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Abstract

Pigou (1920) pointed to “uncompensated damage done to surrounding woods
by sparks from railway engines” as the canonical example of an environmental
externality. We study a modern corollary – tropical forest fires used for land
clearing – using 15 years of daily satellite data on fire hotspots across Indonesia.
We examine how externalities affect the decision to use fire using the fact that
fires are predictably more likely to spread on windy days, but the degree to which
this is an externality depends on who owns surrounding land. We find firms
overuse fire relative to a case where all spread risks were internalized. However,
firms are partially sensitive to the risks of government punishment, which deters
them from burning near protected forest or populated areas on particularly
windy days. Counterfactuals suggest that if firms treated all surrounding land
the way they treat land near populated areas, fires would be reduced by 80
percent.
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1 Introduction

Environmental economics is rooted in the study of environmental externalities. Early
forerunners of the modern field (Marshall 1890, Pareto 1909, Pigou 1920) highlighted
the failure of market economies to properly account for the environmental conse-
quences of economic activity. This failure rests importantly on the possibility that
one agent’s utility or production function may depend directly on real variables cho-
sen by another without an offer of compensation for their effect (see, for example,
Salanié 2000). For example, Pigou (1920) pointed to the “uncompensated damage
done to surrounding woods by sparks from railway engines” as the canonical example
of an environmental externality.

Much of the early analysis of environmental externalities lay in the theoretical
realm, with a focus on developing a consistent theoretical framework to analyze mar-
ket failure as well as design corrective policies. For example, Pigou (1920)’s discussion
of corrective taxes and subsidies was succeeded by theoretical contributions relating
to tradable permits (Dales 1968) and the possibility that an efficient solution to exter-
nalities may under certain circumstances be achieved by private negotiations (Coase
1960) or decentralized self-regulation (Ostrom 1990, Ostrom 1998). In the aftermath
of the credibility revolution in economics (Angrist and Pischke 2010), a wave of em-
pirical papers focused on estimating the health and other impacts of different types
of environmental externalities, for example, pollution (Chay and Greenstone 2003,
Deryugina et al. 2019, Currie et al. 2009), forest fires (Frankenberg et al. 2005, Jay-
achandran 2009, Koplitz et al. 2016, Kim et al. 2017) and emissions-induced climate
change (Schlenker et al. 2005, Burke et al. 2009, Burgess et al. 2017).

By contrast, there has been comparatively less empirical attention given to the
economic question of how externalities affect private decision making in the first place
– that is, the degree to which private actors change their behavior depending on the
extent to which the environmental damage they cause is an externality. This is an
important question as the actions of private individuals and firms account for the of
the bulk of environmental externalities we observe in the world and so understanding
what drives their decisions is paramount (Greenstone and Jack 2015).1

1Important contributions in this area include the literature on the political economy drivers of
environmental externalities (Burgess et al. 2012, Kahn et al. 2015, Lipscomb and Mobarak 2017)
which investigates externalities in regulation across political jurisdictions. Other recent work has
explored the degree to which external actors can alter private decision making through payments
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In this paper, we study this question by examining a modern corollary of Pigou’s
“sparks from railway engines”: tropical forest fires in Indonesia. Fires are used in
many tropical countries, including Indonesia, as a cheap – though illegal – means of
land clearance by firms but pose the risk that, once set, they burn out of control.2

Many features make fires an almost ideal environment in which to analyze private
agents’ externality-generating activities and what incentivizes them to control how
much they are used. Fires are observable from space, and using the data sets we
have assembled, we can track their precise ignition point and daily spread. This
daily fire data can be superimposed on geocoded maps of different types of land use
zones, which vary from highly protected forest such as national parks to areas where
property rights are less well defined. Finally, the riskiness of using fire depends on
wind speed, which increases the probability a fire spreads to surrounding land. The
combination of varying wind speeds over time and space, as well as differences in who
owns surrounding land, generates variation in the degree to which the use of fire at a
given time and place represents an externality. This enables us to discern the degree
to which fire setters take into account the externality that their actions cause, and to
consider how alternative policy environments may affect their decisions.

Understanding why tropical forest fires start and how they might be controlled is
important in its own right as they represent a significant source of local, national and
global externalities (Cochrane and Schulze 1998, Keeley et al. 2004, Gillett et al. 2004,
Cruz et al. 2012, Kraaij et al. 2018) whose prevalence may worsen as the earth warms
(Parry et al. 2007, Pitman et al. 2007, Abatzoglou and Williams 2016). Globally, fires
are particularly prevalent in developing countries containing large stands of tropical
forest. In particular, when we pull together MODIS satellite data for detecting all
fires across the world for the period 2003-2018, we find that the incidence of fires in
heavily forested low-income countries is about four times higher than that in forested
high-income countries (see Appendix Figure A1). Indonesia, which along with Brazil
and the Democratic Republic of Congo contains the bulk of the earth’s tropical forests,
is on the frontline of the global fire problem.3

for environmental services (see, e.g., Jayachandran et al. 2017) and improved auditing (e.g., Duflo
et al. 2013), but does not study changes in the degree to which the behavior in question is, in itself,
an externality.

2Mechanical clearance using bulldozers and other heavy equipment is estimated to cost 44-70%
more than using fire (Simorangkir 2007).

3Indonesia is responsible for less than 1% of the global area burned, but accounts for 8% of
carbon and almost a quarter of methane emissions from fires, due to the large amount of biomass
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Indeed, vast systems of fires regularly erupt in Indonesia and have burned millions
of hectares of forest in recent years. While we focus on local externalities due to fire
spread in this paper, more broadly, the externalities generated by these fires are
manifold and often extend beyond Indonesia’s borders, including significant health
impacts (Frankenberg et al. 2005, Jayachandran 2009, Koplitz et al. 2016, Kim et al.
2017), ecosystem loss (Yule 2010) and global warming (Page et al. 2002, Permadi
and Oanh 2013). For example, the major 2015 Indonesian fires alone released about
400 megatons of CO2 equivalent (Van Der Werf et al. 2017), at their peak emitting
more daily greenhouse gases than all US economic activity, and are estimated to have
caused over 100,000 excess deaths across Indonesia, Malaysia and Singapore (Koplitz
et al. 2016). Hsiao (2020) estimates that the palm oil industry in Indonesia and
Malaysia, where fire is used extensively to clear forest land, accounted for 4.7% of
global CO2 emissions from 1986 to 2016 – more than all emissions from India. Forest
fires are therefore among the most environmentally damaging illegal behaviors firms
in Indonesia engage in.

To understand what affects the decision to set fires, we created a novel fire dataset
on fire ignitions and spread. We begin with 15 years of daily hotspot data from the
MODIS satellites, which records – for every 1 square km pixel, each day – whether
there is a fire in that pixel or not, calculated from the 4 MODIS flyovers that occur
each day (Giglio and Justice 2015). The MODIS datasets can detect quite small fires
– as small as 50 m2 – within each pixel. To track fire ignition and spread, we merge
this data across time and space to trace the likely path of each fire; that is, we assign
contiguous pixels burning on adjacent days to be part of the same fire. This allows us
to determine the most likely location where each fire started and, for each ignition,
the area over which it ultimately spread. This procedure yields over 107,000 unique
fires in our data, covering all of the main forest islands of Indonesia for the period
October 2000 to January 2016. We merge these data with detailed geospatial data on
boundaries for the Indonesian national forest estate, protected forest areas and every
logging, wood fiber and palm oil concession in the Indonesian national forest system.

These data confirm that fire spread is a tail risk event – and that these risks
entail an important local externality. The vast majority of fires burn for a single day

burned in the tropical forest and peatlands (Van Der Werf et al., 2017). In 2019 alone, Indonesian
forest fires emitted around twice the amount of carbon than fires in the Brazilian Amazon forest
(Jong, 2019).
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(87% of all fires) and do not spread beyond their initial ignition area (89%). But
the fires that do spread can become enormous: the largest fire in our data spread
to cover 466 times its initial area and the largest single fire in our data burned 764
square kilometers. Twenty nine percent of the total area burned by fires over our
study period is outside the initial extent burned by the fires on the day they were
ignited. Moreover, a substantial part of the damage from spreading fires is borne by
others: across all multi-day fires, 32% of land burned outside the initial ignition area
is outside the concession where the fire began.

The data reveal that fires do not occur randomly but rather are associated with
human activity, and appear likely to be used systematically as part of the clearing
process by firms, consistent with the qualitative evidence (Neslen 2016; Cossar-Gilbert
and Sam 2015; BBC 2015; Mahomed 2019; Schlanger 2019; Mellen 2019; Karmini and
NG 2019; Nicholas 2019). We show that fires are eight times more likely (per hectare)
to occur in oil palm or wood fiber concessions – for which land is cleared completely
and then replanted – compared to logging concessions, which are selectively logged
rather than clear-cut. Since we focus on firms’ incentives to start fires as a cheap
means of land clearance for conversion to industrial plantations, we concentrate our
analysis of externalities and the control of forest fires on the 39,079 fires started inside
wood fiber and palm oil concessions across the study period.

We investigate the links between land clearing and fires further by combining
our fires data with annual satellite data on deforestation from Hansen et al. (2013).
Doing so, we find that fires are vastly more likely to occur immediately following recent
deforestation, consistent with the notion of ‘slash and burn’ but at an industrial scale.
In particular, increasing the share of a pixel deforested from 0 to 100 percent leads to
a 275 percent increase in the probability of fire in that pixel in the subsequent year.
This is unlikely due to the fact that deforestation simply makes the land naturally
more flammable: we find that the year after that – i.e. just two years after the
deforestation event – the pixel is in fact less likely to burn than before deforestation
took place.

