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Abstract

We study a principal-agent framework in which the agent forms beliefs based on a mis-

specified subjective model of the principal’s project. She fits this model to the objective

probability distribution to predict output under alternative actions. Misspecifications in the

subjective model may lead to biased beliefs. However, under mild restrictions, the agent

has correct beliefs on the equilibrium path so that the optimal contract is non-exploitative.

This allows for a behavioral version of the informativeness principle: The optimal contract

conditions on an additional variable only if it is informative about the action according to

the agent’s subjective model. We further characterize when misspecifications affect the

optimal contract. One implication of this characterization is that the scope for belief bi-

ases depends on the agent’s job, e.g., her position in the hierarchy.
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1 Introduction

The canonical principal-agent model of contracting under asymmetric information assumes

that the agent knows the probabilistic consequences of all available actions. Formally, these

are defined by a production function p(y | a), where y is the contractible output and a the

agent’s action. Given the incentives provided by the contract, the agent chooses an action that

– according to this function – maximizes her expected payoff. However, in an organization,

p(y | a) is typically a complex object. It may reflect information that is unavailable to the

agent or that the agent cannot process due to cognitive limitations. Herbert Simon therefore

proposed that administrative behavior must be “boundedly rational” (Simon 1947, 1955).

One approach to analyze contracting with boundedly rational agents is to assume directly

that beliefs p̂(y | a) about the production function are biased so that p̂(y | a) , p(y | a).

An important implication of this approach is that the optimal contract may exploit the agent,

in the sense that her (true) expected payoff falls below her reservation utility (e.g., Kőszegi

2014). Directly assuming biased beliefs has two disadvantages though. First, from a dynamic

perspective, it is unclear how sustainable a certain belief p̂(y | a) – and hence exploitation –

would be when the agent gathers data on the production function. Second, it treats beliefs as

an exogenous variable. If we study how the optimal contract varies in the production function

or the informational environment, the results crucially depend on how we choose beliefs.

In this paper, we examine a contracting framework in which a boundedly rational agent has

beliefs about the production function that are endogenously derived from her environment.

The agent estimates p(y | a) based on data generated by the true production process, the

implemented strategy α∗, and a non-parametric subjective model R. A model R is a collection

of variables and causal relationships between these variables. It captures what the agent knows

about the production process. This model may be misspecified. For example, it may be “too

simple” relative to the complexity of the organization: empirical regularities that matter for

the principal’s project may not appear in R. The agent’s subjective beliefs about p(y | a)

will be denoted by pR(y | a;α∗). An equilibrium contract implements a strategy α∗ if it is

optimal for the agent to follow α∗ under this contract given her beliefs pR(y | a;α∗). We

study the properties of the optimal equilibrium contract, and obtain several new results on

optimal contracting and organization that we would not get (or get only under very specific

assumptions) if we directly choose beliefs p̂(y | a).

To capture the agent’s limited understanding of her environment, we apply Spiegler’s

(2016) Bayesian network approach. As an illustration, consider the following example:

“Marketer Example.” The agent is a marketer whose job is to increase sales y.

One strategy to increase sales is to make cold-calls a ∈ {0, 1}, that is, calling po-
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tential customers without prior consent. Making cold-calls improves consumers’

information x1 ∈ {0, 1} about the firm’s product, but also reduces the firm’s reputa-

tion x2 ∈ {0, 1} since some customers are annoyed by being cold-called. Expected

sales increase both in consumer information x1 and reputation x2. However, when

choosing her action, the marketer does not take the firm’s reputation into account.

The only mechanism on her mind is that making cold-calls improves consumer

information, and that more information translates into more sales.

The Bayesian network approach roughly works as follows in the marketer example.1 The

setting describes an “extended production function” p(x1, x2, y | a), i.e., a joint probability

distribution over the realization of consumer information, reputation and sales for any given

action. This function captures the objective model R∗ of the project: R∗ contains all rele-

vant variables, {action, consumer information, reputation, sales}, and the causal relationships

between these variables. The agent’s subjective model R is a simplified version of R∗ as it

only contains the variables {action, consumer information, sales}, and their causal relation-

ships. Her beliefs are derived by fitting R to the objective probability distribution, which is

generated by the implemented strategy α∗ and the extended production function p(x1, x2, y | a).

Thus, the different elements in the agent’s subjective model R are quantified using input from

the true data-generating process. Combining these elements yields the agent’s subjective be-

liefs pR(y | a;α∗), which in general are not invariant to changes in α∗.

If R differs from R∗, the agent’s beliefs about p(y | a) may be biased, and both the incen-

tive compatibility and the participation constraint could in principle be affected by this bias.

Our first important observation is that a weak restriction on the agent’s subjective model guar-

antees that the participation constraint is not affected. This restriction is that R is “perfect”,

which means that the agent takes into account the link between any two variables in R that

have a joint influence on a third variable in R (Spiegler 2017). She then correctly predicts the

marginal equilibrium distribution over output, so that the optimal equilibrium contract does

not exploit the agent. Importantly, a perfect R ensures in many cases that there are no informa-

tional cues in the data the agent gathers on the equilibrium path that could alert her about the

misspecification in R. Therefore, the agent’s possibly incorrect beliefs and the corresponding

equilibrium contract can be sustainable.

A perfect R does however not ensure that the incentive compatibility constraints are un-

affected by the model misspecification. In the marketer example, if the principal implements

making cold-calls, then, by not taking reputation into account, the agent overestimates the drop

in sales after deviation to not making cold-calls, i.e., she is “control optimistic.” This relaxes

1Missing technical details will be explained thoroughly in the next section.
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the incentive compatibility constraint, so that the principal can implement cold-calls with fewer

incentives than if the agent had rational expectations. Thus, the principal can strictly benefit

from the misspecification in the agent’s model even when exploitation is infeasible.

The property of correct expectations on the equilibrium path has further implications for

the optimal equilibrium contract. An important question in contract theory is on which vari-

ables the optimal contract should condition the agent’s wage. According to the informativeness

principle (e.g., Holmström 1979, Chaigneau et al. 2019), the optimal contract conditions on an

additional signal z only if z provides information about the agent’s action that is not contained

in y. Our second important observation is that we can derive an analogous statement when the

agent has correct expectations on the equilibrium path about the joint distribution of y and z

(with a further qualification this holds if R is perfect). In this case, the optimal equilibrium

contract conditions on z only if the agent’s action a and z are not independent conditional on

y according to the agent’s subjective beliefs. This result does not depend on other properties

of the agent’s subjective model R, and hence would hold in any setting where the agent’s be-

liefs about the joint distribution of y and z are correct. However, we can use results from the

Bayesian network literature to state sufficient conditions on R so that the result’s requirements

are satisfied; these results also provide a tool to visually inspect for a given subjective model

whether the optimal contract conditions on z.

To illustrate our behavioral version of the informativeness principle, we consider a classic

application. Suppose the principal can condition the agent’s wage both on her output y and on

her relative peer performance z. A common shock influences both y and z so that under rational

expectations the optimal contract conditions on both variables to filter out windfall gains and

losses. If the agent’s subjective model does not include the common shock, then z is for the

agent only a noisy signal of y. The optimal equilibrium contract then only conditions on y

and therefore remains incomplete. Thus, using our results we can give sufficient conditions

on the agent’s causal model under which the inclusion of peer-performance in the contract is

inefficient. This provides a new explanation for why most executive compensation contracts

do not condition on peer-performance (Bebchuk and Fried 2004).

Misspecifications in R do not always affect the optimal equilibrium contract. We call the

agent “behaviorally rational” if she correctly anticipates the production function, or, formally,

pR(y | a;α) = p(y | a) for all possible a and α (regardless of the parametrization of the

extended production function). Our third important observation is that we can find a cor-

respondence H∗(R∗) which indicates for a given objective model R∗ the set of variables the

agent must take into account in her simplified subjective model R so that she is behaviorally

rational. We show that H∗(R∗) is often a strict subset of the variables in R∗, and that the differ-

ence between a variable i ∈ H∗(R∗) and a variable j < H∗(R∗) can be quite nuanced. Here is a
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simple example: Consider a version of the marketer example where the agent’s action does not

influence reputation, but where consumer information affects reputation. The objective model

R∗ then has no link between action and reputation, but a link between consumer information

and reputation. An agent with the subjective model from the marketer example is now behav-

iorally rational. She correctly anticipates the production function even though she ignores the

influence of reputation on output.

The characterization of H∗(R∗) shows which variables matter for the agent’s beliefs. An

important interpretation of the objective model R∗ is that it captures the agent’s job, i.e.,

through which tasks, interactions, and decision-making powers she influences the final output.2

In the canonical contracting model, these aspects are immaterial since behavior is governed by

the production function p(y | a). Similarly, they do not matter when beliefs p̂(y | a) are fixed

exogenously. In our framework, we can have two extended production functions that give rise

to the same “reduced-form” production function p(y | a), but that differ in their causal model

R∗, and hence in the extent to which simplifications affect pR(y | a;α∗).

One application of this finding is that we can examine which organizational features poten-

tially cause the agent to overestimate the productivity of her effort. As the marketer example

shows, this happens if the agent does not take into account a partial negative effect of her effort

on the output. There are several intuitive reasons why this may be the case. Consider an agent

in a management position in which her effort influences the behavior of other workers (e.g.,

a group of telemarketers). If the agent does not understand the difficulties of their job (e.g.,

that telemarketing has a partial negative effect on sales through reputation), she overestimates

her subordinates’ – and hence her own – productivity. There are different instances where

this could happen: The agent may be a technical expert who is promoted into a management

position in which she oversees the actions of workers whose job she does not fully understand.

Alternatively, it may be the case that subordinates do not communicate the problems they face

to their managers (due to career concerns). These phenomena are usually discussed critically

in the management literature, but in our framework they advance the agent’s effort motivation

and hence benefit the principal.

Related Literature. Our basic model is the principal-agent framework introduced by Holm-

ström (1979) and Grossman and Hart (1983). Holmström (1979) states a version of the infor-

mativeness principle. A generalization of it can be found in, e.g., Chaigneau et al. (2019). In

the canonical framework, both principal and agent know the production function p(y | a).

