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Abstract: We present a model of a financial market where some traders are “cursed” when

choosing how much to invest in a risky asset, failing to fully take into account what prices

convey about others’ private information. Cursed traders put more weight on their private

signals than rational traders. But because they neglect that the price encodes other traders’

information, prices depend less on private signals and more on public signals than rational-

expectation-equilibrium (REE) prices. Markets comprised entirely of cursed traders generate

more trade than those comprised entirely of rationals; mixed markets can generate even more

trade, as rationals employ momentum-trading strategies to exploit cursed traders. We contrast

our results to other models of departures from REE and show that per-trader volume with

cursed traders increases when the market becomes large, while natural forms of overconfidence

predict that volume should converge to zero.
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1 Introduction

People might rationally trade financial assets for a variety of non-speculative motives, such as

portfolio rebalancing and liquidity. But ever since Milgrom and Stokey (1982), researchers have

understood that common knowledge of rationality combined with a common prior precludes purely

speculative trade. Even in settings where non-speculative motives enable speculation, a rational un-

derstanding of the adverse-selection problem causes the overall volume of trade to be constrained by

non-speculative motives. In many people’s estimation, trading volume in financial markets greatly

exceeds what can be plausibly explained by models applying rational-expectations equilibrium

(REE).1

Researchers have sought to explain excessive trading volume by relaxing the common-prior

assumption. Harrison and Kreps (1978) show how non-common priors about an asset’s payoff gen-

erate volume in a dynamic model where risk-neutral traders cannot sell the asset short. Scheinkman

and Xiong (2003) use Harrison and Kreps’ framework to explore traders who are “overconfident”:

all signals about the payoff are observed by all traders, yet certain traders overestimate the informa-

tion content of certain signals.2 In these complete-information models, trade derives from traders

agreeing to disagree about the relationship between future return and publicly available informa-

tion. A second approach incorporates non-common priors into incomplete-information models by

assuming that privately informed traders agree to disagree about the precision of traders’ private

information. Daniel, Hirshleifer and Subrahmanyam (1998, 2001) and Odean (1998), for example,

show how traders’ overconfidence about the precision of their private information can increase trad-

1For example, in his presidential address to the American Finance Association, French (2008) notes that

the capitalized cost of trading exceeds 10% of market capitalization, and turnover in 2007 was 215%, creating

a puzzle that “[f]rom the perspective of the negative-sum game, it is hard to understand why equity investors

pay to turn their aggregate portfolio over more than two times in 2007” (page 1552).

2Hong, Scheinkman and Xiong (2006) model overconfidence similarly, allowing also for heterogenous

priors, in a model where the number of shares of a risky asset increases over time due to the expiration of

lock-up clauses.
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ing volume.3 Similarly, Odean (1998), Banerjee, Kaniel and Kremer (2009), Banerjee and Kremer

(2010), and Banerjee (2011) show that when traders downplay the precision of one another’s private

signals—which we call contemptuousness—volume also increases.

Models of agreeing to disagree depict traders who recognize their disagreements in beliefs and

trade based on them. This paper takes a different tack: people trade because they neglect disagree-

ments in beliefs. This approach may seem retrograde, moving the theory of asset markets back to

before the rational-expectations revolution. But it builds on evidence and modeling that people do

not sufficiently attend to the information content of others’ behavior—even in the absence of in-

trinsic disagreements. Laboratory evidence from settings with asymmetric information shows that

people trade in ways that are consistent with disagreement neglect but that cannot be explained

by non-common priors, overconfidence or contemptuousness. We present a simple and tractable

model of markets where some or all traders, when choosing their demands, do not fully attend to

the informational content of prices or others’ trades. We draw out several implications that follow

from this simple assumption, and contrast the model both to fully rational models and to existing

alternatives to REE.

The most important implication is also the most basic: trading volume exceeds that of REE.

Our model predicts that per-trader volume grows with the number of traders in the market. We

contrast this result to markets where traders are overconfident and/or contemptuous but otherwise

infer correctly from prices, in which case per-trader volume vanishes as the market becomes large.

This suggests that disagreement neglect is a necessary condition for large volume in large markets:

overconfidence and contemptuousness do not by themselves create large volume.4 We show addi-

tionally that disagreement neglect not only generates large volume, but also enables other biases

3Other models of trade deriving from differences in beliefs include Varian (1985), where traders have

different subjective priors, DeLong, Shleifer, Summers, Waldmann (1990), where symmetrically informed

traders disagree because some of them (“noise traders”) misperceive next-period prices for exogenous reasons,

as well as Harris and Raviv (1993) and Kandel and Pearson (1995), where traders disagree about the

informativeness of public signals. Hong and Stein (2007) provide an overview of this literature.

4As argued earlier, large volume is hard to explain within REE settings as well.
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such as overconfidence and contemptuousness to matter in large markets.

Our model differs from REE not only in its predicted extent of trade, but also in its predic-

tions about the qualitative properties of trading volume and prices. The price responds more to

public information and less to private information than in REE. This implies that, unlike in REE,

changes in asset prices are predictable from public information even in settings where traders lack

non-speculative motives for trade such as random endowments. Returns are positively serially cor-

related when endowments are small—returns exhibit momentum—yet negatively correlated when

endowments are large. Trading volume is hump-shaped in the precision of traders’ private infor-

mation, while (the smaller) volume in REE is inverse hump-shaped. Moreover, volume can be

higher when some traders are rational and others neglect disagreement than when they all neglect

disagreement. Also in contrast to REE, traders with more precise private information can be worse

off than traders with less precise information.

Ours is not the first paper to use the assumption that some market participants fail to invert

prices. Hong and Stein (1999) assume that some or all traders are “newswatchers” who trade based

on news or signals they observe without inverting price to infer news that they haven’t yet heard.

They show how prices move predictably when information diffuses gradually through the market,

similar to our result on momentum. Our work differs from theirs both in its formalization of the

error traders make and in its applications. Conceptually, we relax Hong and Stein’s assumption

that traders infer nothing from market price to allow traders to partially infer from price, which

we formalize in a general market-equilibrium concept. Content-wise, although Hong and Stein

demonstrate the existence of volume, they do not explore the properties of volume nor compare its

level to that predicted by alternative models such as overconfidence and contemptuousness.

Section 2 outlines the basic model upon which our approach builds. Based on evidence from

strategic situations, Eyster and Rabin (2005) define cursed equilibrium in Bayesian games by the

requirement that every player correctly predicts the behavior of others, but fails to fully attend to

its informational content. Cursed equilibrium is meant to capture the intuitive psychology behind

the “winner’s curse” in common-values auctions, as well as related phenomena in other strategic
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settings.5 Section 2 then illustrates the workings of cursed equilibrium in a simple zero-sum game

of speculative trade. We describe how the cursed-equilibrium prediction of trade in that setting is

supported by direct experimental evidence. Moreover, that evidence cannot be accounted for by

alternative approaches such as non-common priors, overconfidence or contemptuousness.

Section 3 introduces our formal set-up, based on Grossman (1976), Hellwig (1980) and Diamond

and Verrechia (1981). We consider a market in which traders can exchange a risky for a riskless

asset over one period. Traders observe public and private signals about the risky asset’s payoff.

We introduce a non-speculative motive to trade by assuming that traders receive random endow-

ments correlated with the asset payoff. We define cursed-expectations equilibrium (CEE) by the

requirement that some traders do not fully extract information from asset prices. CEE transplants

the concept of cursed equilibrium from strategic games to price-taking competitive settings. As an

application of a more general equilibrium concept, it has the methodological benefit of not having

been designed specifically to explain the particular financial-market puzzles that we explore. For

tractability, we assume that traders have constant-absolute-risk-aversion (CARA) preferences and

that probability distributions are normal.

Section 4 analyzes the model without random endowments. As in Grossman (1976), there is a

unique linear REE with the classical prediction of no trade, and a price that aggregates efficiently

all public and private signals. We next solve for CEE when all traders are fully cursed, inferring

nothing from price. Although each cursed trader relies too much upon his own private signal when

estimating the asset payoff, because other traders fail to appreciate how that signal influences the

price, private signals enter the price with a smaller weight than in REE. Conversely, the public

signal enters the price with a larger weight because each trader relies on it more than in REE. These

two effects make returns a predictable function of observables: future return depends positively on

5Cursedness explains the voluminous evidence on bidders succumbing to the “winner’s curse” in common-

values auctions—where the average price paid by the winner exceeds the average value of the object being

auctioned—reviewed in Kagel and Levin (2002). Additional evidence consistent with cursedness comes from

settings ranging from social learning (Weizsäcker (2010)), voting (Esponda and Vespa (2013)), and trade

in positive-sum (Samuelson and Bazerman (1985), Holt and Sherman (1994)) and zero-sum (Carrillo and

Palfrey (2011)) environments.
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past return and negatively on the public signal in a bivariate regression, and it depends positively

on past return in a univariate regression. The positive coefficient on past return accords with the

empirical evidence on momentum.6

We show additionally that traders with more precise private signals trade more than those with

less precise ones, but can be worse off because cursedness causes them to trade too aggressively.

The total volume of trade approaches infinity as the number of agents becomes large, and is hump-

shaped in the average precision of private signals. Intuitively, there is little private information

when either signals are very imprecise—everybody knows very little—or when signals are very

precise—everybody is fully informed.

We complete Section 4 by solving for CEE in two intermediate cases. We first find CEE when

all traders are partially cursed to the same degree. The greater the extent of traders’ cursedness,

the more weight the public signal has and the less weight private signals have on price. The

per-trader volume of trade increases in the number of market participants, whatever the level of

traders’ cursedness. Next, we consider markets where some traders are rational and others are

fully cursed. Rational traders exploit the under-reaction of price to cursed traders’ private signals

by engaging in momentum trading, buying when the price goes up and selling when it goes down.

Cursed traders take the other side of those trades. Because rational traders weight the private

signals of cursed traders by inverting the price, whereas fully cursed traders do not weight the

private signals of rational traders whatsoever, the precision-adjusted impact of the private signals

of the cursed traders on prices exceeds that of the rational traders. Moreover, volume can be

larger when some traders are rational and others fully cursed than when all are rational or all fully

cursed. Intuitively, a cursed trader trades more against someone who does the opposite—a rational

momentum trader—than against another cursed trader.

Section 5 analyzes the model with random endowments. As in Hellwig (1980) and Diamond

and Verrechia (1981), trade happens even in REE. We show that in REE, the future return is a

predictable, decreasing function of past return. When all traders are fully cursed, returns exhibit

these same reversals if and only if endowment shocks are large enough. We show that REE trading

6See Jegadeesh and Titman (1993), and Jegadeesh and Titman (2011) for a recent survey.

5



volume is inverse hump-shaped in the precision of private signals—the exact opposite result than

when traders are cursed.7 Intuitively, adverse selection reduces volume when there are private

signals, but disappears when everybody knows little due to imprecise signals or is fully informed

because of very precise signals (Akerlof (1970), Hirshleifer (1971)).

Section 6 contrasts our approach and results to those of overconfidence—where traders exagger-

ate the precision of their own private signals—and contemptuousness—where traders downplay the

precision of other traders’ private signals.8 As in the literature, in the model of overconfidence and

contemptuousness that we construct for comparison traders are otherwise rational: they understand

the mapping between the price and other traders’ private information—but they agree to disagree

about the meaning of that information. We show that overconfidence leads to prices that depend

too much on private information and too little on public information relative to REE—the exact

opposite of our findings with cursed traders. Contemptuousness is a cousin of sorts to cursedness,

and traders who downplay the informativeness of others’ signals behave similarly to cursed ones.

Traders who are overconfident or contemptuous trade too much.

More interesting is the contrast in the extent of over-trading as the market becomes large.

Whereas the per-trader volume under cursedness increases with the number of traders, per-trader

volume under overconfidence or contemptuousness converges to zero. Intuitively, while each trader

thinks he knows more than he does, he understands that the total amount of “valid” information

reflected in the price in a large market swamps his own information. Hence, the same no-trade

logic that prevails in REE also prevails in large markets of overconfident or contemptuous traders.9

Disagreement neglect enables overconfidence to matter in large markets. We show that in

7Banerjee (2011) finds that contemptuousness predicts this same pattern relative to REE.

8This form of overconfidence is not exactly equivalent to people’s sensation that they are more skilled

than they are, as in the work of Malmendier and Tate (2005) on CEOs. Instead, it corresponds to people

thinking “my private signals are better than they are,” which might result from people thinking they are

better than others at reading information, making it akin to ego-related overconfidence.

9Our finding that the per-trader volume of overconfident trade vanishes in large markets would also

hold if all signals in the model were made public, which resembles the form of overconfidence assumed in

Scheinkman and Xiong (2003).
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a large market of cursed overconfident traders, per-trader volume remains non-negligible. In this

sense, cursedness and overconfidence work as complements, and cursedness helps vindicate the basic

intuition from the literature that overconfidence can be a significant source of trading volume.

We conclude in Section 7. We discuss some of the limits of our model, especially the challenges

in extending cursedness to multi-period settings. We also describe how cursedness may interact

with other biases. In particular—as with overconfidence discussed in Section 6—cursedness may

serve as an “enabler” of various cognitive errors to which traders seem to fall prey: many errors

matter significantly for prices and volume if and only if traders are cursed.

2 Cursed Equilibrium

In this section, we use a simple trading game to illustrate Eyster and Rabin’s (2005) concept of

cursed equilibrium, which underlies our concept of cursed-expectations equilibrium introduced in

Section 3. In the context of this game, we show how cursed equilibrium differs from other theories

that have been explored in the finance literature such as non-common priors, overconfidence and

contemptuousness. A general definition of cursed equilibrium is in Appendix A.

The trading game works as follows. A seller owns an asset that he knows to be worth s both

to himself and to a potential buyer. The buyer does not know s, but believes that it is randomly

drawn from [0, 1] with a cumulative distribution function F . The buyer makes the seller a take-it-

or-leave-it offer p for the asset.

The seller’s optimal strategy is to accept the buyer’s offer p if and only if s ≤ p. In a Bayesian

Nash equilibrium the buyer understands this, and so chooses p to maximize F (p)×(E[s|s ≤ p]− p).

This objective is the probability F (p) that the seller accepts the offer p, times the buyer’s expected

surplus from acquiring the asset conditional on seller acceptance. Because E[s|s ≤ p] < p for each

p > 0, the buyer’s optimal offer is p∗ = 0. Thus, no trade occurs, consistent with Milgrom and

Stokey’s (1982) celebrated result on the absence of speculative trade between rational agents.

In a cursed equilibrium players fail to appreciate the informational content of others’ behavior.

This does not matter for the seller, who knows s perfectly and hence has nothing to learn, but

matters for the buyer. A buyer who is fully cursed completely neglects the relationship between the
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seller’s willingness to sell at price p and the seller’s private information s, but correctly predicts the

probability distribution over the seller’s actions. As a consequence, a fully cursed buyer perceives

the expected value of an asset traded at price p to be its unconditional expectation, E[s]. A fully

cursed buyer thus chooses p to maximize F (p) × (E[s]− p). A partially cursed buyer appreciates

that the seller’s willingness to sell correlates with his private information but underestimates that

relationship. A buyer who is partially cursed with coefficient χ perceives the expected value of an

asset traded at price p to be (1−χ)E[s|s ≤ p] +χE[s]. This is the weighted average of the rational

belief with weight 1 − χ and the fully cursed belief with weight χ. In effect, the buyer believes

that with probability 1 − χ the seller’s decision to sell conveys information about the asset, and

with probability χ it does not. The coefficient χ measures the buyer’s naivety: χ = 0 corresponds

to full rationality, while χ = 1 corresponds to full cursedness. A χ-cursed buyer thus chooses p to

maximize F (p)× ((1− χ)E[s|s ≤ p] + χE[s]− p). Since E[s] > 0, the buyer’s optimal offer exceeds

zero for any χ > 0. Moreover, since the buyer’s objective function is supermodular in (p, χ) for

p ∈ [0,E[s]], Topkis’ Theorem implies that p∗ increases in χ. In summary, cursedness produces

trade in no-trade settings, and the more cursed the buyer, the higher the volume of trade.

Cursed trade derives from people’s neglect of disagreement: the buyer neglects how the seller’s

willingness to trade at p signals beliefs that the object is worth less than p. Researchers have

proposed alternative models for speculative trade based on the idea that people are conscious of their

disagreement and “agree to disagree.” This is modelled as non-common priors about the distribution

of asset payoffs, or as disagreement over the information that different signals convey about payoffs.