Having documented the human origins of many of these fires, we then turn to the
central question of how externalities play into the decision to use fire. We use the fact
that wind influences the likelihood that fires spread, and that the degree to which the
costs of a spreading fire are borne by others depends on how much surrounding land is
part of the owner’s parcel or belongs to someone else. We first show empirically that
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wind speed does, indeed, predict the degree of fire spread: one standard deviation
higher wind speed (equivalent to about 5km/hr) increases the area of fire spread by
284 percent.4

Combining variation in wind speeds over time and space with cross-sectional vari-
ation in who owns surrounding land, we show that fire setters do appear to take the
externalities from fire setting into account. We find that fire ignitions are substan-
tially less likely to be started on windy days in areas where the fire would be more
likely to spread inside the same concession compared to when it would spread to
lands owned by others. Landowners therefore disproportionately avoid burning their
own land relative to that of others when fire is particularly risky, suggesting that a
Coasian bargain has not been reached. This is interesting as, in theory, landholders
could arrive at agreements to bring forest burning down to an – at least locally –
efficient level without the need for government intervention.

We then compare the degree to which firms avoid imposing externalities on ad-
jacent private property depending on the costs they might incur, by examining how
varying wind speeds interact with heterogeneity in what type of land lies just out-
side their borders. To do so, for each of the more than 300,000 1km2 pixels inside
palm oil and wood fiber concessions in our data, we calculate what share of the sur-
rounding pixels are made up of different types of land. We focus on four types of
land: other private concessions, protected areas (i.e., national parks and watershed
protected areas), areas outside the national forest system (i.e. normal private land,
which contains the vast bulk of the population), and unleased productive forest (i.e.
areas that could be assigned as future concessions, but have not been assigned to
date). We also calculate the average population density in the surrounding area. We
then compare how fire ignitions change on windy versus non-windy days – i.e. when
spread risk is high versus when it is low – depending on what kinds of land are nearby.

By classifying land in this way, we can benchmark the degree to which property
owners avoid damaging other types of land to the way they behave vis-a-vis unleased
productive forest land, which tends to be largely unprotected by the government
(or anyone else) and therefore enjoys the weakest property rights. In particular, we
examine how landowners treat risk of fire spread to national parks, which are explicitly

4One might also expect wind to predict the direction of fire spread in addition to the overall
likelihood of fire spread, but this does not appear to be true in the data. We discuss this in more
detail below.
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protected by the government, and land outside the national forest system, which is
typically comprised of villages and smallholders, in comparison to risk of spread to
this unleased but unprotected productive forest land.

As a bunchmark, to quantify how government concerns with burning vary across
land types, we analyze data from the first government investigations into private firms
for causing forest fires in 2015. The government published the initials of each firm
they investigated, which we match to firm names in our concession and fires data. We
can then ask what types of fires were most likely to lead to government investigation.
We find that, conditional on the total area burned, the government is substantially
more likely to investigate firms whose fires ended up burning land in protected areas
and areas with high population density. By contrast, the government does not seem
differentially likely to investigate cases where the fire damage is largely in other con-
cessions. A fraction of firms that were investigated suffered consequences – such as
having their licenses revoked – which indicates some commitment of government to
punish landholders whose fires end up burning national parks and populated lands.

We then bring in our data on fire externalities and compare how landholders treat
externalities on the types of land for which the government is potentially a protector
to how they treat externalities on other private lands. We show that, indeed, the
relative weights on different types of fires the government appeared to use in these
investigations line up with the relative weights on different types of risks that firms
appear to use when deciding whether or not to use fires. This suggests that firms
do behave as if they are responding to Pigouvian-style (1920) incentives: even if the
level of fire use is still excessive compared to the social optimum given the regional
and global externalities it creates, firms internalize which types of fires are relatively
more costly in terms of fire spread and local damage.

The results thus suggest that firms are strategic in two senses: 1) they overuse
fire relative to what they would do if all spread risks were internalized, but 2) they
do take into account the risks of government punishment and this deters them from
burning near protected or highly populated areas. But on net, the social damages
from fires still vastly exceed the likely private benefits – for example, the estimated
external damages for the 1997/1998 Indonesian fires range from 1,286 (Glover and
Jessup 1999) to 6,074 (Varma 2003) 2020 USD per ha burnt, while the average private
benefits (difference in per ha cost of burning versus mechanical clearance) average
around 52 2020 USD per ha after taking into account fertilizers and other costs
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(Guyon and Simorangkir 2002). Benefit cost ratios between 0.04 and 0.008, which
lie well below 1, suggest that while qualitatively the government is deterring the fires
that are relatively more costly, on net the government may wish to deter substantially
more fires than it is currently doing.

Given this, the final part of the paper uses our analysis to derive some implications
for the design of policies to better control these externalities, taking into account the
responsiveness of private actors that we estimate here. We find several results. First,
we consider the scope of land zoning policies, which have been widely used by the
Indonesian government in the past. We find that even if firms treated all surrounding
land the way they treat their own land – i.e. a fully-Coasian solution where who owns
the land does not matter for fire setting behavior – fires would only be reduced by 14
percent. This suggests that creating better property rights on unleased government
land, and relying on private solutions à la Coase, will only have a relatively small effect
on fires. Similarly, our counterfactuals suggest that a tort reform that allowed existing
concessions to recover damages – i.e. so that land owners treated all surrounding
existing privately owned land as their own – would only reduce fires by 6 percent.

Second, we consider stronger incentives generated by meting out punishments for
setting fires – a policy in the spirit of Pigou. We simulate what would happen if
enforcement were to increase such that existing property owners treated the risk of
fire spread – anywhere – the same as they do that in the categories the government
currently punishes most severely, i.e. populated areas and national parks. We find
that this would have a substantial effect: if firms were as concerned about spread
risks to surrounding lands as they are about spread to populated areas or protected
forest, fires would be reduced by 80% or 67%, respectively. By comparison, an en-
forcement regime that prevented any fires from spreading outside the concession of
ignition would result in an estimated 23% reduction in the area burned, while entirely
preventing spread into protected and populated areas alone would result in only a 2%
reduction in the area burned.

The remainder of this paper is organized as follows. Section 2 puts together
the necessary data sets to look at when and why forest fires are started. Section
3 describes the patterns of forest fires in our empirical setting and examines their
relationship with spatial land use and land clearance. Section 4 looks at results on
factors that affect the propensity to start forest fires. A key finding is that both public
and private regulation have not been effective in containing forest fire externalities.
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To gain insights into what policies might be effective, Section 5 considers how different
policy counterfactuals would affect the extent to which forest fires are started and
spread. Section 6 concludes.

2 Setting and Data

2.1 The forest sector

The Indonesian national forest system – known as the ‘forest estate’ (kawasan hutan)
– is a vast system of national forest, covering over 130 million hectares, equivalent
to the size of the U.S. states of Texas, California, and Washington combined. This
comprises about 70% of Indonesia’s total land area, and is almost twice as large as
the U.S. national forest system.

While technically owned by the government, much of this land, in the so-called
“production” forest, has been leased out through long-term concessions for both log-
ging and plantations. These two types of concession entail very different land-use
patterns which, as we will see below, lead to very different uses of fire. Logging
concessions are required to sustainably manage the forest through selective logging.
Plantations, by contrast, are typically clear-cut (harvesting the valuable timber and
clearing the rest), and after having been cleared, are planted either with fast-growing
species used for paper pulp (wood fiber plantations) or for oil palm. These plantation
sectors are vast. For example, two very large pulp mills in Riau province have a
combined capacity to process over six million tons of pulp and paper products an-
nually and pulping from two of Indonesia’s largest firms is estimated to have been
responsible for the deforestation of over 2.5 million hectares.5 Indonesia is also the
world’s largest producer of palm oil (Hsiao 2020), the world’s most commonly used
vegetable oil. Oil palm plantations have grown fourfold since 2000, and now occupy
7 percent of Indonesia’s land area (Edwards 2019).

The remaining national forest land (i.e. the land not in a concession) falls into
two categories. The Indonesian government has designated 43 percent of the national
forest as ‘protected’ forest estate for watershed and biodiversity protection, including
national parks, with logging and other extractive activities prohibited. The remaining

5See discussion by WWF at https://wwf.panda.org/our_work/our_focus/forests_practice /for-
est_sector_transformation_updated/app_april_updated/deforestation_updated/.
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unleased production forest is considered to be ‘no man’s land’, with unclear ownership
and extraction rights. Other than some scattered squatter settlements, populated
land typically falls outside the national forest.

Despite the existence of legislation regarding forest clearing and zoning, adherence
to these laws is imperfect. For example, district heads (responsible for monitoring
legal logging and controlling illegal logging since 1999) have been found to allow
logging outside official concessions (Resosudarmo et al. 2006). They also facilitate
the creation of new oil palm plantations inside national forest areas and sanction
the transport and processing of illegally harvested logs (Casson 2001). Incomplete
documentation of land ownership also renders the legitimacy of some land clearing
activities unclear.

2.2 Use of fire for land clearing

Although illegal fire is often used as as means of land clearance. After valuable
timber has been harvested, land is burned to clear away the remaining debris prior
to planting. Fire is attractive to concession holders because it is cheap: for example,
estimates from Riau province in 2000 suggest that burning primary forest is 44%
cheaper than alternative clearance methods (e.g. bulldozers) for oil palm plantations,
and 70% cheaper for wood fiber and timber plantations (Simorangkir 2007). Other
benefits of fires for concession holders in this context have also been documented,
including rapid nutrient release and inhibiting the spread of plant diseases.

