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Abstract

This study examines the effects of robot subsidies in China’s manufacturing sector.
Exploiting differences in the timing of the subsidy implementation across municipali-
ties, I find the introduction of a robot subsidy has heterogeneous impacts across firms of
different scale. Although the subsidy results in a 13 percent increase in applications for
robot patents, the facilitated access to robotics leads to a 14 percent reduction in new
firm’s entry in the manufacturing sector, along with a significant increase in turnovers
of bigger industrial enterprises. Using a stylised model, I show that the interaction
between financial frictions and endogenous automation helps reconcile the empirical
findings: ex-ante capital misallocation causes a uniform subsidy to disproportionately
benefit firms with better access to capital. The distortion creates an efficiency trade-
off: while a subsidy can enhance overall automation, it also exacerbates automation
dispersion, which reduces efficiency. To quantify the net efficiency impact of these
competing forces, I embed this mechanism into a dynamic heterogeneous firm model,
calibrated to match key features of the Chinese industrial sector. The model indicates
that a robot subsidy of 20% narrows the gap between mean and optimal automation
levels by 22 percentage points, while raising automation dispersion by 49 percentage
points. This leads to a 1.2 percent increase in aggregate output, along with a 2.4 per-
cent decline in total factor productivity.
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1 Introduction

The adoption of robotic technology is part of a live and lively debate across the world, with

many countries concerned about its impact in terms of displacing labour and exacerbating

inequality. In recent years, China has firmly established itself as a leader in robot integration.

As indicated in Made in China 2025, a national strategy to boost manufacturing published

in 2015, China aims to become the world leader in the robotics industry.1 The 14th Five-

Year Plan for Robotics Industry Development, published in 2021, specifies China’s ambition

of boosting robot density to 500 units per 10,000 workers by 2025.2 Under those policy

initiatives, there was a sharp increase in China’s use of robots. By 2021, China’s robot

density had soared to 322 per 10,000 workers, not only overtaking the United States, at

274, but also positioning China fifth in the world, after South Korea, Singapore, Japan

and Germany.3 In 2022, the country’s sales of industrial robots amounted to 290,300 units,

representing approximately 52 percent of global industrial robot shipments. Cheng et al.

(2019) provides comprehensive details of China’s advancement in industrial robot adoption.

While there are multiple reasons behind the rapid growth of industrial robot utilization

in China, strong government support is amongst the most important. The impact of China’s

robot-supporting policy, however, has not yet been thoroughly studied in the literature. The

goal of this paper is to evaluate the impact of robot subsidies on the manufacturing indus-

try in China. First, exploiting data on robotics industry activities, I empirically investigate

the impacts of robot subsidies and document that subsidies lead to a significant increase in

robotics industry activities; reduce firm entry into the manufacturing sector; and dispropor-

tionately benefit larger firms, with them seeing significant increase in turnover, total asset

and employment. Second, I propose a simple model to illustrate how the interaction between

1The Made in China 2025 initiative is a strategic plan launched by the Chinese government in 2015
to upgrade the country’s manufacturing sector and move from low-cost mass production to more high-
tech industries. The plan focuses on key sectors such as robotics, clean energy, and advanced information
technology.

2The 14th Five-Year Plan for Robotics Industry Development is a strategic initiative launched by the
Chinese government in 2021 to boost technological advancement in the robotics sector. The plan focuses
on enhancing core technologies, expanding applications in industries such as manufacturing, and improving
China’s global competitiveness in robotics.

3In 2022, the average robot density in China was 392, while in the United States, Germany, Japan and
the world it was 285, 415, 397 and 151, respectively.
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financial frictions and endogenous automation could explain the empirical findings, as well as

to elucidate the main efficiency trade-offs stemming from a uniform robot subsidy. Finally,

I embed the mechanisms in the simple model into a dynamic framework with heterogeneous

households and use the framework to gauge the efficiency trade-offs; specifically, the richer

model allows me to quantify the dynamic capital misallocation losses resulting from the

higher dispersion in firms’ automation levels caused by the subsidy and weigh them against

the efficiency gains from higher robot adoption.

To carry out the first step of the paper, I use the Peking University (PKU) Law dataset

and apply a text recognition approach (Juhász et al., 2022) to identify a subsidy as a demand-

side robot subsidy. The text criteria required for a demand-side robot subsidy are: (1) the

incorporation of keywords linked to robotics; (2) the inclusion of a comprehensive sub-

sidy plan; (3) the specification of subsidy-specific terminology. I successfully identify 244

municipal-level industrial robot demand-side subsidy policies, which are characterized by

three key features: (a) non-exclusiveness, in the sense of uniform accessibility and intensity

across robot buyers, (b) local preferences, with exclusive or progressive supports provided to

locally produced robots, and (c) strong support, captured by significant financial supports.

To empirically assess the impact of the subsidy, I exploit differences in the timing of

the subsidy implementation across municipalities. The key identification assumption is that

the timing of subsidy introduction is uncorrelated with my outcomes of interest. The as-

sumption is supported by the descriptive evidence that the pre-treatment trends of outcomes

between early and late adopters are parallel. Technically, I employ difference-in-differences

with synthetic weights (SDID) approach (Arkhangelsky et al., 2021) as my main identi-

fication strategy. This approach constructs a counterfactual group, which resembles the

socioeconomic conditions of municipalities before the implementation of the subsidy policy.

The after-treatment difference between the treated municipalities and the synthetic control

group then provides an estimate of the subsidy’s causal impact.

I obtain two facts from the empirical study. First, I find that the subsidy policy is effective

in promoting robot utilization. Although direct municipal-level measures of robot utilization

are unavailable, the local preference characteristic suggests that the increased demand for

robots largely remains within the local supply chain. Consequently, I evaluate the impact
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of robot subsidies from two supply-side perspectives - robotics-related innovation and new

robotics firms entry. In terms of the total number of applications for robotics patents, I

find a 13.6 percent increase in applications after the introduction of the policy. In terms

of the number of robotics firms, I find a 29.5 percent increase in robot-production firms.

My dynamic event-study analysis indicates that the policy effect persists and amplifies over

time.

Second, I document significant heterogeneous impacts of the subsidy on firms of different

size. More specifically, although the subsidy is designed to be uniform across firms in most

of the cases, it significantly improve the financial performance of larger firms at the cost of

deteriorating firm dynamics in the whole industrial sector. On the intensive margin, larger

manufacturing firms are the major beneficiaries of this subsidy policy. After the policy

introduction, there is a 6.4 percent rise in total assets, a 7.8 percent increase in total revenue

and a 5.8 percent increase in total employment of major industrial enterprises.4.

On the extensive margin, I find the subsidy has no significant impact on the total number

of major industrial enterprises. Moreover, the introduction of the subsidy indeed significantly

depresses new firm entry by around 14.0 percent. The dynamic SDID results indicate the

effects intensify over time. Combining these two findings, I argue that the subsidy improves

the financial performance of major industrial enterprises on the intensive margin, at the

cost of reducing firm dynamics on the extensive margin. Larger manufacturing firms, which

already have the advantages that come with size, can further amplify these advantages with

easier access to robots. That further contributes to expansion of their market shares, which

crowds out the entry of new firms.

Motivated by the empirical findings, I carry out the second step of the paper and employ a

simple conceptual framework to account for the main empirical findings as well as to elucidate

the efficiency trade-offs. The model incorporates borrowing costs (Hsieh and Klenow, 2009;

David and Venkateswaran, 2019) into a task-based framework (Acemoglu and Autor, 2012;

Acemoglu and Restrepo, 2018). Since financial frictions generally suppress the use of capital

and thus automation, firms facing greater financial constraints tend to adopt automation

4Major industrial enterprises are defined as firms with annual turnovers exceeding twenty million CNY
(around three million USD) According to the major industrial enterprise database, these firms typically fall
within the top 10 to 20 percent of the turnover distribution.
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levels that are below the efficient automation level of firms that are financially unconstrained.

This ex-ante difference in the extent of financial constraints also implies that a uniform

robot subsidy will have differential effects across firms depending on the cost of finance. Less

financially constrained firms are likely to allocate a larger portion of their production tasks to

industrial robots, enabling them to significantly reduce their marginal costs under a uniform

subsidy. This contributes to increased market share, turnover, capital usage and employment

for these firms. Conversely, more financially constrained firms, despite benefiting from the

reduced marginal costs due to the subsidy, experience smaller cost reductions relative to

the aggregate price decrease. Consequently, these firms suffer from the loss of market share

and profitability, and are at risk of being squeezed out of the market in the absence of a

substantial aggregate demand promotion.

The efficiency analysis reveals that financial frictions affect overall productivity through

two main channels: mean automation depression and automation dispersion. Mean automa-

tion depression captures the inefficiency caused by financial frictions, which raise the cost of

capital above its shadow (efficient) level and thus reduce firms’ incentives to adopt robots.

As a result, the economy’s mean level of automation falls below the socially optimal level.

Automation dispersion, on the other hand, captures the inefficiency arising from deviations

in individual firms’ automation levels from the social mean. I identify three new chan-

nels through which automation dispersion impacts overall productivity: the amplification

of conventional marginal product of capital (MPK) wedges, excessive factor usage and the

facilitation of individual productivity gains.

The analytical framework indicates that a uniform robot subsidy helps to address mean

automation depression but unambiguously exacerbates automation dispersion. While such

a subsidy can partially offset factor price distortions caused by financial frictions, it dispro-

portionately benefits larger firms, thereby widening automation gaps across firms.

Finally, to carry out the third step and be able to gauge the dynamic impact of the

robot subsidy in China, I incorporate the simple static model into a dynamic heterogeneous

firm framework with endogenous occupation choice and capital accumulation. Reflecting

discussions on capital misallocation due to dynamic MPK wedges (Hsieh and Klenow, 2014;

Bento and Restuccia, 2017; Gopinath et al., 2017; Da-Rocha et al., 2023), I endogenize
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borrowing costs by linking them to heterogeneous entrepreneurs’ asset positions (Moll, 2014;

David and Venkateswaran, 2019). This approach reveals a new dynamic mechanism, through

which automation exacerbates capital misallocation. Consistent with Moll et al. (2022),

my findings show that a robot subsidy effectively promotes industrial adoption of robots,

reducing wage income while enhancing capital returns and entrepreneurial profits. These

dynamics intensify capital accumulation disparities among households, leading to increased

borrowing cost dispersion and further aggravating capital misallocation.

I calibrate the benchmark model to match the productivity distribution, financial frictions

and industrial robot density in China’s industrial sector in 2010. The model indicates that

the implementation of a robot subsidy of 20 percent in the 2017 industrial context results in

a 65 percent increase in industrial robot demand and a 1.23 percent increase in output. The

aggregate effect masks significant differences across firms: the top 10 percent of entrepreneurs

(by turnover) experience improvements in turnover, capital expenditure, employment and

profit of 5.34 percent, 22.67 percent, 2.94 percent and 6.84 percent, respectively. Conversely,

these measures decline by 1.72 percent, 0.48 percent, 0.85 percent and 1.15 percent for the

bottom 50 percent of entrepreneurs (by turnover). Overall, a 20 percent robot subsidy leads

to a 1.27 percent reduction in the number of entrepreneurs.

Regarding efficiency implications, my dynamic framework shows that a uniform robot

subsidy effectively narrows the gap between the mean and socially optimal automation levels:

a 20 percent subsidy increases the mean automation level from 36 percent to 58 percent of the

socially optimal level. However, it also significantly increases automation dispersion, with

the standard deviation rising by 49 percent. While a subsidy enhances output, it reduces

total factor productivity (TFP) by 2.40 percent. In general, my model shows that a uniform

robot subsidy could improve social welfare (measured in utilitarian approach) by around

0.23 percent when its magnitude is below or equal to 10 percent, while it starts to damage

social welfare when its magnitude goes above 20 percent.

In examining the impact of dynamic misallocation, this study finds that a uniform robot

subsidy amplifies capital accumulation dispersion by reducing labour income, while increas-

ing capital returns and entrepreneurial income. Controlling for the dynamics of asset position

distribution can mitigate the divergence between wage earners and capital return earners,
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resulting in smaller MPK wedges and reduced TFP loss from a subsidy. Under a 20 percent

robot subsidy scenario, this implies that the output gain could increase by an extra 0.37

percent.

Related Literature My study contributes to three strands of literature. First, it adds to

the empirical (Bernini and Pellegrini, 2011; Cerqua and Pellegrini, 2014; Neumark and Simp-

son, 2015; Cerqua and Pellegrini, 2017; Howell, 2017; Zwick and Mahon, 2017; Kalouptsidi,

2018; Criscuolo et al., 2019; Lane, 2022; Dechezleprêtre et al., 2023; Incoronato and Lat-

tanzio, 2023; Banares-Sanchez et al., 2023) and theoretical research (Buera et al., 2021; Choi

and Levchenko, 2021; Cerrato, 2024) on industrial policies. In line with the recent trend

of rethinking the role of industrial policies and the growing consensus that well-designed

policies can foster innovation and economic development (Aghion et al., 2015; Juhász et al.,

2023), I assess the potential trade-offs of industrial policies. Specifically, I examine how

China’s large-scale and aggressive industrial policy that promotes industrial robot adop-

tion addresses under-investment in technology while potentially exacerbating disparities in

technology adoption across firms.

Second, I contribute to the theoretical literature on endogenous automation adoption

(Acemoglu and Autor, 2012; Acemoglu and Restrepo, 2018; Moll et al., 2022) and policy

interventions in automation. While many studies (Acemoglu et al., 2020; Beraja and Zorzi,

2022; Costinot and Werning, 2023) argue that robot adoption should be taxed due to its ten-

dency to exacerbate inequality across different types of agents (e.g., between capital owners

and workers, or between skilled and unskilled workers), a growing body of work highlights

that restricting robot adoption could hinder long-term growth and innovation (Prettner and

Strulik, 2020; Gasteiger and Prettner, 2022; Guerreiro et al., 2022) and well-designed robot

subsidy can indeed be welfare-improving (Caselli and Manning, 2019; Thuemmel, 2023) In

contrast to much of the existing literature, which focuses on inequality between agents, my

study shifts the focus to inequality between firms. I investigate how robot subsidies lead to

uneven automation adoption across firms and analyze the associated efficiency and produc-

tivity implications.

Third, my study engages with the extensive literature on financial frictions and their in-

teraction with technology adoption and industrial policy (Caselli and Gennaioli, 2005; Buera
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et al., 2013; Reis, 2013; Midrigan and Xu, 2014; Gopinath et al., 2017; Itskhoki and Moll,

2019). Specifically, this research is among the first to explore how financial frictions influ-

ence endogenous automation. In terms of efficiency, I examine how automation exacerbates

productivity losses caused by static capital misallocation, as documented in the literature

initiated by Restuccia and Rogerson (2008) and Hsieh and Klenow (2009). Additionally,

this study echoes the later literature on dynamic capital misallocation (Gabler and Poschke,

2013; Asker et al., 2014; Hsieh and Klenow, 2014; Bento and Restuccia, 2017; Peters, 2020;

Da-Rocha et al., 2023). More specifically, Moll et al. (2022) demonstrates how automation

amplifies wealth inequality through capital accumulation. My study incorporates a dynamic

perspective to reveal how endogenous automation intensifies dynamic capital misallocation

by reducing labour income and increasing capital returns.

The remainder of this paper is structured as follows. Section 2 provides an overview

of the institutional background. Section 3 introduces the data used in the study, along

with descriptive statistics, and details the identification methods employed to estimate the

economic impacts of introducing robot subsidies. Sections 4 discusses the effectiveness of

subsidies in promoting robot-related activities, and Section 5 discusses the responses of the

industrial sector to such subsidies. Section 6 provides a simple framework to probe into the

mechanism behind the observed patterns and the efficiency and productivity implications

of a uniform robot subsidy. Section 7 embeds the simple model into a dynamic framework

with heterogeneous entrepreneurs, so as to quantify the implications on macro variables and

efficiency measures. Section 8 offers concluding remarks.

