Economic Growth in a Cooperative Economy

Thomas Brzustowski and Francesco Caselli

Backlash against Capitalism

Politics

- Leftward shift (of leftist parties)
- Re-legitimization of "socialism"
- Academia and Public Intellectuals
 - Tsunami of "Crisis of Capitalism" books
 - Proposals to reform corporate governance
 - Employee role in management ("Democratizing Work")
 - Dropping "shareholder value"
 - Rethinking the corporation's purpose

Dynamic model of a cooperative-based economy

Advocated by many

- Advocated by many
- Already existing

- Advocated by many
- Already existing
- Basis for the study of variants (e.g. worker councils)

- Advocated by many
- Already existing
- Basis for the study of variants (e.g. worker councils)
- Goals of the paper

Dynamic model of a cooperative-based economy

- Advocated by many
- Already existing
- Basis for the study of variants (e.g. worker councils)
- Goals of the paper

Formal framework to study cooperatives in dynamic GE

- Advocated by many
- Already existing
- Basis for the study of variants (e.g. worker councils)
- Goals of the paper
 - Formal framework to study cooperatives in dynamic GE
 - Dynamic challenge: Capital accumulation
 - GE challenge: Allocation of workers to coops

- Advocated by many
- Already existing
- Basis for the study of variants (e.g. worker councils)
- Goals of the paper
 - Formal framework to study cooperatives in dynamic GE
 - Dynamic challenge: Capital accumulation
 - GE challenge: Allocation of workers to coops
 - Qualitative features of growth path and steady state

- Advocated by many
- Already existing
- Basis for the study of variants (e.g. worker councils)
- Goals of the paper
 - Formal framework to study cooperatives in dynamic GE
 - Dynamic challenge: Capital accumulation
 - GE challenge: Allocation of workers to coops
 - Qualitative features of growth path and steady state
 - Quantitative comparison with corporation-based economy

Economic Literature on Cooperatives

Cooperative size and static efficiency in PE

- Ward (1958, 1967), Domar (1966), Hansmann (1996)
- Existence and Pareto Optimality in GE
 - Vanek (1970), Laffont and Moreaux (1983), Dreze (1989)
- Worker heterogeneity and incentives
 - Kremer (1997), Levin and Tadelis (2005)
- Pooled Investment
 - Rey and Tirole (2007)
- Consumer cooperatives
 - Hart and Moore (1996, 1998)

Institutional Differences

	Capitalism	Cooperativism
Firm objective	max profits	max utility
Capital ownership	individuals	cooperatives
Capital market	yes	no
Labour market	yes	yes
Product market	yes	yes
Free entry	yes	yes

Problem: present bias

Workers today choose capital for workers of tomorrow

Problem: present bias

Workers today choose capital for workers of tomorrow

Solution: give a stake to former workers

Sharing rule, or in-house pension system

Problem: present bias

Workers today choose capital for workers of tomorrow

Solution: give a stake to former workers

Sharing rule, or in-house pension system

- Modelling implication
 - Two-period OLG framework

Problem: present bias

Workers today choose capital for workers of tomorrow

Solution: give a stake to former workers

Sharing rule, or in-house pension system

- Modelling implication
 - Two-period OLG framework
 - Infinite horizon alternatives either very complicated (tracking workers through cooperatives) or uninteresting (lifetime attachment)

Physical Environment

- Demographics: constant cohorts of measure L
- ▶ Life cycle: work as *Y*, consume as *Y* and *O*
- ▶ Preferences: $U(c^Y, c^O)$
- Technology: F(k, l)

Capitalist Economy

 $\max_{k,l} \{F(k,l) - r_t k - w_t l\}$

Firms

$$\max_{c_t^Y, c_{t+1}^O} U(c_t^Y, c_{t+1}^O)$$

$$c_t^Y = w_t - \kappa_{t+1}$$
$$c_{t+1}^O = r_{t+1}\kappa_{t+1}$$

Market clearing and free entry

Cooperative concept

• Coop with l_t young workers, l_{t-1} former workers, capital k_t

$$c_{t}^{Y} = \frac{F(k_{t}, l_{t}) - T_{t} - k_{t+1}}{l_{t}}$$
$$c_{t+1}^{O} = \frac{T_{t+1}}{l_{t}}$$

Simplifying assumption

$$T_t = \tau F(k_t, l_t)$$

Literal interpretation: legal requirement, articles of association
 Broader interpretation: inter-generational social security game
 Removes l_{t-1} as a state variable

Investment decision

• Coop with I_t young workers, capital k_t

$$\max_{k_{t+1}} U(c_t^Y,c_{t+1}^O)$$

$$c_{t}^{Y} = \frac{(1-\tau)F(l_{t}, k_{t}) - k_{t+1}}{l_{t}}$$
$$c_{t+1}^{O} = \frac{\tau F(l_{t+1}, k_{t+1})}{l_{t}}$$