Models of overconfidence assume a specific type of disagreement over signals: people believe that

private signals they receive are more precise than private signals others receive. Such a belief may

arise because people overestimate the precision of their signals while holding a correct assessment

of the precision of others’ signals. Alternatively, people may correctly assess the precision of their

signals while underestimating the precision of others’ signals. Researchers have considered both of

these polar cases as well as their combination. We reserve the term overconfidence for the former

case (people are overconfident about their ability to gather a precise signal), and use the term

contemptuousness for the latter (people are contemptuous about others’ ability).
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One way to identify cursedness in the data, and to distinguish from non-common priors, over-

confidence and contemptuousness, is through laboratory experiments. Carrillo and Palfrey (2011)

conduct experiments on a trading game that is a variant of the one considered in this section. The

main difference is that in their game the buyer also has a private signal b, and the value of the

object is some function v(b, s). (The take-it-or-leave-it offer is also made by the seller rather than

the buyer.) As in the game considered in this section, the Bayesian Nash equilibrium involves no

trade but the cursed equilibrium does. Moreover, neither non-common priors, nor overconfidence,

nor contemptuousness can generate trade. Carrillo and Palfrey argue indeed that behavior in their

experiments is well explained by cursed equilibrium.

The failure of non-common priors, overconfidence and contemptuousness to generate trade can

be seen in the game considered in this section (and the same logic transposes to Carrillo and Palfrey’s

game). Non-common priors about the distribution of asset payoffs would amount to the buyer and

the seller employing different cumulative distribution functions F . This would not yield trade.

Indeed, the seller has a dominant strategy that is independent of F , and the offer p = 0 is optimal

for the buyer regardless of his assessment of F . Overconfidence has no bite because the seller knows

s perfectly and so cannot exaggerate further the precision of his private information, while the buyer

lacks private information whose precision to exaggerate. Contemptuousness would amount to the

buyer believing that the seller has less information than he actually has, e.g., observes a noisy

signal about s. Yet, the buyer would be unwilling to trade when the seller has private information

no matter how imprecise that information is. Moreover, the information structure is announced

clearly to all experiment participants.

In Section 6 we examine the relationship between cursedness, overconfidence and contemptu-

ousness within our financial markets model. We show that cursedness yields distinct predictions

concerning trading volume and its behavior in large markets.

3 Model, Equilibrium Concept, and Equilibrium Conditions

In this section, we begin by defining cursed-expectations equilibrium in a general version of our

model, before making more specific assumptions on traders’ cursedness coefficients, the distribution
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of their information, and their utility functions that allow us to derive analytically tractable, linear

equilibria. There are two periods, 1 and 2, and two assets that pay off in terms of a consumption

good in Period 2. One asset is riskless and pays off one unit of the consumption good with certainty.

The other asset is risky and pays d = d+ ϵ+ ζ units, where d is a constant and (ϵ, ζ) are random

variables with mean zero. We use the riskless asset as the numeraire, and denote by p the price

of the risky asset in Period 1. Our choice of numeraire implies that the price of the risky asset in

Period 2 is d and the riskless rate is zero. We assume that the risky asset is in zero supply.

There are N traders who can exchange the two assets in Period 1. Trader i = 1, .., N observes

the private signal

si = ϵ+ ηi, (1)

as well as the public signal

s = ϵ+ θ, (2)

which is also observed by all other traders. The random variables ({ηi}i=1,..,N , θ) have mean zero.

The signals are observed in Period 1. They provide information about the component ϵ of the risky

asset’s payoff but not about ζ.

Trader i starts with a zero endowment of the riskless and the risky assets, and receives an

endowment zid of the consumption good in Period 2. We refer to zi as the endowment shock, and

assume that it is observed in Period 1 and has mean zero. Through its correlation with d, the

endowment generates a hedging motive to trade. When, for example, zi > 0, trader i is exposed

to the risk that d will be low and wishes to hedge by selling the risky asset. We assume that the

variables (ϵ, ζ, {ηi}i=1,..,N , θ, {zi}i=1,..,N ) are mutually independent.

The budget constraint of trader i is

Wi = xi(d− p) + zid, (3)

where xi denotes the number of shares of the risky asset held by the trader in Period 1. We impose

no portfolio constraints, e.g., on short sales or leverage, and allow xi to take any value in R.
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Traders maximize expected utility of consumption in Period 2. We denote by ui(Wi) the utility

of trader i. If the trader is rational, he maximizes the expected utility

E[ui(xi(d− p) + zid)|{si, s, zi, p}],

where we use (3) to substitute for Wi. A rational trader conditions his estimate of the asset payoff

d on his private signal, the public signal, the endowment shock, and the price. A fully cursed

trader completely neglects the relationship between the price and other traders’ information, and

maximizes the expected utility

E[ui(xi(d− p) + zid)|{si, s, zi}],

which differs from the rational expected utility because there is no conditioning on the price. To

derive the objective of a partially cursed trader, we proceed as in Section 2 with a slight modification

for tractability. Following the definition in Section 2, if trader i is χi-cursed, he maximizes the

expected utility

(1− χi)E[ui(xi(d− p) + zid)|{si, s, zi, p}] + χiE[ui(xi(d− p) + zid)|{si, s, zi}],

which is the weighted average of the rational expected utility with weight 1−χi and the fully cursed

expected utility with weight χi. For tractability, we employ the geometric average of utilities instead

of the arithmetic average, hence modifying trader i’s objective to

E[ui(xi(d− p) + zid)|{si, s, zi, p}]1−χiE[ui(xi(d− p) + zid)|{si, s, zi}]χi .

As in the case of the arithmetic average, χi = 0 corresponds to rationality, χi = 1 to full cursedness,

and intermediate values of χi to traders who appreciate the information content of the price but

only partially. The demand function of partially cursed traders always lies between the rational

and the fully cursed demand functions.

Our definition of cursed-expectations equilibrium combines utility maximization under cursed

expectations with market clearing. As in the case of REE, the equilibrium involves a price function

p that depends on all the random variables in the model. These are the private signals {si}i=1,...,N ,

the public signal s, and the endowment shocks {zi}i=1,...,N .
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Definition 1 A price function p({si}i=1,...,N , s, {zi}i=1,...,N )) and demand functions {xi(si, s, zi, p)}i=1,...,N

are a cursed-expectations-equilibrium (CEE) if:

(i) (Optimization) For each trader i = 1, . . . , N , and each (si, s, zi, p),

xi ∈ argmax
x

{
E[ui(x(d− p) + zid)|{si, s, zi, p}]1−χiE[ui(x(d− p) + zid)|{si, s, zi}]χi

}
, (4)

(ii) (Market Clearing) For each ({si}i=1,...,N , s, {zi}i=1,...,N ),

N∑
i=1

xi = 0. (5)

We next specialize our analysis by making two assumptions, which allow us to derive tractable

linear equilibria. First, the variables (ϵ, ζ, {ηi}i=1,..,N , θ, {zi}i=1,..,N ) follow normal distributions,

with variances denoted by (σ2
ϵ , σ

2
ζ , {σ2

ηi}i=1,..,N , σ2
θ , {σ2

zi}i=1,..,N ) and precisions, i.e., the inverses

of the variances, denoted by (τϵ, τζ , {τηi}i=1,..,N , τθ, {τzi}i=1,..,N ). Second, traders have negative

exponential, or constant absolute risk aversion (CARA), utility functions: ui(Wi) = − exp(−αiWi),

where αi is the coefficient of absolute risk aversion.

A linear CEE price function has the form

p = d+

N∑
i=1

Aisi +Bs−
N∑
i=1

Cizi, (6)

for coefficients ({Ai}i=1,..N , B, {Ci}i=1,..N ). For CARA utility, we can write the expectations in (4)

as

− E [exp [−αi (xi(d− p) + zid)] |Ii]

= − exp

[
−αi

(
xi (E(d|Ii)− p) + ziE(d|Ii)−

1

2
αi(xi + zi)

2Var(d|Ii)
)]

, (7)

where the information set Ii is equal to Iir ≡ {si, s, zi, p} if χi = 0 (where r stands for rational)

and to Iic ≡ {si, s, zi} if χi = 1 (where c stands for fully cursed). The second step in (7) follows

because all variables are normally distributed. Substituting (7) into (4) and maximizing, we find

the demand function

xi =
(1− χi)E(d|Iir) + χiE(d|Iic)− p

αi [(1− χi)Var(d|Iir) + χiVar(d|Iic)]
− zi. (8)
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The demand function is the solution to a mean-variance problem. The trader’s conditional ex-

pectation is the weighted average of the rational expectation with weight 1 − χi and the fully

cursed expectation with weight χi. The trader’s conditional variance is the same weighted average

of the rational and fully cursed variances. The geometric average formulation of utilities ensures

that traders’ optimization problems retain a tractable mean-variance structure even under partial

cursedness. Combining (8) with the market-clearing condition (5), we derive conditions in Propo-

sition 1 so that (6) is an equilibrium price. Proposition 1 does not show existence or uniqueness of

({Ai}i=1,..N , B, {Ci}i=1,..N ) satisfying these conditions, both of which are instead demonstrated in

the special cases studied in subsequent sections.

To state Proposition 1, we introduce some notation. From the perspective of a rational trader

i, the price (6) includes information on (si, s, zi), which the trader knows, and on ({si}j ̸=i, {zi}j ̸=i),

which he does not. The latter information is summarized in the signal∑
j ̸=iAjsj −

∑
j ̸=iCjzj∑

j ̸=iAj
, (9)

which the trader can extract from the price. Using (1) and (2), we can write this signal as ϵ+ ξi,

where

ξi ≡
∑

j ̸=iAjηj −
∑

j ̸=iCjzj∑
j ̸=iAj

. (10)

We denote the variance of ξi by σ2
ξi

and its precision by τξi .

Proposition 1 The price (6) is an equilibrium price if and only if ({Ai}i=1,..N , B, {Ci}i=1,..N )
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satisfy the conditions

τηi(τϵ + τηi + τθ + χiτξi)− (1− χi)τξi
Ai∑

k ̸=i Ak
(τϵ + τηi + τθ)

αi [(τϵ + τηi + τθ)(τϵ + τηi + τθ + τξi) + τζ(τϵ + τηi + τθ + χiτξi)]

= Ai

N∑
j=1

(τϵ + τηj + τθ)(τϵ + τηj + τθ + τξj )− (1− χj)τξj
1∑

k ̸=j Ak
(τϵ + τηj + τθ)

αj

[
(τϵ + τηj + τθ)(τϵ + τηj + τθ + τξj ) + τζ(τϵ + τηj + τθ + χjτξj )

] , (11)

N∑
i=1

τθ(τϵ + τηi + τθ + χiτξi)

αi [(τϵ + τηi + τθ)(τϵ + τηi + τθ + τξi) + τζ(τϵ + τηi + τθ + χiτξi)]

= B
N∑
j=1

(τϵ + τηj + τθ)(τϵ + τηj + τθ + τξj )

αj

[
(τϵ + τηj + τθ)(τϵ + τηj + τθ + τξj ) + τζ(τϵ + τηj + τθ + χjτξj )

] , (12)

Ci = Aiαi
(τϵ + τηi + τθ)(τϵ + τηi + τθ + τξi) + τζ(τϵ + τηi + τθ + χiτξi)

τζτηi(τϵ + τηi + τθ + χiτξi)
. (13)

4 No Endowment Shocks

This section analyzes the model in the case where there are no endowment shocks. This case is

derived by setting the variances {σ2
zi}i=1,..,N of endowment shocks equal to zero. The shocks are

then equal to their mean, which is zero. Without endowment shocks, traders lack a hedging motive

to trade, and trade can occur only because of the private signals. The price (6) takes the form

p = d+
N∑
i=1

Aisi +Bs. (14)

4.1 All Traders Rational

We begin with the benchmark case where all traders are rational (χi = 0 for all i). Proposition

2 shows that the coefficients ({Ai}i=1,..N , B) in the price (14), which are characterized by the

conditions in Proposition 1, are uniquely determined.

Proposition 2 Suppose that there are no endowment shocks and all traders are rational. The price
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(14) is an equilibrium price if and only if

Ai =
τηi

τϵ +
∑N

j=1 τηj + τθ
, (15)

B =
τθ

τϵ +
∑N

j=1 τηj + τθ
. (16)

There is no trade in equilibrium.

That there is no trade in equilibrium is a manifestation in the context of our model of the

no-trade theorem of Milgrom and Stokey (1982). Since traders start with zero endowments in the

risky asset and receive no endowment shocks, no-trade is a Pareto-efficient allocation and hence

the unique equilibrium outcome.

The coefficients ({Ai}i=1,..N , B) with which the private and the public signals enter into the

price are proportional to these signals’ precisions. Therefore, the price aggregates all the signals

efficiently, as in Grossman (1976). The price equals the expected value of the asset payoff d

conditional upon all of the signals in the market.

4.2 All Traders Fully Cursed

We next turn to the case where all traders are fully cursed (χi = 1 for all i). Proposition 3 shows

that the coefficients ({Ai}i=1,..N , B) in the price (14) are uniquely determined.

Proposition 3 Suppose that there are no endowment shocks and all traders are fully cursed. The

price (14) is an equilibrium price if and only if

Ai =

τηi
αi(τϵ+τζ+τηi+τθ)∑N

j=1

τϵ+τηj+τθ
αj(τϵ+τζ+τηj+τθ)

, (17)

B =

∑N
j=1

τθ
αj(τϵ+τζ+τηj+τθ)∑N

j=1

τϵ+τηj+τθ
αj(τϵ+τζ+τηj+τθ)

. (18)

Unlike in the case where all traders are rational, the coefficients ({Ai}i=1,..N , B) are not pro-

portional to the precisions of the corresponding signals. Therefore, the price does not aggregate

the signals efficiently. Proposition 4 compares the coefficients ({Ai}i=1,..N , B) in the rational and

fully cursed cases.
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Proposition 4 Suppose that there are no endowment shocks and all traders are fully cursed. Com-

pared to the case where all traders are rational:

(i) The coefficient B with which the public signal enters into the price is larger.

(ii) The sum across traders of the coefficients {Ai}i=1,..,N with which private signals enter into

the price is smaller. The coefficient Ai for any given trader i can be larger or smaller.

(iii) The ratio Ai/B is smaller.

Intuition for Proposition 4 and other results in this section can be derived from a general

property of the price in the absence of endowment shocks. Substituting the demand functions

{xi}i=1,..,N given by (8) into the market-clearing condition (5), setting {zi}i=1,..,N = 0, and solving

for p, we find:

p =

∑N
i=1

(1−χi)E(d|Iir)+χiE(d|Iic)
αi[(1−χi)Var(d|Iir)+χiVar(d|Iic)]∑N

i=1
1

αi[(1−χi)Var(d|Iir)+χiVar(d|Iic)]
. (19)

The price is thus a weighted average of traders’ conditional expectations of the asset payoff d, with

trader i’s conditional expectation receiving weight

1
αi[(1−χi)Var(d|Iir)+χiVar(d|Iic)]∑N

j=1
1

αj [(1−χj)Var(d|Ijr)+χjVar(d|Ijc)]
.

The weight is larger for traders who are less risk averse or observe more precise signals. This

is because they trade more aggressively on any given discrepancy between the price and their

conditional expectation. In the rational case, all traders have the same conditional expectation

because they learn from the price, which aggregates all the signals efficiently. Therefore, the price

is also equal to that conditional expectation. In the fully cursed case, conditional expectations

differ because traders do not learn other traders’ signals from the price.

Since fully cursed traders form conditional expectations using fewer signals than rational traders,

they attach larger weight to each signal they use. The public signal thus receives larger weight in

each trader’s conditional expectation than in the rational case, and hence enters the price with a

larger coefficient (Result (i) of Proposition 4). The private signal of any given trader i receives larger
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weight in that trader’s conditional expectation but zero weight in all other traders’ expectation.

When trader i’s risk aversion is low, the first effect dominates and that signal enters the price

with a larger coefficient than in the rational case. The second effect dominates, however, when the

coefficients are averaged across traders (Result (ii)). Note that when traders are symmetric, the

coefficient corresponding to each trader equals the average coefficient, and hence is smaller than in

the rational case. Finally, trader i gives the correct weight to his private signal relative to the public

signal. Because, however, other traders give zero weight to trader i’s private signal but positive

weight to the public signal, the price in the fully cursed case underweights the former signal relative

to the latter (Result (iii)).

The results of Proposition 4 have implications for the predictability of asset returns. We define

the return of the risky asset between Periods 1 and 2 as the difference between the asset payoff

d and the price p. We examine whether this return can be predicted using information available

in Period 1, i.e., whether including such information improves the accuracy of a return forecast.

When all traders are rational, the return is not predictable based on past information because p is

the expectation of d conditional on all the signals available in Period 1.

Proposition 5 Suppose that there are no endowment shocks and all traders are fully cursed. The

bivariate regression

d− p = γ1(p− d) + γ2s+ ν (20)

yields coefficients γ1 > 0 and γ2 < 0. The univariate regressions

d− p = γs+ ν, (21)

d− p = γ(p− d) + ν, (22)

yield coefficients γ = 0 and γ > 0, respectively. All regression coefficients are zero when all traders

are rational.

The bivariate regression (20) predicts the asset return between Periods 1 and 2 using the public

signal s and the difference between the price p and the unconditional expectation d of the asset
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payoff. The difference p − d can be interpreted as the return between a Period 0, in which no

signals are observed and the asset trades at d, and Period 1. Hence, (20) measures the extent to

which past return and the public signal predict future return. Since the price p is influenced by

the private and the public signals, and (20) controls for the latter, the coefficient γ1 measures the

effect of the private signals.