2 Institutional Background

2.1 Strategic Importance of Subsidizing Robots in China

The strategic emphasis on robot integration within China’s manufacturing sector marks

a pivotal shift in industrial policy. Launched in 2015, Made in China 2025 underscores the

pivotal role of industrial robots in the country’s industrial strategy. This pioneering policy

gives a target for robot density, aiming for 100 units per 100,000 workers by 2020. Advancing

7



this agenda, the 14th Five-Year Plan for Robotics Industry Development, introduced in 2021,

articulates a more ambitious goal: to boost robot density to 500 units per 10,000 workers by

2025. Despite global concerns over the potential displacement of labour stemming from more

extensive adoption of robots, the Chinese government persistently advocates for a substantial

expansion in the use of robots.

This strategic push has catalyzed remarkable growth in the robotics industry, evidenced

by both surges in sales of robots and expansions in robot uses. Data presented in the Table

1, sourced from the International Federation of Robotics, show that, in 2022, China’s instal-

lation of new industrial robots reached 290,300 units. This figure constitutes approximately

53% of the worldwide installation of industrial robots for that year. At the same time, the

total stock of robots in China reached around 1.5 million units by 2022, making up about

38% of the global industrial robot stock. Made in China 2025 sets forth, in 2015, China’s

ambition to manufacture 100,000 domestically branded industrial robots.

Table 1: Annual Robot Installation and Operational Robot Stocks in China

Robot Installation: Robot Stocks: Robot Density:

Value Share Rank Value Share Rank Value Rank
Year (1,000 units) (%) (1,000 units) (%) (units/10,000 workers)

1995 0.00 0.00 − 0.00 0.00 − − −
2000 0.38 0.39 16 0.93 0.12 23 − −
2005 4.46 3.71 9 11.56 1.26 11 − −
2010 14.98 12.40 5 52.29 4.94 6 − −
2015 68.56 27.02 1 256.46 15.72 2 49 −
2016 96.50 31.76 1 349.47 19.02 1 68 −
2017 156.18 39.08 1 501.19 23.58 1 97 21
2018 154.03 36.48 1 649.45 26.62 1 140 20
2019 139.86 36.71 1 782.73 28.67 1 187 15
2020 168.40 43.85 1 943.22 31.08 1 246 9
2021 268.20 51.88 1 1197.89 34.45 1 322 5
2022 290.30 52.50 1 ≈ 1500.00 38.42 1 392 5

Note: (1) The data is from International Federation of Robotics (IFR); (2) ‘Robot Installation’ refers to
the number of new industrial robots installed during the year, ‘Robot Stock’ refers to the total number of
existing operational industrial robots at the end of a year, while ‘Robot Density’ refers to the number of
robot stock per 10,000 employees in the manufacturing industry; (3) The ‘Share’ columns show ratios of
values of the above indicators to the world totals, the ‘Rank’ columns show the China’s rank within all
countries; (4) In 2022, top five countries in terms of robot density are South Korea (1012), Singapore (730),
Germany (415), Japan (397) and China (392).
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Figure 1: Cross-Country Trends in Industrial Robot Densities

Note: (1) The data is from International Federation of Robotics (IFR); (2) The world average refers to the

averaged robot density of 75 countries and regions around the world.

2.2 Demand-Side Subsidy Policy in China

While Made in China 2025 and the 14th Five-Year Plan lay out the national strategy,

the actual deployment of the individual robot subsidy policies predominantly falls under

the jurisdiction of local governments, resulting in significant regional variation. Bai et al.

(2020) provides a description of how local authorities are incentivized to carry out national

strategies. In this study, I focus on the demand-side robot subsidy policies, which incentivizes

manufacturers to acquire or lease robots.5 These policies typically offer subsidies covering

5% to 30% of the total cost or investment associated with purchasing or leasing robots.

Typically, there are no stringent eligibility criteria, allowing a broad range of enterprises

to benefit from such subsidies. Meanwhile, there is a tendency for some municipalities to

introduce local preference clauses, which might restrict subsidies to robots manufactured

within the locale or incrementally increase subsidies for the acquisition of robots produced

locally.

5I do not focus on supply-side subsidies that target the innovation of robotics technology and manufacture
of industrial robots.
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Measuring Demand-Side Subsidy Policies

Nationally, policy directives are clearly defined. At the local level, however, there is a

need to categorize and identify specific industrial policies, particularly distinguishing be-

tween those with and without concrete and executable subsidization measures. To pinpoint

policies encouraging the adoption of robots, I use data from the PKULaw dataset of laws

and regulations, which documents laws, regulations and administrative documents issued by

different levels of authorities in China since 1949.

The dataset includes details, such as the policy’s title, its issuing department, date of

issuance, the date it came into effect and the original contents. I extract the original texts

of the policies, which make up the specifics of each regulation. Using a text-recognition

algorithm, I categorize the policies by type, specifically concentrating on those that offer

direct financial subsidies for purchasing industrial robots.

A policy qualifies as being related to robot subsidies if it meets three specific condi-

tions across three successive paragraphs. First, the policy must contain keywords related to

robotics, automation, smart devices or smart technology, highlighting its relevance to the

adoption of robots. Second, it must outline a detailed and executable subsidy scheme, allow-

ing for the verification of the extent of financial assistance provided for each acquisition or

lease. Finally, the document must explicitly state that the financial assistance is a subsidy,

enabling the algorithm to classify it as a subsidy policy. This approach allows me to con-

fine the study to municipal-level robot-related industrial policies with concrete subsidization

measures.

Following the above procedures, I successfully identify 244 municipal-level robot-related

subsidy policies between the years 2014 and 2023.

Characteristics of Demand-Side Subsidy Policy

In analyzing the eligibility criteria for robot subsidy policies, I identify three key charac-

teristics. First, the majority of subsidies provide uniform accessibility and intensity across

firms without specific prerequisites, a feature I refer to as non-exclusiveness. Specifically,

approximately 85% of subsidies impose no restrictions on the size or qualifications of appli-
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cants. In contrast, a smaller portion - about 7.5% - requires a minimum investment threshold

of over 15 million USD. Additionally, only 1.1% of subsidies are allocated based on firm size,

indicating minimal emphasis on organizational scale. Finally, 6.3% of subsidies are strategi-

cally targeted at firms selected by local governments, suggesting a targeted approach within

the policy framework. While this targeting could raise concerns about firm selection due to

special deals, as documented by Bai et al. (2020), I believe such concerns are minimized in

this context due to the small number of targeted cases.

Second, local preferences are common in these subsidies. Around 42.9% provide exclusive

financial support to buyers of robots produced by local manufacturers, while approximately

28.1% offer progressive support to locally produced robot equipment. This characteristic es-

tablishes a critical link between demand-side subsidies and local robotics industry activities:

the increase in robot demand resulting from the subsidy tends to remain local, contributing

to the expansion of the local robotics industry.

Third, the magnitude of local government support is substantial. Approximately 82%

of subsidies offer financial support exceeding 10% of the purchase price or rental fee of

industrial robot equipment. The average subsidy rate is around 17.5%, which is likely to

have a significant impact on the manufacturing sector. For reference, with an average unit

price of 40,000 USD for industrial robot equipment, this implies a subsidy of 8,000 USD per

unit.

2.3 Subsidized Municipalities in China (2014-2023)

As Figure 2 demonstrates, there has been a significant increase in the number of munic-

ipalities adopting demand-side robot subsidies between 2014 and 2023. In 2014, only two

municipalities had implemented such subsidies. By 2023, the number has risen to 93, repre-

senting approximately 32% of all municipalities. Figure 3 provides a general picture of the

geographic distribution of robot subsidy implementation and the number of applications for

robotics patents. Two key observations emerge from this figure. First, the introduction of

a robot subsidy is effective in promoting applications for robotics patents in the local areas

- shown by the fact that the municipalities with red borders (delineating robot subsidies)

are more likely to have darker shading (delineating a greater number of patent applications)
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in subsequent years. Second, endogeneity of subsidy introduction can also be observed. In

2016, a distinct cluster of early adopting municipalities is characterized by their pioneering

adoption of industrial robots and the strategy of replacing labour with machines.6 Since

those provinces are already more economically developed and tend to be home to a more

mature robotics industry, this pattern suggests that the implementation of robot subsidies

tends to be endogenous in observable factors, such as fiscal capacity and prevailing industrial

structures, as well as in unobservable factors.

Figure 2: Number of Municipalities That Introduced Robot Demand-Side Subsidy

Selection Criteria

Table 2 reports the relationship between municipal characteristics and the adoption of

robot subsidy policies, focusing on six key attributes: fiscal capacity, educational resources

(specifically vocational schools), industrial enterprise statistics, foreign investment, economic

development and labour market conditions. My analysis highlights the role of fiscal capac-

ity, educational resources, the presence of industrial enterprises and foreign investment in

encouraging local government support on industrial robots. More specifically, these factors

suggest that local governments tend to tailor their subsidy policies based on their financial

6The replacing labour with machines policy in China is part of a broader strategy to modernize the
country’s manufacturing sector by promoting automation and the use of industrial robots. The policy,
which gained momentum around 2014, encourages firms, particularly in labour-intensive industries, to adopt
robotics and automated systems to address rising labor costs, improve efficiency, and enhance product quality.
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(a) 2010 (b) 2014

(c) 2016 (d) 2018

Figure 3: Geographical Distribution of Robot Demand-Side Subsidy

Note: (1) Municipalities marked with red borders are those that have introduced robot demand-side subsidy
by 2014, 2016 and 2018; (2) The shadiness of a municipality represents the number of robotics patent
applications in the local area; (3) The maps provide a rudimentary illustration of how robot demand-side
subsidies promote robot-related innovation activity in local areas: municipalities that introduced robot
subsidy tend to hold larger number of robotics patent application in the subsequent years; (4) In practice
I eliminate autonomous regions Xinjiang and Tibet and special administrative regions Hong Kong, Macau
and Taiwan due to data limitation. There is a total of 282 municipalities left, which account for 1,233.75
million residents or around 92.2% of national population in 2010.

wherewithal and the readiness of local industries to integrate robotics into their operations.

This aligns with the observation in Figure 3 that wealthier provinces in southeast China are

often at the forefront of the implementation of demand-side robot subsidies.
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Table 2: Determinants of Demand-Side Policy Implementation in Municipalities

(Lagged by One Year) (1) (2) (3) (4) (5) (6)

Fiscal Revenue 0.127** 0.130**
(0.063) (0.059)

No.(Vocational Schools) 0.053 0.071**
(0.035) (0.033)

Current Asset 0.035 0.022
(0.036) (0.037)

No.(Large Manufacturing Firms) 0.076* 0.091**
(0.043) (0.041)

Foreign Investment 0.028** 0.022*
(0.014) (0.013)

GRP per capita 0.059 −0.062
(0.088) (0.094)

Share of Secondary Industry −0.001 −0.005*
(0.003) (0.003)

Private Sector Employment 0.015 0.012
(0.022) (0.021)

Average Wage Rate 0.016 0.032
(0.090) (0.087)

R-squared 0.543 0.541 0.543 0.542 0.540 0.546
Number of observations 2,250 2,250 2,250 2,250 2,134 2,134
Fixed effects
Year X X X X X X
Province time trend X X X X X X

Note: (1) All regressions control for ten distinct categories of attributes, while the others are not statisti-
cally significant; (2) Standard errors are clustered at the municipal level; (3) All observations are weighted by
municipal population in 2011, weights per year represent millions of residents; (4) *, **, and *** respectively
indicates significance at the 10%, 5%, and the 1% significance level.
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Despite the possibility that the introduction of robot subsidies could be correlated with

city characteristics, I argue that endogeneity is not a significant concern in this study for

two key reasons. First, the results from the two-way-fixed-effects regressions included in the

robustness checks show no significant differences between treated and control municipalities,

both in terms of magnitudes and statistical significance. This finding implies that, although

it is plausible that the introduction of the subsidy could be endogenous to city characteristics,

there is no significant correlation between the subsidy and the outcomes of interest.

More importantly, the key identification assumption of my empirical framework is that

the timing of subsidy introduction across municipalities is uncorrelated with the outcomes

of interest. This assumption is supported by the descriptive Figures 4 for robotics patent

applications and robotics firm entries. Sub-figure (a) of Figure 4 compares the average

number of robotics patent applications for early adopters (municipalities that introduced

the subsidy by 2016) and late adopters (those that introduced it after 2017). The trends

for early and late adopters are highly parallel before 2014, when the first robot subsidy was

introduced. After 2014, the differences between early and late adopters begin to diverge,

suggesting a significant impact of the subsidy. This pattern is more pronounced when directly

examining the gap between the two groups, as illustrated by sub-figure (b) of Figure 4, with

a clear kink around 2014. A similar trend is observed in the number of robotics firm entries,

as shown in sub-figures (c) and (d) of Figure 4, providing further evidence to support my

key identification assumption.
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(a) Robotics Patents (Average) (b) Robotics Patents (Gap)

(c) Robotics Firm Establishments (Average) (d) Robotics Firm Establishments (Gap)

Figure 4: Time Trends of Outcomes of Interest of Early and Late Adopters

Note: (1) Sub-figure (a) presents the time trends of the average number of robotics patent applications
for early and late adopters; (2) Sub-figure (b) illustrates the gap in the average number of robotics patent
applications between early and late adopters; (3) Sub-figure (c) shows the time trends of the average number
of robotics firm establishments for early and late adopters; (4) Sub-figure (d) depicts the gap in the average
number of robotics firm establishments between early and late adopters; (5) Early adopters denote the
23 municipalities that introduced robot demand-side subsidy by 2016, while late adopters denote the 40
municipalities that introduced robot demand-side subsidy after 2017.
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3 Data and Research Design

3.1 Data and Descriptive Results

For the preliminary results, I concentrate on two key outcome categories: robotics activi-

ties and financial performances and firm dynamics of industrial enterprises. Detailed descrip-

tions of patent application, business registration and major industrial enterprise datasets are

given next. Table 3 presents the descriptive statistics for these dependent variables.

Robotics Patent Applications. I obtain the universe of patent application between

2010 and 2018 in China from China National Intellectual Property Administration (SIPO).

Robotics patents are identified through two distinct approaches. Firstly, patents containing

specific keywords related to industrial robots, such as ‘robot’, ‘robot arms’, and ‘AGV’ in

their descriptions are included. Secondly, patents featuring terms associated with robot-

related modules, like ‘servomotor’ and ‘reducer’, are also considered. All patents categorized

under Design Patent are excluded from this classification.

Robotics Company Registration I obtain the universe of business registration records

between 2010 and 2018 in China from the National Enterprise Credit Information Publicity

System. The identification of robotics companies involve pinpointing manufacturing firms

with keyword ‘industrial robot’ in their primary business activities. A more detailed focus

is applied to firms operating in specific sectors such as machinery, electronic and electric

manufacturing, as well as information technology and research and development services,

given their direct relevance to the robotics industry. Moreover, I confine our study to private

enterprises only.