Investment decision

• Coop with I_t young workers, capital k_t

$$\max_{k_{t+1}} U(c_t^Y,c_{t+1}^O)$$

$$c_t^Y = \frac{(1-\tau)F(I_t, k_t) - k_{t+1}}{I_t}$$
$$c_{t+1}^O = \frac{\tau F(I_{t+1}, k_{t+1})}{I_t}$$

▶ Next: Determination of l_t , l_{t+1} (allocation mechanism)

- It incumbent cooperatives, with
- ► k_{it} capital
- ► *l_{it-1}* former workers

- *I_t* incumbent cooperatives, with
- ► *k_{it}* capital
- ► *l_{it-1}* former workers
- Young workers allocated so that
 - No coop can increase utility by reducing workers
 - No coop can increase utility by attracting *willing* workers

- *I_t* incumbent cooperatives, with
- ► *k_{it}* capital
- *I_{it-1}* former workers
- Young workers allocated so that
 - No coop can increase utility by reducing workers
 - ▶ No coop can increase utility by attracting *willing* workers
 - (Entry and exit can result from this mechanism)

- *I_t* incumbent cooperatives, with
- ► *k_{it}* capital
- *I_{it-1}* former workers
- Young workers allocated so that
 - No coop can increase utility by reducing workers
 - No coop can increase utility by attracting willing workers
 - (Entry and exit can result from this mechanism)
- Production, Investment decision, Payments to young and old workers

Equilibrium selection

For t > 0 allocation to incumbents depends only on own capital

$$I_{it} = \mathcal{L}(k_{it})$$

Equilibrium selection

For t > 0 allocation to incumbents depends only on own capital

$$I_{it} = \mathcal{L}(k_{it})$$

Implication

$$\left(\mathcal{L}(k_{it}), \mathcal{K}(k_{it})\right) \in \arg\max_{l,k} U\left(\frac{(1- au)F(l,k_{it})-k}{l}, \frac{ au F\left(\mathcal{L}(k),k\right)}{l}\right)$$

k and l trade offs

Example

Technology (Incumbents)

$$F(k, l) = Ak^{\alpha}(l - \underline{l})^{\beta} \quad \alpha + \beta < 1$$

Fixed cost Decreasing returns to variable inputs (Entrants use some technology G(I))

Example

Technology (Incumbents)

$$F(k, l) = Ak^{\alpha}(l - \underline{l})^{\beta} \quad \alpha + \beta < 1$$

Fixed cost
 Decreasing returns to variable inputs
 (Entrants use some technology G(I))
 Preferences

$$U(c^{Y}, c^{O}) = \log c^{Y} + \delta \log c^{O}$$

Capitalist equilibrium

$$\begin{split} l_t &= \frac{1-\alpha}{1-\alpha-\beta} \underline{l} \equiv l_{cap} \\ \kappa_{t+1} &= \frac{\delta}{1+\delta} A (1-\alpha)^{\alpha} \beta^{\beta} \Big(\frac{1-\alpha-\beta}{\underline{l}} \Big)^{1-\alpha-\beta} \kappa_t^{\alpha} \end{split}$$

Cooperative Equilibrium

$$I_{t} = \frac{1+\delta}{1+\delta-\beta(1+\delta\alpha)} \underline{I} \equiv I_{coop}$$
$$k_{t+1} = \frac{\delta\alpha}{1+\delta\alpha} (1-\tau) A \left(\frac{\beta(1+\delta\alpha)}{1+\delta-\beta(1+\delta\alpha)} \underline{I}\right)^{\beta} k_{t}^{\alpha}$$

Steady state convergence

- Subject to restrictions on G(I) ... Details
- ▶ ... For any initial $\{k_{i0}\}$ converge to steady state with

$$I_i^* = I_{coop}, \text{ all } i$$

Firm Size and Static Efficiency

Static social planner problem

$$\max_{l} \quad \frac{L}{l} F\left(\frac{K}{L/l}, l\right)$$

Firm Size and Static Efficiency

Static social planner problem

$$\max_{l} \quad \frac{L}{l} F\left(\frac{K}{L/l}, l\right) = A \frac{(l-\underline{l})^{\beta}}{l^{1-\alpha}} K^{\alpha} L^{1-\alpha}$$

Firm Size and Static Efficiency

Static social planner problem

$$\max_{l} \quad \frac{L}{l} F\left(\frac{K}{L/l}, l\right) = \underbrace{A \frac{(l-\underline{l})^{\beta}}{l^{1-\alpha}}}_{Z} K^{\alpha} L^{1-\alpha}$$