2.3 Policies to prevent forest fires

Policies to control fires in Indonesia center on two main branches: zoning and penalties
for using fires as a means of clearing land.6 On zoning, the 1967 Basic Forestry
Law gave the national government the exclusive right of forest exploitation in the
forest estate, an area equivalent to three-quarters of the nation’s territory (ROI 1967,
Barber 1990). This law centralized government control over the forest and enabled
development of the oil palm, wood fiber, and timber sectors. The zoning of land into
protection and production forest was in part designed to protect sections of the forest
estate from deforestation and hence also from the use of fire in the conversion process.
The 1999 Forestry Law, which updated the 1967 Law and gave district governments

6Detailed sources relating to all policies described in this section are described in Appendix A.7.
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an important role in enforcing forest policy (Burgess et al. 2012), has become the main
legal instrument against forest fires by setting out principles for forest management
and prohibiting the burning of any part of the forest estate.7

In a similar vein, controls on conversion of land have also been used to try to
prevent fires. To tackle fires associated with degraded peatlands, a temporary mora-
torium on granting permits to clear primary forests and peatlands for plantations or
logging was instated in 2011. After being deemed relatively ineffective, peatland pro-
tection was strengthened in response to the 2015 fires by the removal of an exception
for already existing concessions and the creation of a dedicated Peatland Restoration
Agency.8 In 2018, an additional three-year moratorium on new oil palm plantation
licenses was issued, in combination with a call for regional governments and ministries
to review existing licenses.

Zoning policies have been supplemented by policies that impose penalties on those
that set fires to clear forested land. In the aftermath of the enormous 1997 fires,
the 1999 Forestry Law increased anti-fire efforts, stipulating fines of up to 5 billion
Rupiah and imprisonment for up to 15 years for burning forest, as well as requiring
individuals and businesses in fire prone areas to prevent environmental degradation
and pollution caused by wildfires. This regulation was used, most notably, for a
string of prosecutions against oil palm and timber companies for their role in creating
the 2015 fires. Some of these prosecutions resulted in high-profile court decisions
mandating hundred-billion rupiah fines. However, over three trillion rupiah (220
million USD) in fines from ten companies had still not been paid by 2019.

Indonesia’s forest fire policies, therefore, are characterized by two main challenges.
First, political decentralization at the end of the 1990s created a complex relationship
between central and district-level policymaking, which created political incentives for
increasing deforestation and lax implementation of existing regulations (Burgess et al.
2012).9 Second, enforcement of policies aiming to control forest fires is often weak,

7All burning of forests was prohibited without exception in 1999, pursuant to Article 50, Law
No. 41/1999. The 2009 Environmental Protection and Management Law (No. 32/2009) allows the
burning of two hectares of land per family head for the planting of local varieties; this excludes oil
palm and timber and should not affect fires in the large-scale concessions we study here. It also
reduced the maximum punishment for burning forest.

82015 also saw a presidential instruction requiring all levels of government to develop land and
forest fire management systems and to apply sanctions for businesses who do not implement fire
management.

9While the Ministry of Forestry can rezone land to prevent uses that are likely to lead to fire,
ambiguous land use planning, which is rife with overlapping tenure claims and conflicts, often makes
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from regulations granting concession rights through to punishment for offenders.10

2.4 Data

2.4.1 Identifying fire ignition and spread from fire hotspots

To create data on fires, we begin with data on fire hotspots. We start with data
collected by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We
use the MODIS Terra daily Level 3 fire product, a 1km gridded composite of fire
pixels detected in each grid cell over each 24 hour period (Giglio and Justice 2015)
from October 2000 to January 2016. This is derived from the MODIS satellites,
which collectively take 4 images of virtually the entire planet each day. MODIS
routinely detects flaming and smoldering fires with a size of 1000m2 and under optimal
observation conditions can detect fires as small as 50m2.

We link daily MODIS observations over time in order to track the ignition and
spread of individual fires across Indonesia during our study period. We create a ‘fire’
observation using an iterative procedure. This starts with an initial fire, denoted AX ,
comprising a given pixel, or set of contiguous pixels, that is on fire on day X. A
1-pixel buffer is then created on each side of AX and if any pixel within this buffer
is on fire on day X + 1, we call this a continuation of fire AX . If a contiguous set of
pixels is on fire on day X + 1 but only some of them intersect the buffer, all of them
are classified as a continuation of fire AX . A 1-pixel buffer is in turn created around
the fire on day X + 1, and this process is iterated forward over time. If a pixel is
covered by cloud on a given day, the next day’s observation is used instead.

An example of this procedure is shown in Figure 1. In the Figure, pixels outlined
in black had a fire on Day 1 according to that day’s MODIS hotspot data, and pixels
colored red had a fire on Day 2. The white boxes A, B, and C denote three fires that
we classify as single fires, with ignition area as the black area and total spread extent
as the union of the black and red areas.

This procedure yields a total of 176,855 fires across Indonesia from October 2000
to January 2016. Summary statistics are presented for all fires, but we restrict at-

this difficult.
10Licenses being granted often contradict official forest area designations, such as when mining

concessions are granted in protected forest areas (Enrici and Hubacek 2016). Oil palm companies
charged with setting fires in 2015 have used lengthy court appeals and a lack of policy harmonization
across different layers of government to avoid handing over fines (Greenpeace 2019).
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tention to Indonesia’s major forested islands (excluding Java and the Lesser Sunda
Islands) and to pixels inside the forest estate, yielding a total of 107,331 fires. The
focus of our study is a quantitative analysis of firms’ incentives to start fires as a
relatively cheap means of land clearance for conversion to industrial plantations. The
majority of the paper’s analysis therefore concentrates on the 39,079 fires started in-
side wood fiber and palm oil concessions across the study period, although we present
robustness checks for alternative sample restrictions including logging concessions as
well in Appendix A.6.

Figure 1: Example of Fire Identificaiton Algorithm

Notes: Example showing how we merge hotspots into contiguous multi-day ’fires’. In this example,
Pixels outlined in black had a fire on Day 1 , and pixels colored red/orange/yellow had a fire on Day
2. The white boxes A, B, and C denote three fires that we classify as single fires, with ignition area
as the black area and total spread exetent as the union of the black and red areas.
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2.4.2 Land classification and concessions

We overlay the fire data with data on land classifications and forest concessions. First,
land is divided into areas within and outside the forest estate. Second, within the
forest estate, land is demarcated into conservation and protection zones, hereafter re-
ferred to as ‘protected forest’, as opposed to forest in which production can take place.
The map, which we obtained from Global Forest Watch, is shown in Figure 2, dis-
playing forest estate and conservation/ protection zones across Indonesia. Third, we
overlay these broad categorizations with concession boundaries. Data were obtained
from Global Forest Watch on the location of logging concessions (for the selective log-
ging of natural forests), palm oil concessions (allocated for industrial-scale palm oil
production) and wood fiber plantation concessions (allocated for the establishment of
fast-growing tree plantations to produce timber and wood pulp for paper and paper
products).

Figure 2: Forest estate and protection/ conservation zones

Legend
Forest estate
Protection/ conservation zones

The data are compiled from different government, NGO and other sources and
include georeferenced shapefiles demarcating the extent of each concession as well as
information on firm – and, in some cases, firm group – name. The data are imperfect
but provide the best available data on concession boundaries in Indonesia during our
study period.11 Figure 3 shows the distribution of concessions in Sumatra, alongside

11For instance, the data are known to be incomplete and subject to inaccuracies as a result of
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areas demarcating the forest estate and protection/ conservation zones. As shown
in the Figure, the majority of concession holdings are within the forest estate but
outside protection and conservation zones.

Figure 3: Sumatra concessions, forest estate and protection/ conservation zones

Legend
Forest estate
Protection/ conservation zones
Concessions

These classifications yield four land categories of interest for the analysis: pro-
tected forest, productive forest (land in the forest estate that is not in protected
areas) inside concessions, unleased productive forest (land in the forest estate that is
neither in protected areas nor inside concessions) and areas outside the forest estate.12

overlaps between different concession types where permits are issued by different ministries, out of
date maps and different dates of data from different provenances (Greenpeace 2015).

12There are two additional land categories which are not of interest for the analysis and which
are therefore suppressed in the results. These are protected forest inside concessions (these areas
comprise only 2% of the total land area and are likely due to mapping inaccuracies) and concession
areas that fall outside the forest estate (5% of total land area).
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2.4.3 Deforestation data

We augment this data with data on deforestation. Annual deforestation data from
2001-2014 across Indonesia was extracted from Hansen et al. (2013) at a resolution of
1 arc-second (approximately 30m per pixel at the equator). This was used to calculate
the area of each of the pixels used in our analysis that was deforested in a given year.

2.4.4 Wind data

Data on the vector components of daily wind at 297 grid points across Indonesia
over our study period was downloaded from the National Oceanic and Atmospheric
Administration’s NCEP-DOE Reanalysis 2 Gaussian Grid.13 This was used to calcu-
late daily wind speed, from which monthly averages were calculated, at each of these
297 points. The inverse distance weighted interpolation tool in ArcGIS was used to
interpolate this data in order to assign a wind speed to each of the 1km2 pixels used
in our analysis.

2.4.5 Data on public and private regulation

In late 2015, lists of firms investigated and sanctioned by the Indonesian government
for starting forest fires throughout Sumatra and Kalimantan islands was released
by the Ministry of Forestry and the Environment.14 This followed a comprehensive
investigation to uncover the firms that had started the devastating fires of 2015 which
led to thick smogs across Indonesia, Singapore and Malaysia. All firms identified in
the initial investigative list were investigated for possible administrative sanctions,
including requiring firms to rehabilitate land, license suspensions, requirements of
public apologies, and the possibility of having their concessions revoked. By the
end of 2015, 56 firms had received sanctions of some form, including 23 firms whose
licenses were revoked, suspended, or otherwise referred for government sanctions.

13https://esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html
14The list of investigated firms was released in September 2015

(http://www.mongabay.co.id/2015/09/18/inilah-ratusan-perusahaan-dengan-lahan-
terbakar-yang-bakal-kena-sanksi/) and the list of sanctioned firms in December 2015
(http://www.mongabay.co.id/2015/12/22/baru-23-perusahaan-terindikasi-bakar-lahan-kena-sanksi-
administrasi/). As described above, these lists include only the initials of investigated and
sanctioned firms, not complete firm names.
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3 The Origins of Forest Fires

We begin in Section 3.1 by describing the patterns of forest fires and their relationship
with spatial land use throughout Indonesia. Section 3.2 examines the relationship
between fire and land clearing by merging fire data with data on deforestation from
previous years and looks at whether the use of fire following deforestation varies across
the district electoral cycle.