There are different approaches in behavioral contract theory that relax the assumption of

2For example, one can interpret R∗ as an adjusted depiction of the organizational chart of the principal’s
project. As the CEO the agent would influence his senior managers who in turn influence their subordinates’
behavior and so forth. A simplification in R then captures that the agent ignores a certain part of the organization.
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unbiased beliefs about p(y | a). First, several contracting models directly assume that the

agent’s beliefs about the production function are biased, i.e., p̂(y | a) , p(y | a); see Fang

and Moscarini (2005), Van den Steen (2005), Gervais and Goldstein (2007), Santos-Pinto

(2008), De la Rosa (2011), Sautmann (2007, 2013), Spinnewijn (2013, 2015). Specifically,

this approach is used to model an overconfident agent who overestimates the probability of

good states and underestimates the probability of bad states. This typically allows the principal

to exploit the agent by paying more after high output and much less after low output, in which

case the agent’s expected payoff is below her reservation utility.

Second, a rich literature builds state-space models of “unawareness” (e.g., Dekel et al.

1998, Heifetz et al. 2006, 2013) and applies them to contracting settings. Auster (2013)

examines a principal-agent model with an agent who is unaware of some output levels y, which

again implies that the contract is exploitative. Von Thadden and Zhao (2012, 2014) assume

that the agent is unaware of her available actions a and chooses a default action unless the

principal educates her; unawareness then relaxes incentive compatibility at the default action.

Third, in order to justify biased beliefs, several papers assume that the agent knows the link

between action and outcomes p(y | a), but derives anticipatory utility from optimistic beliefs.

She therefore chooses beliefs p̂(y | a) that solve the trade-off between the losses from biased

decision-making and the gains from anticipation; see Bénabou and Tirole (2002), Brunner-

meier and Parker (2005), and Kőszegi (2006). For an organizational context, Bénabou (2013)

shows how the interaction between group members can make the suppression of bad news

a strategic complement, so that collective denial of adverse signals (“groupthink”) occurs in

equilibrium. Immordino et al. (2015) show that if the anticipatory utility is not too important,

the principal may provide incentives so that it is optimal for the agent to choose correct beliefs.

Our approach to boundedly rational expectations and contracting is more conservative.

The agent derives her beliefs from the true data-generating process, as in the canonical model;

she just may not take into account all empirical regularities that matter for the principal’s

project. The misspecification in the agent’s subjective model may cause her to overestimate her

productivity. However, under a weak restriction, she still correctly anticipates the equilibrium

distribution over output. The optimal equilibrium contract then does not exploit the agent, and

we can derive a behavioral version of the informativeness principle. Moreover, our framework

allows for misspecifications that do not affect the agent’s beliefs about the production function.

We use this structure to study which aspects of the agent’s job affect the scope for control

optimism.

We also contribute to the literature on Bayesian networks/directed acyclic graphs (DAGs),

which have been used extensively in the artificial intelligence literature. Pearl (2009) promotes

the view that DAGs represent causal relationships and provides a broad introduction to DAGs.
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In economics, Spiegler (2016, 2017) uses Bayesian networks to model agents with boundedly

rational expectations. DAGs provide a general method to capture a variety of different infer-

ence errors such as reverse causation and coarseness. We build on these insights and apply

them to contracting. Other recent papers use causal models to capture boundedly rational de-

cision makers in monetary policy (Spiegler 2019), political competition (Eliaz and Spiegler

2018), Bayesian persuasion (Eliaz et al. 2019), and decision theory (Schenone 2019).

The remainder of the paper is organized as follows. Section 2 describes our framework. In

Section 3, we examine how a misspecification in the agent’s subjective model affects the con-

tracting problem. In Section 4, we state a behavioral version of the informativeness principle.

In Section 5, we characterize when a misspecification leads to biased beliefs about the produc-

tion function, and illustrate the implications of this characterization. In Section 6, we revisit

two classic comparative statics of the canonical contracting framework. Section 7 concludes.

Omitted proofs and further results can be found in the Online Appendix.

2 The Model

We consider a standard principal-agent problem and combine it with the Bayesian network

model of boundedly rational beliefs, as introduced in Spiegler (2016).

Basic Framework. Let A ⊂ R be a finite set of actions, Y ⊂ R a finite set of outputs, and

W ⊆ R|Y | the set of possible incentive schemes. The principal proposes a contract (w(y), p(a)),

where w(y) ∈ W is the agent’s wage conditional on the output y ∈ Y and p(a) ∈ ∆(A) is the

probability with which the principal wishes the agent to choose action a ∈ A. The agent can

reject or accept the contract. If she rejects it, she enjoys the outside option value Ū, while

the principal earns zero. If she accepts the contract, she chooses an action a ∈ A. The agent’s

personal cost of choosing a is given by a function c(a). The action stochastically influences the

project’s output. The agent’s utility from wage w is given by the utility function u(w), which is

weakly concave and exhibits limw→−∞ u(w) = −∞. When the output is y and the agent’s action

is a, the principal’s payoff is V = y − w(y) and the agent’s payoff is U = u(w(y)) − c(a).

Causal Structure. We model the causal structure through which the agent’s action affects the

output y. Let N∗ = {0, ..., n} be the set of relevant variables (or nodes). This set contains

the agent’s action and output, but may also include other variables. A generic realization of

variable i is given by xi ∈ Xi, where Xi is a finite set that contains at least two elements. Node

0 is the agent’s action (x0 = a, X0 = A) and node n is the output (xn = y, Xn = Y). The state is

a vector x∗ = (x0, x1, ..., xn) and the set of all states is X∗ = ×i∈N∗Xi. For every subset M ⊆ N∗

and x∗ ∈ X∗, let xM = (xk)k∈M.
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Denote by p(x1, . . . , xn | a) the extended production function. For any action a ∈ A, it has

full support over X1 × ... × Xn. We represent its causal structure by an irreflexive, asymmetric

and acyclic binary relation R∗ over N∗, and denote it by the DAG R∗ = (N∗,R∗), see the graph

on the left of Figure 1 for an example. For two nodes i, j ∈ N∗ one may read iR∗ j as “node

i impacts on node j.” The set of nodes that influence i is defined, with abuse of notation,

as R∗(i) = { j ∈ N∗ | jR∗i}. Nothing influences the agent’s action, R∗(0) = ∅. The probability

distribution over states, p(x∗) ∈ ∆(X∗), then naturally factorizes according toR∗ via the formula

p(x∗) =
∏
i∈N∗

p(xi | xR∗(i)). (1)

We assume that the “objective model” R∗ is one of the sparsest DAGs so that p(x∗) factorizes

according to R∗. That is, R∗ contains exactly those conditional independence assumptions that

are satisfied by p(x∗).3

Figure 1: An objective model R∗ (left) and the agent’s subjective model R (right).

Beliefs, Personal Equilibrium, and Equilibrium Contract. The agent has her own subjective

model R = (N,R), see Figure 1 for an example. We assume that {0, n} ∈ N ⊆ N∗ and R(0) = ∅.

The assumption that the agent includes her own action and the output in her subjective model

ensures that her utility is measurable with respect to her beliefs. N ⊆ N∗ is assumed purely for

simplicity. R(0) = ∅ implies that the agent knows that she does not receive any information

about other variables prior to choosing an action, and that she has correct beliefs about the

marginal distribution over her own action.

Definition 1. We say that R is misspecified if R , R∗, and that R is a simplification if N ⊂ N∗

and R = N × N ∩ R∗.

A simplification is a misspecification where the agent’s subjective model R emerges from

R∗ by dropping nodes from R∗ and the links adjacent to them. It will receive considerable

attention in this paper. Denote by x = (xi)i∈N the state vector for the agent’s subjective model

3This assumption is for convenience only and will be relaxed in Section 5.
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and X = ×i∈N Xi. The agent fits her subjective model R to the data generated by p(x∗), so her

beliefs factorize according to the formula

pR(x) =
∏
i∈N

p(xi | xR(i)). (2)

Thus, all the conditional independence assumptions embedded in R also appear in the agent’s

beliefs. For example, when the agent’s subjective model is R from Figure 1, her beliefs fac-

torize according to pR(a, x1, y) = p(a)p(x1 | a)p(y | x1), where p(a), p(x1 | a) and p(y | x1)

follow from the probability distribution p(x∗). Given the objective model in Figure 1, p(y | x1)

will depend on p(a) through variables 2 and 3. Hence, the agent’s beliefs in general depend

on p(a), even when conditioning on her action. We therefore augment notation to indicate

which strategy p(a) is used when deriving beliefs and write pR(x; p(a)) instead of pR(x). For

any subset M ⊂ N, the agent’s belief about the marginal distribution over xM is calculated as

pR(xM; p(a)) =
∑

xN\M∈XN\M
pR(xM, xN\M; p(a)).

The agent follows the prescribed strategy from the contract only if it maximizes her ex-

pected utility given the wage scheme w(y) and her subjective beliefs about the output condi-

tional on her action, which we denote by pR(y | a; p(a)). These are computed as

pR(y | a; p(a)) =
pR(a, y; p(a))∑

y∈Y pR(y, a; p(a))
. (3)

To close the model, we need to specify the agent’s strategy p(a) that is used to derive these

beliefs. We therefore formalize the agent’s strategy as a personal equilibrium.

Definition 2. The strategy p(a) is a personal equilibrium at R and w(y) if for all actions a ∈ A

in the support of p(a) we have

a ∈ arg max
a′

∑
y∈Y

pR(y | a′; p(a))u(w(y)) − c(a′),

where pR(y | a′; p(a)) = limk→∞ pR(y | a′; pk(a)) for all actions a′ ∈ A and a sequence

pk(a)→ p(a) of fully mixed strategy profiles.

With the full support assumption, a fully mixed action profile ensures that all conditional

probabilities are well-defined. The definition requires that equilibrium beliefs are the limit of

a sequence of fully mixed profiles. A personal equilibrium always exists in our framework;

see Online Appendix A.1. We call a contract (w(y), p(a)) an “equilibrium contract” if p(a)

is a personal equilibrium at R and w(y). An optimal equilibrium contract is an equilibrium

contract that maximizes the principal’s expected payoff. For convenience, we denote beliefs
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by pR(y | a; a∗) when a pure action a∗ is implemented, and pR(y | a;α) with p(a = 1) = α

when we have a binary action set A = {0, 1}.

The proposed solution concept is static. The agent’s beliefs are derived from a probability

distribution that could be influenced by the strategy that the equilibrium contract implements.

One interpretation is that the agent is experienced and thus has data on how her action impacts

on the variables in her subjective model. An alternative interpretation is that there are (or have

been) many other agents in the organization who exchange data with their new colleague to

which she can fit her subjective model.