Because (γ1, γ2) are non-zero, the return between Periods 1 and 2 is predictable. Holding the

public signal constant, high private signals in Period 1 predict a price rise in Period 2 (γ1 > 0).

Holding instead the private signals constant, a high public signal in Period 1 predicts a price drop

(γ2 < 0). The price thus under-reacts to the private signals and over-reacts to the public signal.

The under-reaction is consistent with Result (ii) of Proposition 4 that the average coefficient with

which the private signals enter into the price is smaller in the fully cursed than in the rational case.

The over-reaction is consistent with Result (i) that the coefficient with which the public signal

enters into the price is larger in the fully cursed than in the rational case.

The univariate regressions (21) and (22) predict the asset return between Periods 1 and 2 using

only the public signal s or only the return between Periods 0 and 1. The coefficient γ in each of

these regressions combines the effects of γ1 and γ2. Since γ1 and γ2 have opposite signs, the sign

of γ is a priori ambiguous.

Since γ = 0 in the regression (21), the return between Periods 1 and 2 cannot be predicted

using the public signal alone, even when traders are fully cursed. This stems from the fact that

cursed traders process the limited set of signals that they observe correctly, and the public signal

belongs to that set. The law of iterative expectations thus implies that when a trader’s conditional

expectation of the asset payoff d is “conditioned down” on the public signal s, it must equal the

expectation of d conditional on s. Since the price p equals a weighted average of traders’ conditional

expectations of d (Eq. (19)), the expectation of p conditional on s equals that of d conditional on

s, and so d− p cannot be predicted by s.

The return between Periods 1 and 2 can be predicted based on the return between Periods 0

and 1 only. Since γ > 0, a high return between Periods 0 and 1 predicts a price rise in Period 2,

which means that returns exhibit momentum. Since the price in Period 2 is equal to the asset’s
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payoff, momentum in our model reflects price under-reaction to information. This under-reaction is

driven by the price response to the private signals. Because the price under-reacts to information,

the return between Periods 0 and 1 has lower variance than when traders are rational. Variance

averaged across the return between Periods 0 and 1 and that between Periods 1 and 2 is also lower.

Corollary 1 Suppose that there are no endowment shocks and all traders are fully cursed. Com-

pared to the case where all traders are rational, the variance of the return between Periods 0 and 1

is lower, and so is the variance averaged across the return between Periods 0 and 1 and that between

Periods 1 and 2.

We next explore the implications of cursedness for trading volume. Since fully cursed traders

do not learn others’ signals from the price, they trade with each other even without endowment

shocks. We define the trading volume generated by trader i as the absolute value of the quantity

xi that the trader trades in equilibrium. Proposition 6 computes expected trading volume in two

special cases, and examines how it depends on the precision of private signals.

Proposition 6 Suppose that there are no endowment shocks and all traders are fully cursed.

(i) When all traders have the same risk-aversion coefficient α and observe private signals with

the same precision τη, the expected trading volume that each generates is

τζ
√

2(N − 1)τη

α(τϵ + τζ + τη + τθ)
√
πN

. (23)

Volume increases in the number of traders N . It is hump-shaped in the common precision τη

of private signals, with the hump located at τη = τϵ + τζ + τθ.

(ii) When all traders have the same risk-aversion coefficient α and the shock ζ has zero variance,

the expected trading volume generated by trader i is√
2
[
(τϵ + τθ)2[τη + (N − 2)τηi ] + (τϵ + τθ)

[
Nτ2η + (N − 2)τ2ηi

]
+ (Nτη − τηi)τητηi

]
α(τϵ + τη + τθ)

√
πN

, (24)

where τη denotes the average precision of private signals. Trader i generates more volume

than trader j if and only if he observes a more precise private signal (τηi > τηj ).
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The intuition why trading volume is hump-shaped in the precision of private signals when

traders are symmetric (Case (i) of Proposition 6) is as follows. Under symmetry, the quantity that

a trader trades in equilibrium is equal to the difference between his conditional expectation of the

asset payoff and the average conditional expectation of all traders, adjusted by his risk aversion and

conditional variance. The difference in conditional expectations is zero when private signals have

zero precision because traders then do not use them and share the same conditional expectation.

It is also zero when private signals have infinite precision because they must then reveal the same

information. For intermediate values of precision the dispersion in conditional expectations is

positive, making volume hump-shaped in the common precision τη of private signals.

Adjusting by risk aversion and conditional variance preserves the hump-shaped pattern. The

hump is located at a larger value of τη, and so the adjustment causes volume to be increasing in τη

over a larger interval. This is because an increase in signal precision reduces traders’ conditional

variances, hence making traders less uncertain and more eager to trade.

Case (ii) of Proposition 6 allows signal precision to differ across traders. Traders’ conditional

expectations can then differ both because of the private signals and because each trader weights the

public signal differently when forming his expectation. For analytical simplicity we eliminate the

shock ζ about which traders cannot learn by setting its variance to zero. For σ2
ζ = 0, the hump in

trading volume in Case (i) occurs for τη = ∞, and so volume is always increasing in τη. Proposition

6 shows that the same comparison applies in the cross section: traders who observe more precise

signals generate more volume than those observing less precise signals.

When traders are symmetric, the per-trader volume increases in market size as measured by

the number N of traders. This is because the weight that each trader’s private signal receives in

the trader’s conditional expectation is independent of N while the weight that it receives in the

price converges to zero when N becomes large. Hence, each trader’s beliefs become more discordant

with price as N increases. Since per-trader volume increases in N , aggregate volume converges to

infinity when N becomes large: cursedness produces large volume in large markets.

We finally compute traders’ expected utilities and examine how they depend on the precision

of private signals. We evaluate expected utility in the ex-ante sense, before signals appear (Period
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0). We also focus on the true expected utilities, i.e., compute the expectation under the true joint

distribution of the signals and the price, rather than the distribution perceived by cursed traders.

Proposition 7 Suppose that there are no endowment shocks, all traders are fully cursed and have

the same risk-aversion coefficient α, and the shock ζ has zero variance. The expected utility of

trader i is

− 1√
1 +

(τϵ+τθ)2[Nτηi−(2N−1)τη]−(τϵ+τθ)[N(2N−1)τ2η−2N(N+1)τητηi+(N−2)τ2ηi ]−(Nτη−τηi )τητηi
N(τϵ+τη+τθ)2(τϵ+Nτη+τθ)

, (25)

where τη denotes the average precision of private signals. A trader i who observes a more precise

signal than a trader j (τηi > τηj ) has higher expected utility if

(τϵ + τθ)
2 + 2(N + 1)(τϵ + τθ)τη − τ2η > 0. (26)

When (26) fails, there exist τηi > τηj such that trader i has lower expected utility than trader j.

Proposition 7 shows that fully cursed traders who observe more precise signals can be worse

off relative to those observing less precise signals. This is not a manifestation of the standard

result that asymmetric information makes traders worse off by destroying trading opportunities

(Akerlof (1970), Hirshleifer (1971)). Indeed, the standard result compares expected utilities when

traders are uninformed to those when some traders become informed and equilibrium prices change.

Proposition 7 compares instead expected utilities of two traders who differ in the precision of their

information, are present in the market at the same time, and face the same equilibrium price.

To explain how signal precision affects expected utility, we consider a trader who observes a

completely uninformative private signal. Because the trader does not learn from the price, he falls

victim to trading against others’ private signals, e.g., buys when others observe negative signals.

If the trader observes instead an informative signal, less of that trading occurs because his signal

is better aligned with others’ signals, e.g., is more likely to be negative when others’ signals are

negative. At the same time, a new effect appears: because the trader does not learn from the price,

he trades overly aggressively on his signal and takes on excessive risk. When the second effect

dominates, traders with more precise signals are worse off relative to those with less precise signals.
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According to (26), the second effect dominates when the average precision τη of private signals

is high, but the first effect dominates when the number N of traders is large. Intuitively, when

precision is high, signals are essentially identical and information is symmetric. As a consequence,

returns are not predictable (the regression coefficients in Proposition 5 are zero) and trading against

others’ signals does not generate a loss. Hence, the first effect disappears. When instead the market

is large, returns remain predictable. Indeed, even though the price aggregates a large number of

signals and provides highly precise information, cursed traders neglect that information and rely

only on their own signals.

4.3 Intermediate Cases

We next analyze two intermediate cases between the polar extremes of rationality and full cursedness

studied in the previous sections.

4.3.1 Partially Cursed Traders

The first intermediate case is when all traders are partially cursed with the same cursedness coeffi-

cient χ. For analytical simplicity, we assume that traders also have the same risk-aversion coefficient

α and observe private signals with the same precision τη. Thus, the price (14) takes the form

p = d+A

N∑
i=1

si +Bs. (27)

Proposition 9 shows that the coefficients (A,B) are uniquely determined, and examines how these

coefficients as well as trading volume depend on χ.

Proposition 8 Suppose that there are no endowment shocks and all traders are partially cursed

with the same cursedness coefficient χ, risk aversion coefficient α, and private signal precision τη.

The price (27) is an equilibrium price if and only if

A =
τη {[N − (N − 1)χ] (τϵ + τθ) +Nτη}

N(τϵ + τη + τθ)(τϵ +Nτη + τθ)
, (28)

B =
τθ {τϵ + [1 + χ(N − 1)] τη + τθ}
(τϵ + τη + τθ)(τϵ +Nτη + τθ)

. (29)
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The coefficient A decreases in χ and the coefficient B increases in χ. The expected trading volume

that each trader generates is

χτζ(τϵ +Nτη + τθ)
√

2(N − 1)τη

α (τζ {τϵ + [1 + χ(N − 1)] τη + τθ}+ (τϵ + τη + τθ)(τϵ +Nτη + τθ))
√
πN

(30)

Volume increases in χ and N .

As traders become more cursed (χ increases), the private signals enter the price with a smaller

coefficient A, the public signal enters with a larger coefficient B, and trading volume increases.

The results on (A,B) are consistent with the comparisons between rationality and full cursedness

derived in Proposition 4. Note that per-trader volume under partial cursedness increases in the

number N of traders. This result, which also holds under full cursedness, implies that aggregate

volume converges to infinity when N becomes large.

4.3.2 Rational and Fully Cursed Traders

The second intermediate case is when some traders are rational and some are fully cursed. We

denote by Nr and Nc, respectively, the number of rational and fully cursed traders, and by R and

C the sets of these traders. For analytical simplicity we assume that traders within each group

have the same risk-aversion coefficient and private-signal precision. We denote by αr and τηr the

risk-aversion coefficient and private-signal precision for a rational trader, and by αc and τηc the

same quantities for a fully cursed trader. The price (14) takes the form

p = d+Ar

∑
i∈R

si +Ac

∑
i∈C

si +Bs. (31)

Proposition 9 shows that the coefficients (Ar, Ac, B) are uniquely determined.

Proposition 9 Suppose that there are no endowment shocks, and there are Nr rational traders

with risk-aversion coefficient αr and private-signal precision τηr, and Nc fully cursed traders with

risk-aversion coefficient αc and private-signal precision τηc. The price (31) is an equilibrium price
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if and only if

Ar = xAc, (32)

Ac =

Nrτξ
αr[(Nr−1)x+Nc](τϵ+τζ+τηr+τθ+τξ)

+
τηc

αc(τϵ+τζ+τηc+τθ)

Nr(τϵ+τηr+τθ+τξ)
αr(τϵ+τζ+τηr+τθ+τξ)

+
Nc(τϵ+τηc+τθ)

αc(τϵ+τζ+τηc+τθ)

, (33)

B =

Nrτθ
αr(τϵ+τζ+τηr+τθ+τξ)

+ Ncτθ
αc(τϵ+τζ+τηc+τθ)

Nr(τϵ+τηr+τθ+τξ)
αr(τϵ+τζ+τηr+τθ+τξ)

+
Nc(τϵ+τηc+τθ)

αc(τϵ+τζ+τηc+τθ)

, (34)

where

τξ ≡
[(Nr − 1)x+Nc]

2 τηrτηc
(Nr − 1)x2τηc +Ncτηr

, (35)

and x ∈ (0,
τηr
τηc

) is the unique solution of

x =
αcNcτηr(τηr − xτηc)(τϵ + τζ + τηc + τθ)

αrτηc

{
[(Nr − 1)x2τηc +Ncτηr] (τϵ + τζ + τηr + τθ) + [(Nr − 1)x+Nc]

2 τηrτηc

} . (36)

Since the fully cursed traders are symmetric, their private signals enter the price with the same

weight, and equal weighting is efficient because the signals have the same precision. At the same

time, the price gives too much weight to the signals of the fully cursed traders relative to those

of the rational traders. Indeed, since x = Ar
Ac

<
τηr
τηc

, the precision-adjusted coefficient Ar
τηr

with

which the rational traders’ signals enter the price is smaller than its counterpart Ac
τηc

for fully cursed

traders. The intuition is that conditional expectations of rational traders give weight to both their

own signals and those of fully cursed traders, while conditional expectations of fully cursed traders

give weight to their own signals only.

We next characterize the trading activity of rational and fully cursed traders, and do so by

regressing their signed volume on past return. A positive regression coefficient means that a trader

buys following a price rise, and is hence a momentum trader. A negative coefficient means instead

that a trader buys following a price decline. When traders are symmetric (all rational or all

fully cursed), the regression coefficients are zero for all traders because of symmetry and because

aggregate signed volume is zero. When instead some traders are rational and some are fully cursed,

the regression coefficients are non-zero. Recall from Proposition 5 that returns in a market with fully
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cursed traders exhibit momentum because the price under-reacts to the private signals. Rational

traders exploit this predictability, buying when the price goes up, hence acting as momentum

traders. Fully cursed traders, by contrast, do the opposite because they neglect that high prices

signal positive private information.

Proposition 10 Suppose that there are no endowment shocks, and there are Nr rational traders

with risk-aversion coefficient αr and private-signal precision τηr, and Nc fully cursed traders with

risk-aversion coefficient αc and private-signal precision τηc. The univariate regression

xi = γi(p− d) + ν, (37)

yields coefficient γi > 0 for i ∈ R and γi < 0 for i ∈ C.

Because momentum trading adds to trading volume, volume can be higher in a market where

some traders are rational and some are fully cursed than in an otherwise identical market where

all traders are fully cursed. To show this result, we hold constant the total number N of traders,

assume that they all have the same risk-aversion coefficient (αr = αc = α) and private-signal

precision (τηr = τηc = τη), and change the relative numbers of rational and fully cursed traders.

We compute expected aggregate trading volume, defined as the sum over all traders of the expected

trading volume that each generates.

Proposition 11 Suppose that there are no endowment shocks, and there are N traders with risk-

aversion coefficient α and private-signal precision τηc. Expected aggregate trading volume is larger

when one trader is rational and N − 1 are fully cursed than when all N traders are fully cursed,

under the sufficient condition

1

N − 1

(
τϵ +Nτη + τθ
τϵ + τη + τθ

)2

+

(
2(τϵ + τζ +Nτη + τθ)

(N − 1)(τϵ + τζ + τη + τθ)
− 1

)
τϵ +Nτη + τθ
τϵ + τη + τθ

+

(
τϵ + τζ +Nτη + τθ
τϵ + τζ + τη + τθ

)2

< 0.

(38)

When the shock ζ has zero variance, (38) is satisfied if N exceeds a threshold N̄ .

When (38) is satisfied, volume is hump-shaped in the number of rational traders: it increases

when that number increases from zero to one, and it decreases to zero when rational traders make
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up all of the market. The increasing region can exist if the number N of traders is large: enough

cursed traders are needed so that return predictability is important and induces rational traders to

engage in a sizeable amount of momentum trading. Moreover, volume can increase in the number

of rational traders even when that number is well above one. Indeed, our numerical calculations

indicate that the hump of trading volume can occur at a point where rational traders make up

about half of the market.

Taken together, Propositions 8 and 11 imply that a market with some rational and some fully

cursed traders is not equivalent in terms of volume to a market with partially cursed traders. Indeed,

volume in the latter market is smaller than volume with all traders fully cursed (Proposition 8),

which in turn can be smaller than volume in the former market (Proposition 11).

5 Endowment Shocks

In this section we introduce endowment shocks. With endowment shocks, the volume generated by

rational traders becomes non-zero and returns become predictable. We derive these properties and

compare with the case where traders are fully cursed. For analytical simplicity, we assume that

traders have the same risk aversion coefficient α, private-signal precision τη, and endowment-shock

precision τz. Thus, the price (14) takes the form

p = d+A

N∑
i=1

si +Bs− C

N∑
i=1

zi. (39)

Proposition 12 determines the coefficients (A,B,C) when all traders are rational and when they

are all fully cursed.