Industrial Business Registration. Except for robotics companies, my study also

concentrate on analyzing new firm entries within the manufacturing sector. This is further

narrowed down to detailed industries that are more likely to be impacted by the adoption

of industrial robots, including machinery, automobile, electronic and electric production

sectors. For a robustness check, the effects on all business registrations and the tertiary

sector are also examined.
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Table 3: Descriptive Statistics

Treated Controls ∆(T-C) C/T

Panel A: Robotics Patent Application (2010-2018)
All Patents 19, 045.53 2, 720.50 16, 324.83 14.28%
Robot Patents 279.74 29.20 250.54 10.44%
Robot Module Patents 117.41 24.86 92.55 21.17%
Robotics Patents 483.24 67.27 415.97 13.92%

Panel B: Number of Newly-Established Robotics Enterprises (2010-2018)
Manufacturing 26.18 2.55 23.63 9.74%
Machinery 12.88 1.26 11.62 9.78%
Electronic 2.63 0.16 2.47 6.08%
Electric 1.95 0.19 1.76 9.74%

Panel C: Number of Newly-Established Manufacturing Enterprises (2010-2019)
All Firms 73, 060.91 24, 053.46 49, 007.45 32.92%
Tertiary Sector 59, 268.34 18, 731.00 40, 537.34 31.60%
Manufacturing 5, 438.92 1, 426.14 4, 012.78 26.22%
Machinery 682.71 119.11 563.60 17.45%
Automobile 112.05 25.92 86.13 23.13%
Electronic 187.05 15.55 171.50 8.31%
Electric 246.94 31.79 215.15 12.87%

Panel C: Number of Newly-Established Manufacturing Enterprises (2011-2020)
Counts 2.81 0.83 1.98 29.54%
Turnovers 798.19 232.39 565.80 29.11%
Total Assets 761.33 219.27 542.06 28.80%
Employments 901.83 209.46 692.37 23.23%

Number of Municipalities 63 219

Note: (1) Panel A is from China National Intellectual Property Administration (SIPO). Panel B and C
are from business registration data of National Enterprise Credit Information Publicity System. Panel D is
from major industrial enterprise data collected from provincal- and city-level statistic yearbooks; (2) The
treated group includes 63 municipalities that have introduced robot subsidy between 2010 and 2020, while
the control group covers all remaining 219 municipalities; (3) ‘Robot Patents’ refers to patents for entire
robotic assemblies, ‘Robot Module Patents’ refers to patents on essential components for robot production,
such as reducers, and ‘Robotics Patents’ refers to all patents related to robots (including robot patents and
robot module patents); (4) ‘Major Industrial Enterprises’ are defined as those with an annual turnover of
over three million USD; (5) The units of major industrial enterprises’ financial performance metrics are as
followed: ‘Counts’ are measured in thousands, ‘Turnovers’ and ‘Total Assets’ are measured in billion CNY
and ‘Employments’ are measured in thousand employees.

Major Industrial Enterprises To assess the financial performance of large firms

within the manufacturing sector, I utilize data from the major industrial enterprises dataset
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compiled from provincial-level statistical yearbooks spanning 2011 to 2020. Notably, the

criteria for defining major industrial enterprises (also known as above-designated-scale in-

dustrial enterprises) were revised in 2010, raising the threshold from an annual turnover

of approximately five million CNY (around 700 thousand USD) to twenty million CNY

(around three million USD). Consequently, our analysis focuses on the period post-2011 to

circumvent potential distortions arising from this definitional change. Specifically, I exam-

ine metrics such as firm counts, turnovers, total assets, and employment levels. Robustness

checks are conducted using additional measures like profits and fixed assets, detailed in the

appendix, although these are excluded from the main analysis due to concerns regarding

data quality.

3.2 Empirical Strategy

OLS for policy selection

I explore the potential endogeneity of robot demand-side subsidies by examining the

relationship between the timing of policy implementation and the existing characteristics of

municipalities. I estimate the following OLS regression model:

Pit = α +
3∑

l=1

βlXi,t−l + ϕjt + λt + ϵit.

Here, Pit is a dummy variable that equals one if municipality i has introduced robot

demand-side subsidy by year t. In this regression, I control for temporal influences induced

by national policies, like the introduction of Made in China 2025 initiative, through year

fixed effects λt, as well as those induced by provincial policies through province-by-year

fixed effects ϕjt.

Our core explanatory variables are the lagged municipal-level characteristics,Xi,t−l, which

are observed one to three years prior to the policy implementation. Xi,t−l encompasses ten

distinct categories representing various municipal-level attributes of interest. The coefficients

βl capture the correlation between these municipal characteristics in the preceding years and

the introduction of the robot demand-side subsidies. By including lags, I assess how ex-ante
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characteristics of municipalities correlate with the adoption of robot-related policies.

Synthetic Difference-in-Differences for policy impacts

In studying the impacts of the policy, I adopt the Synthetic Difference-in-Differences

(SDID) approach, developed by Arkhangelsky et al. (2021), as my main identification strat-

egy. The underlying econometric model for SDID essentially applies a weighted two-way

fixed effect regression (TWFE), detailed as follows:

(β̂, α̂, γ̂i, λ̂t) = argmax
β,α,λi,γt

{ N∑
i=0

T∑
t=0

(Yit − α− βPit − γi − λt)
2ω̂iµ̂t

}
,

where Pit represents the treatment variable that captures the introduction of robot demand-

side subsidy in municipality i. Yit denotes a set of outcomes of interest in municipality i in

year t. It can be classified into two categories: robotics industry performances (number

of robotics patent application, number of newly-established robotics firms) and industrial

sector performances (number of newly-established firms, and turnover, employment and

total asset of major industrial enterprises).

The SDID approach differs from the standard TWFE regression by including two weights:

ω̂i denotes the unit weight on city i so as to roughly match pre-treatment trends of control

units with those for the treated ones; µ̂t denotes the time weight on year t to balance the

pre- and post-treatment periods for the control unit.

My choice of methodology is motivated by recent discussions on the properties of the

staggered Difference-in-Differences (DID) approach, which raised concerns about potential

biases due to the weighting problem, as highlighted by Borusyak et al. (2024). Moreover, the

potential endogeneity of subsidy policy implementation within a municipality also imposes

potential challenge in utilizing traditional DID practices. In light of these issues, I argue that

the SDID method is particularly advantageous for our empirical setting and could provide

more accurate and reliable estimates for the following two reasons.7

First, the SDID framework constructs counterfactuals for treated municipalities by cal-

7For some other applications of the SDID, Banares-Sanchez et al. (2023) use SDID to address the selection
problem of industrial policy on solar panel industry in China and Hu and Wang (2024) use SDID to address
the selection problem of Flood Detention Basin policy in China.
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culating weighted averages from an extensive pool of potential control municipalities. The

use of synthetic weights to construct a counterfactual group, as suggested by Abadie et al.

(2010), effectively addresses concerns related to the weighting problem inherent in tradi-

tional TWFE DID approach. SDID closely aligns with the pre-treatment characteristics of

the treatment group, significantly enhances the credibility of causal inferences.

Second, the decision to implement subsidy policies might be influenced by observable fac-

tors like local economic development, fiscal capacity, and the prevailing industrial structure,

as well as unobservable elements. While I can control for these observable characteristics, it

is challenging to mitigate pre-treatment differences between treated and control municipali-

ties arising from unobservable features. Furthermore, the distribution of industrial subsidies

to firms within a municipality might be influenced by specific firm characteristics, making it

infeasible to assume that these subsidies are randomly assigned. The use of synthetic weights

addresses potential threats to exogeneity by ensuring that the counterfactual group mirrors

the pre-treatment outcomes of the treatment group. This alignment is critical for upholding

the parallel trends assumption, which is foundational for the validity of DID estimates. The

SDID method’s capacity to generate a closely matched synthetic control group thereby rein-

forces this assumption, enhancing the robustness and credibility of causal inferences drawn

from the analysis. I will also check the robustness of results based on traditional two-way-

fixed-effects (TWFE) estimators, the heterogeneous treatment effects model proposed by

De Chaisemartin and d’Haultfoeuille (2020), and the DID method for multiple time periods

as outlined by Callaway and Sant’Anna (2021).

In light of the staggered introduction of municipal subsidy policies over time, I implement

a cohort-by-cohort approach in Banares-Sanchez et al. (2023). The methodology unfolds in

three stages: Firstly, cities are categorized into two groups: a treated group and a never-

treated group (which serves as the control group). Within the treated group, cities are

further organized into distinct cohorts based on the year they first implemented robot sub-

sidy policies. Secondly, using the SDID estimation, I determine the cohort-specific Average

Treatment on the Treated (ATT). In this step, cities from each cohort function as a treat-

ment group, while never-treated cities constitute the control group. The final step aggregates

the cohort-specific ATTs to deduce an aggregate ATT for the entire sample.
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4 Effectiveness of Subsidy Policy

The initial step of my analysis is to assess whether the demand-side policy effectively

boosted robot utilization. Although direct municipal-level measures of robot utilization

are unavailable, the local preference characteristic outlined in Section 2.2 suggests that the

increased demand for robots largely remains within local areas. Consequently, I evaluate the

impact of robot subsidies from two supply-side perspectives. First, I examine the influence of

demand-side subsidies on innovation within the robotics sector, as indicated by an increase in

robot-related patent filings. Second, I analyze the effect of these subsidies on the expansion

of the robotics firm landscape. Based on my Difference-in-Differences analysis, I argue that

the demand-side subsidy policy has demonstrated efficacy.

4.1 Increase in Robotics Patents

My findings reveal that the robot demand-side subsidy significantly bolsters innovation

in robotics within the local areas. As illustrated in Table 4, I investigate the policy im-

pact on the number of robotics patent application. Leveraging SDID analysis, I construct

a synthetic counterfactual to determine the policy’s causal effects by comparing the ac-

tual outcomes against those of the counterfactual group. This analysis confirms that the

robot demand-side subsidy exclusively augments the count of robotics-related patent appli-

cations. Specifically, Column (1) shows a 13.6% increase in total robotics patent applications

attributable to the subsidy. Further dissection in Columns (2) and (3) examines various seg-

ments of robotics patents: robot units and robot modules, with ‘Robot Units’ encompassing

patents for entire robotic assemblies, and ‘Robot Modules’ focusing on essential components

for robot production, such as reducers. These columns reveal that the demand-side subsidy

brought increases of 18.7% and 13.3% in robot units and robot modules applications, re-

spectively. Column (4) acts as a placebo test. I hypothesize that the subsidy impacts on

robotics patents are not results of concurrent macro trends. This hypothesis is validated by

the finding presented in Column (4) that indicates an insignificant impact of the subsidy

policy on all patents.
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Table 4: Aggregate ATT on Robotics Patent Applications

Robotics Patents Robotics Patents: All Patents

Robot Units Robot Modules
(in IHS) (1) (2) (3) (4)

Demand Subsidy 0.136** 0.187*** 0.133** 0.030
(0.062) (0.068) (0.069) (0.049)

N(obs) 2,538 2,538 2,538 2,538

Fixed Effects
Year Y Y Y Y
Municipality Y Y Y Y

Note : (1) The results is based on SDID approach; (2) The coefficient is the ATT which
averages the staggered treatment effect of all cohorts; (3) Outcome variables are in In-
verse Hyperbolic Sine; (4) Standard errors are clustered at municipal level; (5) *, **, and
*** respectively indicates 10%, 5%, and 1% significance level; (6) ‘Robot Units’ refers to
patents of entire robotic production and assemblies, ‘Robot Module’ refers to patents re-
lated to the production of essential components, such as reducers, and ‘Robotics Patents’
refers to all patents related to robots (including robot patents and robot module patents);
(7) ‘All Patents’ refer to the patent application of all categories, including but not lim-
ited to robotics patents.

Figure 5 delineates the dynamic effects of subsidies on robotics patents. Each dot depicted

in the figure signifies a point estimate, illustrating the differences between municipalities that

received demand-side subsidies and their synthetic counterfactual groups. The estimates’

approximation to zero prior to the treatment, along with their statistical non-significance,

validates the precision of the synthetic group in accurately representing the counterfactual

groups for municipalities. The policy start to generate immediate impact subsequent to the

implementation of the robot demand-side subsidy, with the number of robotics patents in

subsidized municipalities surpassing those in their counterparts. Furthermore, the effect’s

magnitude escalates progressively, signifying the long term and persistent impact of the

demand subsidy in propelling robotic innovations. Initially, in period 0, the impact stands

at approximately 7%, escalating to around 50% in three years, evidencing the sustained and

amplifying influence of demand subsidies on robotic innovation.
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Figure 5: Dynamic Impact on the Number of Robotics Patents

Note: (1) Each dot represents the policy effect estimated using SDID approach; (2) ‘Robotics Patents’ refer
to all patent applications related to industrial robots and robot-related modules; (3) Before period 0, the
differences are not significant between the treated group and the synthetic control group; (4) Post period
0, a positive and significant estimate suggests that the number of robotics patents in treated municipalities
is larger than that in control municipalities; (5) The event-study regression includes county and year fixed
effects, standard errors are clustered at county level. We report the confidence interval at 95% confidence
level.

4.2 Increase in Robotics Firm Establishment

I next examine the effects of demand-side robot subsidies on the number of robotics

firms within China. Table 5 focuses on firms engaged in the manufacture of robots or

robotic components. Given the concentration of robot-producing enterprises within the

machinery sector, I consider Column (2) to be the notable result shown in the table. My

analysis indicates that robot subsidy policies foster a 29.5% increase in the number of firms

manufacturing robots within the machinery sector. Additionally, my investigation extends to

enterprises involved in robot production within the electronic and electrical sectors, despite

these not being their primary business focus. Table 5 indicates an increase of 26.4% and

35.6% in the number of firms within the electronic and electrical sectors, respectively. Table

6 acts as a placebo test. I hypothesize that the subsidy impacts on robotics firm entry are

not results of concurrent macro trends. This hypothesis is validated by the finding presented

in Table 6 that indicates an insignificant impact of the subsidy policy on all firm entry or

tertiary firm entry.
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Table 5: Aggregate ATT on Robotics Firm Establishments

Manufacturing Manufacturing:

Machinery Electronic Electric
(in IHS) (1) (2) (3) (4)

Demand Subsidy 0.295*** 0.432*** 0.264*** 0.356***
(0.091) (0.108) (0.096) (0.092)

N(obs) 2,538 2,538 2,538 2,538

Fixed Effects
Year Y Y Y Y
Municipality Y Y Y Y

Note: (1) The results is based on SDID approach; (2) The coefficient is the ATT which
averages the staggered treatment effect of all cohorts; (3) Outcome variables are in Inverse
Hyperbolic Sine; (4) Standard errors are clustered at municipal level; (5) *, **, and ***
respectively indicates 10%, 5%, and 1% significance level; (6) ‘Manufacturing’ refers to all
robotics firms in the manufacturing sector, ‘Machinery’, ‘Electronic’ and ‘Electric’ cate-
gories cover robotics firms classified into corresponding sub-industries.

Figure 6 illustrates the evolving influence of robot subsidy policies on the establishment of

robotics firms across all cohort. My analysis reveals that the enactment of a robot subsidy

policy catalyses a marked escalation in the establishment of robotics firms. In period 0,

the quantity of robotics firms in municipalities with a robot subsidy policy increases by

50% relative to their synthetic control group counterparts, a growth that is not merely

statistically significant but also of considerable economic significance. This trend persists

over three years, at a relatively stable magnitude, indicating the sustained impact of the

policy.
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Figure 6: Dynamic Impact on Robotics Firm Establishment

Note: (1) Each dot represents the policy effect estimated using SDID approach; (2) ‘Robot Firm Entry’ refers
to the number of newly-established machinery-manufacturing enterprises that produce industrial robots as
their major businesses; (3) Before period 0, the differences are not significant between the treated group and
the synthetic control group; (4) Post period 0, a positive and significant estimate suggests that the number
of robotics firm establishment in treated municipalities is larger than that in control municipalities; (5) The
event-study regression includes county and year fixed effects, standard errors are clustered at county level.
We report the confidence interval at 95% confidence level.