3.1 Descriptive statistics: fire and land-use

To illustrate the relationship between fires and land use, Figure 4 zooms in on the
province of Riau in central Sumatra, an area of substantial forest activity, to show
the distribution of fire ignitions in our data overlaid with the land classification and
concessions data, at a fine geographic scale. Each 1km2 grid cell shown in Figure 4
represents a grid cell in which we detect at least one fire ignition. Concessions are
outlined (yellow for wood fiber; orange for oil palm). Protected forest zones are shown
in dark green; regular forest estate areas are shown in light green; and areas outside
the forest estate are shown in white. Note that not all of the regular forest estate is
allocated to a concession; substantial parcels of the forest estate remain unallocated.
We refer to these areas as unleased productive forest.

Several patterns are worth noting. First, there are a vast number of fires. The
area shown in the map covers approximately 7,700 square km, slightly larger than
the US state of Delaware, and has over 3,400 separate fire ignitions during the period
of our study. The fires are clearly geographically clustered in areas of intense fire
activity.

Second, it is worth noting that the spatial patterns of land use appear to be related
to ignition patterns. A ‘natural’ rate of fire ignition across space would suggest that
the shares of land area and fire ignitions by each forest zone should be approximately
equivalent. Yet in this relatively high fire area, we observe relatively almost no fires
started in the preservation area (Zamrud National Park, previously known as the
Tasik Serkap Wildlife Reserve) shown in the middle-right of the map. Similarly, we
see almost no fires shown in the area outside of the forest estate in the bottom left,
which is a small town.
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Figure 4: Fire ignitions and concession areas in an area of Riau province, Sumatra
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Similar patterns emerge when we consider the entire dataset of over 100,000 fires.15

Appendix Figure A.2(a) compares the share of Indonesia’s land area by land use zone
with the share of ignitions in each zone. As in the example described above, ignitions
are substantially less likely to occur in protected areas, and more likely to occur in
production forest areas.

The pattern is even more striking when we look across different concession types in
Appendix Figure A.2(b), which shows that fires are much more likely in the types of
concessions associated with land-clearing. Specifically, Appendix Figure A.2(b) shows
that, among all fires started within concessions, 46 percent of fires are started in oil
palm concessions – which drain and clear existing forest before planting oil palm –

15As discussed above, we exclude Java and the Lesser Sunda Islands, which have relatively little
forest, from our analysis.
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even though they comprise just 25 percent of total concession land area. Similarly, 42
percent of fires are started in wood fiber plantations – which clear land after wood is
harvested before replanting – even though these comprise just 22 percent of land area.
By contrast, logging concessions, which practice selective logging, rather than clear
cutting, have a much lower share of ignitions – just 12 percent of fires, even though
they comprise 52 percent of total concession areas. This is consistent with evidence
that fires are the most profitable form of land clearance in the ‘first rotation’ when
clearing vegetation and converting forests to oil palm and wood fiber (Simorangkir
2007).

3.2 Fire as part of the land-clearing process

The data above suggest that fires are more likely in the types of forest concessions –
oil palm and wood fiber – where land is cleared and converted to alternate uses, rather
than in logging concessions, which focus on selective logging. To establish this link
more precisely, however, we can move to the pixel level, and look at the relationship
between deforestation and subsequent fires.

To do so, we use the Hansen et al. (2013) global deforestation dataset. Since
this dataset is based on Landsat, it has a resolution of approximately 30m per pixel
at the equator, which is much finer than the 1km resolution of the MODIS-based
hotspot data. We therefore calculate, for each of the 1km pixels in our MODIS-based
fire hotspot data, the share of that pixel that was deforested in year t based on the
Hansen et al. (2013) data.

To illustrate these patterns, Figure 5 shows part of the same area of Riau province
as Figure 4, zoomed in further given the high spatial resolution of the deforestation
data. The map shows ignition areas in 2013, with 1km boxes (the resolution of
the MODIS fire data) illustrating all pixels where an ignition was detected in 2013.
We overlay this with the fine-resolution deforestation data, showing in orange all
deforestation that took place in 2012. The map illustrates that, at least in this area,
almost all of the ignitions took place in areas that had experienced deforestation the
previous year.

To analyze this more formally across our entire data, we estimate a fixed effects
Poisson panel regression of the form:
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Figure 5: Riau 2012 deforestation and 2013 ignitions
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E[Ignitionsimt] = γiexp(β1Forestlossit−1 + β2Forestlossit−2

+β3Forestlossit−3 + δm + δt)
(1)

where an observation is a MODIS-sized 1km pixel in a given month m and year t.
In this specification, γi is a pixel fixed effect, δm are month fixed effects and δt are
year fixed effects. Note that this is a count model since multiple fires can start in the
same pixel within the same month, since fires are measured daily.16 Robust standard
errors (i.e. robust to arbitrary variance of the error term, as long as the expectation
in (1) is correctly specified; see Wooldridge 1999), clustered using 50km x 50km grid
cells, are shown in parentheses.

Two important aspects of this specification are worth noting. First, pixel fixed
effects are important, because they capture fixed differences in land use (e.g. pro-
tection areas vs national park areas) and land characteristics over time. This nets
out fixed differences that may lead some areas to be more vulnerable to fire than

16We obtain very similar results when aggregating the data to the pixel-year level.
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Table 1: Impact of Deforestation on IgnitionsTable 1: Impact of Deforestation on Ignition

Dependent variable = Pixel Pixel
Number of fires in pixel*month*year FE Month & Year FE
Forest loss (km2) in year t-1 1.0917*** 1.3327***

(0.1240) (0.1311)
Forest loss (km2) in year t-2 -0.3618*** -0.3072**

(0.1335) (0.1339)
Forest loss (km2) in year t-3 -0.5377*** -0.3487**

(0.1807) (0.1489)
Observations 3,223,584 3,223,584
Mean of Dep. Var. 0.0100 0.0100

Poisson regressions. Robust standard errors clustered at level of 50km2
grid cells. All pixels inside wood fiber and palm oil concessions inside
forest estate in Indonesia excl Java and Lesser Sunda Islands.
* p < 0.1, ** p < 0.05, *** p < 0.01

1

others. Second, time fixed effects capture the fact that some years are more likely to
experience fires (due to drought, for example), which may happen to be correlated
with previous deforestation patterns.

The results are shown in Table 1, focusing in on wood fiber and palm oil conces-
sions.17 We find that fire ignition is more likely in recently deforested areas. The
magnitudes are substantial: a 1km pixel that was completely deforested is expected
to have 275 percent more ignitions than it would have otherwise. Interestingly, sub-
sequent lags of the deforestation variable are negative. This suggests that the timing
between deforestation and fire use is quite tight, consistent with the use of fires as
part of the land clearing process, rather than recent deforestation simply making the
land more flammable by natural causes (in which case one would expect subsequent
lags to also be positive). Combined, these results suggest a clear picture: many of
the fires we observe appear to be a systematic part of the land clearance process.

Further evidence of the intentionality of this slash and burn cycle can be seen
by noting that it seems to follow the local political cycle, suggesting that forest
fire regulations are most stringently enforced during election years when damages
generated may dent the electoral chances of the district head (discussed in detail in
Balboni et al. 2021).

17Appendix Table A8 and A9 show this for all concessions, and all forest land, and show similar
patterns.
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4 Externalities and the Control of Forest Fires

The three pieces of evidence from Section 3 on where fires are set, when they are set
and whether they respond to electoral incentives all point to forest fires in Indonesia
being driven by human activity. This section examines whether firms take the ex-
ternalities from fire setting into account in their decision of whether to burn forest
or not. Understanding this is critical to understanding whether and how forest fires
might be controlled.

4.1 Ignitions, wind speed, and fire spread risks

A key risk from using fire for land clearance is that the fire may spread beyond the
initial ignition area. To quantify this risk, we use our processing of the MODIS hotspot
data, which allows us to separate areas of initial ignition and areas of subsequent
fire spread. Note that this procedure may underestimate spread – since we classify
all adjacent pixels that have a hotspot on the same day as a single ‘ignition’, this
procedure counts only spread occuring over multiple days, rather than spread within
a single day.

Nevertheless, our data reveal that there are tail risks associated with fire-setting
behavior. Eighty-seven percent of the 107,331 fires in our sample burn for only one
day and 89% do not spread beyond their original ignition area. However, the long
tails of these distributions reveal that there is a small chance that fires burn for much
longer than this (up to a maximum of 36 days) and spread to cover an area much
greater than their ignition area (up to a maximum of 466 times the ignition area) and
very large areas in absolute terms (up to a maximum of 764 1km2 pixels). The risk of
fire spread also imposes a risk of externalities: across all multi-day fires started inside
concessions, 36% of the total land burned is outside the concession in which the fire
was ignited.

The risks of fire spread may vary over time depending on wind speed. Greater
winds can increase fire spread for several reasons. Increased winds supply more oxy-
gen, which increases the intensity of the fires. Winds also exert pressure on the fire
to move, igniting new areas, rather than simply burning existing areas.18

18While intuitively one may expect the direction of the wind to influence the direction of fire
spread, wind direction at the ground is very complex and influenced by the convection currents of
the fire itself, and is notoriously hard to predict.
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To investigate this in our data, we merge our fire data with data on average
prevailing wind speeds in each month, obtained from the NOAA global wind speed
model, as described above. Given the high percentage of fires that do not spread, we
implement a fixed effects Poisson specification of the form:

E[FireSpreadimt] = γiexp(β1Windspeedimt + β2Ignitionsimt + δm + δt) (2)

where FireSpreadimt is a count of the average number of pixels of fire spread area
(burned area minus ignition area) of all fires started in pixel i during month-year mt,
Windspeedimt is the average wind speed in pixel i during month-year mt (measured
in standard deviation units), Ignitionsimt is the number of ignitions in pixel i during
month-year mt, γi are pixel fixed effects and δm and δt are month and year fixed
effects. As above, we use robust standard errors to allow for arbitrary distributions
of the error term.