Proposition 12 Suppose that there are endowment shocks and all traders have the same risk-

aversion coefficient α, private-signal precision τη, and endowment-shock precision τz. When all
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traders are rational, the price (39) is an equilibrium price if and only if

A =

τη +
(N−1)τητz

τz+
C2

A2 τη

N

(
τϵ + τη + τθ +

(N−1)τητz

τz+
C2

A2 τη

) , (40)

B =
τθ

τϵ + τη + τθ +
(N−1)τητz

τz+
C2

A2 τη

, (41)

and C
A > 0 is the unique solution to the cubic equation(

τz +
C2

A2
τη

)(
C

A
τζτη − α(τϵ + τζ + τη + τθ)

)
− α(N − 1)τητz = 0. (42)

When all traders are fully cursed, (A,B,C) are derived from (40)-(42) by setting τz = 0.

When all traders are fully cursed, the coefficients A on the private signals and B on the public

signal do not depend on the precision τz of the endowment shocks. Indeed, because fully cursed

traders do not learn from the price, τz does not affect the way that the signals and the price enter

into their demand function. The coefficients (A,B) for rational traders coincide with those for

fully cursed traders when the endowment shocks have infinite variance (τz = 0). This is because

for τz = 0 the price becomes uninformative, and hence rational traders have the same demand

function as fully cursed traders. When instead the endowment shocks have zero variance (τz = ∞),

the coefficients (A,B) for rational traders coincide with their counterparts in Proposition 2.

Endowment shocks do not change the result of Section 4 that the return between Periods 1 and

2 cannot be predicted using the public signal alone. That return, however, becomes predictable

using the return between Periods 0 and 1 even when traders are rational. Returns with rational

traders and endowment shocks exhibit reversals: a high return between Periods 0 and 1 predicts

a price decline in Period 2. If the variance of endowment shocks is large enough, returns with

fully cursed traders exhibit reversals as well, otherwise they exhibit momentum as in Section 4.

Endowment shocks tend to generate reversals because they cause prices to deviate temporarily from

traders’ expectations of the asset payoff.

Proposition 13 Suppose that there are endowment shocks and all traders have the same risk-

aversion coefficient α, private-signal precision τη, and endowment-shock precision τz. When all
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traders are rational, the univariate regression (22) yields coefficient γ < 0. When all traders are

fully cursed, (22) yields coefficient γ < 0 if and only if

α2(τϵ + τζ + τη + τθ)
2

(N − 1)τ2ζ τητz
> 1. (43)

The univariate regression (21) yields coefficient γ = 0 under both rationality and full cursedness.

Endowment shocks generate trading volume even when traders are rational. Rational volume,

however, has different qualitative properties than cursed volume. Volume with fully cursed traders

and no endowment shocks is hump-shaped in the precision of private signals, as shown in Section 4,

and this property extends to endowment shocks. Volume with rational traders, however, is inverse

hump-shaped in private-signal precision. The intuition in the rational case is as follows. Starting

from the case where precision is zero, an increase in precision reduces volume because it introduces

adverse selection (Akerlof (1970), Hirshleifer (1971)). Adverse selection disappears again when

precision is infinite because traders’ signals are identical.

Proposition 14 Suppose that there are endowment shocks and all traders have the same risk-

aversion coefficient α, private-signal precision τη, and endowment-shock precision τz. The expected

volume that each trader generates increases in the number of traders N both when all traders are

rational and when they are fully cursed. Volume is inverse hump-shaped in the common precision

τη of private signals when all traders are rational, and is hump-shaped when they are fully cursed.

When the shock ζ about which traders cannot learn has zero variance, the hump in volume

with rational traders occurs for τη = ∞, and so volume is always decreasing in τη. Intuitively, when

precision is infinite, traders know the asset payoff perfectly: while there is no adverse selection,

there are also no gains from risk-sharing. Notice that when ζ has zero variance, the corresponding

hump with fully cursed traders also occurs for τη = ∞, and so volume is always increasing in τη.

6 Overconfidence and Contemptuousness

In this section we examine the relationship between cursedness, overconfidence and contemptuous-

ness. We introduce overconfidence and contemptuousness into our model following Odean (1998),
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like him specializing our model to no endowment shocks and to traders who are symmetric in terms

of their risk-aversion coefficient α and private signal precision τη. Ruling out endowment shocks

allows us to focus on trading volume that is purely driven by traders’ cognitive errors.

Following Odean, we capture overconfidence by assuming that each trader incorrectly perceives

the precision of his own signal to be κ× τη, for κ ≥ 1 (and κ = 1 embedding REE in our analysis

below), but correctly perceives the precision of all other traders’ signals to be τη. Moreover, this

belief system is common knowledge: it is common knowledge that each trader thinks he is better

informed than all other traders think he is. We also follow Odean by allowing traders to err in a

second, conceptually distinct way, namely by underestimating the information content in others’

private signals, which we term contemptuousness. Each trader incorrectly perceives the precision

of all other traders’ signals to be γ × τη, for γ ∈ [0, 1] (and γ = 1, together with κ = 1, embedding

REE in our analysis below). This too is common knowledge.

Under the parameter values κ = 1 and γ = 0, i.e., no overconfidence and extreme contemptu-

ousness, behavior is the same as under full cursedness (χ = 1). This is because a trader who fails

to infer another’s signal from the price behaves identically to one who fully infers that signal but

erroneously assumes that it has zero precision. In the rest of this section we identify contemptu-

ousness with γ > 0, i.e., traders do not view others’ signals as completely worthless. We contrast

such non-extreme contemptuousness (γ ∈ (0, 1)) with full or partial cursedness (χ ∈ (0, 1]).

Because of symmetry, the price takes the form

p = d+A

N∑
i=1

si +Bs. (44)

Proposition 15 shows that the coefficients (A,B) are uniquely determined, and examines how they

depend on the overconfidence parameter κ and the contemptuousness parameter γ.

Proposition 15 Suppose that there are no endowment shocks and all traders have the same risk-

aversion coefficient α and private-signal precision τη. Suppose also that each trader misperceives

the precision of his private signal to be κ × τη for κ ≥ 1, and the precision of every other trader’s
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signal to be γ × τη for γ ∈ (0, 1]. The price (44) is an equilibrium price if and only if

A =
[(N − 1)γ + κ]τη

N{τϵ + [(N − 1)γ + κ]τη + τθ}
, (45)

B =
τθ

τϵ + [(N − 1)γ + κ]τη + τθ
. (46)

The coefficient A increases in κ and γ. The coefficient B decreases in κ and γ.

Fixing the contemptuousness parameter γ, more overconfidence (larger κ) causes traders to

attach larger weight to their own private signals and smaller weight to the public signal when

forming conditional expectations. This causes A to increase and B to decrease. Fixing instead the

overconfidence parameter κ, more contemptuousness (smaller γ) causes traders to attach smaller

weight to other traders’ private signals (as revealed by price) and larger weight to the public signal

when forming conditional expectations. This causes A to decrease and B to increase. Contemptu-

ousness thus moves A and B from their REE values in the same direction as cursedness does, while

overconfidence moves them in the opposite direction.

Overconfidence and contemptuousness yield dramatically different predictions than cursedness

about trading volume. Recall from Propositions 6 and 8 that under full or partial cursedness,

per-trader volume grows as the market becomes large and hence aggregate volume converges to

infinity. Under overconfidence or contemptuousness instead, per-trader volume converges to zero,

and aggregate volume converges to a finite limit. Thus, overconfidence or contemptuousness on

their own are not sufficient to generate volume in large markets, while cursedness is.

Proposition 16 Suppose that there are no endowment shocks and all traders have the same risk-

aversion coefficient α and private-signal precision τη. Suppose also that each trader misperceives

the precision of his private signal to be κ × τη for κ ≥ 1, and the precision of every other trader’s

signal to be γ × τη for γ ∈ (0, 1]. The expected volume that each trader generates is

(κ− γ)τζ
√

2(N − 1)τη

α [τϵ + τζ + [(N − 1)γ + κ]τη + τθ]
√
πN

. (47)

Volume declines to zero as the number N of traders grows large. Aggregate volume, summed across

traders, converges to a finite limit.
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The intuition why per-trader volume converges to zero goes as follows. Overconfident or con-

temptuous traders trade for two reasons: first, each thinks that the price overweights all other

traders’ signals; second, each thinks that the price underweights his own signal. Since each trader

inverts the price to perfectly infer the average signal of all other traders, the price would not change

if all private signals were made public. If all signals were public, then each trader’s expectation

of the asset payoff d would be a weighted average of his own signal, the average signal of other

traders, and the public signal s. For any κ ≥ 1 and γ ∈ (0, 1], as N grows large, each trader puts

arbitrarily more weight on the average signal of other traders than on his own signal. Hence, the

difference between any two traders’ expectations of d converges to zero, and so does per-trader

volume.10 Only when γ = 0, which is observationally equivalent to full cursedness in our model,

does per-trader volume not vanish in large markets.

Overconfident per-trader volume disappears in our model because each trader, no matter how

overconfident, believes that the information conveyed by price about all other traders’ signals

trumps his own private signal in a sufficiently large market. This would not happen if traders

believed that their private information conveyed something non-negligible beyond the information

conveyed by a large-market price. Odean (1998) implicitly makes this assumption by assuming that

the N traders in the market observe M < N signals in such a way that N
M > 1 observe each signal.

He computes volume when γ = 1 and N → ∞, but holding M fixed. Whatever the value of M ,

each signal conveys non-negligible information beyond that conveyed by the set of other signals.

We conclude with the observation that overconfidence does have substantial effects when traders

are cursed. Proposition 17 expresses volume when traders are overconfident and cursed. As when

traders are cursed but not overconfident, per-trader volume grows as the market becomes large, and

hence aggregate volume goes to infinity. Overconfidence produces an additional effect that increases

volume even in the large-market limit. Yet it generates non-negligible per-trader volume only when

traders are cursed, in which case it amplifies the effect of cursedness. In this sense, overconfidence

10The fact that equilibrium prices do not depend upon whether signals are public or private suggests that

per-trader volume would be negligible in large markets even in complete-information models of overconfidence

(e.g., Sheinkman and Xiong (2003)) if traders are risk averse.
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and cursedness work as complements. Intuitively, when traders fail to infer information from

prices, overconfidence magnifies differences in their beliefs, producing even more trade. Although

Proposition 17 assumes full cursedness, the same results hold under partial cursedness.

Proposition 17 Suppose that there are no endowment shocks and all traders have the same risk-

aversion coefficient α and private-signal precision τη. Suppose also that all traders are fully cursed,

and that each misperceives the precision of his private signal to be κ× τη for κ ≥ 1. The expected

volume that each trader generates is

κτζ
√
2(N − 1)τη

α(τϵ + τζ + κτη + τθ)
√
πN

. (48)

Volume increases in the number of traders N and in the overconfidence parameter κ.

7 Discussion and Conclusion

In this paper, we propose a market-equilibrium definition, cursed expectations equilibrium (CEE),

for traders who fail to fully infer information from prices. We compare CEE to REE and find

that although each cursed trader puts more weight on his private signal than a rational trader,

because traders neglect that the price encodes other traders’ information, CEE prices depend less

on private signals and more on public signals than REE prices. Markets comprised entirely of

cursed traders generate more trade than those comprised entirely of rationals; mixed markets can

generate more trade still, as rationals employ momentum-trading strategies to take advantage of

cursed traders. We contrast cursed trade to overconfidence- or contemptuousness-based trade,

showing that cursed volume per trader grows with the size of the market, whereas per-trader

volume under overconfidence or contemptuousness declines to zero. Cursedness, however, can

enhance overconfidence- or contemptuousness-based trade.

How can we extend cursed-expectations equilibrium to dynamic settings? In a cursed equilib-

rium, agents understand the relationship between their opponents’ actions across periods. Con-

sequently, if the private signal that agent i receives in period t feeds into both pt and pt+1, then

cursed agents will forecast pt+1 more accurately from pt than befits the motivation behind cursed-

ness. Indeed, a shortcoming of cursed equilibrium emphasized by Eyster and Rabin (2005) in
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their conclusion is that it captures failures of contingent thinking about the relationship between

private information and action, but not those about the relationship between action and action.

Extending the logic of CEE to multiple periods probably requires relaxing the assumption that

agents correctly perceive the correlation among actions. One approach might resemble that of

Eyster and Piccione (2013), who model a dynamic market where agents trade based on potentially

incomplete models of the relationship between next period’s price and current, publicly available

economic variables. Each trader uses a theory comprised of some subset of these variables and

forecasts next period’s expected price correctly conditional upon all included variables. One major

conceptual difference of their approach from CEE is that it offers no guidance as to which theories

traders are likely to employ.11 Nevertheless, it might be marriageable to CEE by having a cursed

trader i forecast the next-period price pt+1 conditional upon the current price pt, his current (ac-

cumulated) private signal, si,t, and the current (accumulated) public signal st, excluding all lagged

prices, as E[pt+1|{si,t, st}]. With only two periods, and p2 = d, this formulation delivers CEE in

our model. With more periods, it preserves the feature of our model that in every period traders

fully appreciate the relationship that next period’s price has to their signals.

A dynamic model may also highlight the role of a second shortcoming in inference from market

prices that might affect traders. Eyster and Rabin (2010) develop the concept of “best response

trailing naive inference”: to the extent that agents do infer some private information from earlier

actions (or prices), they may neglect how these earlier actions embed informational inferences.

Models uniting a tendency to underappreciate the information about others’ beliefs contained in

market prices, with a tendency to underappreciate how those beliefs reflect redundant information,

may provide ways of understanding the co-existence of under-inference as emphasized in this paper

with unwarranted swings in group beliefs that also appear to be a hallmark of financial beliefs.

In a narrower sense, combining the two errors may help better understand price dynamics. In a

11Rabin (2013) advocates the methodological advantages of “portable extensions of existing models” such

as cursed equilibrium. Just as CEE identifies directional departures from REE in the static model of this

paper, a dynamic extension is likely to make directional predictions that are merely accommodated by the

framework of Eyster and Piccione (2013).
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dynamic market, agents in period t+2 may fail to appreciate how those in period t+1 infer private

information from prices in period t. Suppose that the price is high in both periods t and t + 1. If

some agents in period t+2 neglect that some of the positive information contained in the period t+1

price is in fact information agents gleaned from the high period t price, then they will overestimate

the positive information in the high prices, and push the price up further. This additional type of

error in inference may then produce medium-run over-reaction to private information.

In Section 6, we showed the necessity in some settings of cursedness to “enable” overconfidence

to explain appreciable per-trader volume of trade. We conclude by speculating how cursedness

may similarly enable the study of various other biases in asset markets. Researchers have recently

proposed that a number of statistical errors may be relevant for financial decisions, including over-

inference from small samples (see Rabin (2002) and Rabin and Vayanos (2010)) and non-belief in the

law of large numbers (see Benjamin, Rabin, and Raymond (2013)). Predicting the consequences of

these and other biases for markets where traders extract information from prices requires additional

assumptions about traders’ theories of one another’s errors. Yet relatively little is known about

how people reason about others’ errors. In its extreme, cursedness provides a simple assumption

about what people think of others’ errors: they don’t think about them at all. If models of errors

are instead closed by assuming that people do agree to disagree about the meaning of private

signals, then, much like with overconfidence in Section 6, we suspect that the per-trader volume of

trade will be small in information-rich settings where each trader values the sum total of others’

private information far more heavily than his own private signal. Finally, whereas we have assumed

throughout the paper that private signals convey true information about the value of the risky asset,

it might instead be the case that traders share a common misperception of the meaningfulness of

signals. Indeed, much of “private information”, especially that held by unsophisticated investors,

may in fact be irrelevant. Otherwise rational traders who agree to agree on the information content

of such private signals would, of course, not generate high volume of trade. Asymmetries in beliefs

created by these false private signals would, however, produce cursed trade.
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APPENDIX

A Cursed Equilibrium

Cursed equilibrium is defined in finite Bayesian games of the form

({Ai}i=1,...,N , {Ti}i=0,...,N , p, {ui}i=1,...,N ) .

For each player i = 1, . . . , N , Ai is a finite set of available actions and Ti is a finite set of types,

including one, T0, for nature. We denote the set of action profiles by A ≡ ×
i=1,...,N

Ai and the set

of type profiles by T ≡ ×
i=0,...,N

Ti. We assume that all players share the common prior probability

distribution p over T . Player i’s utility function is ui : A× T → R.

A strategy for player i, σi : Ti → △Ai, specifies a probability distribution over actions for each

type. We denote by σi(ai|ti) the probability that type ti plays action ai when he follows strategy

σi. We denote the set of action profiles for players other than i by A−i ≡ ×
j ̸=0,i

Aj , and the set of

type profiles for nature and players other than i by T−i ≡ ×
j ̸=i

Tj . We denote by a−i and t−i generic

elements of these sets. We denote by σ−i(a−i|t−i) the probability that types t−i play action profile

a−i when they follow strategy σ−i ≡ {σj}j ̸=0,i. Finally, we denote by p(t−i|ti) the distribution of

player i’s beliefs about other players’ types conditional on his own type ti. The standard solution

concept for these games is Bayesian Nash equilibrium.