Table 6: Aggregate ATT on Overall Business Establishments

(in IHS) Overall Overall Tertiary Tertiary

Demand Subsidy −0.061 −0.064 −0.067 −0.063
(0.044) (0.042) (0.042) (0.045)

N(obs) 2,820 2,820 2,820 2,820

Fixed Effects
Year Y Y Y Y
Municipality Y Y Y Y
Controls N Y N Y

Note:(1) The results is based on SDID approach; (2) The coefficient is
the ATT which averages the staggered treatment effect of all cohorts;
(3) Outcome variables are in Inverse Hyperbolic Sine; (4) Standard
errors are clustered at municipal level; (5) *, **, and *** respectively
indicates 10%, 5%, and 1% significance level.
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4.3 Robustness Checks With Other DID Methods

Figures 7 and 8 present the results of the analysis on applications for robotics patents

and the establishment of robotics firms using various DID methods. While I assert that

SDID (Arkhangelsky et al. 2021) is the most appropriate for my empirical setting, I also in-

clude event-study results employing three alternative methodologies: the traditional TWFE

estimators, the heterogeneous treatment effects model proposed by De Chaisemartin and

d’Haultfoeuille (2020) and the DID method for multiple time periods as outlined by Call-

away and Sant’Anna (2021).

Two key observations emerge from these results. First, all three methods yield post-

treatment effects that are consistent with those shown in Figures 5 and 6. This consistency

suggests that my primary findings are robust across different methodological approaches

and not solely dependent on the SDID method. Second, the traditional TWFE estimators

indicate some significant differences between treated and control municipalities, particularly

at period -5. This aligns with my OLS results, which suggest that the introduction of robot

subsidy policies may be endogenous to observable factors, such as fiscal capacity and existing

levels of development of the robotics industry, as well as to unobservable factors. The meth-

ods proposed by De Chaisemartin and d’Haultfoeuille (2020) and Callaway and Sant’Anna

(2021) effectively render the pre-treatment trends insignificant, thereby satisfying the paral-

lel trends assumption necessary for valid DID identification. Nonetheless, the magnitude of

the point estimates remains relatively large. These findings further validate the use of SDID

as my primary identification strategy, as it mitigates significant pre-treatment trends by con-

structing a credible synthetic counterfactual for treated municipalities using a comprehensive

set of control units.
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Figure 7: Event Study Robustness Check - Robotics Patent Applications

Note: (1) Each dot represents the policy effect (ATT) estimated using different event-study approach:
’TWFE’ represents the traditional two-way-fixed-effects approach, ’C&D (2020)’ refers to the two-way fixed
effects estimators with heterogeneous treatment effects proposed by De Chaisemartin and d’Haultfoeuille
(2020), ‘C&S (2021)’ refers to the DID with multiple time periods by Callaway and Sant’Anna (2021); (2)
’Robotics Patent Applications’ measures the IHS of municipal-level numbers of robotics patent applications
between 2010 and 2018; (3) Before treatment, traditional TWFE shows slightly significant difference between
treated and control municipalities in period -5, while C&D and C&S approaches help render the pre trend
insignificant. That also supports the validity of Synthetic DID in my setting; (4) Post treatment, all three
methods yield significant and positive estimates, suggesting the number of robotics patent application in
treated municipalities becomes persistently larger than that in control ones; (5) The event-study regression
includes county and year fixed effects, standard errors are clustered at county level. We report the confidence
interval at 95% confidence level.
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Figure 8: Event Study Robustness Check - Robot Firm Establishments

Note: (1) Each dot represents the policy effect (ATT) estimated using different event-study approach:
’TWFE’ represents the traditional two-way-fixed-effects approach, ’C&D (2020)’ refers to the two-way fixed
effects estimators with heterogeneous treatment effects proposed by De Chaisemartin and d’Haultfoeuille
(2020), ‘C&S (2021)’ refers to the DID with multiple time periods by Callaway and Sant’Anna (2021); (2)
’Robot Firm Establishments’ measures the IHS of municipal-level numbers of new robot firm establishments
between 2010 and 2018; (3) Before treatment, traditional TWFE shows slightly significant difference between
treated and control municipalities in period -4 and -5, while C&D and C&S approaches help render the pre
trend insignificant. That also supports the validity of Synthetic DID in my setting; (4) Post treatment, all
three methods yield significant and positive estimates, suggesting the number of new robot firm establishment
in treated municipalities becomes persistently larger than that in control ones; (5) The event-study regression
includes county and year fixed effects, standard errors are clustered at county level. We report the confidence
interval at 95% confidence level.

4.4 Summary

Overall, my findings affirm that local governments in China have effectively achieved

the objectives of the demand-side robot subsidy policy. Following the implementation of

these policies, a significant increase in robotics-related innovation is observed, alongside an

expansion in the number of firms prioritizing robot production in their operations, as shown

in Table 4 and Table 5. This empirical evidence aligns with the local preference characteristic

of China’s robot subsidy, which confines the increase in robot demand to the local supply

chain. My placebo tests in Table 4 and 6 demonstrate that the treatment does capture the

policies targeting the industrial robots only, and the changes of aggregates are not results of

underlying macro trends. My further robustness checks demonstrate the consistency of my
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findings across multiple methodologies, which underscores the validity of my results and the

robustness of the conclusions.

5 Subsidy-led Disproportional Benefits Across Firms

The analysis in the previous section has validated the effectiveness of robot subsidy

policies in augmenting the robot supply in the market. This section shifts focus to the

demand-side reaction to such subsidies. Given that demand-side subsidies offer financial

incentives for robot purchases, I explore how manufacturing firms respond to such policies.

Particularly, I investigate different responses across manufacturing firms of differing sizes.

My investigation is guided by two hypotheses: first, the facilitated access to robot technology

incentivizes firms to enter the market; second, larger firms enjoy greater benefits from the

policy due to their higher incentive and ability to substitute labour with robot technology.

My empirical analysis does not corroborate the first hypothesis, revealing a decline in the

entry of new manufacturing firms subsequent to the implementation of a robot subsidy policy.

Conversely, my findings support the second hypothesis. I observe that major industrial

enterprises exhibit increases in employment, total assets and total turnover following the

introduction of a robot subsidy policy. This contrast between the general manufacturing

sector and larger firms suggests that, such policies are likely to result in an intensive margin

improvement for larger firms, at the cost of extensive margin deterioration in the whole

sector. Since the primary beneficiaries of such policies are indeed these larger manufacturing

firms, such outcomes may imply an increase in market concentration, with the benefits of

such a policy disproportionately accruing to larger firms, thereby amplifying their inherent

advantages.

5.1 Decrease in Manufacturing Firm Establishment

Table 7 shows the aggregate effects of a robot subsidy policy on new firm entry across

the manufacturing sector, including sub-industries such as machinery, automobile, electronic,

and electrical. Our analysis reveals a general decline in manufacturing firm entries after the

introduction of a robot subsidy policy. Overall, after policy implementation, the number
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of new manufacturing firms decreases by 14.0%. Notably, those sub-industries with greater

robot penetration, such as automobile, electronic and electrical production, experience more

pronounced declines. After policy implementation, the number of new firms decrease by

28.3%, 36.7% and 35.5%, respectively, in the automobile, electronic and electrical production

sectors. I conduct a placebo test by applying the SDID investigation on all firms and firms

in the tertiary sector, as shown in Table 6. I find that the policy does not have a significant

impact on all firms and firms in the tertiary sector. This indicates that the policy only affects

the manufacturing sector.

Table 7: Aggregate ATT on Manufacturing Firms Entry

(in IHS) Manu Machinery Automobile Electronic Electric

Demand Subsidy −0.140** −0.190*** −0.283*** −0.367*** −0.355***
(0.058) (0.070) (0.092) (0.088) (0.092)

N(obs) 2,820 2,820 2,820 2,820 2,820

Fixed Effects
Year Y Y Y Y Y
Municipality Y Y Y Y Y

Note: (1) The results is based on SDID approach; (2) The coefficient is the ATT which averages the
staggered treatment effect of all cohorts; (3) Outcome variables are in Inverse Hyperbolic Sine; (4) Stan-
dard errors are clustered at municipal level; (5) *, **, and *** respectively indicates 10%, 5%, and 1%
significance level; (6) ‘Manufacturing’ refers to all firms in the manufacturing sector, ‘Machinery’, ‘Auto-
mobile’, ‘Electronic’ and ‘Electric’ categories cover firms classified into corresponding sub-industries.

Figure 9 illustrates the dynamic effects of a robot subsidy policy on municipalities that

initiated a demand-side subsidy. The figure clearly shows a reduction in the entry of new

manufacturing firms. Following the introduction of such a subsidy, there is an immediate

8% decrease in period 0. This downward trend intensifies over time, with the impact of such

a subsidy reaching an approximate 70% magnitude in five years.

This striking trend suggests that a robot subsidy policy diminishes the incentive for firm

entry into the manufacturing sector, possibly due to increased market concentration after

the introduction of the policy. Although young and small firms are able to enjoy the benefits

of a robot subsidy in absolute terms, the advantage they obtain tends to be smaller relative

to that of major players in the market. Meanwhile, larger firms, already benefiting from

31



Figure 9: Dynamic Impact on Manufacturing Firm Establishment

Note: (1) Each dot represents the policy effect estimated using SDID approach; (2) ‘Manufacturing Firm
Entry’ refers to the total number of newly-established manufacturing enterprises; (3) Before period 0, the
differences are not significant between the treated group and the synthetic control group; (4) Post period 0,
a positive and significant estimate suggests that the number of manufacturing firm establishment in treated
municipalities is smaller than that in control municipalities; (5) The event-study regression includes county
and year fixed effects, standard errors are clustered at county level. We report the confidence interval at
95% confidence level.

cost efficiencies through the displacement of labour by robots, likely further enhanced their

competitive edge under the policy. If that is the case, then it would be harder for smaller

firms to enter the market. This aligns with Table 7, where sectors like automobile and

electrical, known for higher levels of robot penetration, also see greater reductions in new

firm entries.

5.2 Improvements of Larger Manufacturing Firms

To further examine the disproportionate impact of policy implementation, I analyse firm

counts, total assets, turnovers and employment figures for major industrial enterprises. As

Table 8 illustrates, Column (1) shows that the effect of such a robot subsidy policy on the

number of major industrial enterprise is negligible. However, I observe significant increases

in total assets, turnovers and employment attributable to robot subsidy policies. Specifi-

cally, a 6.4% rise in total assets suggests enhanced asset investment by these larger firms

after the introduction of such a policy, potentially reflecting an incentive for larger firms to
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invest in robots. Column (3) documents a 7.8% turnover increase following policy imple-

mentation, implying that these larger firms may have leveraged robots to boost productivity

and, consequently, turnover. Employment also sees an increase of 5.8%, as shown in Column

(4). This juxtaposition suggests that, while robot technology may replace some jobs, the

resultant turnover and productivity gains could necessitate additional labour. Hence, the

productivity benefits appear to outweigh the displacement effects of robots in the intensive

margin. Despite the stable count of major industrial enterprises after the introduction of

such a policy, their performance has improved. Particularly, given the decline in new entry

for all manufacturing firms, I suggest that larger firms are the principal beneficiaries of such

robot subsidy policies, and this has accentuated their initial advantages and increased the

barriers for smaller firms entering the market.

Table 8: Aggregate ATT on Major Industrial Enterprises

Count Total Asset Turnover Employment
(in IHS) (1) (2) (3) (4)

Demand Subsidy 0.015 0.064*** 0.078** 0.058**
(0.025) (0.016) (0.036) (0.025)

N(obs) 2,820 2,680 2,800 2,350

Fixed Effects
Year Y Y Y Y
Municipality Y Y Y Y

Note: (1) The results is based on SDID approach; (2) The coefficient is the ATT
which averages the staggered treatment effect of all cohorts; (3) Outcome vari-
ables are in Inverse Hyperbolic Sine; (4) Standard errors are clustered at munic-
ipal level; (5) *, **, and *** respectively indicates 10%, 5%, and 1% significance
level; (6) ‘Count’ refers to the total number of major industrial enterprises, ‘Total
Asset’ refers to the value of total asset, ‘Turnover’ refers to the annual turnover
and ‘Employment’ refers to the number of employees.

Total Assets

Figure 10 presents the dynamic impact of a robot subsidy policy on the total assets of

major industrial enterprises in cities that adopt such a policy. Initially, prior to period 0,

the differences in total assets between cities implementing such a policy and their synthetic
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counterparts are close to 0 and statistically insignificant. However, post period 0, I find a

noticeable upward trajectory in total assets. The difference becomes statistically significant

right after the introduction of robot subsidy, with treated cities exhibiting total assets over

4% greater than those in the control groups. This significant impact persists and intensifies

over time, reaching 20% after the initial introduction of the subsidy. This highlights an

increase in total investments by larger firms, starting three years after the introduction of a

robot subsidy policy. Given that robot investments are categorized under total assets, it is

plausible to attribute this trend to the acquisition of robots.

Figure 10: Dynamic Impact on Total Assets of Major Industrial Enterprises

Note: (1) Each dot represents the policy effect estimated using SDID approach; (2) ‘Major Industrial

Enterprise Total Asset’ refers to the municipal-level total assets of major industrial enterprises; (3) Before

period 0, the differences are not significant between the treated group and the synthetic control group; (4)

Post period 0, a positive and significant estimate suggests that the total asset of major industrial firms in

treated municipalities is larger than that in control municipalities; (5) The event-study regression includes

county and year fixed effects, standard errors are clustered at county level. We report the confidence interval

at 95% confidence level.

Annual Turnover

Figure 11 presents the dynamic impact of a robot subsidy policy on total revenue of major

industrial enterprises in cities that implement such a policy. I observe an immediate and

persistent effect on annual turnover after policy implementation. Mirroring the observations
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in Figure 10, I find no significant differences between cities implementing such a policy and

their synthetic counterparts prior to period 0. Nonetheless, policy implementation results

in an immediate effect in the treated cities, with a notable 5% increase in annual turnover

observed in period 0 compared with the control groups. The intensity of this effect amplifies

progressively, reaching approximately 30% by five years following the introduction of a robot

subsidy policy.

Figure 11: Dynamic Impact on Annual Turnover of Major Industrial Enterprises

Note: (1) Each dot represents the policy effect estimated using SDID approach; (2) ‘Major Industrial En-

terprise Turnover’ refers to the municipal-level annual turnover of major industrial enterprises; (3) Before

period 0, the differences are not significant between the treated group and the synthetic control group; (4)

Post period 0, a positive and significant estimate suggests that the annual turnover of major industrial enter-

prises in treated municipalities is larger than that in control municipalities; (5) The event-study regression

includes county and year fixed effects, standard errors are clustered at county level. We report the confidence

interval at 95% confidence level.

Total Employment

Figure 11 presents the dynamic impact of a robot subsidy policy on total employment

within major industrial enterprises in cities that adopt such a policy. An immediate and

sustained effect on total employment is evident following policy implementation. Echoing

the patterns observed in Figures 10 and 11, there is no notable disparity between the cities

implementing such a policy and their synthetic counterparts prior to period 0. However,
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policy implementation results in a swift and persistent response in the treated cities, with

total employment showing a significant increase compared with control groups from period

0 onwards. The effect increases from just under 1% in 2015 to approximately 20% by period

5, maintaining its significance throughout this period. This trend underscores the impact

such policies can have on the substantial and lasting augmentation of employment levels in

larger manufacturing enterprises.