Firm Size and Static Efficiency

Static social planner problem

$$\max_{l} \quad \frac{L}{l} F\left(\frac{K}{L/l}, l\right) = \underbrace{A\frac{(l-\underline{l})^{\beta}}{l^{1-\alpha}}}_{Z} K^{\alpha} L^{1-\alpha}$$

$$l_{eff} = l_{cap} \ge l_{coop}$$

equiv. $Z_{eff} = Z_{cap} \ge Z_{coop}$

Firm Size and Static Efficiency

Static social planner problem

$$\max_{l} \quad \frac{L}{l} F\left(\frac{K}{L/l}, l\right) = \underbrace{A\frac{(l-\underline{l})^{\beta}}{l^{1-\alpha}}}_{Z} K^{\alpha} L^{1-\alpha}$$

$$l_{eff} = l_{cap} \ge l_{coop}$$

equiv. $Z_{eff} = Z_{cap} \ge Z_{coop}$

► Sources of inefficiency
►
$$\delta = 0$$

 $I_{eff} = \frac{1 - \alpha}{1 - \alpha - \beta} \underline{l} \ge \frac{1}{1 - \beta} \underline{l} = I_{coop}$
► $\alpha = 0$
 $I_{eff} = \frac{1}{1 - \beta} \underline{l} \ge \frac{1 + \delta}{1 + \delta - \beta} \underline{l} = I_{coop}$

Capital Accumulation and Dynamic Efficiency

Golden Rule saving

$$\max_{s} \{Y_{eff}(L,K) - sY_{eff}(L,K)\} \quad s.t. \quad K = sY_{eff}$$

• $s_{gold} = \alpha$ • Equilibrium saving rates • $s_{cap} = \frac{\delta}{1+\delta}(1-\alpha)$ • $s_{coop} = \frac{\delta\alpha}{1+\delta\alpha}(1-\tau)$ Capital Accumulation and Dynamic Efficiency

Golden Rule saving

$$\max_{s} \{Y_{eff}(L,K) - sY_{eff}(L,K)\} \quad s.t. \quad K = sY_{eff}$$

• $s_{gold} = \alpha$ • Equilibrium saving rates • $s_{cap} = \frac{\delta}{1+\delta}(1-\alpha)$ • $s_{coop} = \frac{\delta\alpha}{1+\delta\alpha}(1-\tau)$ Capital Accumulation and Dynamic Efficiency

Golden Rule saving

$$\max_{s} \{Y_{eff}(L,K) - sY_{eff}(L,K)\} \quad s.t. \quad K = sY_{eff}$$

• $s_{gold} = \alpha$ • Equilibrium saving rates • $s_{cap} = \frac{\delta}{1+\delta}(1-\alpha)$ • $s_{coop} = \frac{\delta\alpha}{1+\delta\alpha}(1-\tau)$

Cooperative economy dynamically efficient

$$s_{coop} \leq s_{gold}$$

Steady State Output

If symmetric steady state

$$rac{Y^*}{L}=(s^*)^{rac{lpha}{1-lpha}}(Z^*)^{rac{1}{1-lpha}}$$

Steady State Output

If symmetric steady state

$$rac{Y^*}{L}=(s^*)^{rac{lpha}{1-lpha}}(Z^*)^{rac{1}{1-lpha}}$$

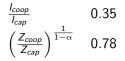
Quantification (log utility case)

Parameter	Target	Data	Value
α	rK/Y	0.33	0.33
β	<u>I</u> /I	0.18	0.55
δ	K/Y	3/25	0.22

Quantification (log utility case)

Parameter	Target	Data	Value
α	rK/Y	0.33	0.33
β	<u>I</u> /I	0.18	0.55
δ	K/Y	3/25	0.22
au	Max U		0.12

Quantitative implications (log utility case)



Quantitative implications (log utility case)

$$\begin{pmatrix} \frac{l_{coop}}{l_{cap}} & 0.35\\ \left(\frac{Z_{coop}}{Z_{cap}}\right)^{\frac{1}{1-\alpha}} & 0.78 \end{cases}$$

S _{cap}	0.12
S _{coop}	0.06
$\left(rac{s_{coop}}{s_{cap}} ight)^{rac{lpha}{1-lpha}}$	0.71

Quantitative implications (log utility case)

$$\begin{pmatrix} \frac{l_{coop}}{l_{cap}} & 0.35\\ \left(\frac{Z_{coop}}{Z_{cap}}\right)^{\frac{1}{1-\alpha}} & 0.78 \end{cases}$$

$$\begin{array}{ll} s_{cap} & 0.12 \\ s_{coop} & 0.06 \\ \left(\frac{s_{coop}}{s_{cap}}\right)^{\frac{\alpha}{1-\alpha}} & 0.71 \end{array}$$