Definition 2 A strategy profile σ is a Bayesian Nash equilibrium if for each player i, each type

ti ∈ Ti, and each a∗i such that σi(a
∗
i |ti) > 0:

a∗i ∈ arg max
ai∈Ai

∑
t−i

p(t−i|ti)

∑
a−i

σ−i(a−i|t−i)ui(ai, a−i; ti, t−i)

 . (A.1)

To define cursed equilibrium, we compute for each type of each player the average strategy of

other players, averaged over the other players’ types. For type ti of player i we define

σ−i(a−i|ti) ≡
∑

t−i∈T−i

pi(t−i|ti) · σ−i(a−i|t−i).
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This is the marginal probability that other players play action profile a−i, and is derived by aver-

aging over type profiles t−i the probabilities σ−i(a−i|t−i) that other players play a−i conditional on

t−i. We associate to each player i a cursedness parameter χi ∈ [0, 1].

Definition 3 A strategy profile σ is a cursed equilibrium if for each player i, each type ti ∈ Ti,

and each a∗i such that σi(a
∗
i |ti) > 0:

a∗i ∈ arg max
ai∈Ai

∑
t−i

p(t−i|ti)

∑
a−i

(1− χi)σ−i(a−i|t−i)ui(ai, a−i; ti, t−i)

+ χiσ−i(a−i|ti)ui(ai, a−i; ti, t−i)

 . (A.2)

Player i best-responds to beliefs that with probability 1− χi the other players’ actions depend

on their types (the probability of action profile a−i in (A.2) is conditional on type profile t−i) and

with probability χi actions do not depend on types (the probability of a−i in (A.2) is the marginal).

When χi = 0, player i is rational, and his objective is as in Bayesian Nash equilibrium (Eq. (A.1)).

When χi = 1, player i is fully cursed, and neglects entirely the relationship between the other

players’ actions and their types. Note that while cursed players fail to map actions to types, they

assess correctly the probability distribution of other players’ actions.

Applying the definition (A.2) to the trading game considered in Section 2, we find that the

buyer’s objective is F (p)×((1− χ)E[s|s ≤ p] + χE[s]− p): the buyer believes that with probability

1 − χ the seller’s decision to sell conveys information about the asset, and with probability χ it

does not.

B Proofs

We first prove the following lemma, which we use for proving Proposition 1.

Lemma A.1 Suppose that the variables (x, {yi}i=1,..,K) are normal, independent, with mean zero

and precisions (τx, {τyi}i=1,..,K). Then, the distribution of x conditional on {x+yi}i=1,..,K is normal
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with mean

E (x |{x+ yi}i=1,..,K ) =
K∑
i=1

τyi

τx +
∑K

j=1 τyj
(x+ yi) (A.1)

and precision

τ (x |{x+ yi}i=1,..,K ) = τx +
K∑
i=1

τyi . (A.2)

Proof. The conditional mean and variance can be computed from the regression

x =

K∑
i=1

βi(x+ yi) + e,

where {βi}i=1,..,K are the regression coefficients and e is the error term. Taking covariances of both

sides with x+ yi and noting that (x, {yi}i=1,..,K , e) are independent, we find

Cov(x, x+ yi) =
K∑
j=1

βjCov(x+ yj , x+ yi)

⇒ 1

τx
= βi

(
1

τx
+

1

τyi

)
+
∑
j ̸=i

βj
1

τx

⇒ βi =
τyi
τx

1−
K∑
j=1

βj

 . (A.3)

Summing (A.3) across i and solving for
∑K

j=1 βj , we find

K∑
j=1

βj =

∑K
j=1 τyj

τx +
∑K

j=1 τyj
. (A.4)

Substituting
∑K

j=1 βj from (A.4) into (A.3), we find

βi =
τyi

τx +
∑K

j=1 τyj
. (A.5)

Since

E (x |{x+ yi}i=1,..,K ) =

K∑
i=1

βi(x+ yi),
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(A.5) implies (A.1). Taking variances of both sides and noting that (x, {yi}i=1,..,K , e) are indepen-

dent, we find

Var(x) =

(
K∑
i=1

βi

)2

Var(x) +

K∑
i=1

β2
jVar(yi) + Var(e)

⇒ 1

τe
=

1

τx

1−( ∑K
i=1 τyi

τx +
∑K

i=1 τyi

)2
−

K∑
i=1

1

τyi

(
τyi

τx +
∑K

j=1 τyj

)2

⇒ 1

τe
=

1

τx +
∑K

i=1 τyi
, (A.6)

where the second step follows from (A.4) and (A.5). Since

τ (x |{x+ yi}i=1,..,K ) = τe,

(A.6) implies (A.2).

Proof of Proposition 1. We first determine traders’ demand functions using (8). Since d =

d+ ϵ+ ζ and ζ is independent of traders’ information Ii,

E(d|Ii) = d+ E(ϵ|Ii), (A.7)

Var(d|Ii) = Var(ϵ|Ii) + Var(ζ) =
1

τ(ϵ|Ii)
+

1

τζ
. (A.8)

Using Lemma A.1 with x = ϵ, K = 3 and {yj}j=1,2,3 = (ηi, η, ξi), we find

E(d|Iir) = d+
τηi

τϵ + τηi + τθ + τξi
si +

τθ
τϵ + τηi + τθ + τξi

s+
τξi

τϵ + τηi + τθ + τξi
(ϵ+ ξi), (A.9)

Var(d|Iir) =
1

τϵ + τηi + τθ + τξi
+

1

τζ
. (A.10)

Using Lemma A.1 with x = ϵ, K = 2 and {yj}j=1,2 = (ηi, η), we find

E(d|Iic) = d+
τηi

τϵ + τηi + τθ
si +

τθ
τϵ + τηi + τθ

s, (A.11)

Var(d|Iic) =
1

τϵ + τηi + τθ
+

1

τζ
. (A.12)

Substituting (A.9), (A.10), (A.11) and (A.12) into (8), we can write the demand of trader i as

xi =
d+ (1− χi)

τηisi+τθs+τξi (ϵ+ξi)

τϵ+τηi+τθ+τξi
+ χi

τηisi+τθs

τϵ+τηi+τθ
− p

αi

[
(1− χi)

1
τϵ+τηi+τθ+τξi

+ χi
1

τϵ+τηi+τθ
+ 1

τζ

] − zi. (A.13)
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We next substitute (A.13) into the market-clearing condition (5), use (6) to write p in terms of

({si}i=1,..,N , s, {zi}i=1,..,N ), and use (9) to write ϵ+ ξi in terms of ({si}j ̸=i, {zi}j ̸=i). This yields an

equation that is linear in ({si}i=1,..,N , s, {zi}i=1,..,N ). Identifying terms in si yields (11). Identifying

terms of s yields (12). Identifying terms in zi yields

1−
(1− χi)τζτξi

Ci∑
k ̸=i Ak

(τϵ + τηi + τθ)

αi [(τϵ + τηi + τθ)(τϵ + τηi + τθ + τξi) + τζ(τϵ + τηi + τθ + χiτξi)]

= Ciτζ

N∑
j=1

(τϵ + τηj + τθ)(τϵ + τηj + τθ + τξj )− (1− χj)τξj
1∑

k ̸=j Ak
(τϵ + τηj + τθ)

αj

[
(τϵ + τηj + τθ)(τϵ + τηj + τθ + τξj ) + τζ(τϵ + τηj + τθ + χjτξj )

] . (A.14)

Combining (A.14) with (11) yields (13).

Proof of Proposition 2. Setting χi = 0 for all i, we can simplify (11) to

τηi − τξi
Ai∑

k ̸=i Ak

αi(τϵ + τζ + τηi + τθ + τξi)
= Ai

N∑
j=1

τϵ + τηj + τθ + τξj − τξj
1∑

k ̸=j Ak

αj(τϵ + τζ + τηj + τθ + τξj )
≡ AiZ. (A.15)

Since {σzi}i=1,..,N = 0, (10) implies that

τξi =

(∑
j ̸=iAj

)2
∑

j ̸=i

A2
j

τηj

. (A.16)

Substituting τξi from (A.16) into the left-hand side of (A.15), we can write (A.15) as

τηi

αi(τϵ + τζ + τηi + τθ + τξi)
∑

j ̸=i

A2
j

τηj

∑
j ̸=i

A2
j

τηj
− Ai

τηi

∑
j ̸=i

Aj

 = AiZ

⇒
N∑
j=1

A2
j

τηj
− Ai

τηi

N∑
j=1

Aj =
αi(τϵ + τζ + τηi + τθ + τξi)Ai

∑
j ̸=i

A2
j

τηj

τηi
Z. (A.17)

Multiplying (A.17) by Ai and summing over i, we find

0 =

N∑
i=1

Ai

N∑
i=1

A2
i

τηi
−

N∑
i=1

Ai

N∑
i=1

A2
i

τηi
=

N∑
i=1

αi(τϵ + τζ + τηi + τθ + τξi)A
2
i

∑
j ̸=i

A2
j

τηj

τηi

Z,

which implies that Z = 0. Eq. (A.17) then implies that

N∑
j=1

A2
j

τηj
− Ai

τηi

N∑
j=1

Aj = 0,
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which in turn implies that

Ai = λτηi , (A.18)

for a constant λ that does not depend on i. Substituting Ai from (A.18) into (A.16), we find

τξi =
∑
j ̸=i

τηj . (A.19)

Substituting (Ai, τξi) from (A.18) and (A.19) into the definition of Z in (15), and recalling that

Z = 0, we find(
N∑
i=1

1

αi

)
τϵ +

∑N
i=1 τηi + τθ

τϵ + τζ +
∑N

i=1 τηi + τθ
− 1

λ

(
N∑
i=1

1

αi

)
1

τϵ + τζ +
∑N

i=1 τηi + τθ
= 0

⇒ λ =
1

τϵ +
∑N

i=1 τηi + τθ
. (A.20)

Eqs. (A.18) and (A.20) imply (15). Eq. (16) follows similarly by substituting τξi from (A.19) into

(12). Substituting (ϵ+ξi, p, {Aj}j=1,..,N , B, τξi) from (9), (14), (15), (16) and (A.19) into (A.13) for

χi = 0, we find that the numerator in (A.13) is zero. Since, in addition zi = 0, trader i’s demand

is zero for the equilibrium price. Therefore, there is no trade.

Proof of Proposition 3. Setting χi = 1 for all i, we can simplify (11) to

τηi
αi(τϵ + τζ + τηi + τθ)

= Ai

N∑
j=1

τϵ + τηj + τθ

αj(τϵ + τζ + τηj + τθ)
. (A.21)

Solving for Ai using (A.21) yields (17). Eq. (18) follows similarly from (12).

Proof of Proposition 4. Eqs. (16) and (18) imply that (i) holds if

τϵ +
N∑
i=1

τηi + τη >

∑N
i=1

τϵ+τηi+τθ
αi(τϵ+τζ+τηi+τθ)∑N

i=1
1

αi(τϵ+τζ+τηi+τθ)

=
N∑
i=1

wi(τϵ + τηi + τθ), (A.22)

where

wi ≡
1

αi(τϵ+τζ+τηi+τθ)∑N
i=1

1
αi(τϵ+τζ+τηi+τθ)

.
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Since the weights {wi}i=1,..,N are positive and sum to one, the right-hand side of (A.22) is smaller

than

τϵ + max
i=1,..,N

τηi + τθ < τϵ +

N∑
i=1

τηi + τθ,

and so (A.22) holds.

Eqs. (15) and (17) imply that the first statement in (ii) holds if

τθ +
∑N

i=1 τηi + τθ∑N
i=1 τηi

<

∑N
i=1

τϵ+τηi+τθ
αi(τϵ+τζ+τηi+τθ)∑N

i=1
τηi

αi(τϵ+τζ+τηi+τθ)

=
N∑
i=1

wi
τϵ + τηi + τθ

τηi
, (A.23)

where

wi ≡
τηi

αi(τϵ+τζ+τηi+τθ)∑N
i=1

τηi
αi(τϵ+τζ+τηi+τθ)

.

Since the weights {wi}i=1,..,N are positive and sum to one, the right-hand side of (A.22) is larger

than

min
i=1,..,N

τϵ + τηi + τθ
τηi

>
τθ +

∑N
i=1 τηi + τθ∑N
i=1 τηi

,

and so (A.23) holds. When traders are symmetric, the first statement in (ii) implies that Ai is

smaller in the fully cursed than in the rational case for all i. To show the second statement in (ii),

it suffices to show an example where Ai is larger in the fully cursed than in the rational case for

some i. Suppose that trader i is much less risk averse than the other traders. Eq. (17) then implies

that

Ai ≈
τηi

τϵ + τηi + τθ

in the fully cursed case. This is larger than Ai in the rational case, given by (15).

Eqs. (15), (16), (17) and (18) imply that (iii) holds if

τηi
τθ

1
αi(τϵ+τζ+τηi+τθ)∑N
i=1

1
αi(τϵ+τζ+τηi+τθ)

<
τηi
τθ

,

which obviously holds.
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Proof of Proposition 5. The results for the rational case follow because Proposition 2 implies

that

p = E(d |{si}i=1,..,N , s) , (A.24)

which in turn implies that

E(d− p|I) = E [d− E (d |{si}i=1,..,N , s) |I ] = E(d|I)− E(d|I) = 0,

for any information set I consisting of information revealed in Period 1. Since the expectation of

d − p conditional on I is zero, the coefficients (γ1, γ2, γ) in the regressions (20), (21) and (22) are

zero.

We next turn to the fully cursed case. To show the result for regression (21), we follow the

argument sketched after the proposition. Taking expectations of both sides of (19) for χi = 1 for

all i, and noting that Var(d|Iic) is a constant, we find

E(p|s) =
∑N

i=1
E[E(d|Iic)|s]
αiVar(d|Iic)∑N

i=1
1

αiVar(d|Iic)
=

∑N
i=1

E(d|s)
αiVar(d|Iic)∑N

i=1
1

αiVar(d|Iic)
= E(d|s), (A.25)

where the second step follows from the law of iterative expectations because Iic includes s. Eq.

(A.25) implies that

E(d− p|s) = E(d|s)− E(p|s) = 0. (A.26)

The coefficient γ in the regression (21) is proportional to

Cov(d− p, s) = E((d− p)s)− E(d− p)E(s) = E(E(d− p|s)s)− E(E(d− p|s))E(s) = 0,

where the second step follows from the law of iterative expectations and last step follows from

(A.26).

To show the result for regression (22), we note that γ is proportional to

Cov(d− p, p− d) =

(
1−

N∑
i=1

Ai −B

)(
N∑
i=1

Ai +B

)
σ2
ϵ −

N∑
i=1

A2
iσ

2
ηi −B2σ2

θ ,
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where the equality follows from (1), (2) and (14). Substituting ({Ai}i=1,..,N , B) from Proposition

3, we find that Cov(d− p, p− d) has the same sign as

N∑
i=1

τϵ
αi(τϵ + τζ + τηi + τθ)

N∑
i=1

τηi + τθ
αi(τϵ + τζ + τηi + τθ)

σ2
ϵ −

N∑
i=1

τ2ηiσ
2
ηi + τ2θ σ

2
θ

α2
i (τϵ + τζ + τηi + τθ)2

=

N∑
i=1

1

αi(τϵ + τζ + τηi + τθ)

N∑
i=1

τηi + τθ
αi(τϵ + τζ + τηi + τθ)

−
N∑
i=1

τηi + τθ
α2
i (τϵ + τζ + τηi + τθ)2

,

which is positive.

To show the result for regression (20), we compute (γ1, γ2). Taking covariances of both sides of

(20) with p− d and with s, yields respectively

Cov(d− p, p− d) = γ1Var(p− d) + γ2Cov(s, p− d), (A.27)

Cov(d− p, s) = γ1Cov(p− d, s) + γ2Var(s). (A.28)

Eqs. (A.27) and (A.28) form a linear system in (γ1, γ2). Its solution is

γ1 =
Cov(d− p, p− d)Var(s)− Cov(d− p, s)Cov(s, p− d)

Var(p− d)Var(s)− Cov(s, p− d)2
, (A.29)

γ2 = −Cov(d− p, p− d)Cov(p− d, s)− Cov(d− p, s)Var(p− d)

Var(p− d)Var(s)− Cov(s, p− d)2
. (A.30)

Since Cov(d − p, s) = 0 and V (s) > 0, (A.29) implies that γ1 > 0. Since Cov(d − p, s) = 0 and

Cov(p− d, s) > 0, (A.30) implies that γ2 > 0.

Proof of Corollary 1. The variance of the return p− d between Periods 0 and 1 is equal to the

variance of p. The comparison between Var(p) in the rational and fully cursed cases will follow

from the identities

Var [E (d |{si}i=1,..,N , s)] = Var [E (d |{si}i=1,..,N , s)− p]+2Cov [E (d |{si}i=1,..,N , s)− p, p]+Var(p)

(A.31)
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and

Cov [E (d |{si}i=1,..,N , s)− p, p] = E [(E (d |{si}i=1,..,N , s)− p) p]− E [E (d |{si}i=1,..,N , s)− p]E(p)

= E [(E (d |p)− p) p]− [E(d)− E(p)]E(p)

= E
[
γ(p− d)p

]
= γVar(p), (A.32)

where the second step in (A.32) follows from applying the law of iterative expectations, and the

third step follows from (22) and E(d) = E(p) = d. When traders are fully cursed, (A.32) and

Proposition 5 imply that the second term in the right-hand side of (A.31) is positive. Since the

first term is also positive, (A.31) implies that

Var [E (d |{si}i=1,..,N , s)] > Var(p). (A.33)

When traders are rational, (A.33) holds as an equality because of (A.24). Therefore, Var(p) is

smaller when traders are fully cursed.