3 The Optimal Equilibrium Contract

In this section, we study the properties of the optimal equilibrium contract for a given extended

production function p(x1, ..., xn | a) and subjective model R. If (w∗(y), p∗(a)) is an optimal

equilibrium contract, then w∗(y), p∗(a) solve the maximization problem

max
w(y)∈W,p(a)∈∆(A)

∑
a∈A

∑
y∈Y

p(a)p(y | a)(y − w(y)) (4)

subject to the constraints

p(a) ∈ ∆(A) is a personal equilibrium at R and w(y), (IC)∑
a′∈A

∑
y∈Y

p(a′)[pR(y | a′; p(a))u(w(y)) − c(a′)] ≥ Ū. (PC)

When the agent’s subjective model R equals the objective model R∗, the problem collapses to

the canonical principal-agent problem, and can be solved as suggested by Grossman and Hart

(1983). We first find for each pure action a ∈ A the wage scheme w(y) that implements this

action at lowest possible cost. Then we choose the action-incentive scheme combination that

maximizes the principal’s profit. If the agent’s subjective model R differs from the objective

model R∗, we find the optimal equilibrium contract by applying the same procedure. However,

since the agent’s beliefs pR(y | a; p(a)) may depend on the implemented strategy p(a), the first

step has to be done for all pure and mixed actions p(a) ∈ ∆(A).

Suppose the agent is risk-averse with unlimited liability, and the principal implements a

(possibly mixed) strategy p(a). The Kuhn-Tucker conditions for the principal’s problem are

then necessary and sufficient for an optimum. Choose any action a in the support of p(a). The
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optimal incentive scheme is then characterized by the first-order condition

1
u′(w(y))

=
pR(y; p(a))

p(y)

 µ +
∑
a′∈A

λa′
pR(y | a; p(a)) − pR(y | a′; p(a))

pR(y; p(a))

 (5)

for all y ∈ Y , where µ and λa′ are the usual Lagrange multipliers for the participation and

incentive compatibility constraint, respectively. Equation (5) allows us to disentangle how a

misspecification in R may change the contracting problem. First, the PC is affected when the

agent holds biased beliefs about the equilibrium distribution over output; see the first term on

the right of equation (5). In Subsection 3.1, we state a sufficient condition on R so that this

belief is unbiased. Second, the IC may be affected. Suppose the principal implements a pure

action a and pR(y; a) = p(y). The ratio in the squared brackets then becomes 1 − pR(y|a′;a)
pR(y|a;a) ,

in which case the optimal incentive scheme depends on a likelihood ratio as in the canonical

framework. Any difference between the contracts under the objective and subjective model is

then driven by differences between the corresponding likelihood ratios. In Subsection 3.2, we

examine how these differences may affect the optimal equilibrium contract.

3.1 Correct Expectations on the Equilibrium Path

We use a Bayesian network result from Spiegler (2017) that characterizes under what cir-

cumstances the agent’s beliefs about the equilibrium output distribution are correct, so that

pR(y; p(a)) = p(y) for all p(a) ∈ ∆(A). To this end, we introduce a few definitions. A v-

collider is a triple of nodes (i, j, k) such that iR j, kR j and there is no link between i and k

(neither iRk nor kRi is in R). The set of v-colliders of a DAG is called its v-structure. A DAG is

called perfect if it has an empty v-structure. A subset of nodes M ⊂ N is a clique in R = (N,R)

if iR j or jRi for any two nodes i, j ∈ M. For example, in the DAG R∗ from Figure 1, the set

M = {1, 3, 4} is a clique, while the set M′ = {2, 3, 4} is not. Each node is a clique in itself,

so the output node n is a clique. The following result essentially restates Proposition 2 from

Spiegler (2017).

Proposition 1 (Equilibrium Beliefs). If the agent’s model R = (R,N) is perfect, her equilib-

rium beliefs satisfy pR(xM; p(a)) = p(xM) for all p(a) ∈ ∆(A) and any clique M ⊂ N.

If the agent’s subjective model R is perfect, then, in a personal equilibrium, the agent cor-

rectly anticipates the marginal distribution over each variable in her model, and also the joint

distribution over variables in cliques. The intuition behind this result is that perfectness ex-

cludes biased estimates due to neglect of correlation. Imagine two variables i, j that influence

a third variable k. Suppose that i and j are correlated, and that the agent treats them as uncor-
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related. Through the application of the factorization formula (2), the agent may then obtain a

biased estimate of the marginal distribution p(xk). Perfectness implies that the agent always

checks for correlations between two variables i, j when, according to her subjective model,

they influence a third variable k. We obtain two useful corollaries from Proposition 1.

Corollary 1. If the agent’s model R = (R,N) is perfect and her equilibrium action is a pure

action a∗, her equilibrium beliefs satisfy pR(xM | a∗; a∗) = p(xM | a∗) for every clique M ⊂ N.

If the equilibrium contract implements a pure strategy a∗, the agent’s belief about the joint

distribution of any clique M conditional on her equilibrium strategy is correct. Corollary 1 is in

general not true if the equilibrium contract implements a mixed strategy p∗(a). While the agent

still gets the marginal equilibrium distribution over each variable right, her beliefs may also

exhibit pR(xi | a′; p∗(a)) , p(xi | a′) for an action a′ in the support of p∗(a). Thus, the agent’s

expected utility conditional on a′ may be biased, ER[u(w(y)) | a′; p∗(a)] , E[u(w(y)) | a′].

The second direct implication of Proposition 1 is the following result.

Corollary 2. Suppose (w(y), p(a)) is an equilibrium contract. If R = (R,N) is perfect, the PC

is satisfied at this contract if and only if this is also the case under the objective model R∗.

If R is perfect, the incentive scheme has to satisfy the same participation constraint as

under the objective model. Thus, an agent with a misspecified – but perfect – model cannot be

exploited. Throughout the paper, we will assume that R is perfect. As we see next, a perfect R

does not imply that the principal cannot benefit from the agent’s misperception.

3.2 Incentive Effects

We examine how a misspecification in the agent’s subjective model R can change the equilib-

rium contract when R is perfect. By Corollary 2, only the incentive compatibility constraint

can be affected by the misspecification. We analyze a simple setting with two effort levels

a ∈ {0, 1}, two output levels y ∈ {yL, yH} with yH > yL, and cost c(1) = c > c(0) = 0. The

probability of output yH increases in the agent’s effort.

Consider the marketer example from the introduction. Figure 2 shows the objective model

R∗ and the agent’s subjective model R. Node 1 is the level of consumer information. It

can be low (x1 = 0) or high (x1 = 1). Node 2 is the firm’s reputation, which can be bad

(x2 = 0) or good (x2 = 1). The subjective model R captures that the agent does not take

reputation into account. For the objective probability distribution, we use the parametrization

p(xi = 1 | xR(i)) = βi +
∑

j∈R(i) β jix j for i ∈ {1, 2} and p(yH | x1, x2) = β3 + β13x1 + β23x2.

Making cold-calls increases consumer information, β01 > 0, and decreases reputation, β02 < 0;
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Figure 2: Objective model R∗ (left) and subjective model R (right) in the marketer example.

consumer information x1 and reputation x2 have a positive influence on sales, β13 > 0 and

β23 > 0. We obtain the following result.

Proposition 2 (Marketer Example). Consider the marketer example of this subsection.

(a) The simplification in the agent’s subjective model R relaxes the IC for α = 1.

(b) The optimal equilibrium contract implements α ∈ {0, 1}. If and only if effort costs c

are small enough, the optimal equilibrium contract implements α = 1 and the principal

strictly benefits from the simplification in the agent’s subjective model R.

Before we prove this result, we explain the intuition behind it and its implications. First,

consider statement (a). When the principal implements α = 1, the agent overestimates the

drop in expected output when she exerts low instead of high effort. According to her subjective

model R, the only effect of her action on the output occurs through consumer information x1;

she does not take into account that a deviation to low effort would also have a positive effect

on expected reputation x2, which translates into a positive effect on expected output. Formally,

the IC under the objective model R∗ is

[β01β13 + β02β23] (u(w(yH)) − u(w(yL))) − c ≥ 0. (6)

The term in squared brackets is the effect of effort on output and contains the consumer infor-

mation channel β01β13 and the reputation channel β02β23. Under the subjective model R, this

second channel is missing, so that the IC becomes

β01β13 (u(w(yH)) − u(w(yL))) ≥ c. (7)

Since the effect of effort on reputation β02 is negative, the simplification in R relaxes the IC.

As long as α ∈ (0, 1), the reputation effect is partly reflected in p(yH | x1); the extent of this

depends on α since α affects the correlation between consumer information and reputation. A
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higher correlation between consumer information and reputation would mitigate some of the

effect of the agent’s misperception.

Next, consider statement (b). The observation that the principal implements a pure strategy

would be trivial in the canonical framework with rational expectations. This is not the case

here as the agent’s perceived effect of effort on output pR(yH | a = 1;α)−pR(yH | a = 0;α) may

vary non-monotonically in α. In the present setting, the perceived effect of effort on output is

maximal at α = 1, so that there is no reason for the principal to implement a mixed strategy.

At the end of this subsection, we present an example where the unique optimal equilibrium

contract indeed implements a mixed strategy α ∈ (0, 1).

Importantly, if the agent chooses a pure strategy, then, by Corollary 1 and the fact that R

is perfect, she correctly anticipates the joint distribution over all variables in R conditional on

her equilibrium action. Thus, in the data that the agent gets under the optimal equilibrium

contract, there are no informational cues which could alarm her about a misspecification in

her subjective model. This is a crucial difference between the present framework and models

where beliefs about outcomes are biased for equilibrium actions.

Finally, the last part of statement (b) spells out that the principal strictly benefits from the

simplification in R when effort costs are small enough so that it is profitable to implement high

effort. The principal would have no incentive to correct the agent’s view on the production

process (if this were possible). This is of course not true in general. For example, if the agent’s

action has a positive effect on reputation, β02 > 0, the simplification in R tightens the IC for

α = 1 as the agent does not take all positive effects of her action on output into account.