The results are shown in Table 2 and demonstrate that an ignited fire is more
likely to spread to cover a larger area when prevailing winds are strong. Column 1
shows the results with just pixel fixed effects, column 2 shows the results with both
pixel and time fixed effects. Because these models include pixel fixed effects – which
is important to capture fixed differences in spread risks across different soil types and
other fixed land characteristics – this regression is identified on the 5,445 pixels for
which we observe at least one spreading fire during our period.

The resulting magnitudes suggest that wind substantially increases the risk of fire
spread. Focusing on the results in column 2, a one-standard deviation increase in
wind speed – equivalent to about 5km/hr – increases the extent of fire spread by
284 percent. Combined, the results in this section suggest not only that fire is risky
due to the risk that it spreads, but that that this risk is predictable – high winds
substantially increase the risk of spread.

4.2 Externalities in fire spread and containment

Use of fire entails a risk of spread, but the degree to which spread risk is costly depends
on what type of land it could spread to. One could imagine, for example, that a fire
spreading into unoccupied forest land may be of less concern to a landowner than a
fire that spreads into a city or town.

To measure the degree to which potential fire users are deterred by the externalities
they may cause, we use the product of two factors which together create riskiness of
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Table 2: Impact of Wind Speed on Fire SpreadTable 1: Impact of Wind Speed on Fire Spread

Dependent variable = Pixel Pixel
Average fire spread area (burned area minus ignition area) FE Month & Year FE
Wind speed in standard deviation units 0.9600*** 1.3462***

(0.1810) (0.2193)
Observations 5,445 5,445
Mean of Dep. Var. 4.748 4.748

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. All regres-
sions control for number of ignitions in pixel-month. All pixels inside wood fiber and palm
oil concessions inside forest estate in Indonesia excl Java and Lesser Sunda Islands.
* p < 0.1, ** p < 0.05, *** p < 0.01

1

starting a particular fire that varies across time and locations. First, as described
above, we use monthly data on wind speed at each pixel (as described in Section
2.4), which yields spatial and temporal variation in the probability of fire spread.
Second, there is local variation in the cost of fire spread driven by the types of land
that surround each pixel. To quantify the latter, for each pixel in our data, we
construct the share of pixels by land cateogory in a 6km radius surrounding each
pixel, exemplified in Figure 6.19 The expected external cost of starting a fire in a
particular pixel in a particular month depends on the product of these two factors –
wind speed in that pixel in that month, and the composition of the types of land that
surround the pixel.

We next consider whether fire-setting behavior is influenced by the likelihood
of fires spreading to particular land types. We consider the effects of fires being
differentially likely to spread to (i) land with the same versus different owners, and
(ii) land types where there may be a differential threat of punishment. In both cases,
we consider the impact on ignition probability and, conditional on a fire starting, on
the probability of containment.

We investigate this with the following specification:
E[Ignitionsimt] = γiexp(β1WindSpeedimt +

∑
j β

j
2NeighborLandType

j
i ×WindSpeedimt

+β3Xi ×WindSpeedimt + δm + δt)

(3)
where NeighborLandTypeji is the share of land in the 6km radius buffer surrounding

19A radius of 6km was chosen to estimate the area at risk of fire spread. This is the 90th percentile
of the distribution of the maximum distance between fire ignition centroids and the boundary of
extents burned for multi-day fires.
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Figure 6: Illustration of pixel buffer classification
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pixel i that is in land type j; the coefficient(s) on this interaction, β2, capture(s)
whether potential fire setters differentially use fires depending on the magnitude of
their expected externality. Equation (3) includes pixel fixed effects (γi) and time fixed
effects (δm, δt), which absorb fixed pixel characteristics and common time shocks. We
also include interactions of wind speed with island, concession type, the total size
of the concession (to account for the fact that in larger concessions more pixels will
mechanically have smaller shares of pixels outside the concession), and with baseline
forest cover. We consider specifications where NeighborLandTypeji is divided accord-
ing to whether or not land in the 6km buffer surrounding pixel i is in the same con-
cession as pixel i (for land inside concessions only), and where NeighborLandTypeji
is divided according to land type classifications.
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4.3 Magnitude of externalities: burning your own vs others’

land

We begin by examining results where we split land surrounding each pixel based on
what fraction is part of the concession in which the pixel is located, versus is ‘external’
to the concession owner. To do so, we estimate equation (3), using as the the key
NeighborLandType interaction the variable FractionBufferOwn, which calculates
what share of the 6km buffer pixels as in the same concession as the central pixel.

The results, shown in Table 3, reveal that fire ignitions inside wood fiber and
palm oil concessions are significantly less likely on windy days in areas where the fire
would be more likely to spread inside the same concession compared to where spread
would be external. Table 3 includes specifications including pixel, month and year
fixed effects and successive controls for wind speed × island, wind speed × concession
type, wind speed × 2000 forest cover and wind speed × concession area.20,21

The coefficients of interest are interactions, i.e. they estimate
∂2E[Ignitionsimt]

∂WindSpeed∂FractionBufferOwn
, and hence require some care to interpret. The negative

coefficients we find says that land owners are more sensitive to spread risks (induced
by stronger winds) when the area to which the fire would spread (i.e. the buffer zone)
is largely their own land. To gauge magnitudes, we consider the semi-elasticity of
ignitions with respect to the share of the buffer with the same owner as the central
pixel. This can be interpreted as the percentage change in ignitions resulting from an
additional buffer pixel in one’s own land, for a given wind speed. Taking the derivative
of the estimating equation 3 with respect to the fraction of the buffer in the same
concession as the central pixel and re-arranging terms yields this semi-elasticity as:

∂E[Ignitionsimt]

∂FractionBufferOwni

/E[Ignitionsimt] = β2WindSpeedimt (4)

where β2 is the estimated interaction coefficient.
The estimated β2 coefficients in Table 3 – i.e., the coefficients on WindSpeed

20In an especially demanding specification including concession fixed effects interacted with wind
speed, fire ignitions inside concessions are again found to be less likely on windy days in areas where
the fire would be more likely to spread inside the same concession compared to where spread would
be external, although the results are no longer significant at conventional levels in this case (see
Appendix Table A1).

21Appendix tables A6 and A7 present results separately for wood fiber and palm oil concessions:
while effects are stronger statistically in the case of the former, the point estimates are similar in
both cases.
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interacted with FractionBufferOwn – range from -0.007746 to -0.002101. At the
mean wind speed, these coefficients imply that one additional buffer pixel in one’s
own land decreases ignitions by 0.2%-0.7%. We next use these semi-elasticities to
ask what the effect would be of a typical buffer being entirely owned by the same
owner as the central pixel. Using the fact that the 6km buffers contain 137 pixels
and that the mean number of buffer pixels in the same concession as the central pixel
is 96, this suggests that a typical buffer being owned entirely by the same owner as
the central pixel would reduce ignitions by 8% to 25% when the wind speed takes its
mean value. An equivalent calculation when the wind speed is at the 95th percentile
value suggests that this effect would be much larger – 22% to 61% – on very windy
days.22

The central results in Table 3 thus reveal that fire setters do appear to take the
externalities from fire-setting into account, suggesting a failure of Coasian (1960)
bargaining to fully internalize externalities. In principle, part of the explanation for
this might lie in the difficulty of contracting where pixel buffers contain land owned
by several different parties. We do not, however, find significantly different results in
specifications that restrict attention only to those pixels whose entire 6km buffer is
in either the same concession as the central pixel or in a single other private party’s
concessions, suggesting that the externality is present even in cases involving only
a single property border between two private firms (see Appendix Table A2). This
is a tighter test of Coase and suggests that multiple-party contracting issues are
not necessarily driving the results. Appendix Table A3 also presents results for the
subset of buffers where pixels are either in the same concession as the central pixel or
in unleased productive forest, where Coasian bargaining might be least likely given
that property rights are least well defined in unleased productive forest. While the
point estimates on the interaction terms are in general larger in this case, the results
are not significantly different from those in the main specification in Table 3.23 The
fact that results for concessions surrounded by concessions look similar to those for
concessions surrounded by unleased productive forest suggest Coasian bargaining is

22Note that direct (i.e., uninteracted) effects of FractionBufferOwn are captured in the fixed
effect of equation (3), and hence do not appear in equation (4). Presumably, one would expect these
to be negative (more land in own buffer would lead to more caution about use of fire, even with
little wind), in which case the estimates in this paragraph are a lower bound.

23We provide a formal statistical test of this in Table 5 below, which shows that nearby unleased
productive forest is in fact treated no differently than nearby other private concessions.
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not playing a role in containing fires. This is worth noting, as with weak government
enforcement one would hope that private interests might help to control the use of
fire. This does not appear to be the case.

It is possible that strategic interactions between neighbors may be important for
the results if, for instance, neighbors have correlated incentives to start fires such
that coordinated fires are started simultaneously by neighbors or fires are ignited
with neighbors’ acquiescence. To investigate this possibility, we estimate the same
specification restricting attention to situations where such effects may be less likely,
namely (i) fires whose initial size is 1 pixel, and (ii) fires where no neighboring con-
cession starts a fire in the same period. In both cases, the results are statistically
indistinguishable from the main results (see Appendix Tables A4 and A5 respectively).

In addition to studying the impacts on fire ignitions, we also investigate whether,
conditional on a fire starting, it is less likely to spread when the spread would be to
neighbors’ land. Efforts to reduce fire spread may reflect actions taken either prior to
a fire starting (such as building in fire breaks), or actions taken after the fire starts
(i.e. firefighting effort), or a combination thereof. Importantly, actions to reduce
fire spread once a fire has started might be undertaken by the government or other
private actors, so that externality-containing (or inducing) behavior is more difficult
to attribute to the owner of the concession in which the fire starts in this case. We
estimate this using the following OLS specification to determine how the spread of
fire f ignited in pixel i at time t is influenced by the prevailing wind speed interacted
with surrounding land type:

FireSpreadfimt = α + γi + δm + δt + β1WindSpeedimt

+
∑

j β
j
2NeighborLandType

j
i ×WindSpeedimt

+β3Xi ×WindSpeedimt + εfimt

(5)

The results of this analysis, shown in Table 4, reveal no significant effect in this case.