The comparison between Var(p) + Var(d − p) in the rational and fully cursed cases will follow

similarly from the identities

Var(d) = Var(d− p) + 2Cov(d− p, p) + Var(p) (A.34)

and

Cov(d− p, p) = E
[
γ(p− d)p

]
= γVar(p), (A.35)

where the first step in (A.35) follows from (22). Eq. (A.35) and Proposition 5 imply that the second

term in the right-hand side of (A.34) is positive when traders are fully cursed and zero when they

are rational. Since the left-hand side of (A.34) is the same when traders are fully cursed and when

they are rational, Var(p) + Var(d− p) is smaller when they are fully cursed.

Proof of Proposition 6. Substituting p from (14) into (A.13) for χi = 1, and using zi = 0, we

can write the quantity that trader i trades in equilibrium as

xi =
τζ(τϵ + τηi + τθ)

αi(τϵ + τζ + τηi + τθ)

 N∑
j=1

aijsj + bis

 , (A.36)
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where

aii ≡
τηi

τϵ + τηi + τθ
−Ai, (A.37)

aij ≡ −Aj for j ̸= i, (A.38)

bi ≡
τθ

τϵ + τηi + τθ
−B. (A.39)

Using (1) and (2), we can write (A.36) as

xi =
τζ(τϵ + τηi + τθ)

αi(τϵ + τζ + τηi + τθ)

 N∑
j=1

aij + bi

 ϵ+

N∑
j=1

aijηj + biθ

 . (A.40)

Since xi is normal,

E (|xi|) =
√

2Var(xi)

π

=
τζ(τϵ + τηi + τθ)

αi(τϵ + τζ + τηi + τθ)

√√√√√ 2

π

 N∑
j=1

aij + bi

2

σ2
ϵ +

N∑
j=1

a2ijσ
2
ηj + b2iσ

2
θ

, (A.41)

where the second step follows from (A.40).

When αi = α and τηi = τη for all i, Proposition 3 implies that

Ai =
τη

N(τϵ + τη + τθ)
for all i,

B =
τθ

τϵ + τη + τθ
.

Substituting into (A.37)-(A.39), we find

aii =
(N − 1)τη

N(τϵ + τη + τθ)
,

aij = − τη
N(τϵ + τη + τθ)

for j ̸= i,

bi = 0,

N∑
j=1

aij + bi = 0.

Substituting into (A.41), we find (23). The comparative statics follow by differentiating (23) with

respect to N and τη.
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When αi = α for all i and σ2
ζ = 0, Proposition 3 implies that

Ai =
τηi

N(τϵ + τη + τθ)
for all i, (A.42)

B =
τθ

τϵ + τη + τθ
. (A.43)

(These values can be derived as a limit when τζ goes to ∞.) Substituting into (A.37)-(A.39), we

find

aii =
[(N − 1)(τϵ + τθ) +Nτη − τηi ] τηi
N(τϵ + τηi + τθ)(τϵ + τη + τθ)

, (A.44)

aij = −
τηj

N(τϵ + τη + τθ)
for j ̸= i, (A.45)

bi =
(τη − τηi)τθ

(τϵ + τηi + τθ)(τϵ + τη + τθ)
, (A.46)

N∑
j=1

aij + bi =
(τηi − τη)τϵ

(τϵ + τηi + τθ)(τϵ + τη + τθ)
. (A.47)

Substituting into (A.41), and using again αi = α for all i and σ2
ζ = 0, we find

E (|xi|) =

√
2

[
(τηi − τη)2τ2ϵ σ

2
ϵ +

[(N−1)(τϵ+τθ)+Nτη−τηi ]
2
τ2ηi

N2 σ2
ηi +

∑
j ̸=i

(τϵ+τηi+τθ)2τ2ηj
N2 σ2

ηj + (τη − τηi)
2τ2θ σ

2
θ

]
α(τϵ + τη + τθ)

√
π

.

(A.48)

Since the variance is the inverse of the precision, we can write (A.48) as

E (|xi|) =

√
2

[
(τηi − τη)2τϵ +

[(N−1)(τϵ+τθ)+Nτη−τηi ]
2
τηi

N2 +
∑

j ̸=i

(τϵ+τηi+τθ)2τηj
N2 + (τη − τηi)

2τθ

]
α(τϵ + τη + τθ)

√
π

=

√
2

[
(τηi − τη)2(τϵ + τθ) +

[(N−1)(τϵ+τθ)+Nτη−τηi ]
2
τηi

N2 +
(τϵ+τηi+τθ)2(Nτη−τηi )

N2

]
α(τϵ + τη + τθ)

√
π

,

(A.49)

where the second step follows from the definition of τη. Eq. (24) follows from (A.49) by separating

quadratic, linear and constant terms in τϵ + τη. Trader i generates more volume than trader j if
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and only if the difference between the term inside the squared root in (24) and the corresponding

term for j is positive. The difference is[
(N − 2)(τϵ + τθ)

2 + (N − 2)(τϵ + τθ)(τηi + τηj ) + (Nτη − τηi − τηj )τη
]
(τηi − τηj ).

Since

Nτη − τηi − τηj =
N∑
k=1

τηk − τηi − τηj =
∑
k ̸=i,j

τηk > 0,

the difference is positive if and only if τηi > τηj .

We next prove two lemmas, which we then use to prove Proposition 7.

Lemma A.2 Let x be an n × 1 normal vector with mean zero and covariance matrix Σ, ZA a

scalar, ZB an n × 1 vector, ZC an n × n symmetric matrix, I the n × n identity matrix, v′ the

transpose of a vector v, and |M | the determinant of a matrix M . Then,

Ex exp

{
−α

[
ZA + Z ′

Bx+
1

2
x′ZCx

]}
= exp

{
−α

[
ZA − 1

2
αZ ′

BΣ(I + αZCΣ)
−1ZB

]}
1√

|I + αZCΣ|
.

(A.50)

Proof. When ZC = 0, (A.50) gives the moment-generating function of the normal distribution. We

can always assume ZC = 0 by also assuming that x is a normal vector with mean 0 and covariance

matrix Σ(I + αZCΣ)
−1.

Lemma A.3 Suppose that the n× n matrix ZC is equal to ZC1Z
′
C2 for n× 1 vectors (ZC1, ZC2),

and the symmetric n× n matrix Σ is positive definite. Then,

|I + αZCΣ| = 1 + αZ ′
C1ΣZC2. (A.51)

Proof. Since Σ is positive definite, it has a positive-definite square root. We denote that matrix

by Σ
1
2 and its inverse by Σ− 1

2 . We can write the determinant in (A.51) as

|I + αZCΣ| =
∣∣∣(Σ− 1

2 + αZCΣ
1
2

)
Σ

1
2

∣∣∣
=
∣∣∣Σ 1

2

(
Σ− 1

2 + αZCΣ
1
2

)∣∣∣
=
∣∣∣I + αΣ

1
2ZCΣ

1
2

∣∣∣ , (A.52)
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where the second step follows because the determinant is commutative. We next compute

∆ ≡
∣∣∣Σ 1

2ZCΣ
1
2

(
I + αΣ

1
2ZCΣ

1
2

)∣∣∣
in two different ways. First,

∆ =
∣∣∣Σ 1

2ZCΣ
1
2

∣∣∣ ∣∣∣I + αΣ
1
2ZCΣ

1
2

∣∣∣
=
∣∣∣Σ 1

2ZC1Z
′
C2Σ

1
2

∣∣∣ ∣∣∣I + αΣ
1
2ZCΣ

1
2

∣∣∣
=
∣∣∣Z ′

C2Σ
1
2Σ

1
2ZC1

∣∣∣ ∣∣∣I + αΣ
1
2ZCΣ

1
2

∣∣∣
= Z ′

C2ΣZC1

∣∣∣I + αΣ
1
2ZCΣ

1
2

∣∣∣ , (A.53)

where the first step follows because the determinant of a product is the product of the determinants,

and the third step because the determinant is commutative. Second,

∆ =
∣∣∣Σ 1

2ZC1Z
′
C2Σ

1
2

(
I + αΣ

1
2ZC1Z

′
C2Σ

1
2

)∣∣∣
=
∣∣∣Z ′

C2Σ
1
2

(
I + αΣ

1
2ZC1Z

′
C2Σ

1
2

)
Σ

1
2ZC1

∣∣∣
=
∣∣Z ′

C2ΣZC1

(
1 + αZ ′

C2ΣZC1

)∣∣
= Z ′

C2ΣZC1

(
1 + αZ ′

C2ΣZC1

)
. (A.54)

Comparing (A.53) to (A.54), and using (A.52), we find (A.51).

Proof of Proposition 7. We first derive a general expression for the expected utility of a fully

cursed trader who receives no endowment shock. This derivation does not assume that all other

traders are fully cursed, or that they have the same risk-aversion coefficient, or that σ2
ζ = 0. We

can write the expected utility of trader i in the ex-ante sense as

−Eexp {−αi [xi(d− p) + zid]} . (A.55)
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Using the law of iterative expectations, and denoting by I ≡ ({sj}j=1,..,N , s) the information set

consisting of all the signals, we can write (A.55) as

− E [E (exp {−αi [xi(d− p) + zid]} |I)]

− Eexp

{
−αi

[
xi (E(d|I)− p) + ziE(d|I)−

1

2
αi(xi + zi)

2Var(d|I)
]}

− Eexp

{
−αi

[
E(d|Iic)− p

αiVar(d|Iic)

(
E(d|I)− p− 1

2

E(d|Iic)− p

Var(d|Iic)
Var(d|I)

)
+ zip

]}
− Eexp

{
−E(d|Iic)− p

Var(d|Iic)

(
E(d|I)− p− 1

2

E(d|Iic)− p

Var(d|Iic)
Var(d|I)

)}
(A.56)

where the second step follows because of normality, the third from (8) and χi = 1, and the fourth

because zi = 0. Using Lemma A.1 with x = ϵ, K = N +1 and {yj}j=1,..,N+1 = ({ηj}j=1,..,N , η), we

find

E(d|I) = d+
N∑
j=1

τηj

τϵ +
∑N

k=1 τηk + τθ
sj +

τθ

τϵ +
∑N

k=1 τηk + τθ
s

= d+
N∑
j=1

τηj
τϵ +Nτη + τθ

sj +
τθ

τϵ +Nτη + τθ
s, (A.57)

Var(d|I) =
τϵ + τζ +

∑N
j=1 τηj + τθ

(τϵ +
∑N

j=1 τηj + τθ)τζ

=
τϵ + τζ +Nτη + τθ
(τϵ +Nτη + τθ)τζ

. (A.58)

Substituting conditional means and variances from (A.11), (A.12), (A.57) and (A.58), we can write

the expected utility (A.56) as

−Eexp

−1

2

τζ(τϵ + τηi + τθ)

(τϵ + τζ + τηi + τθ)

 N∑
j=1

aijsj + bis

 N∑
j=1

âijsj + b̂is

 , (A.59)

where ({aij}j=1,..,N , bi) are defined in (A.37)-(A.39), and

âij ≡
2τηj

τϵ +Nτη + τθ
− 2Aj −

(τϵ + τζ +Nτη + τθ)(τϵ + τηi + τθ)

(τϵ + τζ + τηi + τθ)(τϵ +Nτη + τθ)
aij for j = 1, .., N, (A.60)

b̂i ≡
2τθ

τϵ +Nτη + τθ
− 2B −

(τϵ + τζ +Nτη + τθ)(τϵ + τηi + τθ)

(τϵ + τζ + τηi + τθ)(τϵ +Nτη + τθ)
bi. (A.61)
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Using (1) and (2), we can write (A.59) as

−Eexp

−1

2

τζ(τϵ + τηi + τθ)

(τϵ + τζ + τηi + τθ)

 N∑
j=1

aij + bi

 ϵ+

N∑
j=1

aijηj + biθ

 N∑
j=1

âij + b̂i

 ϵ+

N∑
j=1

âijηj + b̂iθ

 .

(A.62)

To compute the expectation in (A.62), we use Lemma A.2, and set

ZA ≡ 0,

ZB ≡ 0,

ZC ≡
τζ(τϵ + τηi + τθ)

αi(τϵ + τζ + τηi + τθ)
vv̂′,

Si ≡ Diag(σ2
ϵ , {σ2

ηj}j=1,..,N , σ2
θ),

v ≡

 N∑
j=1

aij + bi, {aij}j=1,..,N , bi

′

,

v̂ ≡

 N∑
j=1

âij + b̂i, {âij}j=1,..,N , b̂i

′

.

Lemma A.2 implies that (A.62) is equal to

− 1√∣∣∣I + τζ(τϵ+τηi+τθ)

(τϵ+τζ+τηi+τθ)
vv̂′Σ

∣∣∣ = − 1√
1 +

τζ(τϵ+τηi+τθ)

(τϵ+τζ+τηi+τθ)
v′Σv̂

, (A.63)

where the second step follows from Lemma A.3.

We next use (A.63) to compute the expected utility of a fully cursed trader under the as-

sumptions in the proposition. When αi = α for all i and σ2
ζ = 0, ({aij}j=1,..,N , bi) are given

by (A.44)-(A.46). Moreover, substituting ({Aj}j=1,..,N , A, {aij}j=1,..,N , bi) from (A.42)-(A.46) into
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(A.60) and (A.61), and using αi = α for all i and σ2
ζ = 0, we find

âii =
[(N − 1)(τϵ + τθ)−Nτη + τηi ] τηi
N(τϵ + τη + τθ)(τϵ +Nτη + τθ)

, (A.64)

âij =
[(2N − 1)(τϵ + τθ) + τηi ] τηj

N(τϵ + τη + τθ)(τϵ +Nτη + τθ)
for j ̸= i, (A.65)

b̂i =
[−(2N − 1)τη + τηi ] τθ

(τϵ + τη + τθ)(τϵ +Nτη + τθ)
, (A.66)

N∑
j=1

âij + b̂i =
[(2N − 1)τη − τηi ] τϵ

(τϵ + τη + τθ)(τϵ +Nτη + τθ)
. (A.67)

Substituting into (A.63), and using again σ2
ζ = 0, we can write the term inside the squared root as

1 +
(τηi − τη) [(2N − 1)τη − τηi ] τ

2
ϵ

(τϵ + τη + τθ)2(τϵ +Nτη + τθ)
σ2
ϵ

+
[(N − 1)(τϵ + τθ) +Nτη − τηi ] [(N − 1)(τϵ + τθ)−Nτη + τηi ] τ

2
ηi

N2(τϵ + τη + τθ)2(τϵ +Nτη + τθ)
σ2
ηi

−
∑
j ̸=i

(τϵ + τηi + τθ) [(2N − 1)(τϵ + τθ) + τηi ] τ
2
ηj

N2(τϵ + τη + τθ)2(τϵ +Nτη + τθ)
σ2
ηj +

(τη − τηi) [−(2N − 1)τη + τηi ] τ
2
θ

(τϵ + τη + τθ)2(τϵ +Nτη + τθ)
σ2
θ .

(A.68)

Eq. (25) can be derived from (A.68) by following the same steps as when deriving (24) from

(A.48). Trader i has higher expected utility than trader j if and only if the difference between

the numerator inside the squared root in (25) and the corresponding term for j is positive. The

difference is Z(τηi − τηj ), where

Z ≡ N(τϵ + τθ)
2 + (τϵ + τθ)

[
2N(N + 1)τη − (N − 2)(τηi + τηj )

]
− (Nτη − τηi − τηj )τη. (A.69)

Since Z is linear in τηi+τηj ∈ (0, Nτη), it is positive if this is the case at the boundaries τηi+τηj = 0

and τηi + τηj = Nτη. For τηi + τηj = Nτη,

Z = N(τϵ + τθ)
2 +N(N + 4)(τϵ + τθ)τη > 0.

For τηi + τηj = 0,

Z = N(τϵ + τθ)
2 + 2N(N + 1)(τϵ + τθ)τη −Nτ2η ,

55



and is positive if (26) holds. Therefore, if (26) holds, trader i has higher expected utility than

trader j if and only if τηi > τηj . If instead (26) does not hold, Z < 0 for τηi + τηj = 0, and there

exist τηi > τηj such that trader i has lower expected utility than trader j.

Proof of Proposition 8. Setting (τηi , Ai) = (τη, A) in (A.16), we find τξi = (N − 1)τη. Set-

ting (χi, αi, τηi , τξi , Ai) = (χ, α, τη, (N − 1)τη, A) for all i in (11) and (12), we find (28) and (29),

respectively. The comparative statics of (A,B) follow from (28) and (29).