 $\frac{Y_{coop}}{Y_{cap}}$

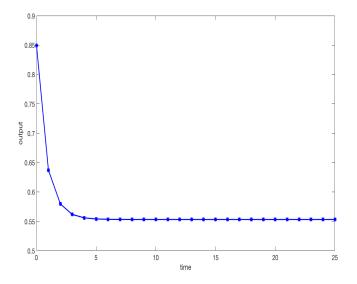
0.55

Thought Experiment

 \blacktriangleright at t_0 capitalist steady state

▶ at t_1 capital redistributed to $N = L/I_{coop}$ cooperatives

Dynamics of Output



Welfare Loss

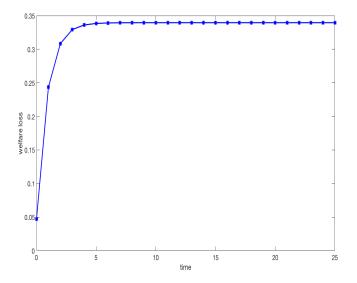
Equivalent variation

$$U(c_{t,coop}^{Y} + X_t, c_{t+1,coop}^{O} + X_t) = U(c_{*,cap}^{Y}, c_{*,cap}^{O})$$

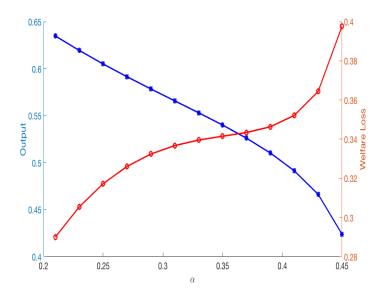
► Welfare loss

$$2X_t/(c_{*,cap}^Y+c_{*,cap}^O)$$

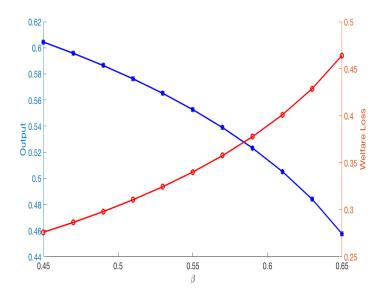
Dynamics of Utility



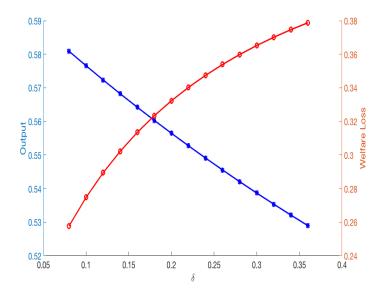
Robustness: α



Robustness: β



Robustness: δ



Example 2

Same technology but

$$U(c^{Y}, c^{O}) = \frac{(c^{Y})^{1-\sigma}}{1-\sigma} + \delta \frac{(c^{O})^{1-\sigma}}{1-\sigma}$$

Example 2

Same technology but

$$U(c^{Y}, c^{O}) = \frac{(c^{Y})^{1-\sigma}}{1-\sigma} + \delta \frac{(c^{O})^{1-\sigma}}{1-\sigma}$$
$$\sigma = 2$$

Calibration

			log	IES = 2
Parameter	Target	Data	Value	Value
α	rK/Y	0.33	0.33	0.33
β	<u>I</u> /I	0.18	0.55	0.55

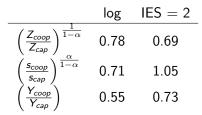
Calibration

			log	IES=2
Parameter	Target	Data	Value	Value
α	rK/Y	0.33	0.33	0.33
β	<u>I</u> /I	0.18	0.55	0.55
δ	K/Y	3/25	0.22	0.13

Calibration

			log	IES = 2
Parameter	Target	Data	Value	Value
α	rK/Y	0.33	0.33	0.33
β	<u>I</u> /I	0.18	0.55	0.55
δ	K/Y	3/25	0.22	0.13
au	Max U		0.12	0.15

Quantitative Implications



Conclusions

Dynamic extension of models of cooperative production

- To do (this paper)
 - Institutional variations
 - Inter-cooperative capital market
 - Self-management with private ownership
 - Coexistence
 - Money, Social Security
 - Endogenize au
- To do (next paper(s))
 - Richer model with microeconomic heterogeneity
 - Quantify inequality-efficiency trade off

Restrictions on G(I)

- ► Assumption 1: $U_e \leq U(k_{coop}^*)$
- ► Assumption 2: $\mathcal{L}_e \geq I_{coop}$
- Assumption 3: $U_e \leq U(\mathcal{K}_e)$

Example

$$F(0, I) = B(I - \underline{I}_e)^{\gamma},$$

► For 1 and 3: *B* small
► For 2:

$$\gamma \in (0, (1 + \alpha)/(1 + \alpha\delta)),$$

$$\underline{l}_{e} \geq [1 + \delta - \gamma(1 + \alpha\delta)] / [1 + \delta - \beta(1 + \alpha\delta)] \underline{l}$$