4.4 Does it matter who your neighbors are?

We next benchmark the degree to which property owners avoid damaging other types
of land to the way they behave vis-a-vis unleased productive forest land, which tends
to be largely unprotected by the government (or anyone else). We implement this
by re-estimating equation (3), dividing NeighborLandTypeji according to land type
classifications that distinguish private land owned by the same concession-holder as
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the central pixel; private land owned by other concession-holders; national parks and
conservation areas, which are explicitly protected by the government; land outside
the national forest system, which is typically comprised of villages and smallholders;
and unleased productive forest outside concession boundaries (which is the omitted
category). We also examine the overall population density in the buffer area as a
measure of the risk that fires would spread into populated areas.24

The results of this exercise are shown in Table 5 (ignitions) and 6 (spread). The
results in Table 5 suggest that concession owners make more of an effort to avoid
starting fires that risk spreading into their own land, protected forest or land outside
the forest estate, relative to those that risk spreading into unleased productive forest.
They appear to treat other firms’ concessions similarly to land that lies in the unleased
productive forest estate, suggesting that private party enforcement is not very strong
in this context. Table 6 shows that once started, fires are less likely on windy days
when more of the surrounding area is in the own or other private concessions.

We can again use the semi-elasticity of ignitions with respect to the share of the
buffer that is comprised of different land types (e.g. equation (4)) to interpret the
magnitude of these coefficients. The results suggest that one additional buffer pixel
in protected forest versus unleased productive forest decreases ignitions by 0.9% at
the mean wind speed and 2.7% when the wind speed is at the 95th percentile. The
deterrent effect of surrounding land outside the forest estate is even stronger: in this
case, these figures are 1.5% and 4.6% respectively.

The containment results broken down by land type in Table 6 suggest that, once
fires are started, concession owners may also make an effort to avoid fires spreading
to areas outside the forest estate. This suggests that private fire enforcement may be
more effective where populated areas are at risk in this context.

24This is calculated by (i) assigning a population density to each 1km grid cell based on the
population density of the desa in which the grid cell centroid lies; and (ii) finding the average
population density of the grid cell centroid points that lie within each pixel’s 6km buffer.
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Table 3: Ignition Results by Surrounding Land OwnershipIgnition Results by Surrounding Land Ownership

Dependent variable = Pixel Pixel Pixel Pixel Pixel Pixel
Number of fires in pixel*month*year M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Wind speed in standard deviation units 1.9628*** 2.2217*** 2.1218*** 1.4299*** 1.8673*** 2.4957***

(0.1776) (0.1718) (0.1724) (0.2150) (0.1657) (0.2439)
Wind speed -0.007746*** -0.005191*** -0.003586** -0.007112*** -0.003328** -0.002101*

* Num pixels in 6km buffer in same concession as central pixel (0.001665) (0.001715) (0.001515) (0.001593) (0.001469) (0.001266)
Observations 4,728,600 4,728,600 4,728,600 4,720,860 4,728,600 4,720,860
Control: Wind speed × Island NO YES NO NO NO YES
Control: Wind speed × Concession Type NO NO YES NO NO YES
Control: Wind speed × Forest Cover 2000 NO NO NO YES NO YES
Control: Wind speed × Concession Area NO NO NO NO YES YES
Mean of Dep. Var. 0.00823 0.00823 0.00823 0.00823 0.00823 0.00823

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate
excl Java and Lesser Sunda Islands. Omitted category: Interaction of wind speed and “Num pixels in 6km buffer outside same concession as central pixel”.
* p < 0.1, ** p < 0.05, *** p < 0.01

1

Table 4: Spread Results by Surrounding Land OwnershipSpread Results by Surrounding Land Ownership

Dependent variable = Pixel Pixel Pixel Pixel Pixel Pixel
Spread extent (total fire area minus ignition area) M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Wind speed in standard deviation units 0.5793 1.1781 0.6191 -0.3529 0.6037 0.7069

(0.5961) (0.8233) (0.5952) (0.5519) (0.5925) (0.7289)
Wind speed 0.005191 0.006009 0.007467 0.006626 0.003864 0.004869

* Num pixels in 6km buffer in same concession as central pixel (0.006415) (0.006634) (0.006610) (0.006271) (0.006426) (0.006436)
Observations 23,745 23,745 23,745 23,694 23,745 23,694
Control: Wind speed × Island NO YES NO NO NO YES
Control: Wind speed × Concession Type NO NO YES NO NO YES
Control: Wind speed × Forest Cover 2000 NO NO NO YES NO YES
Control: Wind speed × Concession Area NO NO NO NO YES YES
Mean of Dep. Var. 1.340 1.340 1.340 1.340 1.340 1.340

OLS regressions. Robust standard errors clustered at level of 50km2 grid cells. Pixels inside wood fiber and palm oil concessions inside forest estate excl
Java and Lesser Sunda Islands containing at least one fire spreading beyond its ignition area. Omitted category: Interaction of wind speed and “Num
pixels in 6km buffer outside same concession as central pixel”.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 5: Ignition Results by Surrounding Land TypeIgnition Results by Surrounding Land Type

Dependent variable = Pixel Pixel Pixel Pixel Pixel Pixel
Number of fires in pixel*month*year M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Wind speed in standard deviation units 2.1496*** 2.8262*** 2.1431*** 1.6939*** 2.1073*** 2.9363***

(0.3525) (0.2637) (0.3282) (0.3960) (0.3341) (0.3164)
Wind speed -0.008985*** -0.009373*** -0.004262 -0.008619*** -0.004867** -0.005640***

* Num pixels in 6km buffer in same concession as central pixel (0.002563) (0.002424) (0.002597) (0.002460) (0.002315) (0.001996)
Wind speed 0.003256 -0.002230 0.003893 0.002658 0.003152 -0.001057

* Num pixels in 6km buffer in different concession from central pixel (0.003444) (0.002649) (0.003039) (0.003198) (0.003350) (0.002468)
Wind speed -0.01737*** -0.01922*** -0.01184*** -0.01752*** -0.01662*** -0.01540***

* Num pixels in 6km buffer outside forest estate (0.003993) (0.003219) (0.003866) (0.003894) (0.003851) (0.003214)
Wind speed -0.01362*** -0.01193*** -0.009083** -0.01262*** -0.01298*** -0.008963***

* Num pixels in 6km buffer in protected forest (0.004117) (0.003211) (0.003727) (0.003965) (0.003961) (0.002919)
Wind speed 0.002440 0.0009290 0.001860 0.002375 0.001042 0.0005167

* Average population density in 6km buffer (0.002361) (0.002112) (0.001841) (0.002433) (0.002122) (0.001715)
Observations 4,728,600 4,728,600 4,728,600 4,720,860 4,728,600 4,720,860
Control: Wind speed × Island NO YES NO NO NO YES
Control: Wind speed × Concession Type NO NO YES NO NO YES
Control: Wind speed × Forest Cover 2000 NO NO NO YES NO YES
Control: Wind speed × Concession Area NO NO NO NO YES YES
Mean of Dep. Var. 0.008228 0.008228 0.008228 0.008228 0.008228 0.008228

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate excl
Java and Lesser Sunda Islands. Omitted category: Interaction of wind speed and “Num pixels in 6km buffer in productive forest outside concession”. Suppressed
categories: Interactions of wind speed and “Num pixels in 6km buffer in protected forest in concession”, “Num pixels in 6km buffer outside forest estate in conces-
sion”, “Num pixels in 6km buffer in sea”, “Num pixels in 6km buffer in Malaysia / PNG”.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 6: Spread Results by Surrounding Land TypeTable 1: Spread Results by Surrounding Land Type

Dependent variable = Pixel Pixel Pixel Pixel Pixel Pixel
Spread extent (total fire area minus ignition area) M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Wind speed in standard deviation units 1.8123 2.7139 1.8999 0.9323 1.8314 2.2774

(1.5796) (1.7515) (1.5782) (1.4653) (1.5714) (1.6774)
Wind speed -0.004194 -0.005425 -0.001655 -0.003185 -0.005610 -0.006479

* Num pixels in 6km buffer in same concession as central pixel (0.01264) (0.01247) (0.01250) (0.01248) (0.01201) (0.01165)
Wind speed -0.007757 -0.01064 -0.007343 -0.008802 -0.007978 -0.01077

* Num pixels in 6km buffer in different concession from central pixel (0.01037) (0.01024) (0.01020) (0.01035) (0.01027) (0.009912)
Wind speed -0.02671** -0.02984** -0.02469* -0.02743** -0.02698** -0.02864**

* Num pixels in 6km buffer outside forest estate (0.01311) (0.01367) (0.01289) (0.01309) (0.01297) (0.01336)
Wind speed -0.02469 -0.02544 -0.02204 -0.02224 -0.02529 -0.02233

* Num pixels in 6km buffer in protected forest (0.01694) (0.01680) (0.01643) (0.01651) (0.01684) (0.01621)
Wind speed 0.0003351 0.0005954 0.0002234 0.0003769 0.0004899 0.001172

* Average population density in 6km buffer (0.001327) (0.001438) (0.001315) (0.001376) (0.001324) (0.001415)
Observations 23,745 23,745 23,745 23,694 23,745 23,694
Control: Wind speed × Island NO YES NO NO NO YES
Control: Wind speed × Concession Type NO NO YES NO NO YES
Control: Wind speed × Forest Cover 2000 NO NO NO YES NO YES
Control: Wind speed × Concession Area NO NO NO NO YES YES
Mean of Dep. Var. 1.485 1.485 1.485 1.486 1.485 1.486

OLS regressions. Robust standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate excl
Java and Lesser Sunda Islands. Omitted category: Interaction of wind speed and “Num pixels in 6km buffer in productive forest outside concession”. Sup-
pressed categories: Interactions of wind speed and “Num pixels in 6km buffer in protected forest in concession”, “Num pixels in 6km buffer in concession outside
forest estate”, “Num pixels in 6km buffer in sea”, “Num pixels in 6km buffer in Malaysia / PNG”.
* p < 0.1, ** p < 0.05, *** p < 0.01
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4.5 Do agents internalize government preferences?