Substituting p from (27) into (A.13), and using symmetry and zi = 0, we can write the quantity

that trader i trades in equilibrium as

xi =
τζ(τϵ + τη + τθ)(τϵ +Nτη + τθ)

α (τζ {τϵ + [1 + χ(N − 1)] τη + τθ}+ (τϵ + τη + τθ)(τϵ +Nτη + τθ))

 N∑
j=1

aijsj + bis

 ,

(A.70)

where

aii ≡
τη {τϵ + [1 + χ(N − 1)] τη + τθ}
(τϵ + τη + τθ)(τϵ +Nτη + τθ)

−A, (A.71)

aij ≡
(1− χ)τη

τϵ +Nτη + τθ
−A, for j ̸= i, (A.72)

bi ≡
τθ {τϵ + [1 + χ(N − 1)] τη + τθ}
(τϵ + τη + τθ)(τϵ +Nτη + τθ)

−B. (A.73)

Proceeding as in the proof of Proposition 6, we find

E (|xi|) =
τζ(τϵ + τη + τθ)(τϵ +Nτη + τθ)

α (τζ {τϵ + [1 + χ(N − 1)] τη + τθ}+ (τϵ + τη + τθ)(τϵ +Nτη + τθ))

×

√√√√√ 2

π

 N∑
j=1

aij + bi

2

σ2
ϵ +

N∑
j=1

a2ijσ
2
ηj + b2iσ

2
θ

. (A.74)
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Substituting (A,B) from (28) and (29) into (A.71)-(A.73), we find

aii =
χ(N − 1)τη

N(τϵ + τη + τθ)
,

aij = − χτη
N(τϵ + τη + τθ)

, for j ̸= i,

bi = 0,

N∑
j=1

aij + bi = 0.

Substituting into (A.74), we find (30). The comparative statics with respect to χ follow from (30).

The comparative statics with respect to N also follow from (30) by writing the term multiplying

the squared root as

χτζ

α
(
τζ

τϵ+[1+χ(N−1)]τη+τθ
τϵ+Nτη+τθ

+ τϵ + τη + τθ

)
and noting that

τϵ + [1 + χ(N − 1)] τη + τθ
τϵ +Nτη + τθ

decreases in N .

Proof of Proposition 9. Setting (τηi , Ai) = (τηr, Ar) for i ∈ R and (τηi , Ai) = (τηc, Ac) for i ∈ C

in (A.16), we find

τξi =
[(Nr − 1)Ar +NcAc]

2 τηrτηc
(Nr − 1)A2

rτηc +NcA2
cτηr

≡ τξ. (A.75)

for i ∈ R. We next set (χi, αi, τηi , τξi , Ai) = (0, αr, τηr, τξ, Ar) for i ∈ R and (χi, αi, τηi , Ai) =

(1, αc, τηc, Ac) for i ∈ C in (11) and (12). Equation (11) written for a rational trader becomes

τηr − τξ
Ar

(Nr−1)Ar+NcAc

αr(τϵ + τζ + τηr + τθ + τξ)
= Ar

Nr

(
τϵ + τηr + τθ + τξ − τξ

1
(Nr−1)Ar+NcAc

)
αr(τϵ + τζ + τηr + τθ + τξ)

+
Nc(τϵ + τηc + τθ)

αc(τϵ + τζ + τηc + τθ)

 ,

(A.76)

and written for a fully cursed trader becomes

τηc
αc(τϵ + τζ + τηc + τθ)

= Ac

Nr

(
τϵ + τηr + τθ + τξ − τξ

1
(Nr−1)Ar+NcAc

)
αr(τϵ + τζ + τηr + τθ + τξ)

+
Nc(τϵ + τηc + τθ)

αc(τϵ + τζ + τηc + τθ)

 .
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(A.77)

Equation (12) becomes

Nrτθ
αr(τϵ + τζ + τηr + τθ + τξ)

+
Ncτθ

αc(τϵ + τζ + τηc + τθ)

= B

[
Nr(τϵ + τηr + τθ + τξ)

αr(τϵ + τζ + τηr + τθ + τξ)
+

Nc(τϵ + τηc + τθ)

αc(τϵ + τζ + τηc + τθ)

]
. (A.78)

Equations (A.76) and (A.77) form a system of two equations in the two unknowns (Ar, Ac). We

can reduce this system to one equation by setting x ≡ Ar
Ac

. Equation (A.75) then becomes (35),

and (A.77) and (A.78) yield (33) and (34), respectively. Moreover, dividing (32) by (33), we find

τηr − τξ
x

(Nr−1)x+Nc

αr(τϵ + τζ + τηr + τθ + τξ)

αc(τϵ + τζ + τηc + τθ)

τηc
= x

⇒ x =
αc

{
τηr − x[(Nr−1)x+Nc]τηrτηc

(Nr−1)x2τηc+Ncτηr

}
(τϵ + τζ + τηc + τθ)

αrτηc

{
τϵ + τζ + τηr + τθ +

[(Nr−1)x+Nc]
2τηrτηc

(Nr−1)x2τηc+Ncτηr

} , (A.79)

where the second step follows by (35). Equation (A.79) yields (36).

For x ≤ 0, the left-hand side of (36) is non-positive and the right-hand side is positive. For

x ≥ τηr
τηc

the left-hand side of (36) is positive and the right-hand side is non-positive. Therefore, a

solution of (36) must belong to (0,
τηr
τηc

). For x ∈ (0,
τηr
τηc

), the left-hand side of (36) is increasing in

x and the right-hand side is decreasing in x (because the numerator is decreasing, the denominator

is increasing, and both are positive). Since the left-hand side is zero at x = 0, and the right-hand

side is zero at x =
τηr
τηc

, a solution of (36) exists and is unique.

Proof of Proposition 10. Because of symmetry, the coefficient γi is equal to a common value γr

for all rational traders and to a common value γc for all fully cursed traders. Market clearing (5)

implies that Nrγr +Ncγc = 0. Hence, to prove the proposition it suffices to show that γc < 0.

The coefficient γc is proportional to Cov(xi, p − d). Substituting p from (31) into (A.13), and

setting (χi, τηi , zi) = (1, τηc, 0), we find that Cov(xi, p− d) has the same sign as

Cov

(
d+

τηcsi + τθs

τϵ + τηc + τθ
− p.p− d

)
(A.80)
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Using (1), (2) and (31), we find that Cov(xi, p− d) has the same sign as(
τηc + τθ

τϵ + τηc + τθ
−NrAr −NcAc −B

)
(NrAr +NcAc +B)σ2

ϵ

+

(
τηc

τϵ + τηc + τθ
−NcAc

)
Acσ

2
ηc −NrA

2
rσ

2
ηr +

(
τθ

τϵ + τηc + τθ
−B

)
Bσ2

θ , (A.81)

where (σ2
ηr, σ

2
ηc) ≡ ( 1

τηr
, 1
τηc

). To determine the sign of (A.81), we compute some of the terms in

that equation.

Multiplying (A.76) by Nr, (A.77) by Nc, and adding the sum of the resulting equations to

(A.78), we find

(NrAr +NcAc +B)D =
Nr(τηr + τθ) +Nrτξ

(Nr−1)Ar+NcAc

(Nr−1)Ar+NcAc

αr(τϵ + τζ + τηr + τθ + τξ)
+

Nc(τηc + τθ)

αc(τϵ + τζ + τηc + τθ)

=
Nr(τηr + τθ + τξ)

αr(τϵ + τζ + τηr + τθ + τξ)
+

Nc(τηc + τθ)

αc(τϵ + τζ + τηc + τθ)
,

where

D ≡
Nr(τϵ + τηr + τθ + τξ)

αr(τϵ + τζ + τηr + τθ + τξ)
+

Nc(τϵ + τηc + τθ)

αc(τϵ + τζ + τηc + τθ)
.

Therefore,

τηc + τθ
τϵ + τηc + τθ

−NrAr −NcAc −B =
τηc + τθ

τϵ + τηc + τθ
−

Nr(τηr+τθ+τξ)
αr(τϵ+τζ+τηr+τθ+τξ)

+
Nc(τηc+τθ)

αc(τϵ+τζ+τηc+τθ)

D

=

Nr(τηc+τθ)(τϵ+τηr+τθ+τξ)
τϵ+τηc+τθ

−Nr(τηr + τθ + τξ)

αr(τϵ + τζ + τηr + τθ + τξ)D

=
Nrτϵ(τηc − τηr − τξ)

αr(τϵ + τζ + τηr + τθ + τξ)(τϵ + τηc + τθ)D
. (A.82)

Multiplying (A.76) by NrAr
τηr

, (A.77) by NcAc
τηc

, and adding the resulting equations, we find

(
NrA

2
r

τηr
+

NcA
2
c

τηc

)
D =

NrAr +Nrτξ
(Nr−1)

A2
r

τηr
+

NcA
2
c

τηc

(Nr−1)Ar+NcAc

αr(τϵ + τζ + τηr + τθ + τξ)
+

NcAc

αc(τϵ + τζ + τηc + τθ)

=
NrAr +Nr [(Nr − 1)Ar +NcAc]

αr(τϵ + τζ + τηr + τθ + τξ)
+

NcAc

αc(τϵ + τζ + τηc + τθ)

=
Nr(NrAr +NcAc)

αr(τϵ + τζ + τηr + τθ + τξ)
+

NcAc

αc(τϵ + τζ + τηc + τθ)
,
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where the second step follows from (A.75). Therefore,

(
τηc

τϵ + τηc + τθ
−NcAc

)
Acσ

2
ηc −NrA

2
rσ

2
ηr =

Ac

τϵ + τηc + τθ
−

Nr(NrAr+NcAc)
αr(τϵ+τζ+τηr+τθ+τξ)

+ NcAc
αc(τϵ+τζ+τηc+τθ)

D

=

Nr(τϵ+τηr+τθ+τξ)Ac

τϵ+τηc+τθ
−Nr(NrAr +NcAc)

αr(τϵ + τζ + τηr + τθ + τξ)D
. (A.83)

Using (34), we find

τθ
τϵ + τηc + τθ

−B =
τθ

τϵ + τηc + τθ
−

Nrτθ
αr(τϵ+τζ+τηr+τθ+τξ)

+ Ncτθ
αc(τϵ+τζ+τηc+τθ)

D

=

Nrτθ(τϵ+τηr+τθ+τξ)
τϵ+τηc+τθ

−Nrτθ

αr(τϵ + τζ + τηr + τθ + τξ)D

=
Nrτθ(τηr + τξ − τηc)

αr(τϵ + τζ + τηr + τθ + τξ)(τϵ + τηc + τθ)D
. (A.84)

Equations (A.82), (A.83) and (A.84) imply that (A.81) is equal to

Nr(τηc − τηr − τξ)(NrAr +NcAc +B)

αr(τϵ + τζ + τηr + τθ + τξ)(τϵ + τηc + τθ)D

+

Nr(τϵ+τηr+τθ+τξ)Ac

τϵ+τηc+τθ
−Nr(NrAr +NcAc)

αr(τϵ + τζ + τηr + τθ + τξ)D
+

Nr(τηr + τξ − τηc)B

αr(τϵ + τζ + τηr + τθ + τξ)(τϵ + τηc + τθ)D

=
Nr(τϵ + τηr + τθ + τξ)(Ac −NrAr −NcAc)

αr(τϵ + τζ + τηr + τθ + τξ)(τϵ + τηc + τθ)D
.

This is negative because Nc ≥ 1, Ar > 0 and Ac > 0.

Proof of Proposition 11. Expected aggregate trading volume when all N traders are fully cursed

is N times the expected volume that each trader generates, given by (23). To compute expected

aggregate trading volume when one trader is rational and N − 1 traders are fully cursed, we start

by computing the expected trading volume that one fully cursed trader generates. Substituting p

from (31) into (A.13), setting (χi, αi, τηi , zi) = (1, α, τη, 0), and denoting the rational trader by ir,

we can write the quantity that trader i ̸= ir trades in equilibrium as

xi =
τζ(τϵ + τη + τθ)

α(τϵ + τζ + τη + τθ)

 N∑
j=1

aijsj + bis

 ,
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where

aii ≡
τη

τϵ + τη + τθ
−Ac, (A.85)

aiir ≡ −Ar, (A.86)

aij ≡ −Ac for j ̸= i, ir, (A.87)

bi ≡
τθ

τϵ + τη + τθ
−B. (A.88)

Proceeding as in the proof of Proposition 6, and using τηi = τη for all i, we find

E (|xi|) =
τζ(τϵ + τη + τθ)

α(τϵ + τζ + τη + τθ)

√√√√√ 2

π

 N∑
j=1

aij + bi

2

σ2
ϵ +

N∑
j=1

a2ijσ
2
η + b2iσ

2
θ

, (A.89)

where σ2
η ≡ 1

τη
. Equations (A.85)-(A.88) imply that

N∑
j=1

aij + bi =
τη

τϵ + τη + τθ
−Ar − (N − 1)Ac −B.

Using (A.82) and setting τηr = τηc = τη, Nr = 1, Nc = N − 1, and τξ = (N − 1)τη (which is implied

by (35) for Nr = 1 and Nc = N − 1), we find

N∑
j=1

aij + bi = −
(N − 1)τϵτη(τϵ + τζ + τη + τθ)

(τϵ + τη + τθ)G
, (A.90)

where

G ≡ (N − 1)(τϵ + τη + τθ)(τϵ + τζ +Nτη + τθ) + (τϵ +Nτη + τθ)(τϵ + τζ + τη + τθ).

Using (A.84) and (A.88), and setting τηr = τηc = τη, Nr = 1, Nc = N − 1 and τξ = (N − 1)τη, we

likewise find

bi =
(N − 1)τθτη(τϵ + τζ + τη + τθ)

(τϵ + τη + τθ)G
, (A.91)

Equations (A.85)-(A.87) imply that

N∑
j=1

a2ij =

(
τη

τϵ + τη + τθ
−Ac

)2

+A2
r + (N − 2)A2

c .
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To compute this quantity, we note that for τηr = τηc = τη, Nr = 1, Nc = N −1 and τξ = (N −1)τη,

(36) implies that

x =
τϵ + τζ + τη + τθ

2(τϵ + τζ + τθ) + (N + 1)τη
,

and (32) and (33) become

Ar =
τη [2(τϵ + τζ + τθ) + (N + 1)τη]

G
, (A.92)

Ac =
τη(τϵ + τζ + τη + τθ)

G
, (A.93)

respectively. Using (A.92) and (A.93), we find

aii =
τη [(N − 2)(τϵ + τη + τθ)(τϵ + τζ +Nτη + τθ) + (N − 1)τη(τϵ + τζ + τη + τθ)]

(τϵ + τη + τθ)G
, (A.94)

and

N∑
j ̸=i

a2ij =
τη
G
[
(N − 1)(τϵ + τζ + τη + τθ)

2

+2(N − 2)(τϵ + τζ + τη + τθ)(τϵ + τζ +Nτη + τθ) + (N − 2)(τϵ + τζ +Nτη + τθ)
2
]
. (A.95)

Using (A.90), (A.91), (A.94) and (A.95), we can write (A.89) as

E (|xi|) =
τζ
√

2τη(τϵ + τη + τθ)Nc

α(τϵ + τζ + τη + τθ)G
√
π
, (A.96)

where

Nc ≡(τϵ +Nτη + τθ)(τϵ + τζ + τη + τθ) [(N − 1)(τϵ + τζ + τη + τθ) + 2(N − 2)(τϵ + τζ +Nτη + τθ)]

+ (N − 2)(N − 1)(τϵ + τη + τθ)(τϵ + τζ +Nτη + τθ)
2.