Proof of Proposition 2. To illustrate our approach, we present the proof of Proposition 2. We

first derive pR(yH | a;α) for a given mixed equilibrium strategy α ∈ (0, 1). The agent’s

equilibrium belief about the joint probability distribution of the variables in R is given by

pR(a, x1, y) = p(a)p(x1 | a)p(y | x1). Since node 0 and node 1 form a clique, the agent’s belief

about the joint probability distribution of a and x1 is correct. Hence, p(x1 | a) is independent

of α and we have p(x1 = 1 | a) = β1 + β01a. However, p(y | x1) depends on α since the

distribution over y also depends on x2. To get p(y | x1), we first derive p(x2 = 1 | x1), i.e., the

probability that x2 = 1 given that value x1 is observed at node 1 when the agent’s equilibrium

action is α. We calculate

p(x2 = 1 | x1 = 1) =
α(β1 + β01)(β2 + β02) + (1 − α)β1β2

β1 + αβ01
, (8)

p(x2 = 1 | x1 = 0) =
α(1 − β1 − β01)(β2 + β02) + (1 − α)(1 − β1)β2

1 − β1 − αβ01
. (9)

With this we can calculate the equilibrium probability that output yH realizes after observing



Equilibrium Contracts and Boundedly Rational Expectations 14

x1 = 1 and x1 = 0, respectively:

p(yH | x1 = 1) = β3 + β13 +
α(β1 + β01)(β2 + β02) + (1 − α)β1β2

β1 + αβ01
β23, (10)

p(yH | x1 = 0) = β3 +
α(1 − β1 − β01)(β2 + β02) + (1 − α)(1 − β1)β2

1 − β1 − αβ01
β23. (11)

From pR(a, x1, y) we can now calculate the agent’s subjective probability of a high output after

high and low effort, respectively:

pR(yH | a = 1;α) = (β1 + β01)p(yH | x1 = 1) + (1 − β1 − β01)p(yH | x1 = 0), (12)

pR(yH | a = 0;α) = β1 p(yH | x1 = 1) + (1 − β1)p(yH | x1 = 0). (13)

We then use these terms to compute the IC for α ∈ (0, 1),

[pR(yH | a = 1;α) − pR(yH | a = 0;α)] (u(w(yH)) − u(w(yL))) = 0. (14)

By taking the limit for α→ 1, we obtain the IC for α = 1, which is the inequality in (7). Since

β02 < 0, this completes the proof of statement (a). To prove statement (b), note first that both

IC and PC must be binding at the optimal equilibrium contract. Simple calculations show that

β01, β13, β23 > 0 and β02 < 0 imply

pR(yH | a = 1;α) − pR(yH | a = 0;α) ≤ β01β13 (15)

for all α ∈ (0, 1]; that is, when the agent exerts high effort with positive probability, her per-

ceived effect of effort on output is largest at α = 1. The principal then cannot gain from

implementing a mixed strategy. Finally, given that the optimal equilibrium contract imple-

ments either α = 0 or α = 1, the last part of statement (b) follows from a simple comparison

of expected profits under the equilibrium contracts that implement these two actions. �

Mixed strategy example. We show by example that it is not always optimal for the principal

to implement a pure strategy. Consider again the marketer example. Assume that the agent is

risk-neutral, protected by limited liability so that w(y) ≥ 0, her outside option value is zero, and

yL = 0. Suppose payoff parameters are such that the principal optimally implements α > 0.

Standard arguments show that w(yL) = 0, and that w(yH) is chosen so that the IC in (14) is

satisfied. The principal’s expected payoff from this contract is then

E[V] = [αp(yH | a = 1) + (1 − α)p(yH | a = 0)]
(
yH −

c
∆R(α)

)
, (16)
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where ∆R(α) = pR(yH | a = 1;α)− pR(yH | a = 0;α) is the agent’s perceived effect of effort on

output. The slope of ∆R(α) at α = 1 is

d∆R(α)
dα

∣∣∣∣∣
α=1

= β01β02β23

(
β1

β1 + β01
−

1 − β1

1 − β1 − β01

)
. (17)

Let the agent’s action have a positive impact on both consumer information and reputation,

β01 > 0 and β02 > 0. Then for β01 → 1−β1 the slope in (17) converges to minus infinity. Hence,

if all else equal β01 is sufficiently close to 1−β1, then, starting from α = 1, a small reduction in α

reduces w(yH), and in terms of profits, this reduction overcompensates the smaller probability

of high output. The optimal equilibrium contract then implements a mixed strategy. Thus,

when the agent is induced to switch between periods of working hard and periods of shirking,

her effort appears to her as particularly important for the final output.

4 The Informativeness Principle

An important question in contract theory is on which information the principal should con-

dition the agent’s wage. For a setting with risk-averse agent who has unlimited liability, the

informativeness principle states that the optimal contract conditions on an additional variable

z if and only if it is informative about the agent’s effort, i.e., if and only if the likelihood ratio
p(y,z|a′)
p(y,z|a) varies in z for some y.4 In this section, we derive a version of the informativeness prin-

ciple that allows for boundedly rational agents. To this end, we exploit the fact that an agent

with biased subjective beliefs may still have correct expectations about the joint distribution of

contractible variables in equilibrium. We then apply our version of the informativeness prin-

ciple to provide a rationale for why in executive compensation contracts peer-performance is

mostly not used so that CEOs are rewarded for windfall gains.

The original version of the informativeness principle may no longer hold when the agent’s

subjective model R is misspecified. Consider the marketer example from Subsection 3.2 and

assume that the principal can also condition the agent’s wage on consumer information x1. If

the agent had rational expectations, the optimal wage scheme would condition both on con-

sumer information x1 and sales x3 since neither variable is a sufficient statistic of the other

(to avoid confusion below, we here use x3 instead of y).5 However, according to the agent’s

4Whether this result holds or not depends on the formal details of the contracting problem; see Chaigneau et
al. (2019) for a recent discussion and a further extension of the informativeness principle.

5A further interesting trade-off can be observed here. Recall from the marketer example that when the contract
only conditions on sales x3, the agent with subjective model R is control optimistic, which relaxes the IC. In
contrast, when the contract only conditions on consumer information x1, the agent has correct expectations about
her expected payoff under alternative actions, so the IC is unaffected by the misspecification in R.
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subjective model R, sales x3 are just a noisy signal of consumer information x1. Therefore, the

optimal equilibrium contract only conditions on x1 and appears as “incomplete.”

We can generalize this finding and obtain a version of the informativeness principle that

allows for misspecified subjective models R. To get this statement, we assume that the agent’s

subjective model is such that she correctly anticipates the joint distribution over the two con-

tractible variables y and z. Recall from Proposition 1 that this is the case if R is perfect and

there is a link between y and z in R (so that they form a clique).

Proposition 3 (Informativeness Principle). Suppose the agent is risk-averse and has unlimited

liability. Let y and z be two contractible variables that are both part of the agent’s subjective

model R. If pR(z, y; p(a)) = p(z, y) for all p(a) ∈ ∆(A), the following statements hold:

(a) Suppose that a ∈ {0, 1} and c(1) > c(0). The equilibrium contract that implements α = 1

at lowest cost to the principal does not condition on z if and only if for all triples a, y, z

we have pR(z | y, a;α = 1) = pR(z | y;α = 1).

(b) If for all p(a) ∈ ∆(A) and all triples a, y, z we have pR(z | y, a; p(a)) = pR(z | y; p(a)),

the optimal equilibrium contract does not condition on z.

Before we prove this result, we provide an interpretation and explain its implications. First,

the condition pR(z | y, a; p(a)) = pR(z | y; p(a)) for all p(a) ∈ ∆(A) and all triples a, y, z indi-

cates that, in the agent’s mind, variable z is independent of her action conditional on variable

y (regardless of the implemented action). If this condition is satisfied, the agent believes that z

does not contain any information about her action that is not already in y. However, this condi-

tion alone does not imply that the optimal equilibrium contract does not condition the agent’s

wage on z. In addition, the agent’s subjective belief about the joint equilibrium distribution of

y and z needs to be correct. Otherwise, the principal may want to exploit the agent’s biased

perception of this distribution, and condition on z even if the agent thinks that z is uninforma-

tive about her action given y. This is equivalent to betting when two individuals have different

prior beliefs about future events.

Second, Proposition 3 consists of two statements. Statement (a) is the informativeness

principle for the case of binary action spaces. It is very similar to the original version: The

statement implies that the optimal equilibrium contract that implements α = 1 conditions on z

if and only if the likelihood ratio pR(y,z|a=0;α=1)
pR(y,z|a=1;α=1) varies in z for some y. Statement (b) for general

finite action spaces is weaker since the additional information embedded in z may, according

to the agent’s subjective beliefs, only affect non-binding ICs.6

6This is a general issue of the informativeness principle and not specific to our framework.



Equilibrium Contracts and Boundedly Rational Expectations 17

Third, observe that Proposition 3 does not impose any further assumptions on the agent’s

subjective model R. It therefore applies to all settings in which the agent’s beliefs satisfy

the conditions outlined in the proposition. Importantly, we can state sufficient conditions on

R so that the agent’s beliefs satisfy the conditional independence assumption. The Bayesian

network literature establishes “d-separation” as a convenient tool to check conditional inde-

pendence of two sets of variables in a model R; we describe it in Online Appendix A.2. Here

we give a simple implication of d-separation: Define a path τ in R as a sequence of nodes

so that any adjacent nodes are linked in R; τ is a directed path if the links between any two

adjacent nodes in τ point in the same direction (from the former to the latter or vice versa).

Variable z is independent from action a conditional on y in R if all paths from a to z are directed

and contain y. Note that this is the case in the marketer example above.

Fourth, our Bayesian network framework allows for a causal interpretation of the informa-

tiveness principle. The optimal equilibrium contract conditions on both y and z, if the agent’s

action has partially independent effects on these two variables according to R; it does not con-

dition on z if, according to R, variable z is a consequence of y. In this case, the optimal contract

conditions on the variable that is “causally closer” to the agent’s action.

Proof of Proposition 3. We first prove statement (b). Suppose the principal wishes to imple-

ment p(a). Since the agent is risk-averse with unlimited liability and her action set A is finite,

we can use the arguments in Grossman and Hart (1983) to show that the Kuhn-Tucker theorem

yields necessary and sufficient conditions for an optimum. The optimal incentive scheme is

therefore characterized by the first-order condition

1
u′(w(y, z))

=
pR(y, z; p(a))

p(y, z)

 µ +
∑
a′∈A

λa′
pR(y, z | a; p(a)) − pR(y, z | a′; p(a))

pR(y, z; p(a))

 . (18)

By assumption, we have pR(y, z; p(a)) = p(y, z). We can rewrite pR(y, z | a; p(a)) as

pR(y, z | a; p(a)) = pR(y | a; p(a))pR(z | y, a; p(a)) = pR(y | a; p(a))pR(z | y; p(a)), (19)

where the last equality follows from the assumption pR(z | y, a; p(a)) = pR(z | y; p(a)) for all

triples a, y, z. Similarly, we can write pR(y, z; p(a)) = pR(y; p(a))pR(z | y; p(a)). Hence, we get

pR(y, z | a; p(a)) − pR(y, z | a′; p(a)) =
pR(y, z; p(a))
pR(y; p(a))

[pR(y | a; p(a)) − pR(y | a′; p(a))]. (20)

The first-order condition in (18) therefore simplifies to

1
u′(w(y, z))

= µ +
∑
a′∈A

λa′
pR(y | a; p(a)) − pR(y | a′; p(a))

pR(y; p(a))
. (21)
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Since the right-hand side of this first-order equation is independent of z, the optimal incentive

scheme does not condition on z, which completes the proof. Next, we prove statement (a).