Intentionally burning areas of the wood fiber and palm oil forest concessions we
study was illegal throughout our study period, but the government may implicitly
place different sanctions on different types of fires depending on what types of land
are damaged. To back out the government’s implicit weights on different types of fire
damage, we use data on firms investigated by the Indonesian government for forest fire
violations, as described in Section 2.4, to consider what the Government punishment
function looks like. We then consider how aligned this is with the fire-setting behavior
of concession holders.

To estimate the government’s decision rule, we estimate the following equation at
the level of concessions c:

Pr(Punishedc) = F (α +
∑

j 6=o βjBurnedArea
j
c + γTotalBurnedAreac

+δPopnBurnedAreac + ηConcAreac)
(6)

where F (·) is the CDF of logistic distribution; Punishedc is a dummy equal to 1
if concession c appeared on the list of investigated concessions; BurnedAreajc is the
number of pixels in land type j (excluding omitted category o) burned by fires started
in concession c in the 12 months prior to the release of the investigated firm lists
(September 2014 to August 2015); TotalBurnedAreac is the total area burned by
fires started in concession c during that time; PopnBurnedAreac is the population
in areas burned by fires started in concession c during that time; and ConcAreac is
the area of concession c. α captures island or province fixed effects.

The results are shown in Table 7. Larger fires are clearly more likely to be pun-
ished; conditional on fire size, the government is also likely to target larger concessions.
Looking in terms of the types of area burned suggests a few key patterns. First, the
government is substantially more likely to punish those firms whose fires spread into
populated areas. Second, the government is also likely to target those firms whose
fires spread into protected zones (though the coefficient is statistically significant only
in the specification with province fixed effects). Pixels in unleased productive forest
are treated no differently than land in the concession itself. What is remarkable about
these patterns is that they very much mirror the patterns of avoidance behavior we
saw in Table 5, suggesting that concession owners substantially avoid the same types
of land that trigger government investigations. This suggests that firms do behave
as if they are responding to Pigouvian (1920) incentives, and that these are stronger
than the Coasian solution for burning other private lands.
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Table 7: Government Punishment ResultsGovernment Punishment Results

Dummy = 1 if firm investigated No FEs Island FEs Province FEs

Pixels outside forest estate burned by fire 0.02429 0.03267 0.01924
(0.06056) (0.04975) (0.05594)

Pixels in unleased productive forest burned by fire -0.05307 -0.02794 -0.02845
(0.03541) (0.03040) (0.02809)

Pixels in protected forest burned by fire 0.03855 0.07682 0.08669**
(0.05530) (0.04927) (0.03602)

Total area of fires burned Sep 2014-Aug 2015 0.01825** 0.01351* 0.01379*
(0.008609) (0.007932) (0.007505)

Concession area (km2) 0.001142** 0.001618*** 0.001715**
(0.0005171) (0.0005695) (0.0006754)

Population in fire extent 0.0006063*** 0.0004342** 0.0004410**
(0.0001889) (0.0001905) (0.0001956)

Observations 599 599 567
Mean of Dep. Var. 0.160 0.160 0.164

Logit regressions. Robust standard errors clustered at level of concession group. All pixels in-
side wood fiber and palm oil concessions inside forest estate excl Java and Lesser Sunda Islands.
Omitted category “Pixels in productive forest in concession burned by fire”. Suppressed categories
“Pixels in Malaysia / PNG burned by fire”, “Pixels in concession outside forest estate burned by
fire”, and “Pixels in concession in protected forest burned by fire”.
* p < 0.1, ** p < 0.05, *** p < 0.01

1

5 Counterfactuals and Implications for Policy

In this section, we use our estimates to consider several counterfactual simulations in
order to understand how changes in policies directed at containing forest fires would
change the degree of fire use. As discussed in Section 2 the central government has
far-reaching powers to control land allocations via land zoning policies and the issuing
(and enforcement) of fines and other penalties for setting illegal forest fires within the
forest estate. Given the important role of these two types of policies in controlling
fires, we simulate the effect of hypothetical modifications of these policies which can,
in principle, be enacted by the state.

Each simulation exercise is discussed in turn in the subsections below, and the full
set of results is summarized in Table 8.

5.1 Counterfactual land zoning policies

One important implication of the results in Section 4 is that being surrounded by
one’s own land has a deterrent effect on fire-setting. As such, a more concentrated
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distribution of concession rights should be expected to reduce the incidence of fires.
This stands in contrast to current Indonesian policies, where bans on the transfer
of concession rights as well as limits on the number of concessions held by a firm
within a district effectively limit the concentration of land. We investigate this by
using our estimated coefficients and conducting a simulation exercise that assigns all
concessions to a single owner, in order to estimate how many fewer hectares would
have been burned by fires started inside wood fiber and palm oil concessions over our
study period in this case.

A second implication of the results from the previous section is that fire-setters are
also deterred by the likelihood of a fire spreading into neighboring protected forest.
This points to an alternative potential policy: namely, zoning more land to be desig-
nated as protected land. Such systematic zoning has been a regular policy tool since
1982, when the Indonesian government presented a national conservation plan which
increased the protected area to around 10% of Indonesia’s total land (Jepson et al.
2002). Over the following decades, both new protected forests were designated, and
large shares of existing protected forests were re-converted to production forest (Jong
2020).25 A second counterfactual simulation exercise therefore estimates the implied
reduction in ignitions inside wood fiber and palm oil concessions as a result of zoning
all unleased productive forest as protected forest. We extend these counterfactual
simulations to consider how far ignitions would be reduced if agents treated all buffer
land as if it were part of their own concession or as if it were the land type with the
strongest deterrent effect, populated land outside the forest estate.

A more concentrated allocation of concession rights should reduce the incidence
of fires. This arises because a more concentrated allocation of concessions increases
the likelihood that a given pixel’s buffer has the same owner as the central pixel and,
as shown in Table 3, this has a deterrent effect on externality-inducing fire-setting.
We investigate this by using the coefficients estimated in Table 3, combined with a
simulation exercise that achieves a more concentrated allocation of concession rights
by assigning all concessions to have a single owner while keeping constant the total
area allocated to concessions.

The first step in the simulation exercise is to estimate the coefficients in equation

25Recent court rulings have restricted the power of the central government to designate new
protected areas (Enrici and Hubacek 2016).
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(3), focusing on FractionBufferOwni:

E[Ignitionimt] = γiexp(β1WindSpeedimt

+ β2FractionBufferOwni ×WindSpeedimt

+ β3Xi ×WindSpeedimt + δm + δt) (7)

We then simulate the value of the dependent variable under the counterfactual sce-
nario by replacing FractionBufferOwni with the number of buffer pixels in the same
‘aggregate concession’ as pixel i under this counterfactual, keeping all other covariates
(including the pixel fixed effects) unchanged:26

ˆE[Ignitionimt] = γ̂iexp(β̂1WindSpeedimt

+ β̂2FractionBufferOwnAggi ×WindSpeedimt

+ β̂3Xi ×WindSpeedimt + δ̂m + δ̂t) (8)

This exercise suggests that assigning all concessions to have the same owner would
result in a 6% reduction in ignitions inside wood fiber and palm oil concessions within
the forest estate over our study period as a result of lower externality-inducing fire-
setting.27

The previous counterfactual experiment can also be extended to consider how far
ignitions would be reduced if agents treated all land – including land not already
allocated to concessions – as if it were their own concession land, using the same
approach but setting FractionBufferOwni to be equal to 100%. In this case, the
simulations suggest that ignitions would instead be reduced by 14%.

One approach one could feasibly take is to zone all remaining land in the national
forest that has not yet been leased out as protected forest. We calculate the implica-
tions of this through a similar approach, i.e. designating unleased productive forest to
be protected forest land and using the estimated coefficients in Table 5. This exercise
suggests that this alternative policy would result in a much larger decline in ignitions
inside wood fiber and palm oil concessions within the forest estate over our study

26This implies that pixels in which no ignitions were observed over the study period will also
contain no ignitions under the counterfactuals. While some covariates might also be expected to
change under the counterfactuals, the key effect of interest is the change in incentives induced by
the changing externality effect.

27It is important to note that the data does not allow us to simulate general equilibrium effects
of such a policy. In particular, land concentration might also have adverse economic and social
consequences in the long run (see, e.g., Smith 2021).
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period, at 26%.
The results in Table 5 reveal that buffer land outside the forest estate – which is

where the population lives – has the strongest deterrent effect on would-be fire-setters
of all of the land types considered. The final counterfactual simulation examines the
potential reduction in ignitions if agents acted as if all land in each buffer were in this
land category. This may not be feasible, of course, but it is a useful counterfactual to
illustrate the degree to which enhanced government enforcement could matter.28 This
counterfactual simulation results in a sharp 80% reduction in ignitions were agents to
treat all land as if it were land outside the forest estate. A slightly smaller reduction
of 67% would be achieved were agents to instead treat all land as if it were protected
forest.29

5.2 Counterfactual enforcement regimes

Next, we consider alternative policies targeted at more effective enforcement of exist-
ing regulations via Pigou-type fines incentivizing firms to prevent the spread of fires
to surrounding land.

