IR

$$\Omega\equiv\Omega_{Q} imes\Omega_{\pi,\xi}$$

where Ω_Q contains possible histories of $Q = [Q^n]_{n=1}^N$, and $\Omega_{\pi,\xi}$ contains possible histories of inflation π, ξ .

Investors have a belief system \mathcal{P} with (consistent) probabilities on Ω .

RE is a special case when agents' beliefs about π, ξ are correct and they know the true pricing function determining Q.

Bayesian/RE a special case when agents' don't know everything about π, ξ but they know the true pricing function determining Q.

However if agents don't know the pricing function prices are given by

$$Q_t^n = \delta E_t^{\mathcal{P}} \left(\frac{u'(c_{t+1})}{u'(c_t)} \frac{P_t}{P_{t+1}} Q_{t+1}^{n-1} \right) \text{ for } n \ge 2$$
(3)

Therefore we need to state investors' beliefs about joint distribution of Q, π .

Assume for the rest of the talk $-\xi_t$ iid mean zero -no risk aversion: u(c) = c-Investors know the inflation process - $\rho = 1$

RE prices

Under RE

$$Q_t^n = \delta E_t^{\mathcal{P}} \left(\frac{u'(c_{t+1})}{u'(c_t)} \frac{P_t}{P_{t+1}} Q_{t+1}^{n-1} \right) \text{ for } n \ge 2$$

becomes

$$Q_t^{RE,n} = \delta^n E_t \left(\frac{P_t}{P_{t+n}}\right)$$
$$Y_t^{RE,n} = -\log\delta + \pi_t$$

Agents' beliefs about Q's are given by a perceived yield curve (in blue we show investors beliefs equations)

$$Y_t^n = -\log\delta + \pi_t^e + \mathbf{s}_t n + u_t^n \tag{4}$$

 \boldsymbol{s} a perceived, unobserved, "underlying slope".

In other words:

- Investors know the level of the yield curve and how inflation determines yields
- but (different from RE) agents believe there is a time-varying slope \mathbf{s}_t

"Investors with beliefs about bond prices Q are irrational." The justification for this myth: If investors are rational they can apply LIE:

$$Q_t^n = \delta^n E_t^{\mathcal{P}} \left(\frac{u'(c_{t+n})}{u'(c_t)} \frac{P_t}{P_{t+n}} \right)$$

And if they know inflation process then

$$Q_t^n = \delta^n E_t \left(\frac{u'(c_{t+n})}{u'(c_t)} \frac{P_t}{P_{t+n}} \right) = Q_t^{n,RE}$$

But:

- LIE can not be applied with individual knowledge, it needs market knowledge. (Adam Marcet 2011)
- Under IR u'(c_{t+n}) depends on future prices thus on price beliefs, so E_t^P can not become E_t
 (Adam, Marcet, Beutel, 2017)

Therefore investors with a consistent system of beliefs \mathcal{P} do not see anything that contradicts their price beliefs.

Roadmap

Yields Data, Some Puzzles

2 Literature

3 A Model

Internal Rationality

5 A Simple Model of Learning about the Slope

A Simple Model

Recall investors' perceived yield curve

 $Y_t^n = -\log \delta + \mathbf{s}_t n + \pi_t^e + u_t^n$

To complete investors' beliefs assume investors believe

 $\mathbf{s}_t = \mathbf{s}_{t-1} + \mathbf{w}_t$

Optimal filtering implies

$$E_t^{\mathcal{P}}(\mathbf{s}_t) \equiv \widehat{\mathbf{s}}_t = \widehat{\mathbf{s}}_{t-1} + g(s_{t-1} - \widehat{\mathbf{s}}_{t-1})$$

where s_t is the best estimate of period-*t* slope:

$$s_t = E_t^{\mathcal{P}}(\mathbf{s}_t \mid Y_t^N, ..., Y_t^1)$$

to be specified later. Then

$$E_t^{\mathcal{P}}(Y_{t+1}^n) = -\log \delta + \widehat{\mathbf{s}}_t n + \pi_t^e$$

Then, equilibrium under learning with a log-linear approximation, actual yield curve (equations that hold in equilibrium in brown)

$$Y_t^n = -\log \delta + \widehat{\mathbf{s}}_t \ n\left(\frac{n-1}{n}\right)^2 + \pi_t^{\epsilon}$$

Recall perceived yield curve:

$$Y_t^n = -\log \delta + \widehat{\mathbf{s}}_t n + \pi_t^e + \widehat{u}_t^n$$

Conceptually not a large deviation from RE:

- beliefs close to RE beliefs if $\sigma_w \approx 0$.
- just because agents believe there is a time-varying slope there is a time-varying slope (see below)
- model converges to RE (see below)
- perceived yield curve similar to actual yield curve, beliefs hard to reject

In principle investors should use all maturities Y_t^n to estimate \mathbf{s}_t .