This outcome appears counterintuitive at first glance, as the adoption of robots might

result in reduced employment due to the potential for labour displacement. However, I

attribute this phenomenon primarily to the productivity effect of robot adoption, rather

than to the substitution effect. As depicted in Figure 11 and detailed in Table 8, there was a

notable rise in turnover following policy implementation. This turnover surge is likely to spur

an elevated demand for labour, culminating in the observed employment growth. Meanwhile,

consistent with the implication of automation, the increase in employment is smaller in

magnitude than the increases in total assets and turnover. The underlying dynamics of this

counterintuitive result will be elaborated upon within my theoretical framework, offering a

deeper exploration of the mechanisms at play.
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Figure 12: Dynamic Impact on Number of Employee of Major Industrial Enterprises

Note: (1) Each dot represents the policy effect estimated using SDID approach; (2) ‘Major Industrial
Enterprise Employment’ refers to the municipal-level number of employees of major industrial enterprises;
(3) Before period 0, the differences are not significant between the treated group and the synthetic control
group; (4) Post period 0, a positive and significant estimate suggests that the number of employees of major
industrial enterprises in treated municipalities is larger than that in control municipalities; (5) The event-
study regression includes county and year fixed effects, standard errors are clustered at county level. We
report the confidence interval at 95% confidence level.

5.3 Robustness Checks With Other DID Methods

Similar to the last section, I examine the robustness of the results by applying alternative

DID methods to our analysis on the establishment of manufacturing firms and three metrics

of financial performances of major industrial enterprises. Figures 13, 14, 15 and 16 present

the results respectively.

Two key observations are described as followed. First, all three methods yield post-

treatment effects that are consistent with those shown in Figures 9, 11, 10 and 12. This

consistency suggests that my primary findings are robust across different methodological

approaches and not solely dependent on the SDID method. Second, the traditional TWFE

estimators indicate some significant differences between treated and control municipalities,

particularly at period -5. This aligns with my OLS results, which suggest that the intro-

duction of robot-subsidizing policies may be endogenous to observable factors such as fiscal

capacity and the existing development of the robotics industry, as well as to unobservable

factors. The methods proposed by De Chaisemartin and d’Haultfoeuille (2020) and Call-
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Figure 13: Event Study Robustness Check - Manufacturing Firm Establishments

Note: (1) Each dot represents the policy effect (ATT) estimated using different event-study approach:
’TWFE’ represents the traditional two-way-fixed-effects approach, ’C&D (2020)’ refers to the two-way fixed
effects estimators with heterogeneous treatment effects proposed by De Chaisemartin and d’Haultfoeuille
(2020), ‘C&S (2021)’ refers to the DID with multiple time periods by Callaway and Sant’Anna (2021); (2)
’Manufacturing Firm Establishments’ measures the IHS of municipal-level numbers of new manufacturing
firm establishments between 2010 and 2019; (3) Before treatment, traditional TWFE shows slightly signif-
icant difference between treated and control municipalities in period -5, while C&D and C&S approaches
help render the pre trend insignificant. That also supports the validity of Synthetic DID in my setting; (4)
Post treatment, all three methods yield significant and negative estimates, suggesting the number of new
manufacturing firm establishments in treated municipalities becomes persistently smaller than that in control
ones; (5) The event-study regression includes county and year fixed effects, standard errors are clustered at
county level. We report the confidence interval at 95% confidence level.

away and Sant’Anna (2021) effectively render the pre-treatment trends insignificant, thereby

satisfying the parallel trends assumption necessary for valid DID identification. Nonethe-

less, the magnitude of the point estimates remains relatively large. These findings further

validate the use of SDID as my primary identification strategy, as it mitigates significant pre-

trends by constructing a credible synthetic counterfactual for treated municipalities using a

comprehensive set of control units.
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Figure 14: Event Study Robustness Check - Major Industrial Enterprise Turnover

Note: (1) Each dot represents the policy effect (ATT) estimated using different event-study approach:
’TWFE’ represents the traditional two-way-fixed-effects approach, ’C&D (2020)’ refers to the two-way fixed
effects estimators with heterogeneous treatment effects proposed by De Chaisemartin and d’Haultfoeuille
(2020), ‘C&S (2021)’ refers to the DID with multiple time periods by Callaway and Sant’Anna (2021); (2)
’Major Industrial Enterprise Turnover’ measures the IHS of municipal-level turnovers of major industrial
enterprises (defined as firms with an annual turnover above 300 million USD) between 2011 and 2020;
(3) Before treatment, neither of three methods shows significant difference between treated and control
municipalities, while traditional TWFE shows slightly more positive point estimates. That also supports
the validity of Synthetic DID in my setting; (4) Post treatment, all three methods yield significant and
positive estimates, suggesting the major industrial enterprise turnover in treated municipalities becomes
persistently larger than that in control ones; (5) The event-study regression includes county and year fixed
effects, standard errors are clustered at county level. We report the confidence interval at 95% confidence
level.

39



Figure 15: Event Study Robustness Check - Major Industrial Enterprise Total Asset

Note: (1) Each dot represents the policy effect (ATT) estimated using different event-study approach:
’TWFE’ represents the traditional two-way-fixed-effects approach, ’C&D (2020)’ refers to the two-way fixed
effects estimators with heterogeneous treatment effects proposed by De Chaisemartin and d’Haultfoeuille
(2020), ‘C&S (2021)’ refers to the DID with multiple time periods by Callaway and Sant’Anna (2021);
(2) ’Major Industrial Enterprise Total Asset’ measures the IHS of municipal-level total assets of major
industrial enterprises (defined as firms with an annual turnover above 300 million USD) between 2011 and
2020; (3) Before treatment, traditional TWFE shows slightly significant difference between treated and
control municipalities in period -5, while C&D and C&S approaches help render the pre trend insignificant.
All three methods yield relatively large point estimates, which strongly supports the use of Synthetic DID
in my setting; (4) Post treatment, all three methods yield significant and positive estimates, suggesting
the major industrial enterprise total assets in treated municipalities becomes persistently larger than that
in control ones; (5) The event-study regression includes county and year fixed effects, standard errors are
clustered at county level. We report the confidence interval at 95% confidence level.
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Figure 16: Event Study Robustness Check - Major Industrial Enterprise Employment

Note: (1) Each dot represents the policy effect (ATT) estimated using different event-study approach:
’TWFE’ represents the traditional two-way-fixed-effects approach, ’C&D (2020)’ refers to the two-way fixed
effects estimators with heterogeneous treatment effects proposed by De Chaisemartin and d’Haultfoeuille
(2020), ’C&S (2021)’ refers to the DID with multiple time periods by Callaway and Sant’Anna (2021);
(2) ’Major Industrial Enterprise Employment’ measures the IHS of municipal-level employments of major
industrial enterprises (defined as firms with an annual turnover above 300 million USD) between 2011 and
2020; (3) Before treatment, neither of three methods shows significant difference between treated and control
municipalities, while traditional TWFE shows slightly more positive point estimates. That also supports
the validity of Synthetic DID in my setting; (4) Post treatment, all three methods yield significant and
positive estimates, suggesting the major industrial enterprise employments in treated municipalities becomes
persistently larger than that in control ones; (5) The event-study regression includes county and year fixed
effects, standard errors are clustered at county level. We report the confidence interval at 95% confidence
level.
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6 A Simple Model Exploring Distributional Impacts of

Uniform Robot Subsidy

Before delving into the full model, I will first describe a simplified environment that in-

corporates exogenously-given borrowing costs (Hsieh and Klenow, 2009; Moll et al., 2017;

David and Venkateswaran, 2019) with endogenous automation adoption (Acemoglu and Au-

tor, 2012; Acemoglu and Restrepo, 2018) to illustrate how our model aligns with empirical

findings. I will then discuss the impact of a uniform robot subsidy on automation dispersion

and how the interplay affects overall productivity through static misallocation (Hsieh and

Klenow, 2009; Restuccia and Rogerson, 2008). My simple model abstracts from endogenous

financial frictions as the microfoundation of the MPK wedges so as to shut down the dynam-

ics of the misallocation itself. That has important quantitative implications but do not affect

our qualitative arguments. In the full model I will introduce heterogeneous entrepreneurs

so as to account for dynamic misallocation (Hsieh and Klenow, 2014; Bento and Restuccia,

2017; Gopinath et al., 2017; Da-Rocha et al., 2023) through through endogenous capital

accumulation. By doing so I can quantify the efficiency implication of a uniform subsidy as

well as disentangling the ensuing static and dynamics misallocation.

6.1 Environment

Households

There is a representative household that maximizes life-time utility subject to a flow

budget constraint:

V (a0) = max
{ct}

∫ ∞

0

e−εtu(ct)dt,

s.t. ȧt = rtat + wt + πt − Tt − ct,

(1)

where rt and wt denote the interest rate and the wage, respectively, and πt denotes profits

from operating firms. Tt denotes the lump-sum tax that accounts the expenditure of the

robot subsidy and the reimbursement from the MPK wedges. The detailed expression of Tt

will be introduced later.
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Final Good and Traditional Sector

There are two sectors in the economy: a traditional sector T and a modern sector M .

The household consumes a single final good Yt (which is also the numeraire) produced by

combining the sectoral outputs YT,t and YM,t in a Cobb-Douglas manner with modern output

share α:

Yt = Y α
M,tY

1−α
T,t .

The traditional sector produces its sectoral output YT,t using capital and labour through

a Cobb-Douglas production technology, and supplies it in a perfectly competitive market:

max
{YT,t,kT,t,lT,t}

PT,tYT,t − wtlT,t − rtkT,t,

s.t. YT,t = zTk
β
T,tl

1−β
T,t .

(2)

Modern Sector

There is a unit mass firms i ∈ [0, 1] operating in the modern sector. The output of the

modern sector, YM,t, is produced by aggregating the varieties supplied by firms, Yi,t, using a

CES production function with an elasticity of substitution σ > 1:

YM,t =

[ ∫ 1

0

y
σ−1
σ

i,t di

] σ
σ−1

.

Hence, the demand for each variety yi satisfies:

pi,t = PM,tY
1
σ
M,tyi,t

− 1
σ .

Since the production side is static, I will omit the time subscript to maintain clarity

in describing the firms’ problem. Firms in the modern sector are characterized by three

key components: endogenous automation adoption, exogenously-given MPK wedges, and a

uniform robot subsidy.

Task-Based Framework To endogenize the adoption of industrial robots, I incorpo-

rate the task-based production technology as proposed by Acemoglu and Autor (2012) and

Acemoglu and Restrepo (2018): In this framework, each variety yi is produced through a
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continuum of tasks j ∈ [0, 1]. For simplicity, I assume the absence of technological con-

straints, implying that all tasks are fully automatable. Consequently, capital and labour are

considered perfect substitutes across these tasks:

yij = kij + γ(j)lij.

Here, γ(j) represents the relative productivity of labour in performing task j, which is

assumed to be strictly increasing in j. This assumption reflects the intuition that tasks

indexed by higher j values are more complex, making them more efficiently produced by

labour. Firms produce varieties using a CES production technology with elasticity ρ:

yi = zi

[ ∫ 1

0

y
ρ−1
ρ

ij dj

] ρ
ρ−1

.

The optimization of the aforementioned equations determines a cutoff value, Ji, for task

allocation. Intuitively, that implies that it is optimal for tasks indexed by j ∈ [0, Ji] to

be produced exclusively with capital, while tasks indexed by j ∈ [Ji, 1] should be produced

exclusively with labour. This allocation strategy results in the following production function:

yi = zi

{
Ji

1
ρk

ρ−1
ρ

i +
[∫ 1

Ji

γ(x)ρ−1dx
] 1

ρ
l
ρ−1
ρ

i

} ρ
ρ−1

.

Financial Frictions I assume the firms face financial frictions in the form of exogenously-

given idiosyncratic borrowing costs, Φi (Hsieh and Klenow, 2009; Moll et al., 2017; David

and Venkateswaran, 2019).8 Since I think of Φi as a limit of capital usage instead of an actual

expenditure, I model it in the form of a capital tax and will be paid back to the household

as a lump-sum transfer. I further posit that Φi > 0 and V ar(Φi) > 0, indicating that the

financial frictions depress capital use in general and borrowing costs vary across firms.

In this toy model, I assume {Φi}i∈[0,1] follows an exogenously-given distribution. I will

endogenize it by connecting the borrow costs to the asset positions of heterogeneous en-

8While industrial enterprises in China face significant capital misallocation arising from multiple sources,
I particularly concentrate on financial frictions, following evidence from prior research which indicates that
such frictions constitute a significant determinant of idiosyncratic MPK wedges among manufacturing en-
terprises in China (Hsieh and Song, 2015; Wu, 2018; David and Venkateswaran, 2019).
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trepreneurs in the full model.

Uniform Robot Subsidy As per the industrial robot subsidy policies enacted by Chi-

nese municipalities, I model the policy intervention as a percentage subsidy, denoted by τ ,

applied to the capital rental rate r.

Optimization problem Firm i faces profit maximization problem formulated as follows:

πi = max
{yi,ki,li,Ji}

piyi − wli − (1− τ)rki − Φiki,

s.t. pi = PMY
1
σ
M yi

− 1
σ ,

yi = zi

{
Ji

1
ρk

ρ−1
ρ

i +
[∫ 1

Ji

γ(x)ρ−1dx
] 1

ρ
l
ρ−1
ρ

i

} ρ
ρ−1

.

(3)

Government Budget Constraint

The robot subsidy is financed by a lump-sum tax collected from the firms as well as by

the idiosyncratic capital tax Φi. The government budget balance is given by equalizing the

lump-sum tax Tt with the gap between robot subsidy expenditure and capital tax income:

τ

∫ 1

0

ki,tdi =

∫ 1

0

Φiki,tdi+ Tt. (4)

Market Clearing Conditions

The wage rate wt and interest rate rt clear the labour and capital market respectively:

lTt +

∫ 1

0

li,tdi = 1, (5)

kTt +

∫ 1

0

ki,tdi = at. (6)

Moreover, modern firms’ prices pi,t aggregate to the sectoral price pM,t and the sectoral

prices satistfy the one-price principle:

PM,t =

[ ∫ 1

0

p1−σ
i,t di

] 1
1−σ

, (7)
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1 =
PM,t

α

α PT,t

1− α

1−α

. (8)

Equilibrium

The competitive equilibrium of the economy consists of household’s consumption ct and

lump-sum tax Tt, traditional sector factor demands kT,t and lT,t, modern firms’ automation

levels and factor demands Ji,t, ki,t and li,t, and prices wt, rt, Pi,t, PM,t and PT,t such that,

given the distribution of borrowing costs {Φi}i∈[0,1] and robot subsidy τ :

1. ct satisfies the representative households’s utility maximization problem (1);

2. kT,t and lT,t satisfy the traditional sector’s profit maximization problem (2);

3. Ji,t, ki,t and li,t satisfy mordern firms’ profit maximization problem (3);

4. wt and rt satisfy the factor market clearing conditions (5) and (6), and pi,t, PM,t and

PT,t satisfy the one-price principle (7) and (8);

5. Tt satisfies the government budget balance condition (4).

6.2 Link to Empirical Findings

In this section, I explore the interaction between idiosyncratic borrowing costs and firms’

decisions to automate and explain how this interplay helps to explain our empirical obser-

vations. As a brief introduction for the intuition, the idiosyncratic borrowing costs Φi cause

dispersion of optimal automation levels Ji in the following way:

γ(Ji) =
w

(1− τ)r + Φi

.

Intuitively, the derived expression indicates the presence of borrowing costs, Φi > 0,

contribute to inefficiently low levels of automation adoption relative to the frictionless level.