The first of these considers the impact of preventing the spread of fires started
inside wood fiber and palm oil concessions from crossing property boundaries. Indone-
sian law requires concession holders to implement technical solutions that prevent the
spread of fires outside of their concession boundaries. However, this policy is not con-
sistently enforced. We assume a scenario in which the government strictly enforces
this regulation.30 This can be estimated from our data by identifying the share of the
burned area of each fire that falls outside the concession of ignition, and assuming

28In this case, the counterfactual aims to capture only the deterrent effect of surrounding land
associated with all buffer land being treated as if it were land outside the forest estate. Of course,
reassigning buffer pixels inside concessions to be a different land type would mechanically also
change the categorization of the central pixels, and therefore the sample of ignitions considered in
the analysis, but given that this is not the effect of interest that we are aiming to consider with
this counterfactual we abstract from this effect. This effect therefore captures the effect of increased
enforcement as if all land outside a concession was in a particular land category.

29Note that this result is substantially higher than in the calculation in the previous subsection
because we are now considering the counterfactual of treating all land as if it were protected, whereas
the previous counterfactual only rezoned ’unleased forest estate land’ as protected.

30The 1999 Forestry Law equips the Indonesian government with strong tools to fight the spread
of fires into public lands, with the threat of up to 15 years of imprisonment or fines of up to 5
billion Rupiah for offending persons or businesses. As discussed in Section 2.3, even in cases where
businesses have been ordered to pay high fines and reparations for infringements, such fines were
often not paid.
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that this share of the burning was prevented. This counterfactual simulates the effect
of, for instance, effective regulation or enforcement of punishments for burning land
owned by other concession holders or public lands. The results suggest that a total
of 12.1 million hectares would have been burned by fires started inside wood fiber
and palm oil concessions over our study period had these fires been prevented from
crossing property boundaries. This represents a sizable reduction of 23% relative to
the 15.6 million hectare total area that was burned over the period.

An alternative counterfactual considered is the effect of preventing the spread of
fires started inside wood fiber and palm oil concessions into protected forest and pop-
ulated areas only. This corresponds to, for instance, policies that implement effective
enforcement of punishment for, or fire-fighting efforts to prevent, encroachment into
public lands. The results suggest that in this case the total area burned would have
been much closer to the level actually observed. The total burned area in this case
is estimated to be 15.3 million hectares, which represents only a 2% reduction on the
observed area burned.

An alternative form of regulation implemented over the period is private regulation
via membership of the RSPO, a multi-stakeholder organization founded in 2003 that
encourages the production and trade of certified sustainable palm oil and promotes
a zero burning policy.31 To consider the relative potential efficacy of this initiative
compared to our counterfactuals, we simulate the effect of perfect enforcement of
the zero burning policy promoted by the RSPO among its members. To do so, we
simulate the area burned by fires started inside concessions owned by RSPO members
at the time of ignition.32 Removing the burned area from all of these fires from the

31Existing studies find muted evidence for reduced incidence of fires in RSPO-certified concessions.
For example, Carlson et al. (2018) find that RSPO certification reduced deforestation but not fire
or peatland clearance and Cattau et al. (2016) find that the prevalence of fires in Sumatra and
Kalimantan from 2012-2015 was lower in RSPO-certified concessions only in areas and under climatic
conditions when the likelihood of fire is relatively low. Consistent with this, in our data imprecisely
estimated results suggest that palm oil concessions owned by RSPO members may be associated
with fewer ignitions. We do not find that RSPO membership affects the degree to which concession
owners internalize the costs of fires on neighbors.

32RSPO certification explicitly prohibits burning but the unit of certification is an oil palm
mill and its surrounding supply base, which cannot be mapped directly to our concessions data.
However, the first step towards RSPO certification is RSPO membership, which can be matched
to our concessions data. While not an explicit pledge of zero burning, RSPO membership requires
firms to work towards certification, to provide annual progress reports and acknowledgement of the
RSPO Statutes and Principle and Criteria. RSPO members are matched to our concessions data
by classifying a concession as an RSPO member if the concession name, or the company group to
which the concession belongs, appears in the list of RSPO members published on the RSPO website
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Table 8: Counterfactual simulation results

Counterfactual % reduction from: Ignitions Area burned
Assign all concessions to single owner 6%
Agents treat all buffer pixels as concession land with same owner 14%
Zone all unleased productive forest as protected forest 26%
Agents treat all buffer pixels as land outside forest estate 80%
Agents treat all buffer pixels as protected forest 67%
Prevent fires from spreading beyond concession in which they started 23%
Prevent fires from extending into protected forest and populated areas 2%
No fires started inside palm oil concessions owned by RSPO members 3%

Note: In first four counterfactuals, concessions and associated ignitions are wood fiber
and palm oil concessions within the forest estate only.

total area burned by fires started inside wood fiber and palm oil concessions over our
study period implies only a 3% reduction in the total area burned to 15.2 million
hectares.

6 Conclusions

Throughout the world there is a tension between firms trying to maximise private
benefits and the environmental damages their actions impose on society. This tension
is most keenly felt in developing countries where environmental externalities are less
contained due to the imperfect enforcement of environmental regulations. The scale
and growth of these damages within more weakly regulated developing countries has
raised alarm with the burning of vast tracts of tropical forests often topping the list
of global environmental concerns. Part of the contribution of this paper lies in using
novel measurement technologies to directly study the local environmental damages
caused by forest fires. By tracking the daily spread of over 100,000 unique fires we
are able to show that they are concentrated in areas zoned for conversion to palm oil
and wood fiber, tightly follow deforestation and are suppressed in election years, all
of which point to the human origins of these fires.

By exploiting the interaction between wind speed (a driver of spread risk) and
land types that surround a concession pixel (that proxy for spread cost), we are

(https://www.rspo.org/members/all). This list also includes the date on which each member acceded
to the RSPO. Over our study period, 23% of company groups, owning 12% of palm oil concessions,
became members of the RSPO.
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able to identify whether firms take into account local externalities in their decision
of whether to set fires. Our results suggest that, over the period 2000-2016, fire
setters do appear to take the externalities from fire setting into account: ignitions
are significantly less likely on windy days in areas where the fire would be more likely
to spread inside the same concession versus cases in which spread would be to land
with a different owner. Our estimates suggest that the prevalence of fires would be
reduced by between 22 and 61 percent if the damage risk to others’ land was treated
equally to the risk of damaging one’s own property on windy days. The analysis also
considers how concession holders’ fire-setting behavior is influenced by other types of
neighboring land. The results suggest that surrounding land that lies in protected
forest estate lands or populated areas outside the forest estate does have a deterrent
effect, consistent with these being the land types in which fires are most likely to lead
to government sanctions. Indeed, if firms were as concerned about spread risks to
surrounding lands as they are to protected forest or populated areas, fires would be
reduced by 67 or 80 percent, respectively.

The results thus suggest that firms are strategic in two senses: 1) they overuse
fire relative to what they would do if all spread risks were internalized à la Coase,
but 2) they do take into account the risks of government punishment à la Pigou,
and this deters them from burning near protected or highly populated areas. Our
analysis therefore documents how government incentives shape the extent to which
firms produce a negative environmental externality.

Fires, however, remain commonplace pointing to a lack of enforcement despite the
threat of punishment, highlighting how enforcing environmental regulations such as
these may still be limited in Indonesia, as in other developing countries. We therefore
build different policy counterfactuals to examine different routes into better control-
ling forest fires in the tropics. Our results from these policy counterfactuals suggest
that relatively modest effects would result from either improving property rights and
relying on Coasian private bargaining, or tort reform that allows existing concessions
to recover damages. In contrast, stronger Pigouvian incentives that encouraged prop-
erty owners to treat the risk of any fire spread similarly to spread into land types
that the government currently punishes most severely would achieve much stronger
reductions. While economic theory suggests that private bargaining à la Coase and
social pricing à la Pigou may under certain circumstances yield equivalent outcomes,
our analysis suggests that private bargaining does not hold up to its promise in the
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context of this local externality. This is an important consideration not just for In-
donesia, but more generally for other countries in the tropics where forest fires are
major sources of local and global externalities.

The analysis has considered a particular externality associated with forest fires,
namely the local externality that arises if others own the land burned by a spreading
fire. There are, however, a wide range of other local and global externalities associated
with forest fires, including health and economic costs of smoke and haze, ecosystem
loss and global warming induced by greenhouse gas emissions. We use our estimate
of the reduction in the prevalence of forest fires were the damage risk to others’
land to be treated equally to the damage risk to one’s own property, together with
the literature quantifying wider impacts of Indonesia’s forest fires, to calculate a
back-of-the-envelope estimate of the implied wider potential savings. Based on the
estimated impacts of forest fires in Indonesia33, and assuming that impacts are directly
proportional to the area burned, our estimated reductions would have implied savings
from Indonesia’s 2015 forest fires34 of 676 to 1,874 million 2015 USD (0.08–0.2% of
Indonesia’s 2015 GDP), global carbon emission reductions of 0.08 to 0.73 Gigatonnes
(up to 7.5% of the global carbon emissions from fossil fuels) and avoided the premature
deaths of up to 15,386 adults and 4,445 children under three. These figures suggest
that the damages from failing to internalize local externalities can be substantial.

33The most extensive literature quantifying the impacts of Indonesia’s forest fires is based on the
severe fires in 1997-1998, which resulted in the burning of over 5 million hectares of land (Varma,
2003) and the vast spread of haze throughout Southeast Asia. While there are several reasons to
expect that impacts may be heterogeneous across other fire episodes, this literature is helpful in
considering the potential order of magnitude of wider effects. Short-term costs and damages of
the 1997-1998 fires for Indonesia and neighboring countries have been conservatively estimated at
4,475 million 1997 USD, mainly in medical costs, airport closures and tourism, and damages to
ecosystems and biodiversity (Glover and Jessup, 1999). Subsequent studies estimated the associated
carbon emissions at 0.81–2.57 Gigatonnes (Page et al., 2002) and resulting premature deaths at
22,000–54,000 adults (Heil, 2007) and 15,600 children under 3 (Jayachandran, 2009).

34The 2015 fires burned an estimated 2.6 million hectares of land in Indonesia.
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