Risk-aversion and unlimited liability imply that the optimal incentive scheme that implements

a = 1 is characterized by the first-order condition

1
u′(w(y, z))

=
pR(y, z | a = 1;α = 1)

p(y, z | a = 1)

[
µ + λ

(
1 −

pR(y, z | a = 0;α = 1)
pR(y, z | a = 1;α = 1)

) ]
, (22)

where µ, λ are strictly positive constants. As above, we can write pR(y, z | a = 1;α = 1) =

p(y, z | a = 1), so that this first-order condition simplifies to

1
u′(w(y, z))

= µ + λ

(
1 −

pR(y, z | a = 0;α = 1)
pR(y, z | a = 1;α = 1)

)
. (23)

Statement (a) then directly follows from this equation. �

As an application, we consider a setting in which the principal can condition the agent’s

wage both on her output y ∈ {yL, yH} and on her relative performance z ∈ {−1, 0, 1}; the latter

variable captures, for example, how the stock price of the company compares to that of the

company’s rivals. There is a common shock x1 ∈ {0, 1}, e.g., the state of the economy, that

positively affects both own output y and the rivals’ output x3 ∈ {yL, yH}. Output y has a small

effect on output x3. The objective model R∗ on the left in Figure 3 illustrates this setting.

Figure 3: Objective model R∗ (left) and subjective model R (right) in the peer-comparison example.

Under the objective model R∗, the optimal equilibrium contract that implements high effort

would, at any generic parametrization, condition the agent’s wage both on output and relative

performance. This can be established by visually inspecting R∗ using d-separation.7 The

intuition is as follows: Suppose we know the agent’s output y. Then information about the

agent’s action a provides additional information about the state of the economy x1, and hence

7The “usual” way to see this is to consider a particular parametrization. Consider our linear specification with
binary outcomes at all variables except z; for z we assume that p(z = 1 | y > x3) ≈ 1, p(z = 0 | y = x3) ≈ 1, and
p(z = −1 | y < x3) ≈ 1. If the influence of y on x3 is small enough, the optimal contract that implements high
effort conditions on both variables, and the agent’s wage increases in both y and z.
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also additional information about peer performance z. Hence, a and z are not independent

conditional on y in R∗.

Now suppose that the agent does not take the common shock x1 into account so that her

subjective model is given by R on the right of Figure 3. Since R is perfect and the variables y

and z are linked in R, the agent correctly anticipates the equilibrium distribution over the two

variables. Moreover, we can use the implication from d-separation above to see that a and z

are independent conditional on y. The intuition is that, according to R, output y is informative

about relative performance z. However, if we already know y, we get no additional informa-

tion about z from the agent’s action. Proposition 3 then implies that the optimal equilibrium

contract that implements α = 1 only conditions on the agent’s own output y. It is therefore in-

complete and rewards the agent for windfall gains that come from good states of the economy.

In the agent’s mind, her relative performance is only a noisy signal of her own output. Hence

conditioning her wage on relative performance would only increase the agent’s exposure to

risk and hence implementation costs.

Many actual compensation contracts indeed do not make use of peer-performance and re-

ward executives for windfall gains. Bebchuk and Fried (2004) discuss this phenomenon and

possible explanations. A popular explanation is that executives use their influence over the

board of directors to alter their compensation, which then happens to increase in windfall gains.

However, this theory cannot explain the inefficient risk allocation. In contrast, model misspec-

ification can account for inefficient risk allocation. The manager’s model is misspecified as

in the application, for example, if she attributes the output to her action alone, or if she ig-

nores the statistical implications of common shocks and therefore evaluates peer-performance

as uninformative about her own action.

5 Behavioral Rationality

We learned in Section 3 that a simplification in the agent’s subjective model may bias her

beliefs about the production function, so that the incentive compatibility constraint is affected.

However, does a simplification in R automatically imply that the agent’s beliefs are biased? In

this section, we show that the answer is negative. The agent may correctly anticipate the true

production function even when her subjective model R omits variables from R∗. When this

statement holds for any parametrization of the extended production function that factorizes8

according to R∗, we say that the agent is “behaviorally rational.” We state the formal definition.

8Importantly, we deviate in this section from our earlier assumption that p(x∗) does not contain any additional
conditional independence assumptions compared to R∗.
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Definition 3. An agent with subjective model R is behaviorally rational if, at any probability

distribution p(x) ∈ ∆(X) that factorizes according to R∗, we have pR(y | a; p(a)) = p(y | a) for

all a ∈ A and p(a) ∈ ∆(A).

We characterize for a given objective model R∗ when the agent is behaviorally rational, and

when her beliefs about the production function remain unchanged if an (additional) node from

N∗ is dropped from her subjective modelR. We will see that two extended production functions

– which involve the same set of nodes N∗ and may give rise to the same p(y | a) – can differ in

the extent to which simplifications affect the agent’s beliefs about p(y | a). This extent depends

on the “channels” in R∗ through which the agent’s action affects the output. Intuitively, they

describe the agent’s role in the organization, that is, which components or behaviors of others

the agent affects directly or indirectly through her action. This allows us to identify several

processes in an organization that potentially cause the agent to have biased beliefs about her

productivity. We proceed as follows. In Subsection 5.1, we extend our marketer example to

illustrate the influence of the agent’s job on the scope for biased beliefs and control optimism.

In Subsection 5.2, we characterize when the agent is behaviorally rational and generalize the

main findings from Subsection 5.1.

5.1 The Agent’s Job and the Scope for Control Optimism

We examine the interaction between the agent’s job, model misspecification, and incentives.

Let the agent first work as an ordinary marketer whose job is to increase sales. This time,

making cold-calls is not part of her job. Her effort only has a (positive) effect on consumer

information, for example, through informative advertising. Nevertheless, there is a group of

employees engaged in telemarketing. Their effort – making cold-calls – impacts on consumer

information and the firm’s reputation in the usual manner. The objective model R∗ on the left

of Figure 4a represents the causal structure of this extended production function. Throughout,

we use our parametrization with binary outcomes at all variables i ∈ N∗ and p(xi = 1 | xR(i)) =

βi +
∑

j∈R(i) β jix j. The telemarketers either conduct cold-calls or not, β1 ∈ {0, 1}; cold-calls

have a negative effect on reputation, β13 < 0; consumer information has a positive effect on

reputation, β23 > 0.9 All formal proofs of this subsection are in Online Appendix A.3.

Imagine that the marketer neither takes into account the telemarketers’ operation nor the

firm’s reputation so that her subjective model is given by R on the upper-left of Figure 4b.

When choosing effort, she only considers how her action impacts sales through consumer

9Here we introduce the link between consumer information and reputation, and violate our full support as-
sumption by assuming p(x1 = 1) ∈ {0, 1}. The latter implies that in objective model R∗ we could drop node 1 and
factor the value p(x1 = 1) into the other conditional probabilities.
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information. Does this misspecification change incentives? The answer is negative. We can

show – using the results from the next subsection – that the agent’s subjective beliefs about the

production function are correct, so that pR(yH | a;α) = p(yH | a) for all a ∈ {0, 1} and α ∈ [0, 1].

Thus, given her role in the principal’s project (as captured by R∗), the subjective model R is

rich enough to produce correct predictions for off-equilibrium actions. The agent may ignore

important parts of the project and still act as if she were fully rational. The equilibrium contract

is then the same as in the canonical model.

Figure 4a: Objective model R∗ (left) when the agent works as ordinary marketer, and objective
model R∗∗ (right) when the agent works as “head of marketing.”

Figure 4b: Subjective models R (upper-left), R1 (upper-right), R2 (lower-left), and R3 (lower-right).

Importantly, telemarketing still matters for the principal since the probability distribution

over sales depends on whether cold-calls are made or not. It is just not essential for the agent

to know whether cold-calls take place. Her estimate of the production function implicitly takes

into account the deterministic activity of the telemarketers, so that it will always be correct.

Is there any simplification that makes the agent overestimate the effectiveness of her effort,

such that the principal benefits from it? Again, the answer is negative. If the agent does not take

node 2 into account, she believes that her action has no consequences for the output. It would

then be impossible to implement high effort. If only node 1 or only node 3 were omitted from
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her subjective model, the agent would again have correct beliefs about the production function.

Thus, there is no scope for control optimism when the agent works as ordinary marketer.

Next, we alter the agent’s job by promoting her to “head of marketing.” Her action now

influences the telemarketers’ effort, for example, by motivating or inspiring the telemarketers.

Instead of p(x1 = 1) = β1, we now have p(x1 = 1 | a) = β1 + β01a. To keep things as close as

possible to the previous case, we assume β1 = 0 and β01 = 1.10 Hence, the agent needs to act

in order to get the telemarketers going (the telemarketer’s activity is no longer an exogenous

degenerate distribution). The objective model of the extended production function is given by

R∗∗ on the right of Figure 4a. How does a misspecification in the agent’s subjective model now

affect equilibrium beliefs and incentives in this environment?

Let us first assume that the agent has the same subjective model R as before (on the upper-

left of Figure 4b). She neglects both the telemarketers’ activity and the firm’s reputation. This

is not realistic since as “head of marketing” the agent should be aware of her subordinates’

basic activities; so we will relax this assumption below. The misspecification now affects

incentives. Under the objective model R∗∗ the IC that implements α = 1 would be

[(β02 + β01β12)(β24 + β23β34) + β01β13β34](u(w(yH)) − u(w(yL))) ≥ c. (24)

The squared brackets contain the different channels through which effort affects output. The

partial negative effect of effort on output through cold-calls and reputation is captured in the

term β01β13β34; it is negative since β13 < 0. Under the subjective model R the IC becomes

(β02 + β01β12)(β24 + β23β34)(u(w(yH)) − u(w(yL))) ≥ c. (25)

Here the partial negative effect is missing so that the IC is relaxed. Note that through the es-

timate of the link between the agent’s action and consumer information, the agent implicitly

takes into account her positive influence on the telemarketers’ effort, which in turn positively

affects consumer information (see the term β01β12). Therefore, by being promoted to a job

where the agent also influences telemarketing, she overestimates her productivity. The princi-

pal benefits from this since the misspecification reduces the need to provide effort incentives.