The degree of inefficiency varies among firms and intensifies as firm i encounters more severe

limit of utilizing capital. Importantly, this variability in financial conditions also renders the

effectiveness of a uniform automation subsidy, denoted by τ , to vary across firms:

∂Ji
∂τ

=
γ(Ji)

γ′(Ji)

r

(1− τ)r + Φi

.
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The above expression indicates that borrowing costs attenuate the response of the firm

towards the subsidy: the greater the financial frictions faced by a firm, the less it will

improve its automation in a robot subsidy. Intuitively, that is because the robot subsidy

helps reduce the explicit capital cost r but does not facilitate access to capital captured by the

implicit borrowing cost Φi. Therefore, if a firm is so financially-constrained that the implicit

borrowing cost makes up the majority of its capital expenditure, then a robot subsidy alone

will not make a significant change to its cost of adopting industrial robots. The following

lemma elucidates how endogenous automation affects the marginal costs in response to an

increase in the subsidy.

Lemma 1 Given a rise of the uniform automation subsidy ∂τ , the change of marginal cost,

mci, faced by firm i is given by:

∂ logmci
∂τ

= − Ji

Ji + γ(Ji)1−ρ
∫ 1

Ji
γ(x)ρ−1dx

Automation effect

1

(1− τ)r + Φi
MPK wedge effect

,

∂2 logmci
∂τ∂Φi

> 0.

Lemma 1 suggests that an increase in the uniform subsidy τ consistently reduces marginal

costs, yet its impact varies across firms. Specifically, firms with weaker borrowing con-

straints derive greater benefits from the subsidy. Regarding the mechanisms of dispersion,

the productivity enhancements attributable to the subsidy can be decomposed into two dis-

tinct components. Intuitively, beyond the mechanical dispersion induced by existing MPK

wedges, firms will also endogenously adjust their automation levels in response to the sub-

sidy, thereby intensifying the dispersion in productivity gains. The subsequent proposition

describes the equilibrium effects induced by a uniform automation subsidy.

Proposition 1 Assume α is small enough, then there always exists a cutoff value for the

MPK wedge, Φ̄, such that

∂log(mc)

∂τ

∣∣∣∣
Φ̄

=

∫ 1

0

∂log(mci)

∂τ
· piyi
PMYM

di.

And ∂piyi
∂τ

> 0 and ∂πi

∂τ
> 0 if and only if Φi < Φ̄.
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Proposition 1 shows how the benchmark framework helps to reconcile observed empirical

outcomes.9 Firms with greater access to capital (Φi < Φ̄) disproportionately benefit from

an increase in the uniform subsidy τ , enabling them to augment their turnovers and market

shares at the expense of other competitors in the market. Conversely, firms constrained by

tighter financial conditions (Φi > Φ̄) are predisposed to suffer profit declines following the

subsidy introduction. Assuming a constant fixed cost for ongoing business operations or

endogenous occupation choice, this diminution in profits is likely to be translated in reduced

entry of new firms.

6.3 Productivity and Efficiency Discussion

In this section, I explore the productivity and efficiency implications of a uniform robot

subsidy in the presence of financial frictions and endogenous automation adoption. My anal-

ysis reveals that financial-friction-induced MPK wedges result in productivity and efficiency

losses through two primary channels: a general suppression of capital usage and automation

adoption, and the creation of automation dispersion across firms. With these two dimen-

sions in mind, I demonstrate that a uniform robot subsidy affects overall efficiency via two

distinct mechanisms: enhancing mean automation while simultaneously intensifying

automation dispersion. These opposing dynamics indicate that the net efficiency impact

of a uniform robot subsidy is highly contingent upon the specific nature of the prevailing

financial frictions and the distribution of automation adoption among firms.

To make the analysis more mathematically tractable, I assume the elasticity of substitu-

tion between tasks ρ = 1, which reduces the production function to a Cobb-Douglas form:

yi = zie
∫ 1
Ji

log γ(x)dx
(
ki
Ji
)Ji(

li
1− Ji

)1−Ji .

9Here I assume α is small enough so as to shut down the general equilibrium effects on factor prices and
on final good demand. As will be shown in the full model, the main implications of our framework still hold
given my calibration targeting the industrial sector in China.
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Three Important Automation Measures

Before discussing the efficiency and productivity implications, I need to first intro-

duce three important automation measures, namely individually-optimal automation levels

{Ji,t}i∈[0,1], the socially-optimal automation level J∗
t and the dispersion-purged automation

level J̄t. The set of individually-optimal automation levels {Ji,t}i∈[0,1] are the automation

levels adopted in the decentralized economy defined in 6.1.

The socially-optimal automation level J∗
t is obtained from the social planner’s problem

of the economy, which is defined as followed:

Optimization 1 (Social Planner’s Problem)

V SP (a0) = max
{ct,YT,t,YM,t,k

T
t ,lTt ,yi,t,ki,t,li,t,Ji,t}

∫ ∞

0

e−ϵtu(ct)dt,

s.t. ȧt = Y α
M,tY

1−α
T,t − ct,

YT,t = zTk
β
T,tl

1−β
T,t ,

YM,t =

[ ∫ 1

0

y
σ−1
σ

i,t di

] σ
σ−1

,

yi,t = zie
∫ 1
Ji,t

log γ(x)dx
(
ki,t
Ji,t

)Ji,t(
li,t

1− Ji,t
)1−Ji,t ,

kTt +

∫ 1

0

ki,tdi = at,

lTt +

∫ 1

0

li,tdi = 1.

It can be demonstrated that the social planner’s problem yields an identical level of

automation for all firms. Intuitively, that is because the optimal level of automation depends

solely on the factor prices, which are uniform across firms in the absence of idiosyncratic

borrowing costs. I denote this uniform level of automation as J∗
t and refer to it as the

socially optimal level, as it represents the efficient automation that all firms would adopt

in the absence of distortions in factor usage. As will be demonstrated later, this level of

automation maximizes the value function of the representative household.

Finally, I need to derive a measure of the mean automation level in the decentralized

economy. This measure serves two key purposes: first, by comparing the mean automation
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level to the socially optimal level, I can assess the efficiency loss resulting from the uniform

automation distortion experienced by all firms; second, by calculating the deviation of in-

dividually optimal automation levels from the mean level, I can evaluate the efficiency loss

due to automation dispersion across firms.

To achieve this, I construct a hypothetical automation level, namely the dispersion-purged

automation level J̄t, derived from the dispersion-purged problem defined as follows:

Optimization 2 (Dispersion-Purged Problem)

max
{yi,t,ki,t,li,t,Ji,t}

[ ∫ 1

0

y
σ−1
σ

i,t di

] σ
σ−1

,

s.t. yi,t = zie
∫ 1
Ji,t

log γ(x)dx
(
ki,t
Ji,t

)Ji,t(
li,t

1− Ji,t
)1−Ji,t ,∫ 1

0

ki,tdi = KM
t ,∫ 1

0

li,tdi = LM
t ,

whereKM
t and LM

t denote the modern sector capital and labour demands in the decentralized

economy. By solving Optimization (2) we obtain a simple equation that determines the

dispersion-purged automation level J̄t:

J̄t
1− J̄t

γ(J̄t) =
KM

t

LM
t

.

The dispersion-purged problem aims to maximize the modern sector’s output given the

aggregate factor demands in the decentralized equilibrium, assuming unrestricted resource

allocation across firms. By aligning the aggregate factor demands with the decentralized

inputs, KM
t and LM

t , I preserve the distortions in aggregate factor demand resulting from

mean automation depression (the gap between mean automation and the socially optimal

level). Conversely, the absence of restrictions on factor allocation across firms ensures that

all firms face identical shadow prices for factors. This setting effectively neutralizes the

effects of heterogeneity in production technologies captured by automation dispersion (the

deviation of individually optimal automation from the mean level).
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Decomposing the Efficiency Impact of a Uniform Robot Subsidy

With these three automation levels in hand, I now consider how a marginal increase

in a uniform robot subsidy τ affects the value function of the representative household

V (at; {Φi}, τ) given existing MPK wedges {Φi}. We first focus on how a rise of the subsidy

affects static incomes:

Proposition 2 Assume α is small enough, then the period-by-period net income change due

to a marginal rise of the uniform robot subsidy τ can be described by:

∂πt
∂τ

− ∂Tt
∂τ

=
σ − 1

σ
αyt

{
∂log(PM,t)

∂τ
Monopoly Power

+

∫ 1

0

rt(Φ̄− τ)

(
∂ki,t
∂τ

− ∂k̄i,t
∂τ

)
di

Second-Order Term

+

[
γ(J̄t)

−1 − γ(J∗
t )

−1

]
∂

∂τ

[
ν(J̄t)

]
Mean Automation

+

∫ 1

0

[
γ(Ji,t)

−1 − γ(J̄t)
−1

]
∂

∂τ

[
ν(Ji,t) ·

pi,tyi,t
PM,tYM,t

]
di

Automation Dispersion

}
,

where γ(j) represents the comparative productivity of labour in performing task j and ν(j) =

j · γ(j) is an increasing function in j.

I again shut down the general equilibrium effects by assuming α is sufficiently small.

Proposition 2 demonstrates that a marginal increase in the robot subsidy affects the house-

hold’s period-by-period budget constraint by enhancing the profits of the modern sector but

increasing the tax burden.

The net effect can be decomposed into four components: the first component represents

the typical distortion arising from a monopolistically competitive setting, while the second

component is a second-order term. Of greater interest are the remaining two terms, which

pertain to mean automation and automation dispersion. The mean automation term cap-

tures the net income change arising from the deviation of dispersion-purged automation J̄t

from the socially optimal level, J∗
t . Given that γ(·) is an increasing function, the mean au-

tomation term becomes positive if and only if the mean automation of the economy is below

the socially optimal level, i.e., J̄t < J∗
t . In the context of the industrial sector in China,

where financial frictions are a significant determinant of MPK wedges (Φi > 0 for ∀i), firms’

automation adoption is likely depressed, and the economy tends to benefit from a positive

mean automation effect.
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The automation dispersion term captures the net income loss resulting from the deviation

of individually optimal automation levels {Ji}i∈[0,1] from the dispersion-purged automation,

J̄t. This component is always negative. Intuitively, firms with high (low) automation levels

Ji,t tend to have negative (positive) deviations from the mean γ(Ji,t)
−1 − γ(J̄t)

−1. As shown

in the previous subsection, firms with high (low) automation also tend to increase (decrease)

their market shares
pi,tyi,t

PM,tYM,t
and gain more (less) improvements in automation ν(Ji,t) with a

uniform subsidy. Thus, the automation dispersion term is biased toward firms with negative

deviations, implying that a robot subsidy can deteriorate the household’s budget constraint

by exacerbating automation dispersion across firms.

The following proposition connects the period-by-period income change to the value

function of the representative household and summarizes the main efficiency implication:

Proposition 3 A marginal rise of the uniform robot subsidy affects the value function of

the household in the follow way:

∂V (at; {Φi}, τ)
∂τ

=

∫ ∞

t

e−ϵ(s−t)λt

(
∂πt
∂τ

− ∂Tt
∂τ

)
ds,

where λt represents the stochastic discount factor at time t and ∂πt

∂τ
− ∂Tt

∂τ
measures the period-

by-period net income change described in Proposition 2.

Propositions 2 and 3 underscore a key takeaway from this analysis: while a uniform

robot subsidy can help correct aggregate factor demand distortions in China’s industrial

sector (improving mean automation efficiency), it does so at the cost of exacerbating

the dispersion of technology usage across firms (intensifying automation dispersion).

The underlying rationale is as follows: On the one hand, pre-existing financial frictions

inherently depress the economy’s incentive to adopt automation, leading to efficiency loss.

When the subsidy τ is modest, it boosts firms’ automation adoption and realigns aggregate

factor usage to efficient levels. Hence, the mean automation term is strictly positive, and

the household’s value function could increase with the subsidy τ .

On the other hand, financial frictions introduce ex-ante distortions in factor allocation

across firms. As discussed in the last subsection, the presence of idiosyncratic borrowing
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cost causes firms to adopt different levels of automation before the subsidy and thus derive

varying benefits from such a policy. This differential impact is further intensified by ex-post

endogenous automation adoption, as detailed in the next subsection. Thus, Propositions

2 and 3 demonstrate that an increase in τ unambiguously exacerbates the efficiency loss

induced by automation dispersion.

Propositions 2 and 3 show that for a uniform robot subsidy to enhance overall efficiency,

it must be designed to balance these two countervailing forces. The magnitudes of both

types of inefficiencies are influenced by the distribution of financial frictions. Therefore, the

design of the subsidy should be tailored to the characteristics of Φi. As will be illustrated in

the full model, my calibration shows a subsidy between 10 to 20% could achieve the greatest

improvement in social welfare.

How Automation Dispersion Amplifies Productivity Loss

To further explore the efficiency losses attributable to automation dispersion and to illus-

trate how endogenous automation could amplify productivity losses caused by capital misal-

location (Hsieh and Klenow, 2009; Restuccia and Rogerson, 2008), I analyze the productivity

gap between the decentralized equilibrium and the dispersion-purged equilibrium as defined

in Optimization 2. While both equilibria are subject to identical mean automation depres-

sion as they generate identical aggregate factor demands, the dispersion-purged equilibrium

eliminates the effects of automation dispersion. Intuitively, Optimization 2 elucidates the

potential output of the modern sector using the decentralized equilibrium’s factor inputs,

under the assumption of an absence of capital misallocation across firms. Consequently,

the disparity between these two frameworks exclusively reflects the effects of automation

dispersion and idiosyncratic borrowing costs.

The subsequent corollary describes the aggregate production functions derived from the

decentralized equilibrium and dispersion-purged equilibrium respectively. To keep the nota-

tions clear I neglect the time subscript:

Lemma 2 Assume γ(x) = exp (Ax) and denote ∆Ji = Ji − J̄ . The modern sector output
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yM derived from the decentralized equilibrium can be expressed by:

yM = TFP ·
(∫ 1

0

zσ−1
i di

) 1
σ−1

e
A
2
(1−J̄2)(

KM

J̄
)J̄(

LM

1− J̄
)1−J̄ .

Given the same aggregate factor inputs KM and LM , the aggregate production function

derived from dispersion-purged equilibrium is described by:

yM =

(∫ 1

0

zσ−1
i di

) 1
σ−1

e
A
2
(1−J̄2)(

KM

J̄
)J̄(

LM

1− J̄
)1−J̄ .

Hence the productivity loss from capital misallocation in the presence of endogenous au-

tomation can be captured by the TFP term:

TFPEA =

(∫ 1

0

zσ−1
i di

)− 1
σ−1

[ ∫ 1

0
zσ−1
i

(
µi

µ̄

)−J̄(σ−1)
e

A
2
(σ−1)∆Ji

2
di

] σ
σ−1

[ ∫ 1

0
zσ−1
i

(
µi

µ̄

)−J̄(σ−1)−1
e

A
2
(σ−1)∆Ji

2 Ji
J̄
di

]J̄[ ∫ 1

0
zσ−1
i

(
µi

µ̄

)−J̄(σ−1)
e

A
2
(σ−1)∆Ji

2 1−Ji
1−J̄

di

]1−J̄
,

where µi = (1− τ)r + Φi and µ̄ = w
r
γ(J̄)−1.

Lemma 2 describes the dispersion inefficiency in the form of TFP reduction. One can

easily show that if there is no MPK wedge dispersion µi ≡ µ̄, then TFP = 1 and the

decentralized equilibrium is as efficient as the dispersion-purged equilibrium.