A simple case:

assume $var^{\mathcal{P}}(u_t^m) \ll var^{\mathcal{P}}(u_t^n)$ for a reference bond of maturity m. GLS means use only n = m, 1 to filter **s** with t-information:

$$E_t^{\mathcal{P}}(\mathbf{s}_t \mid Y_t^N, ..., Y_t^1) = s_t = \frac{Y_t^m - Y_t^1}{m - 1}$$

Learning Equilibrium with "simple" estimate s_t

Plugging in equilibrium yields

$$Y_t^n = -\log(\delta) + \widehat{\mathbf{s}}_t \ n\left(\frac{n-1}{n}\right)^2 + \pi_t^e$$
$$s_t = \frac{Y_t^m - Y_t^1}{m-1} = \widehat{\mathbf{s}}_t \ \frac{m-1}{m} - \frac{\xi_{t-1}}{m-1}$$
$$\widehat{\mathbf{s}}_t = \widehat{\mathbf{s}}_{t-1} + g(s_{t-1} - \widehat{\mathbf{s}}_{t-1})$$

So, under self-referential learning:

$$\uparrow s_t = \frac{Y_{t-}^m - Y_t^1}{m-1} \implies \uparrow \widehat{\mathbf{s}}_{t+1} \implies \uparrow Y_{t+1}^n \implies \uparrow s_{t+1} = \frac{Y_{t+1}^m - Y_{t+1}^1}{m-1} \dots$$

When agents' perceived expectation (PLM) is

$$E_t^{\mathcal{P}} \frac{Y_{t+1}^m - Y_{t+1}^1}{m-1} = \widehat{\mathbf{s}}_t$$

then the true expectation (ALM) is

$$E_t \frac{Y_{t+1}^m - Y_{t+1}^1}{m-1} \equiv \frac{m-1}{m} \widehat{\mathbf{s}}_t \equiv T(\widehat{\mathbf{s}}_t)$$

We have T' < 1.

Standard theorems in the learning literature imply that model converges to RE:

 $Y_t \rightarrow Y_t^{RE}$

if either

• OLS instead of constant gain (g=1/t) or

• g
ightarrow 0

(Marcet and Sargent (1989), Williams (2017), Evans Honkapohja (2002))

Furthermore, for g > 0, plugging in equilibrium value of s_t

$$\widehat{\mathbf{s}}_t = \left(1 - rac{g}{m}
ight) \widehat{\mathbf{s}}_{t-1} - g rac{\xi_{t-1}}{m-1}$$

So $\hat{\mathbf{s}}_t$ very persistent and $E(\hat{\mathbf{s}}_t) = 0$.

The learning model fluctuates around RE.

Collecting equilibrium relationships

$$\widehat{\mathbf{s}}_{t} = \left(1 - \frac{g}{m}\right)\widehat{\mathbf{s}}_{t-1} - g\frac{\xi_{t-1}}{m-1}$$

$$Y_{t}^{n} = -\log(\delta) + \widehat{\mathbf{s}}_{t} \frac{(n-1)^{2}}{n} + \pi_{t}^{e}$$

$$xr_{t+1}^{n} = \left[2n - 3 + (n-2)^{2}\frac{g}{m}\right]\widehat{\mathbf{s}}_{t}$$

$$+ (n-1)\eta_{t+1}^{\pi} + \left[\frac{(n-2)^{2}g}{m-1} - 1\right]\xi_{t}$$

$$E_{t}^{\mathcal{P}}(xr_{t+1}^{n}) = -\log\delta - \xi_{t}$$

With this we can easily compute all the variances and correlations.

In this simple case with unit root inflation we see analytically:

- var(ŝ_t) contributes to increase var(Yⁿ) and var(xrⁿ).
 More so for large n.
- Consistent with RE regression:
 - $\hat{b}_n^{xr} > 0$, increases with n• $\hat{b}_n^{xr} > \hat{b}_n^{\mathcal{E}}$
 - $\hat{b}_n^{xr} \hat{b}_n^{\mathcal{E}}$, increases with *n*

 $b_n^{xr} > b_n^{\mathcal{E}}$

Recall PLM and ALM:

$$Y_t^n = -\log \delta + \left(\frac{n-1}{n}\right)^2 \widehat{\mathbf{s}}_t \ n + \pi_t^e$$

$$Y_t^n = -\log \delta + \mathbf{s}_t n + \pi_t^{\mathbf{e}} + u_t^n$$

So forecasts of future yields

$$E_t(Y_{t+1}^n) = -\log \delta + \left(\frac{n-1}{n}\right)^2 \left(1 - \frac{g}{m}\right) \widehat{\mathbf{s}}_t \ n + \pi_t^e$$

 $E_t^{\mathcal{P}}(Y_{t+1}^n) = -\log \delta + \widehat{\mathbf{s}}_t n + \pi_t^e + u_t^n$

So agents *over*predict the influence of $\hat{\mathbf{s}}_t$ on future yields. Therefore investors *under*predict the influence of $\hat{\mathbf{s}}_t$ on future xr It can explain that in the data $\hat{b}_n^{xr} > \hat{b}_n^{\mathcal{E}}$.

Marcet and Singleton

- inflation is AR(1) with $\rho < 1$.
- use a yearly model

• Calibrate to sample values σ_{π^e} , ρ , $\sigma_{\eta^{\pi}}$, σ_{ξ} for $\xi = Y^1 - \pi^e$.

Only one free parameter g. Fiddled with it to select g = 0.3

Comparing with the data: Calibration

Table 7: Model fit

		3 <i>y</i>			10 <i>y</i>	
	data	RE	Learn	Data	RE	Learn
σ_{Y^n}	291	85	96	258	58	175
$\rho_{Y^n,-1y}$	0.91	0.94	0.94	0.93	0.94	0.97
σ_{xr^n}	254	56	185	871	201	642
\widehat{b}_n^{xr}	3.22	0	2.02	24.6	0	7.01
$\widehat{b}_n^{\mathcal{E}}$	1.02	0	1.93	2.5	0	4.00

- policy shock $\boldsymbol{\xi}$ serially correlated as in the data
- monthly model
- learning about the intercept in the yield curve
- risk aversion
- disagreement
- learning when investors observe factors

A very simple model suggests learning about the slope helps to explain the data.

It is consistent with RE regressions

Moves second moments in the right direction.

But room for improvement!