We next compute the expected trading volume that the rational trader ir generates. The

market-clearing equation (5) implies that

xir = −
∑
j ̸=ir

xj = −
τζ(τϵ + τη + τθ)

α(τϵ + τζ + τη + τθ)

 N∑
k=1

∑
j ̸=ir

ajksk +
∑
j ̸=ir

bjs

 ,
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and hence

E (|xir |) =
τζ(τϵ + τη + τθ)

α(τϵ + τζ + τη + τθ)

√√√√√ 2

π

 N∑
k=1

∑
j ̸=ir

ajk +
∑
j ̸=ir

bj

2

σ2
ϵ +

N∑
k=1

∑
j ̸=ir

ajk

2

σ2
ηc +

∑
j ̸=ir

bj

2

σ2
θ

.
(A.97)

Equations (A.85)-(A.88) imply that

N∑
k=1

∑
j ̸=ir

ajk +
∑
j ̸=ir

bj = (N − 1)

(
τη

τϵ + τη + τθ
− (N − 1)Ac −Ar −B

)

= −
(N − 1)2τϵτη(τϵ + τζ + τη + τθ)

(τϵ + τη + τθ)G
, (A.98)

where the second step follows from (A.90). Equation (A.88) implies that

∑
j ̸=ir

bj = (N − 1)

(
τθ

τϵ + τη + τθ
−B

)

=
(N − 1)2τθτη(τϵ + τζ + τη + τθ)

(τϵ + τη + τθ)G
, (A.99)

where the second step follows from (A.91). Equations (A.86) and (A.87) imply that

N∑
k=1

∑
j ̸=ir

ajk

2

= (N − 1)2A2
r + (N − 1)

(
τη

τϵ + τη + τθ
− (N − 1)Ac

)2

=
(N − 1)τ2η (τϵ + τζ + τη + τθ)

2
[
(N − 1)(τθ + τη + τθ)

2 + [τη − (N − 2)(τϵ + τθ)]
2
]

(τϵ + τη + τθ)2G2
,

(A.100)

where the second step follows from (A.92) and (A.93). Using (A.98), (A.99) and (A.100), we can

write (A.97) as

E (|xir |) =
τζ
√

2(N − 1)τη(τϵ +Nτη + τθ)Nr

αG
√
π

, (A.101)

where

Nr ≡ (N − 1)2(τϵ + τη + τθ)− (N − 2)(τϵ +Nτη + τθ).
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Combining (23) with (A.96) and (A.101), we find that expected aggregate trading volume is

larger when one trader is rational and N − 1 traders are fully cursed than when all N traders are

fully cursed if

N

√
N − 1

(τϵ + τζ + τη + τθ)
√
N

< (N − 1)

√
(τϵ + τη + τθ)Nc

(τϵ + τζ + τη + τθ)G
+

√
(N − 1)(τϵ +Nτη + τθ)Nr

G

⇔
√
N <

√
(N − 1)(τϵ + τη + τθ)Nc

G
+

(τϵ + τζ + τη + τθ)
√

(τϵ +Nτη + τθ)Nr

G
. (A.102)

Equation (A.102) holds under the sufficient condition

N <
(N − 1)(τϵ + τη + τθ)Nc

G2
+

(τϵ + τζ + τη + τθ)
2(τϵ +Nτη + τθ)Nr

G2
. (A.103)

Multiplying both sides by G2, using the definitions of (G,Nc,Nr), and rearranging, we can write

(A.103) as (38).

When τζ = ∞, (38) becomes

1

N − 1

(
τϵ +Nτη + τθ
τϵ + τη + τθ

)2

+

(
2

N − 1
− 1

)
τϵ +Nτη + τθ
τϵ + τη + τθ

+ 1 < 0. (A.104)

Setting y ≡ τη
τϵ+τθ

, we can write (A.104) as

1

N − 1

(
1 +Ny

1 + y

)2

− (N − 3)(1 +Ny)

(N − 1)(1 + y)
+ 1 < 0

3− (N2 − 6N − 1)y + (4N − 1)y2 < 0. (A.105)

The left-hand side of (A.105) converges to −∞ when N goes to ∞. Hence, (A.105) is satisfied for

N large enough.

Proof of Proposition 12. To derive the results for the rational case, we use (10)-(13) and set

(χi, αi, τηi , τzi , Ai, Ci) = (0, α, τη, τz, A, C) for all i. Equations (10)-(13) yield

τξi =
(N − 1)τητz

τz +
C2

A2 τη
≡ τξ for all i, (A.106)

A =
τη + τξ

N(τϵ + τη + τθ + τξ)
, (A.107)

B =
τθ

τϵ + τη + τθ + τξ
, (A.108)

C

A
= α

τϵ + τζ + τη + τθ + τξ
τζτη

, (A.109)
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respectively. Substituting τξ from (A.106) to (A.107)-(A.109), we find (40)-(42), respectively. Eq.

(42) is cubic in C
A , and hence has at least one solution. Any of its solutions satisfies

C

A
τζτη − α(τϵ + τζ + τη + τθ) > 0, (A.110)

and hence is positive. The derivative of the left-hand side of (42) with respect to C
A is

2
C

A
τη

(
C

A
τζτη − α(τϵ + τζ + τη + τθ)

)
+

(
τz +

C2

A2
τη

)
τζτη,

and is positive at any solution of (42) because of (A.110). Therefore, (42) has a unique solution.

To derive the results for the fully cursed case, we use (11)-(13) and set (χi, αi, τηi , τzi , Ai, Ci) =

(1, α, τη, τz, A, C) for all i. Equations (11)-(13) yield

A =
τη

N(τϵ + τη + τθ)
,

B =
τθ

τϵ + τη + τθ
,

C = Aα
τϵ + τζ + τη + τθ

τζτη
,

respectively. The coefficients (A,B,C) coincide with those in (40)-(42) for τζ = 0.

Proof of Proposition 13. To show the result for regression (21), we note that γ is proportional

to

Cov(d− p, s) = (1−NA−B)σ2
ϵ −Bσ2

θ ,

where the equality follows from (1), (2) and (39). Substituting (A,B) from Proposition 12, we find

that

Cov(d− p, s) =

1−
τη +

(N−1)τητz

τz+
C2

A2 τη
+ τθ

τϵ + τη + τθ +
(N−1)τητz

τz+
C2

A2 τη

σ2
ϵ −

τθ

τϵ + τη + τθ +
(N−1)τητz

τz+
C2

A2 τη

σ2
θ = 0

when all traders are rational, and

Cov(d− p, s) =

(
1− τη + τθ

τϵ + τη + τθ

)
σ2
ϵ −

τθ
τϵ + τη + τθ

σ2
θ = 0

when they are fully cursed.
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To show the result for regression (22), we likewise note that γ is proportional to

Cov(d− p, p− d) = (1−NA−B)(NA+B)σ2
ϵ −NA2σ2

η −B2σ2
θ −NC2σ2

z

= (1−NA−B)(NA+B)σ2
ϵ −NA2

(
σ2
η +

C2

A2
σ2
z

)
−B2σ2

θ ,

where σ2
z ≡ 1

τz
. Substituting (A,B,C) from Proposition 12, we find that

Cov(d− p, p− d) =

τη +
(N−1)τητz

τz+
C2

A2 τη(
τϵ + τη + τθ +

(N−1)τητz

τz+
C2

A2 τη

)2 −

(
τη +

(N−1)τητz

τz+
C2

A2 τη

)2 (
σ2
η +

C2

A2σ
2
z

)
N

(
τϵ + τη + τθ +

(N−1)τητz

τz+
C2

A2 τη

)2

=

τη +
(N−1)τητz

τz+
C2

A2 τη(
τϵ + τη + τθ +

(N−1)τητz

τz+
C2

A2 τη

)2

1−

(
τη +

(N−1)τητz

τz+
C2

A2 τη

)(
τz +

C2

A2 τη

)
Nτητz



= −

(
τη +

(N−1)τητz

τz+
C2

A2 τη

)
C2τη
NA2τz(

τϵ + τη + τθ +
(N−1)τητz

τz+
C2

A2 τη

)2 < 0

when all traders are rational, and

Cov(d− p, p− d) =
τη

(τϵ + τη + τθ)2
−

τ2η

(
σ2
η +

C2

A2σ
2
z

)
N(τϵ + τη + τθ)2

=
τη

(τϵ + τη + τθ)2

1−
τη

(
τz +

C2

A2 τη

)
Nτητz


=

(N − 1)τη
N(τϵ + τη + τθ)2

(
1−

α2(τϵ + τζ + τη + τθ)
2

(N − 1)τ2ζ τητz

)
(A.111)

when they are fully cursed. The last step in the derivation of (A.111) follows from (42). Equation

(A.111) yields (43).

Proof of Proposition 14. We first determine expected trading volume when all traders are

rational. When (Ai, Ci) = (A,C) for all i, the signal ϵ+ ξi defined by (9) takes the form

ϵ+ ξi =

∑
j ̸=i sj −

C
A

∑
j ̸=i zj

N − 1
. (A.112)
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Substituting p from (39) into (A.13), and using symmetry, χi = 0 and (A.112), we can write the

quantity that trader i trades in equilibrium as

xi =
τζ(τϵ + τη + τθ + τξ)

α(τϵ + τζ + τη + τθ + τξ)

 N∑
j=1

aijsj + bis+
N∑
j=1

cijzj

 , (A.113)

where

aii ≡
τη

τϵ + τη + τθ + τξ
−A, (A.114)

aij ≡
τξ

(N − 1)(τϵ + τη + τθ + τξ)
−A for j ̸= i, (A.115)

bi ≡
τθ

τϵ + τη + τθ + τξ
−B, (A.116)

cii ≡ C −
α(τϵ + τζ + τη + τθ + τξ)

τζ(τϵ + τη + τθ + τξ)
, (A.117)

cij ≡ C −
Cτξ

(N − 1)A(τϵ + τη + τθ + τξ)
for j ̸= i. (A.118)

Proceeding as in the proof of Proposition (6), we find

E (|xi|) =
τζ(τϵ + τη + τθ + τξ)

α(τϵ + τζ + τη + τθ + τξ)

√√√√√ 2

π

 N∑
j=1

aij + bi

2

σ2
ϵ +

N∑
j=1

a2ijσ
2
η + b2iσ

2
θ +

N∑
j=1

c2ijσ
2
z

.
(A.119)

Substituting (A,B,C) from (A.107)-(A.109) into (A.114)-(A.118), we find

aii =
(N − 1)τη − τξ

N(τϵ + τη + τθ + τξ)
,

aij = −
(N − 1)τη − τξ

N(N − 1)(τϵ + τη + τθ + τξ)
for j ̸= i,

bi = 0,

cii = −
α(τϵ + τζ + τη + τθ + τξ) [(N − 1)τη − τξ]

Nτζτη(τϵ + τη + τθ + τξ)
,

cij =
α(τϵ + τζ + τη + τθ + τξ) [(N − 1)τη − τξ]

N(N − 1)τζτη(τϵ + τη + τθ + τξ)
for j ̸= i,

N∑
j=1

aij + bi = 0.
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Substituting into (A.119), we find

E (|xi|) =

√√√√2 [(N − 1)τη − τξ]
2

πN(N − 1)τη

(
τ2ζ

α2(τϵ + τζ + τη + τθ + τξ)2
+

1

τητz

)

=

√
2 [(N − 1)τη − τξ]

2

πN(N − 1)τη

(
A2

C2τ2η
+

1

τητz

)

=

√√√√√√2(N − 1)2τ2η

(
1− τz

τz+
C2

A2 τη

)2

πN(N − 1)τη

(
A2

C2τ2η
+

1

τητz

)

=

√√√√ 2(N − 1)C
2

A2 τη

πNτz

(
τz +

C2

A2 τη

) , (A.120)

where the second step follows from (A.109) and the third from (A.106).

Equation (A.120) implies that volume is increasing in N if C
A is increasing in N . In the proof

of Proposition 12 we show that the derivative of the left-hand side of (42) with respect to C
A is

positive at the solution C
A . Since the derivative with respect to N is negative, C

A is increasing in N .

To show that volume is inverse hump-shaped in τη, we set ω ≡ C
A

√
τη and write (42) as(

τz + w2
) (

ωτζ
√
τη − α(τϵ + τζ + τη + τθ)

)
− α(N − 1)τητz = 0 (A.121)

and (A.120) as

E (|xi|) =

√
2(N − 1)ω2

πNτz (τz + ω2)
. (A.122)

Eq. (A.122) implies that the effects of τη on volume and ω have the same sign. The derivative

of the left-hand side of (A.121) with respect to ω is equal to
√
τη times the same derivative with

respect to C
A . Therefore, it is positive at the solution ω. The derivative with respect to τη is(

τz + w2
)( ωτζ

2
√
τη

− α

)
− α(N − 1)τz,

and is equal to

1

τη

[(
τz + w2

)(1

2
ωτζ

√
τη − ατη

)
− α(N − 1)τητz

]
=

1

τη

[(
τz + w2

)(1

2
ωτζ

√
τη − ατη

)
−
(
τz + w2

) (
ωτζ

√
τη − α(τϵ + τζ + τη + τθ)

)]
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at the solution w. It is negative if and only if

ω >
2α(τϵ + τζ + τθ)

τζ
√
τη

.

This condition is equivalent to the left-hand side of (A.121) being negative for ω =
2α(τϵ+τζ+τθ)

τζ
√
τη

.

We can write the latter condition as

[
τ2ζ τητz + 4α2(τϵ + τζ + τθ)

2
]
(τϵ + τζ + τθ − τη)− (N − 1)τ2ζ τ

2
η τz < 0. (A.123)

The left-hand side of (A.123) is a quadratic function of τη that is positive for τη = 0 and goes to

−∞ when τη goes to ∞. Therefore, there exists a unique τ∗η > 0 such that (A.123) holds for τη > τ∗η

and the opposite inequality holds for τη < τ∗η . Volume and ω are thus decreasing in τη for τη < τ∗η

and increasing in τη for τη > τ∗η , i.e., are inverse hump-shaped in τη.

We next determine expected trading volume when all traders are fully cursed. Substituting p

from (39) into (A.13), and using symmetry and χi = 1, we can write the quantity that trader i

trades in equilibrium as

xi =
τζ(τϵ + τη + τθ)

α(τϵ + τζ + τη + τθ)

 N∑
j=1

aijsj + bis+

N∑
j=1

cijzj

 , (A.124)

where

aii ≡
τη

τϵ + τη + τθ
−A, (A.125)

aij ≡ −A for j ̸= i, (A.126)

bi ≡
τθ

τϵ + τη + τθ
−B, (A.127)

cii ≡ C −
α(τϵ + τζ + τη + τθ)

τζ(τϵ + τη + τθ)
, (A.128)

cij ≡ C for j ̸= i. (A.129)

Proceeding as in the proof of Proposition (6), we find

E (|xi|) =
τζ(τϵ + τη + τθ)

α(τϵ + τζ + τη + τθ)

√√√√√ 2

π

 N∑
j=1

aij + bi

2

σ2
ϵ +

N∑
j=1

a2ijσ
2
η + b2iσ

2
θ +

N∑
j=1

c2ijσ
2
z

. (A.130)
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Substituting (A,B,C) from (A.107)-(A.109) for τz = 0 into (A.125)-(A.129), we find

aii =
(N − 1)τη

N(τϵ + τη + τθ)
,

aij = − τη
N(τϵ + τη + τθ)

for j ̸= i,

bi = 0,

cii = −
(N − 1)α(τϵ + τζ + τη + τθ)

Nτζ(τϵ + τη + τθ)
,

cij =
α(τϵ + τζ + τη + τθ)

Nτζ(τϵ + τη + τθ)
for j ̸= i,

N∑
j=1

aij + bi = 0.

Substituting into (A.130), we find

E (|xi|) =

√√√√2(N − 1)

πN

(
τ2ζ τη

α2(τϵ + τζ + τη + τθ)2
+

1

τz

)
. (A.131)

The square of the right-hand side of (A.131) is equal to its counterpart without endowment shocks

(the square of the right-hand side of (23)) plus a constant. Therefore, (A.131) is increasing in N

and is hump-shaped in τη.

Proof of Proposition 15. We first determine traders’ demand functions assuming that the price

takes the form (44). The information Ii of trader i consists of his private signal si, the public signal

s, and the signal ϵ+ ξi that is revealed from the price. Since all private signals enter the price with

the same coefficient, (9) implies that

ϵ+ ξi =

∑
j ̸=i sj

N − 1
⇒ ξi =

∑
j ̸=i ηj

N − 1
. (A.132)

To compute the distribution of ϵ conditional on Ii, we use Lemma A.1 with x = ϵ, K = 3,

{yj}j=1,2,3 = (ηi, η, ξi), and trader i’s assessments of precision. Combining with (A.7) and (A.8),

and setting (χi, Iir) = (0, Ii) in (8), we can write the demand of trader i as

xi =
d+

κτη
τϵ+κτη+τθ+(N−1)γτη

si +
τθ

τϵ+κτη+τθ+(N−1)γτη
s+

(N−1)γτη
τϵ+κτη+τθ+(N−1)γτη

(ϵ+ ξi)− p

α
(

1
τϵ+κτη+τθ+(N−1)γτη

+ 1
τζ

) . (A.133)
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We next substitute (A.133) into the market-clearing condition (5), substituting also p from (44)

and ϵ+ ξi from (A.132). This yields an equation that is linear in
(∑N

i=1 si, s
)
. Identifying terms in∑N

i=1 si and s yields (45) and (46), respectively. The comparative statics of A and B follow from

(45) and (46).

Proof of Proposition 16. Substituting p from (44) into (A.133) and using (45), (46) and (A.132),

we can write the quantity that trader i trades in equilibrium as

xi =
τζ

α [τϵ + τζ + [(N − 1)γ + κ]τη + τθ]

N∑
j=1

aijsj , (A.134)

where

aii ≡
N − 1

N
(κ− γ)τη, (A.135)

aij ≡ − 1

N
(κ− γ)τη for j ̸= i. (A.136)

Proceeding as in the proof of Proposition (6), we find

E (|xi|) =
τζ

α [τϵ + τζ + [(N − 1)γ + κ]τη + τθ]

√√√√√ 2

π

 N∑
j=1

aij

2

σ2
ϵ +

N∑
j=1

a2ijσ
2
η

. (A.137)

Substituting {aij}j=1,..,N from (A.135) and (A.136) into (A.137), we find (47). The asymptotic

behavior of E (|xi|) and of aggregate volume NE (|xi|) follows from (A.137).

Proof of Proposition 17. The proposition follows by setting γ = 0 in (47) since full cursedness

is equivalent to extreme contemptuousness.
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