The assumption that the agent does not include the telemarketer’s activity in her subjective

model seems a bit odd, given that she is the head of marketing. Therefore, let her subjective

model be given by R2 on the lower-left of Figure 4b. She now takes into account her influence

on the telemarketers, and that the telemarketers increase consumer information when exerting

effort. Does this inclusion correct, at least partly, the agent’s beliefs? It turns out that this is

10Formally, we assume β1 = ε1 and β01 = 1 − ε2 where ε1 < ε2, and consider the limit beliefs as ε1 → 0 and
ε2 → 0. We show in the proofs for this subsection that our results do not depend on this assumption.



Equilibrium Contracts and Boundedly Rational Expectations 23

not the case. The models R and R2 produce the same beliefs about the effectiveness of effort,

i.e., pR(yH | a;α) = pR2(yH | a;α) for all a ∈ {0, 1} and α ∈ [0, 1]. Including more variables

does not necessarily make the agent more rational. This also holds for the models R1 and R3

in Figure 4b. Note that R3 is almost equal to the objective model R∗∗, only the link between

telemarketing and reputation is missing. Yet, all subjective models in this figure produce the

same beliefs. Thus, a small misspecification in the agent’s subjective model can render several

important variables as inessential for estimating the production function.

Proposition 4 (Scope for Control Optimism). Consider the job examples of this subsection.

(a) If the agent works as ordinary marketer (objective model R∗), the misspecification in

R has no effect on the IC and the optimal equilibrium contract is the same as in the

canonical model. There is no simplification that generates control optimism.

(b) If the agent works as “head of marketing” (objective model R∗∗), the misspecification in

R generates control optimism and relaxes the IC; the subjective models R, R1, R2, and

R3 generate the same beliefs about the production function.

Proposition 4 illustrates how the agent’s job may matter for optimal incentives. The two

jobs with objective models R∗ and R∗∗ may give rise to the same production function p(y | a),11

so that incentives would be identical under rational expectations. However, effort motivation is

larger under a job with the objective model R∗∗ when the agent’s subjective model is simplified

in a way that benefits the principal. The crucial difference between the jobs are the sets of

channels through which the action affects the output. In the next subsection, we will formally

define these channels.

The findings in Proposition 4 allow for several new interpretations. First, parts (a) and

(b) combined demonstrate that an agent’s degree of control optimism may be determined by

the nature of her job. In the example, the agent with misspecified model R was behaviorally

rational in her job as ordinary marketer, but overestimated the importance of her effort after

being promoted to “head of marketing” where she influences the actions of others. Thus, in our

framework, the agent’s control optimism is not caused by certain features of her personality,

but it is a consequence of her environment when her subjective model does not capture all

empirical regularities of this environment.

Second, part (b) offers a new perspective on the phenomenon that managers often do not

completely understand the difficulties that their rank-and-file workers face (e.g., Porter and

Nohria 2018). Specifically, this can happen when an individual worked as specialist in her

11Specifically, when we denote parameters for the job with objective model R∗ (R∗∗) with “∗” (“∗∗”) we only
have to select parameters so that β∗02(β∗24 + β∗23β

∗
34) = (β∗∗02 + β∗∗01β

∗∗
12)(β∗∗24 + β∗∗23β

∗∗
34) + β∗∗01β

∗∗
13β
∗∗
34.
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previous position, but then was promoted to a management position where she influences the

activity of individuals whose jobs she often does not fully understand. This lack of knowl-

edge is typically regarded as a problem since it may lead to conflicts or inefficient managerial

decisions. However, as our example shows, it also can have positive effects on effort motiva-

tion, in particular, when the agent does not take into account a partial negative effect of her

subordinates’ behavior on the final output, and she motivates this behavior through her action.

Third, what leads to control optimism in part (b) is the agent’s ignorance of the partially

negative consequences of her subordinates’ activity for the final output. Our framework does

not provide an explanation for why a certain node is in the agent’s subjective model or not.

However, in an organizational context, there can be good reasons why the agent only takes into

account the positive aspects of her subordinates’ activity. For example, subordinates may have

an incentive to communicate why their effort is effective, and at the same time be reluctant to

communicate the disadvantages of their activity.12 In terms of our example, the telemarketers

may know that cold-calls displease some customers. However, they may not want to make

the agent aware of this, e.g., when having career concerns. Indeed, it is difficult for CEOs

to obtain unbiased information about what their subordinates to. Porter et al. (2004) find

that “[all] information coming to the top is filtered [...] Receiving solid information becomes

even more difficult because immediately upon appointment, the CEO’s relationships change.

Former peers and subordinates who used to constitute an informal channel [...] go on their

guard. Even those the CEO was closest to are wary of delivering bad news.”

5.2 A General Result on Behavioral Rationality

To obtain a general result on behavioral rationality, we first assume that the objective model R∗

is perfect, and that the agent’s subjective model R is a simplification. Note that R will then be

perfect. No v-structure emerges if we take out nodes from a perfect R∗ and all links attached

to them. The assumptions on R∗ and R are not overly restrictive: Note that any probability

distribution p(x∗) factorizes according to some perfect DAG R∗. The assumption on R is

satisfied by almost all subjective models we consider in this paper. Below, we (partially)

extend our behavioral rationality result to imperfect objective models. All formal proofs for

this subsection are in Online Appendix A.4.

In the following, we characterize for any perfect R∗ the subset of nodes the agent needs to

have in her subjective model R so that she acts as if she had fully rational beliefs about the

12A large literature in organizational economics studies strategic information transmission in organizations
(e.g., Aghion and Tirole 1997). The models in this literature are built on the common prior assumption, i.e., all
parties have the same (correct) prior of what other parties may know. This is not the case in our framework. The
crucial point here is that strategic communication may directly influence how the agent perceives the production
process.
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production function. We use the following definitions and results from the Bayesian network

literature. Consider any DAG R = (N,R). Its skeleton (N, R̃) is obtained by making the DAG

undirected. We have iR̃ j if and only if iR j or jRi.

Definition 4. Two DAGs R and G are equivalent if pR(x) ≡ pG(x) for every p(x) ∈ ∆(X).

Proposition 5 (Verma and Pearl 1991). Two DAGs R and G are equivalent if and only if they

have the same skeleton and v-structure.

Two different models produce the same beliefs if they share the same skeleton and the same

set of v-colliders. To illustrate, consider the two models in Figure 1. The DAGs R∗ and R are

not equivalent since they have different skeletons. Next, consider a DAG G that only differs

from R in Figure 1 in that the link between the nodes 1 and 4 is reversed. R and G then have

the same skeleton, but a different v-structure, so that they are not equivalent.

We need a few more definitions. A subset of nodes M ⊂ N is called ancestral in R if for

all nodes i ∈ M we have R(i) ⊂ M. A path τ of length d from node i to node j is a sequence

of nodes τ0, τ1, ..., τd so that τ0 = i, τd = j, and τh−1R̃τh for all h ∈ {1, ..., d}. The length of the

shortest path between i and j is called the distance between these nodes and denoted by d(i, j).

A path of length d is active if there is no h ∈ {1, ..., d − 1} so that τh−1Rτh and τh+1Rτh.

Define by E the set of DAGs in the equivalence class of R∗ in which the action node 0

is ancestral (nothing influences the agent’s action). In each of these DAGs, all active paths

between the action node 0 and any node i point towards i. Thus, the assumption that node

0 is ancestral pins down the direction of many links in a perfect DAG. We call such links

“fundamental links.” There is a close connection between fundamental links and the set of

nodes that can be removed while maintaining behavioral rationality.

Definition 5. Consider two nodes i, j ∈ N∗. If iG j for all G = (G,N∗) ∈ E, then the link iG j is

called fundamental link and denoted by iE j.

An intuition for fundamental links is that they capture empirically relevant directions of

causality (given agreement on the ancestral node). Specifically, they describe how the agent’s

action impacts on other variables. Consider R∗ from Figure 1. Since the action node is ances-

tral, the links pointing from node 0 to other nodes are fundamental (0R∗1, 0R∗2, and 0R∗3).

Thus, the two links pointing into the output node (1R∗4 and 3R∗4) also must be fundamental. If

we would turn around one of them, we would create a v-collider since there is no link between

node 0 and node 4. The remaining links 1R∗2, 1R∗3, and 2R∗3 are not fundamental. Below,

we present an algorithm that identifies all fundamental links in any perfect DAG R∗. For now,

we go a step further and consider sequences of fundamental links.
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Definition 6. Let τ be an active path in R∗. Then τ is a fundamental active path if all the links

between neighboring nodes in τ are fundamental.

Fundamental active paths are what we so far called “channels.” Consider again R∗ from

Figure 1. The path τ = {0, 1, 4} is a fundamental active path since both links 0R∗1 and 1R∗4

are fundamental. In contrast, the active path τ′ = {0, 2, 3, 4} is not fundamental since the link

2R∗3 is not fundamental. We define the set of nodes that are part of at least one fundamental

active path between the action and the output by

H∗(R∗) := {i ∈ N∗ | i is part of a fundamental active path between 0 and n in R∗}.

It turns out that the nodes in H∗(R∗) are exactly those nodes the agent needs to have in her

subjective model in order to be behaviorally rational, provided that her subjective model is a

simplification. We can prove this by finding a DAG G that is equivalent to R∗ and in which

there are no links pointing from nodes in N∗ \ H∗(R∗) to nodes in H∗(R∗). In this DAG, the

nodes that are not in H∗(R∗) have no influence on the output, so the agent can safely ignore

them. By Proposition 5, the agent correctly anticipates the production function if H∗(R∗) ⊆ N.

Proposition 6 (Behavioral Rationality). Let R∗ be a perfect DAG and let the agent’s subjective

DAG R be a simplification. The agent is behaviorally rational if and only if R contains all

nodes from H∗(R∗).

Proposition 6 implies that the agent does not necessarily have to take into account all

variables of her (potentially) complex environment in order to be behaviorally rational. In

particular, this holds independent of the parametrization of the extended production function.