I now proceed to analyzing how automation intensifies the productivity loss. The com-

ponents highlighted in red within the TFP expression represent the influences attributed

to endogenous automation adoption. By setting ∆Ji = 0, I shut down the endogenous au-

tomation adoption and assume that all firms adhere to a uniform automation level J̄ . The

ensuing expression details the TFP with no endogenous automation, which I denote as Hsieh

and Klenow (HK) productivity loss introduced in their 2009 work:

TFPHK =

(∫ 1

0

zσ−1
i di

)− 1
σ−1

[ ∫ 1

0
zσ−1
i

(
µi

µ̄

)−J̄(σ−1)
di

] σ
σ−1

[ ∫ 1

0
zσ−1
i

(
µi

µ̄

)−J̄(σ−1)−1
di

]J̄[ ∫ 1

0
zσ−1
i

(
µi

µ̄

)−J̄(σ−1)
di

]1−J̄
.
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To see more clearly how it differs from the productivity loss with endogenous automa-

tion, I further assume the dispersion of MPK wedges {µi

µ̄
} follows a lognormal distribution

log(µi

µ̄
) ∼ N(0, V ). The HK productivity loss can be approximated by:

log(TFPHK) ∝ −1

2
[J̄(σ − 1) + 1]J̄V,

which is consistent with the result obtained in Hsieh and Klenow (2009) and shows that the

TFP reduces as the variance of MPK wedges increases. The following proposition shows the

closed-form approximation of the dispersion inefficiency with endogenous automation.

Proposition 4 Assume log(µi

µ̄
) ∼ N(0, V ). When V is small enough, the dispersion ineffi-

ciency with endogenous automation can be approximated by:

log(TFP ) ∝ f(V ) · log(TFPHK)
Amplification

−
[
A+

1

2J̄(1− J̄)

]
f(V ) · V

Excessive Factor Demand

+
1

2(σ − 1)
log[f(V )]

Individual Productivity Gain

.

where f(V ) = [1− A(σ − 1)V ]−1 > 1.

Proposition 4 shows the impacts of MPK wedges variance V on the total factor produc-

tivity log(TFP ) can be decomposed into three parts. The intuitions are as followed.

Amplification The initial term demonstrates that endogenous automation directly ex-

acerbates the productivity loss induced by conventional MPK dispersion. This occurs be-

cause firms encountering high (or low) MPK wedges will proactively decrease (or increase)

their automation levels, diverging from the dispersion-purged automation level J̄ . Since J̄ is

optimal under constrained aggregate factor inputs, such deviations negatively impact overall

TFP, thereby intensifying the conventional MPK dispersion productivity loss, captured by

log(TFPHK). In terms of magnitude, f(V ) exceeds one and increases in V , indicating that

greater dispersion in MPK wedges contributes to greater dispersion in automation levels,

which in turn intensifies the amplification effect.

Excessive Factor Demand The second term illustrates that endogenous automation

reduces overall productivity by prompting excessive factor demands. Intuitively, as firms

facing high (or low) MPK wedges proactively adjust their automation levels, they conse-

quently increase their utilization of capital (or labour) disproportionately. Collectively, this
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behavior results in aggregate factor demands that exceed those under the dispersion-purged

automation level J̄ , thereby eroding TFP. As detailed in Proposition 4, this effect of exces-

sive factor demand escalates with the variance of MPK wedges V . Consequently, the greater

the dispersion in MPK wedges, the more pronounced the excessive factor demands and the

resultant efficiency loss becomes.

Individual Productivity Gain The final term illustrates that endogenous automa-

tion can potentially enhance overall productivity by boosting individual firms’ productivity,

counteracting the negative effects of the previous mechanisms. Intuitively, allowing firms

to tailor their production functions in response to effective factor prices enhances their in-

dividual productivity, which subsequently contributes to an increase in aggregate TFP. As

described in Proposition 4, this mechanism operates in contrast to the other two channels

and intensifies with the variance of MPK wedges V . The greater the dispersion of MPK

wedges, the more significant are the benefits that individual firms derive from the flexibility

to adjust their production functions.

To visualize the magnitudes of the dispersion inefficiency and three channels, I conduct

a numerical practice with parameter values A = 2, σ = 5 and J = 0.33. Figure 17 shows the

dispersion inefficiency without endogenous automation and decomposition of dispersion in-

efficiency with endogenous automation. As posited by Hsieh and Klenow (2009), dispersion

in MPK wedges results in an aggregate TFP below one, signifying a loss in overall efficiency.

When accounting for endogenous automation, two competing effects emerge: the amplifica-

tion and excessive factor demand effects further depress TFP, while the productivity gain

effect acts to alleviate this inefficiency.

Figure 18 illustrates the cumulative impact of endogenous automation. The amplification

effect and the excessive factor demand effect unambiguously outweigh the productivity gain

effect, which results in the overall TFP falling below the level without automation. This

implies that endogenous automation indeed exacerbates the inefficiency arising from MPK

wedge dispersion.

56



Figure 17: TFP Without Automation and Decomposition of TFP With Automation

Figure 18: TFP Without Automation and TFP With Automation
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7 Full Model Quantifying Efficiency Implications of Uni-

form Robot Subsidy

In the full model, I will integrate the static misallocation described in the last section

into a dynamic environment by connecting idiosyncratic borrowing costs to asset positions

of heterogeneous entrepreneurs. Different from mainstream studies in dynamic misallocation

which focus on productivity-enhancing investments of firms (Hsieh and Klenow, 2014; Bento

and Restuccia, 2017; Gopinath et al., 2017; Da-Rocha et al., 2023), I argue the adoption of

industrial robots could affect labour and capital income disproportionally, rendering exacer-

bated capital accumulation dispersion and subsequent enlarged efficiency loss from inequality

(e.g., Moll et al. (2022)).

7.1 Environment

Households

There is a unit mass of households i ∈ [0, 1] that differ in their managerial talents zi,t.

Households maximize their discounted utility from consumption subject to a flow budget

constraint and occupation choice:

V (ai,0, zi,t) = max
{ci,t}

∫ ∞

0

e−εt log(ci,t)dt,

s.t. ˙ai,t = rtai,t +max {wt, πi,t − cf} − TH
t − ci,t.

(9)

Households can flexibly choose to work as workers and earn the wage income wt, or work

as entrepreneurs and earn the profit income after deducing fixed operation cost πi,t − cf .

The profit income πi,t is a function of the asset position of the entrepreneur ai,t and its

entrepreneurial talent zi,t. I will describe the detailed expression of the profit function and

the stochastic process of the entrepreneurial talent later.

I further assume that the capital accumulation is subject to dissipation shocks that arrive

at a Poisson rate p. Following Moll et al. (2022), I assume that if household i receives the

dissipation shock, then it immediately eats all of its wealth and is left with zero asset position,
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thus ai,t = 0.10 This setting renders the actual discount rate of the households, ε, to be equal

to the sum of actual discount rate and the arrival rate of the dissipation shock.

The Hamilton-Jacob-Bellman equation of the household’s problem is given by:

ϵV (ai,t, zi,t) = max
{ci,t}

log(ci,t) +
∂Vi,t
∂ai,t

[
rtai,t +max {wt, πi,t − cf} − TH

t − ci,t

]
+
∂Vi,t
∂zi,t

µ(zi,t) +
1

2

∂2Vi,t
∂z2i,t

σ(zi,t)
2.

(10)

Equation (10) solves the optimal saving function s(a, z). Define the stationary PDF of

the households as g(a, z), then it satisfies the following Kolmogorov Forward equation:

0 = − ∂

∂a

[
s(a, z)g(a, z)

]
− ∂

∂z
[µ(z)g(a, z)] +

1

2

∂2

∂z2
[σ(z)2g(a, z)]− pg(a, z) + pψ(a, z). (11)

Here, ψ(a, z) denotes the entry distribution after the dissipation shock realizes so that

ψ(a, z) = 0 for any a > 0.

Firms

Denote the set of households that choose to be entrepreneurs as Ωt. Each entrepreneur i

produces its variety yi,t with labour li,t, capital ki,t and industrial robots mi,t. The varieties

aggregate to a single final good yt in a CES way with elasticity σ > 1:

yt =

[ ∫
i∈Ωt

y
σ−1
σ

i,t di

] σ
σ−1

.

As introduced in Section 6, entrepreneur i maximizes the profit πi subject to endogenous

automation adoption and financial frictions. The dynamic framework departs from the

simplified production technology in two ways: First, I endogenize the financial frictions by

connecting the borrowing cost per unit of capital expenditure Φi to the asset positions of

the household. I adopt the functional form proposed by David and Venkateswaran (2019):

Φ(ai,t) = βaωi,t,

10Introducing the dissipation shock provides a stabilizing force to ensure the existence of stationary
distribution of wealth, see e.g., Gabaix et al. (2016); Moll et al. (2022).
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where β captures the overall magnitude of financial frictions and ω < 0 captures the elas-

ticity of the borrowing constraints to the entrepreneurs’ asset positions. Moreover, I assume

traditional capital and industrial robots are affected by identical borrowing costs.

Second, I explicitly distinguish industrial robots mi,t from traditional capital ki,t. More

specifically, each firm produces its variety through a unit mass of tasks j ∈ [0, 1] with CES

elasticity ρ:

yi,t = zi

[ ∫ 1

0

y
ρ−1
ρ

ij,t dj

] ρ
ρ−1

.

Task outputs yij,t are produced with industrial robots mij,t and the so-called capital

service klij,t that represents the combination of traditional capital and labour inputs: klij,t =

kαij,tl
1−α
ij,t . Capital service and industrial robots are considered perfect substitutes across tasks:

yij,t = mij,t + γ(j)klij,t,

where γ(j) represents the comparative productivity of capital service to industrial robots in

performing task j. The optimization of the aforementioned equations yields an optimal cutoff

value for task allocation Ji such that tasks j ∈ [0, Ji] are performed exclusively by industrial

robots and tasks j ∈ [Ji, 1] are performed exclusively by capital service. Together with the

financial frictions setup, this allocation strategy results in the following profit maximization

problem:

πi,t = max
{yi,t,ki,t,li,t,mi,t,Ji,t}

pi,tyi,t − wtli,t − [(1 + Φ(ai,t))rt + δ]ki,t − [(1 + Φ(ai,t)− τt)r
m
t + δ]mi,t + T F

i,t,

s.t. pi,t = y
1
σ
t yi,t

− 1
σ ,

kli,t = kαi,tl
1−α
i,t ,

yi,t = zi

{
Ji,t

1
ρm

ρ−1
ρ

i,t +
[∫ 1

Ji,t

γ(x)ρ−1dx
] 1

ρ
kl

ρ−1
ρ

i,t

} ρ
ρ−1

,

(12)

with T F
i,t = Φ(ai,t)[rtki,t + rmt mi,t].

11 and zi,t denotes the entrepreneur’s managerial talent.

11As mentioned in Section 6, the lump-sum transfer TF
i,t captures the idea that, although the financial

frictions enter the problem in the form of an extra borrowing cost, it does not incur a direct profit reduction
to the entrepreneur but rather act purely as a restriction of utilizing capital and industrial robots.
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The logarithm of entrepreneurial talent follows an Ornstein-Uhlenbeck process described by:

d log(zi,t) = θz[µz − log(zi,t)]dt+ σzdWi,t.

Here, θz > 0 measures the autocorrelation of the process and µz and σz characterize the

mean and variance of the stationary distribution of zi,t. dWi,t denotes the Wiener process.

The process yields a stationary distribution for managerial talent log(zi,t) ∼ N(µz,
σ2
z

2θz
).

Hereby, we denote µ(zi,t) = θz[µz − log(zi,t)]zi,t +
σ2
z

2
zi,t and σ(zi,t) = σzzi,t. The stochastic

process of zi,t can be rewritten as:

dzi,t = µ(zi,t)dt+ σ(zi,t)dWi,t.

A special case of Equation 12 is when Ji = 0 and the production function is reduced to a

standard Cobb-Douglas form with capital share α. That corresponds to the scenario where

the firm utilizes no industrial robot in its production and relies total on the traditional

technology. In the calibration I will rely on this special case to distinguish parameters

governing the tradition and automation technologies.

Government Budget Constraint

The government finances the robot subsidy τt with a lump-sum tax collected from the

households TH
t . The government satisfies a period-by-period budget constraint as followed:

TH
t = τtr

m
t

∫
i∈Ωt

mi,tdi. (13)

Market Clearing

There is a robotics industry where traditional capital kt can be converted into industrial

robots mt with productivity zmt . Wage rate wt and interest rate rt clear the labour and

capital market respectively:

∫
i∈Ωt

li,tdi = 1− |Ωt|, (14)
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∫
i∈Ωt

ki,tdi+

∫
i∈Ωt

mi,t

zmt
di =

∫ 1

0

ai,tdi. (15)

Moreover, the prices of varieties {pi,t}i∈Ωt satisfy the one-price principle:

[ ∫
i∈Ωt

p1−σ
i,t di

] 1
1−σ

= 1. (16)

Equilibrium

The stationary equilibrium consists of a stationary distribution of the households g(a, z),

households’ consumption and occupational choices c(a, z) and Ω, firms’ automation levels

and factor demands J(a, z), k(a, z), l(a, z) and m(a, z), the government’s lump-sum tax TH ,

and prices w, r, p(a, z) such that, given a uniform robot subsidy τ :

1. c(a, z) and Ω satisfy the households’ HJB equation (10);

2. J(a, z), k(a, z), l(a, z) and m(a, z) satisfy the firms’ profit maximization problem (12);

3. w and r satisfy the factor market clearing conditions (14) and (15), and p(a, z) satisfies

the one-price principle (16);

4. TH satisfies the government budget balance condition (13);

5. g(a, z) satisfies the Kolmogorov Forward equation (11);

7.2 Calibration

My benchmark model is calibrated to match the productivity dispersion, financial fric-

tions, and industrial robot density of China’s industrial sector in 2010. I then calibrate

the task-based technology to reflect the growth of industrial robot stock between 2010 and

2013, a period prior to the introduction of the first municipal-level robot subsidy in 2014.

Therefore, the growth in industrial robot usage during this period can be attributed solely

to changes in robot prices. Table 9 presents the calibration targets.

For households preferences, I adopt a standard value for the elasticity of substitution

across varieties σ = 7. I calibrate the yearly discount rate ϵ to match a capital-to-output

ratio of 3 in 2010. Following seminal works of Moll et al. (2022); Jakobsen et al. (2020);

Brülhart et al. (2022), I set the yearly dissipation rate, p, to achieve a capital supply elasticity
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dlog(K)/dr ≈ 25.

Turning to the production technology, I set the labour input elasticity in producing

capital service α = 0.6 to match China’s 2010 labour income share when industrial robot

usage was minimal. I adopt a standard value for capital depreciation rate, δ = 0.05, and for

the span-of-control parameter, ν = 0.85 12. The fixed cost of operation, cf , is calibrated to

generate an average employment of 58.15 workers per firm, aligning with the average firm

size in China’s manufacturing sector in 2010.

For the Ornstein–Uhlenbeck process of the Hicks-neutral productivity (or the managerial

talents) of entrepreneurs, I set µz and σz such that the mean of the stationary distribution

of zi,t is standardized to one, while the 75-to-25-percentile ratio equals 3.5, consistent with

the TFPQ distribution of major industrial enterprises in 2010. Moreover, I set the mean-

reverting rate of the process θz such that the evolution of the Hicks-neutral productivity is

characterized by an autocorrelation of 0.995.

To bring the task-based technology to data, I assume the comparative productivity of

capital services follows γ(x) = xA. The economic interpretation is that, a 1% increase in task

complexity (measured by index x) results in an A% reduction in the comparative productivity

of industrial robots. Unlike Acemoglu and Restrepo (2018)’s specification, γ(x) = exp(Ax),

our formulation allows for variable elasticity of robot adoption relative to changes in robot

prices. Acemoglu and Restrepo (2018)’s specification implicitly imposes a lower bound on

elasticity that is too high compared to observed data.