For example, when p(x1, ..., x4 | a) factorizes according to R∗ in Figure 1, the agent can ignore

node 2 and still would behave as in the contracting model with common priors. The intuition is

that when H∗(R∗) ⊆ N, then the information captured through the variables in H∗(R∗) already

includes the probabilistic information from variables outside H∗(R∗). Conversely, if the agent’s

subjective model does not include all variables from H∗(R∗), she is not behaviorally rational. In

this case, we can find a parametrization of p(x1, ..., xn | a) such that the incentive compatibility

constraint is affected by the simplification in the agent’s subjective model R.

Next, Proposition 6 also shows that different misspecifications can have the same effect on

incentives. Consider the two models R1 and R2 from the job example in Figure 4b. The set

of nodes on fundamental active paths is the same for these two models, H∗(R1) = H∗(R2) =

{0, 2, 4}. This implies that the agent’s beliefs under these models are identical. Thus, it does not

matter for the equilibrium contract whether the agent ignores node 1, node 3, or both nodes.
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Therefore, the ignorance about one channel of causality may render another variable unim-

portant. A further interpretation is that two agents with different subjective models may have

the same beliefs about the production function. We capture this result in a general statement.

Consider a DAG R = (N,R) and a subset Ñ ⊂ N. Denote by R[Ñ] = (Ñ, R̃) with R̃ = (Ñ×Ñ)∩R

the DAG R restricted on Ñ.

Corollary 3. Let R1 = (N1,R1) and R2 = (N2,R2) be two perfect DAGs. Suppose there

exists a DAG R3 so that R[N1]
3 = R1 and R[N2]

3 = R2. If H∗(R1) = H∗(R2), then we have that

pR1(y | a; p(a)) = pR2(y | a; p(a)) for all a ∈ A and p(a) ∈ ∆(A).

Identification of fundamental links. We provide an algorithm that identifies H∗(R∗) in perfect

DAGs. Nodes that are connected by fundamental links in perfect DAGs exhibit characteristics

that are easy to identify.

Proposition 7 (Fundamental Links). LetR∗ be a perfect DAG and consider two adjacent nodes

i, j ∈ N∗. The link iR∗ j is fundamental if and only if at least one of the following conditions is

satisfied:

(a) we have d(0, i) = d(0, j) − 1;

(b) there exists a node k ∈ N∗ such that kEi and k < R∗( j).

From this result we can derive an algorithm that finds all fundamental links in a perfect

DAG R∗. Let the topological ordering of R∗ be such that every link is directed from an earlier

to a later node. Then find for each node i the distance to the action node, d(0, i). Links between

nodes of differing distance are fundamental links. Next, check the links between nodes i, j that

are of equal distance to the action node. Let Nd be the nodes that are at distance d to the action

node. Consider the smallest element of Nd, say i, and any j ∈ Nd with iR∗ j. A link iR∗ j is

fundamental if and only if there exists a node k so that there is a fundamental link from k to

i, but no link from k to j. Continue in this manner to evaluate all links between nodes in Nd,

going sequentially from the smallest to the largest node in Nd. Do this for all distances d > 0.

It is not always simple to spot the nodes that are not in H∗(R∗). In this case, Proposition

7 is helpful. Consider, for example, the perfect DAG R∗ in Figure 5. Condition (a) from

Proposition 7 implies that all links which connect nodes of different distances to the action

node are fundamental. The remaining links are 1R∗2, 3R∗4, 3R∗5, 4R∗5, 4R∗6, and 5R∗6.

Condition (b) from Proposition 7 then implies that 4R∗6 and 5R∗6 are fundamental links, while

the remaining links are non-fundamental. We therefore get H∗(R∗) = N∗ \ {3}.
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Figure 5: Example DAG R∗.

Imperfect objective models. In several applications, the objective model R∗ is imperfect. Nev-

ertheless, we can apply Proposition 6 to these models to detect nodes that can be dropped from

the agent’s subjective model while preserving behavioral rationality. Note that one can make

any imperfect DAG perfect by adding links between nodes that create v-colliders. If p(x∗) is

consistent with R∗, it is consistent with any DAG that adds links to R∗. Consider a perfect

DAG R̂ that is identical to the imperfect DAG R∗ except that it has additional links. Suppose

all these additional links disappear when we take out the nodes that are not in the agent’s

subjective model R = (N,R). Then from Proposition 6 we immediately get that the agent is

behaviorally rational if N contains H∗(R̂). We state this result formally.

Corollary 4. Let R∗ = (N∗,R∗) be the (possibly imperfect) objective DAG and R = (N,R)

the agent’s subjective DAG. The agent is behaviorally rational if there is a perfect DAG R̂ =

(N∗, R̂) with R̂[N] = R and R∗ ⊆ R̂, so that R contains all nodes from H∗(R̂).

Figure 6: Imperfect model R∗ (left) and perfect model R̂ (right).

As an illustration, consider the marketer example from Subsection 3.2 when the agent’s

effort has no impact on reputation, β02 = 0. The causal structure of this production function

is then given by the imperfect DAG R∗ on the left of Figure 6. The perfect DAG R̂ on the

right is identical, except that it has an additional link 1R̂2. In this model, node 2 is not on

a fundamental active path. Hence, the agent is behaviorally rational if her subjective model

equals R∗ without node 2.
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6 Comparative Statics

One advantage of our approach to contracting with boundedly rational agents is that beliefs

are derived endogenously from the true production process. This allows us to analyze how the

optimal equilibrium contract varies in the parameters of the environment. In this section, we

revisit two comparative statics that have received considerable attention in the literature: the

trade-off between risk and incentives, and the relationship between team size and incentives. In

both cases, the empirical evidence on these comparative statics conflicts with the predictions

of the canonical model. We briefly discuss how we can explain these findings within our

framework. All formal details of this section are relegated to Online Appendix A.5 and A.6.

Risk and Incentives. A risk-averse agent demands a risk premium for accepting a wage sched-

ule with uncertain wage payments. Thus, an increase in risk drives up the costs of providing

incentives. Consequently, the provision of effort incentives should decrease in the riskiness

of the environment. However, empirically this relationship does not hold in general (e.g.,

Prendergast 2002). Field evidence on the relationship between risk an incentives for CEO

compensation is mixed, and for other domains, such as franchising, a positive relationship can

be observed. In contrast, a negative relationship is obtained in lab experiments where subjects

know the true production function (Corgnet and Hernán-González 2019).

We can use our marketer example to show how the relationship between risk and incentives

may become positive when the agent has a simplified model of the project. We consider a

mean-preserving spread in p(y | a), so that under the objective model R∗ the provision of

incentives becomes more costly when there is more risk. However, if the agent’s subjective

model is misspecified, there can be an additional effect of risk on incentives: The agent may

perceive the riskier environment as one in which her action is more important for the output,

which relaxes the incentive compatibility constraint. If this effect is sufficiently strong relative

to the risk premium effect, there can be a positive relationship between risk and incentives.

Team Size and Incentives. In a team incentive problem, effort incentives are provided by

tying each team member’s payoff to the joint output y. The effectiveness of team incentives

is constrained by the size of the team. When an agent’s relative contribution to the output

becomes small, it is typically no longer profitable for the principal to condition her pay on y,

as the incentive effect would be outweighed by the costs of incentive provision (e.g., Kandel

and Lazear 1992). An important implication of this result is that stock-options should be

granted only to those employees whose actions significantly move the stock price. However,

many firms grant stock options also to non-executive employees, and there is evidence that

these have positive incentive effects (e.g., Hochberg and Lindsey 2010).



Equilibrium Contracts and Boundedly Rational Expectations 30

We can provide a belief-based explanation for this phenomenon in a setting with many

agents. Each agent produces an intermediate output which positively affects the final output.

A common shock affects all intermediate outputs in the same direction. If an agent ignores the

intermediate outputs by other agents, she perceives a strong relationship between her interme-

diate output and the final output. She then overestimates the importance of her effort, which

relaxes the incentive compatibility constraint. We demonstrate that output-based incentives

then can remain effective even when the team becomes arbitrary large.

7 Conclusion

In this paper, we applied Spiegler’s (2016) Bayesian network framework to analyze optimal

contracting in a principal-agent setting where the agent forms beliefs about the production

function based on a misspecified model of the principal’s project. The objective causal model

may be very complex, and may contain empirical regularities that the agent does not consider

due to cognitive limitations or because they are never brought to her attention.

The optimal contract exhibits the following features. First, it does not exploit the agent

if her subjective model takes into account the correlation between variables in her model that

have a joint influence on a third variable (in which case it is “perfect”). Nevertheless, the prin-

cipal benefits from a misspecification in the agent’s perfect subjective model if it makes the

agent control optimistic so that the incentive compatibility constraint is relaxed. Second, when

the agent correctly anticipates the joint distribution of contractible variables, the optimal con-

tract conditions on an additional variable only if it is informative about the action according to

the agent’s model. For example, the optimal contract may not condition on peer-performance

if the agent interprets this variable as a noisy signal of her own output. Third, the optimal

contract is identical to the rational benchmark if the agent is behaviorally rational. We charac-

terize when this is the case, and apply this finding to show how the scope for control optimism

may depend on the agent’s job. For example, a front-line worker may not fully understand the

workings of the organization around her, but still act as if she were fully rational. In contrast,

a high-ranking manager, who affects the output by influencing the behavior of many subordi-

nates, overestimates her own productivity if she does not take into account the challenges that

her subordinates face in their routines.

We focused on a simple contracting framework so that we can identify precisely how mis-

specifications in the agent’s model affect incentive contracts. Future research can extend the

framework by considering team incentives, relational contracts, strategic communication and

delegation. The Bayesian network approach offers a very disciplined tool to study the effects

of bounded rationality on organizations, and we think that our results are useful in this respect.
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A Online Appendix

A.1 Existence of a Personal Equilibrium

We show that a personal equilibrium exists at any admissibleR and w(y) ∈ W. Note that ∆(A) is

non-empty, compact, and convex. Define the best-response correspondence BR : ∆(A)→ ∆(A)

by

BR(p(a)) = arg max
p̃(a′)∈∆(A)

∑
a′∈A

∑
y∈Y

p̃(a′)[pR(y | a′; p(a))u(w(y)) − c(a′)]. (A.1)

For every p(a) ∈ ∆(A) we have that BR(p(a)) is non-empty and convex. The latter state-

ment follows since any convex combination of pure actions that are optimal for the agent

is an element of BR(p(a)). Definition 1 and the factorization formula in (2) imply that the

agent’s beliefs pR(y | a′; p(a)) are continuous in p(a). Therefore, we also must have that∑
a′∈A

∑
y∈Y p̃(a′)[pR(y | a′; p(a))u(w(y)) − c(a′)] is continuous in p(a). Hence, BR(p(a)) is up-

per hemi-continuous. The existence of a personal equilibrium then follows from Kakutani’s

theorem.