I follow Humlum (2019) in adopting an elasticity of substitution across tasks, ρ = 0.5,

indicating that different tasks are generally complementary. The productivity of the robotics

industry in 2010, zm2010, is calibrated to match a robot-to-labour ratio of 0.003, corresponding

to a density of around 30 industrial robots per 10,000 manufacturing workers in the automo-

bile industry in China in 2010, as reported by the International Federation of Robotics. The

comparative productivity parameter A is calibrated to match a 36% annual growth rate of

industrial robot stock in China from 2010 to 2013, assuming an annual robot price reduction

of around 8%.

For the estimation of financial frictions parameters, I follow the approach suggested

12see Atkeson and Kehoe (2007); Restuccia and Rogerson (2008)
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by David and Venkateswaran (2019). More specifically, firms’ maximization problem (8)

implies:13

ki,t
li,t

=
1− α

α

[1 + Φ(ai,t)]rt
wt

.

In practice, I estimate the structure of the borrowing cost term Φ with the following

non-linear regression:

log(
ki
wli

) = γ + log(1 + βaωi ) + µs + ϵi. (17)

Here, wli denotes the total payroll of firm i in 2010, and ki and ai denote the value

of fixed assets and total assets respectively. I also include three-digit industry fixed effects

µs to account for heterogeneous production technologies across different sub-industries. The

estimation results indicate a significantly negative elasticity of ω = −0.7996. It also indicates

that manufacturing firms with an average level of total assets ai in 2010 bore an additional

cost of approximately 49.58% when utilizing capital. I calibrate the financial frictions scalar

β to match the average scale of the capital usage restrictions.

7.3 Link to Empirical Findings

In order to study the impacts of the industrial robot subsidy implemented by the Chinese

local governments, I feed exogenous changes in a uniform robot subsidy τ into the benchmark

model and explore the consequences for aggregates and productivity. In the following section,

I focus on the benchmark model with robotics industry productivity zm equal to the 2017

level. Assuming an 8% annual growth in productivity, it yields zm2017 = 0.0172.

Table 10 illustrates the percentage change for specific aggregates, relative to the bench-

mark scenario, given different magnitudes of robot subsidy. My analysis reveals that the

robot subsidy significantly promotes industrial robot demand and positively impacts over-

all output. Specifically, Panel A of Table 10 shows that a robot subsidy of 20% results in

13Since there was a negligible number of industrial robots in 2010, I assume the fixed capital in 2010 is
equivalent to traditional capital ki,t as in the model.
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Table 9: Calibration Targets

Parameter Value Source/Targeted Moments

Preferences
σ - EoS across varieties 7 Standard calibration
ϵ - Discount factor 3.00% Capital to output ratio = 3
p - Dissipation rate 7.09% Elasticity of capital supply ≈ 25

Technology
α - Labour share in traditional technology 0.600 National Bureau of Statistics of China
δ - Depreciation 0.050 Standard calibration
ρ - EoS across tasks 0.500 Humlum (2021)
A - Comparative productivity of capital service 0.300 Annual growth rate of robot stock = 36%
zm2010 - Robotics industry productivity in 2010 0.010 Robot density in 2010 = 0.003
µz - Mean of productivity process -0.450 Mean of productivity standardized to one
σz - Diffusion of productivity process 0.095 Ratio of 75th to 25th percentile of productivity = 3.5
θz - Mean-reverting rate of productivity process 0.005 Autocorrelation of productivity = 0.995
ν - Span of control 0.850 Standard calibration
cf - Operating Cost 5.040 Average firm size in manufacturing = 58.15

Financial Frictions
ω - Financial friction elasticity -0.800 Estimation
β - Financial friction scalar 57.000 Firms with average total asset bear an extra cost of 49.58%

a substantial 65.28% increase in industrial robot demand and an overall output growth of

1.23%. These results underscore the effectiveness of such subsidies in enhancing automation

and boosting productivity across the manufacturing sector.

However, these benefits come at the expense of exacerbating the dispersion between small

and large firms. First, the number of firms in the market decreases with the subsidy, showing

a reduction of 1.27% under the 20% subsidy scenario. This indicates that a robot subsidy,

while encouraging automation, also leads to small firms being edged out of the market.

Second, Panels B and C of Table 10 show that the performance metrics for entrepreneurs

exhibit a stark contrast: taking the 20% subsidy scenario as an example again, the top 10% of

entrepreneurs experience significant improvements in turnover (5.34%), capital expenditure

(22.67%) and profits (6.84%). In contrast, the bottom 50% of entrepreneurs suffer from

shrinking market share and profits, with turnover and profits decreasing by 1.72% and 1.15%,

respectively.14

14Top entrepreneurs are defined as those whose turnover falls within the top 10% of the overall turnover
distribution, consistent with the definition of major industrial enterprises. Meanwhile bottom entrepreneurs
are those whose turnover ranks in the bottom 50%.
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Table 10: Changes of Numbers and Financial Performances of Firms in Robot Subsidy

Robot Subsidy τ 5% 10% 20% 30%

Panel A: Aggregates
Industrial Robot Demand 13.12% 28.19% 65.28% 113.44%
Number of Firms -0.02% -0.07% -1.27% -2.56%
Output 0.32% 0.63% 1.23% 1.70%

Panel B: Top 10% Entrepreneur
Turnover 1.20% 2.48% 5.34% 8.73%
Capital Expenditure 4.55% 9.76% 22.67% 40.03%
Employment 0.65% 1.34% 2.94% 4.96%
Profit 1.49% 3.11% 6.84% 11.43%
Average Asset Position 2.57% 5.31% 11.91% 21.72%

Panel C: Bottom 50% Entrepreneur
Turnover -0.58% -1.29% -1.72% -3.43%
Capital Expenditure -0.19% -0.55% -0.48% -0.32%
Employment -0.45% -0.99% -0.85% -1.54%
Profit -0.40% -0.91% -1.15% -2.44%
Average Asset Position 1.37% 2.45% 5.74% 8.89%

Note: (1) Values represent percentage changes of outcomes relative to the benchmark model in response to
5%, 10%, 20% and 30% robot subsidy respectively; (2) Capital expenditure includes demand for traditional
capital and industrial robots; (3) Panel B and C describe entrepreneurs with top 10% turnover and bottom
50% turnover respectively.

An important observation is that top firms significantly increase their labour demand

following a subsidy, while bottom firms experience a reduction in employment. Under a

20% subsidy, employment in top firms rises by 2.94%, whereas bottom firms see a decrease

of 0.85%. This suggests that the reduction in overall labour demand due to automation

primarily occurs at the extensive margin, where large firms crowd out smaller ones. Con-

sequently, while top firms expand and absorb more labour, smaller firms face increased

competitive pressure, leading to shrinking labour demand.

Finally, the heterogeneous benefits received by entrepreneurs lead to increased dispersion

in asset accumulation. Top entrepreneurs accumulate wealth much faster than their lower-

tier counterparts. For instance, under a 20% subsidy, the average asset position of the top

10% of entrepreneurs increases by 11.91%, which is more than double the improvement in

average asset position of the bottom 50% of entrepreneurs (5.74%). This growing disparity

in asset accumulation underscores that the uneven impact of the subsidy is not merely static

but is likely to be amplified through the dynamics of asset distribution. In summary, our
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model shows results that are consistent with the empirical findings.

7.4 Productivity Discussion

In this subsection, I discuss both the static and dynamic misallocation resulting from

a uniform robot subsidy. More specifically, the dynamic misallocation accounts for the

heterogeneous capital accumulation across entrepreneurs.15 As described in Section 6, the

effect of a subsidy can be decomposed into the mean automation efficiency effect and the

automation dispersion effect. The mean of automation in Panel A of Table 11 measures the

ratio of dispersion-purged automation to the socially optimal level in each scenario, which

captures the mean automation efficiency effect. This metric demonstrates the effectiveness of

a robot subsidy in correcting the inefficiently low industrial robot usage caused by financial

frictions. For reference, the 0% subsidy benchmark scenario yields a mean automation level

of around 35.76% of the optimal level. Column 6 of Table 11 shows that a 20% subsidy

improves the mean automation of the economy by around 21.85 ppts, from the benchmark

value to around 58% of the optimal level, which contributes to a rise in efficiency.

However, the use of a robot subsidy also exacerbates the dispersion of automation across

firms. The STD of automation in Panel A of Table 11 measures the percentage change in the

standard deviation of individual automation levels from the dispersion-purged level relative

to the benchmark scenario. This metric captures the automation dispersion effect. It reveals

that a 20% subsidy raises the dispersion by around 49%, indicating increased variability in

how firms adopt automation when compared with the evenly distributed automation levels.

Overall, while a robot subsidy effectively boosts the economy’s output, it is detrimental

to TFP. A subsidy contributes to an increase in output of around 1.23% under the 20%

scenario, but a decline in TFP of 2.40%. This decline in TFP highlights the productivity loss

introduced by increased dispersion. I further measure the social welfare using a utilitarian

approach with equal weights. My analysis shows that, on the basis of my current calibration

of the existing financial frictions, a uniform robot subsidy can improve social welfare by

around 0.23% when its magnitude is below or equal to 10%. However, if the subsidy goes

15See Hsieh and Klenow (2014); Bento and Restuccia (2017); Gopinath et al. (2017); Da-Rocha et al.
(2023)
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above 20%, its impact on welfare becomes negative. If the subsidy is as high as 30%, it

significantly reduces welfare by around 3.22%, which illustrates that in such a scenario the

efficiency loss due to automation dispersion balances out the gains from improving mean

automation efficiency.

In this section with the full model, I differ from the analysis in Section 6, as I endog-

enize financial frictions by linking the idiosyncratic borrowing costs to the asset positions

of heterogeneous entrepreneurs. This approach introduces an additional dynamic feedback

mechanism of a robot subsidy through the dispersion of capital accumulation. As shown

in Panel B of Table 11, the robot subsidy reduces wage while increasing interest rate and

entrepreneurial profits. Since both young entrepreneurs and those experiencing low produc-

tivity shocks rely on reducing labour income to accumulate assets and overcome financial

constraint, this shift results in a greater divergence in the speed of capital accumulation

between poor and wealthier households, thereby exacerbating capital misallocation.

To quantify the dynamic misallocation resulting from a robot subsidy, I conduct a static

counterfactual analysis for each subsidy scenario. In this exercise, I substitute the distri-

bution of households g(a, z) with the one from the benchmark framework, while keeping

aggregate factor demands constant. I then compute the equilibrium aggregates and pro-

ductivity measures. This method allows us to isolate the effect of the subsidy on aggregate

factor usage, while removing the distributional impact on MPK wedges. The results of this

practice are shown in the static columns in Table 11. By shutting down the dynamic mech-

anism, I effectively reduce the growth in capital returns and in entrepreneurial profits and

the decline in wage rates, which narrows the income gap between wage earners and capital

earners. That contributes to smaller automation dispersion and thus smaller TFP loss. My

quantitative practice shows that, in the absence of distributional dynamics, the output gain

from a robot subsidy increases from 1.23% to 1.60% in the 20% scenario. In general, the

output gain can be 0.37% higher without the dynamic distortion.
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Table 11: Changes of Automation and Productivity in Robot Subsidy

Robot Subsidy τ 5% 5% - Static 10% 10% - Static 20% 20% - Static 30% 30% - Static

Panel A: Measures of Efficiency
Mean of Automation 39.51% 39.32% 44.17% 43.70% 57.61% 55.93% 79.70% 75.44%
STD of Automation 9.62% 9.52% 20.89% 20.64% 48.96% 48.35% 86.03% 84.32%
Output 0.32% 0.37% 0.63% 0.75% 1.23% 1.60% 1.70% 2.44%
TFP -0.52% -0.49% -1.11% -1.04% -2.40% -2.36% -4.11% -4.00%
Welfare (Utilitarian) 0.23% - 0.23% - -0.58% - -3.22% -
Welfare (Rawlsian) -3.75% - -8.68% - -23.14% - -46.62% -

Panel B: Factor Incomes
Wage -0.25% -0.19% -0.56% -0.43% -1.44% -1.05% -2.77% -1.98%
Interest Rate 1.25% 1.12% 2.72% 2.43% 6.52% 5.81% 11.94% 10.61%
Average Profit 0.55% 0.64% 1.16% 1.35% 3.54% 3.00% 6.13% 4.93%

Note: (1) The ’Mean of Automation’ row measures the deviation of dispersion-purged automation from the socially-optimal automation in different
scenarios. For comparison, the value for the 0% subsidy benchmark case equals 35.76%, which indicates the mean automation level is around 64%
below the efficient level; (2) The remaining rows measure percentage changes of outcomes relative to the benchmark model in different scenarios;
(3) The ’TFP’ row measures the gap between the actual output in the decentralized economy and the potential maximized output that could be
produced with the same levels of aggregate inputs; (4) The ’Welfare (Utilitarian)’ row is calculated with the Utilitarian approach, and the ’Welfare
(Rawlsian)’ row is calculated with the Rawlsian approach; (5) ’Static’ columns are obtained by such static practice where I substitute the distribution
of households g(a, z) with that from the benchmark framework, while keeping aggregate factor demands constant.
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8 Conclusions

This study assesses the impact of China’s robot subsidy policies on the manufacturing

sector. The study focuses on demand-side subsidies that incentivise firms to purchase robots.

It uses a synthetic difference-in-difference approach applied to municipal-level data to identify

the causal impact of the subsidies on robotics industry activities, and firm dynamics and

financial performances of industrial enterprises.

The findings indicate that robot subsidy policies significantly boost robot innovation and

expand the landscape of robotics firms. Specifically, they lead to a 13.6 percent increase

in applications for robotics patents and a 29.5 percent increase in the number of robot

production firms after the implementation of a robot subsidy policy. Despite being a uniform

subsidy, it has markedly different effects on firms of different sizes and leads to a reduction

in entry of new firms. Specifically, after the introduction of a robot subsidy policy, new firm

entry decreased by approximately 14 percent. Concurrently, larger manufacturing firms saw

notable increases in total assets (6.3 percent), turnover (7.8 percent) and employment (5.8

percent). This suggests that, while a subsidy facilitates access to robot technology, it tends to

disproportionally benefit larger firms at the cost deteriorating firm dynamics. Consequently,

such subsidies exacerbate existing inequalities, amplifying the advantages of larger firms.

I use a simple theoretical framework that incorporates borrowing costs into a task-based

model to explain the empirical findings and elucidate the main efficiency trade-offs stemming

from the introduction of a robot subsidy. My framework shows that financial constraints lead

to suboptimal automation levels, particularly for firms with limited access to capital. Robot

subsidies help to correct mean automation depression by increasing the average automation

level of the economy from 40 percent to 58 percent of the socially optimal level, under a 20

percent subsidy scenario. However, subsidies also increase automation dispersion by around

48.96 percent, highlighting the trade-off between efficiency gains and increased dispersion.

To quantify the efficiency implications, I embed my static model into a dynamic hetero-

geneous agent framework. The calibration shows that a 20 percent subsidy leads to a 65

percent increase in industrial robot demand and a 1.23 percent increase in output. However,

this comes at the cost of reducing total factor productivity (TFP) by 2.40 percent. In gen-
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eral, I find that a subsidy below or equal to 10 percent could contribute to a 0.23 percent

increase in social welfare measured using a utilitarianism approach. Yet, if the subsidy goes

above 20 percent, the automation dispersion dominates and the policy becomes detrimental

to welfare.

In examining the dynamic misallocation implications, the study finds that robot subsi-

dies exacerbate capital accumulation disparities. Wealthier entrepreneurs accumulate assets

faster than their less affluent counterparts, leading to greater capital misallocation. This

dynamic is reflected in the substantial increase in capital returns and entrepreneurial profits,

accompanied by a decline in labour income. Shutting down this dynamic feedback channel

can effectively reduce TFP losses and improve total output by another 0.37 percent under a

20 percent subsidy.
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