A.2 A Brief Introduction to d-separation

We briefly introduce the concept of d-separation, a result from the Bayesian network literature

that allows us to check, for any given model R, whether two variables (or two sets of variables)

are independent when conditioning on a third variable (or set of variables). For simple models

R it can be used as visual inspection tool; for complex models, there exists an algorithm for

checking d-separation (Geiger et al. 1990). We use the definition of a (directed) path τ from

Section 4. A node j is a descendant of node i if there exists a directed path from i to j. For

convenience, we use the notation i→ j instead of iR j in this section. The following definitions

and result are adopted from Pearl (2009).

Definition 7. A path τ is blocked in R = (R,N) by a set of variables M ⊂ N if and only if one

of the following condition holds:

(a) τ contains variables i,m, j with m ∈ M so that i→ m→ j or i← m→ j, or

(b) τ contains variables i,m, j so that i→ m← j, m < M, and no descendant of m is in M.

To illustrate, consider the DAG R∗ from Figure 1 in the paper, reproduced here on the left

of Figure 7. The path τ = 0→ 2← 1→ 3→ 4 between the nodes 0 and 4 is blocked by node

1 and node 3, but not by node 2. To see this, note that conditions (a) and (b) are both satisfied
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Figure 7: Objective model R∗ from Figure 1 (left) and objective model R∗ from Figure 3 (right).

if we define M = {1}, or M = {3}; however, none of the conditions is satisfied if we define

M = {2}.

Definition 8. Let R = (R,N) be a DAG and M′,M′′,M disjoint subsets of N. M′ and M′′ are

d-separated by M in R, if M blocks every path between any node in M′ and any node in M′′.

Consider the DAG R∗ from Figure 3 in the paper, reproduced here on the right of Figure 7.

We check whether the nodes 0 and 4 are d-separated in R∗ by M = {2}. For this, we have to

consider three paths, τ = 0 → 2 → 4, τ′ = 0 → 2 ← 1 → 3 → 4, and τ′′ = 0 → 2 → 3 → 4.

By condition (a) in Definition 7, the paths τ and τ′′ are blocked by M = {2}. In contrast, the

path τ′ is not blocked by M = {2}. Hence, the nodes 0 and 4 are not d-separated in R∗ by

M = {2}. However, they are d-separated in R∗ by M = {1, 2}, M = {2, 3}, or M = {1, 2, 3}.

Suppose, for example, that M = {1, 2}. Now not only the paths τ and τ′′ are blocked according

to condition (a) in Definition 1, but also path τ′ (we see this from the segment 2 ← 1 → 3).

The implication of d-separation is given in the following result.

Proposition 8 (Implications of d-separation). If the variables 0 and n are d-separated by

variable i in R, then pR(xn | x0, xi; p(a)) = pR(xn | xi; p(a)) for all p(a) ∈ ∆(A) and all triples

x0, xi, xn. If the variables 0 and n are not d-separated by variable i in R, then x0 and xn are

dependent conditional on xi for at least one distribution compatible with R.

A.3 Omitted Proofs from Subsection 5.1

We first derive the IC under the objective model R∗. The probabilities of high output after high

and low effort, respectively, are given by

p(yH | a = 1) = β4 + [β2 + β02 + (β1 + β01)β12]β24

+[β3 + (β1 + β01)β13 + (β2 + β02 + (β1 + β01)β12)β23]β34, (A.2)

p(yH | a = 0) = β4 + [β2 + β1β12]β24 + [β3 + β1β13 + (β2 + β1β12)β23]β34, (A.3)
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so that the effect of effort on the probability of high output equals

p(yH | a = 1) − p(yH | a = 0) = (β02 + β01β12)(β24 + β23β34) + β01β13β34. (A.4)

Next, we drive the IC under the subjective model R when the equilibrium action is α ∈ [0, 1].

We calculate

p(x1 = 1 | x2 = 1) =
α(β1 + β01)(β2 + β02 + β12) + (1 − α)β1(β2 + β12)

β2 + β1β12 + α(β02 + β01β12)
, (A.5)

p(x1 = 1 | x2 = 0) =
α(β1 + β01)(1 − β2 − β02 − β12) + (1 − α)β1(1 − β2 − β12)

1 − β2 − β1β12 − α(β02 + β01β12)
, (A.6)

and

p(x3 = 1 | x2 = 1) = β3 + p(x1 = 1 | x2 = 1)β13 + β23, (A.7)

p(x3 = 1 | x2 = 0) = β3 + p(x1 = 1 | x2 = 0)β13. (A.8)

The agent’s belief about the probability of high output after x2 = 1 and x2 = 0, respectively, is

therefore given by

p(yH | x2 = 1) = β4 + β24 + [β3 + p(x1 = 1 | x2 = 1)β13 + β23]β34, (A.9)

p(yH | x2 = 0) = β4 + [β3 + p(x1 = 1 | x2 = 0)β13]β34. (A.10)

The agent correctly anticipates p(x2 | a). Hence, her belief about the effect of effort on the

probability of high output under R equals

pR(yH | a = 1;α) − pR(yH | a = 0;α) = (β02 + β01β12)(β24 + β23β34) + (β02 + β01β12)β13β34

× [p(x1 = 1 | x2 = 1) − p(x1 = 1 | x2 = 0)]. (A.11)

Recall that β13 < 0. By comparing (A.4) and (A.11) we get that at α = 1 the misspecification

in R relaxes the IC if and only if

β01 >
β12(β1 + β01)(1 − β1 − β01)(β02 + β01β12)

(1 − β2 − β02 − β12(β1 + β01))(β2 + β02 + β12(β1 + β01))
, (A.12)

which implies the statement in the main text.

Proof of Proposition 4. We prove the statements in (a). Since β1 ∈ {0, 1}, we can rewrite the

probability model without variable 1. The corresponding objective model R̃∗ equals R∗ in

Figure 4a without node 1. We now apply Propositions 6 and 7. In model R̃∗, node 3 is not on

a fundamental active path. Hence, the agent with subjective model R is behaviorally rational,
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which yields the results. We prove the statements in (b). The first statement is shown in the

text. The second statement follows from Corollary 3. Note that, in all models of Figure 4b, the

set of nodes on fundamental active paths is identical. �

A.4 Omitted Proofs from Subsection 5.2

We first prove Proposition 7 and then Proposition 6. To this end, we prove several intermediate

results. We first note that in a perfect DAG R∗ the link iR∗ j is fundamental if the nodes i and j

differ in their distance to the action node 0.

Lemma 1. Let i, j ∈ N∗ be adjacent nodes in R∗. If d(0, i) = d(0, j) − 1, then iE j.

Proof. First, suppose d(0, i) = 0 so that i = 0. Since node 0 is ancestral, we must have iG j

in every DAG G ∈ E. Next, suppose d(0, i) = d > 0. Since R∗ is perfect and node 0 is

ancestral, there exists an active path of length d from node 0 to node i. Denote by k the direct

ancestor of i on this path. There cannot exist a link between k and j, otherwise we would have

d(0, i) = d(0, k), a contradiction. Thus, we must have iGk in every DAG G ∈ E, otherwise we

would have a v-collider at node i. �

Lemma 2. Let i, j ∈ N∗ and iR∗ j. If there exists a node k ∈ N∗ such that kEi and k < R∗( j),

then iE j.

Proof. If there is a fundamental link from node k to node i, then iR∗ j implies that we cannot

have jR∗k. Otherwise, we would have a directed cycle. Node j and node k are therefore not

adjacent. Hence, if jGi in some DAG G ∈ E, there would be a v-collider at i, a contradiction.

�

The “if”-statement of Proposition 7 follows directly from Lemma 1 and Lemma 2. For the

“only if”-statement we need two more results. The first one provides a condition under which

a link is not fundamental.

Lemma 3. Let i, j ∈ N∗ \ {0} and iR∗ j. If R∗(i) ⊂ R∗( j), then the link between i and j is not

fundamental.

Proof. Consider the DAG G = (G,N∗) that is identical to R∗ except that it reverses the link

between i and j. The assumption R∗(i) ⊂ R∗( j) rules out that there are v-colliders in G. Assume

that there is a cycle in G. Since R∗ is acyclic, the cycle must contain jGi. Further, there must

exists a node k and a link kG j which is part of the cycle. Since R∗ is perfect, we must have

kR̃∗i. Assume first that we have kR∗i. Then jGi implies that kGi is not part of the cycle. Thus,
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there must exist an active path τ of some length d so that τ0 = i and τd = k. But then there

is a cycle consisting of the link kGi and τ. This cycle also exists in R∗, a contradiction. Next,

assume that we have iR∗k. Since i , 0 and R∗(i) ⊂ R∗( j), there exists a node l with lR∗i and

lR∗ j. Since R∗ is perfect, we also must have lR̃∗k. The same applies to all l′ ∈ R∗(i). Hence,

starting from R∗, we can reverse the links between i and j as well as between i and k and obtain

a DAG G′ ∈ E. �

The second result needed for the proof of the “only if”-statement of Proposition 7 demon-

strates that for each node i in a perfect DAG R∗ there exists a DAG G ∈ E in which there is no

non-fundamental link that points to i.

Lemma 4. For all nodes i ∈ N∗ there exists a DAG G ∈ E in which all non-fundamental links

adjacent to node i point away from i.

Proof. Let Nd be the set of nodes that have distance d > 0 to the action node 0. Denote by

N[κ]
d , κ = 1, 2, ..., the maximal subset of nodes that (i) are at distance d > 0 from the action

node 0, and (ii) are connected through non-fundamental links (i.e., for any two nodes i, j ∈ N[κ]
d

there exists a path between i and j consisting of non-fundamental links). Step 1. We show

that all nodes in a given set N[κ]
d have the same parents outside of N[κ]

d . Consider two nodes

i, j ∈ N[κ]
d that are connected through the non-fundamental link iR∗ j. By definition, we have

kEi for each k ∈ R∗(i)\N[κ]
d for each i ∈ N[κ]

d . Since R∗ is perfect, this implies that R∗( j)\N[κ]
d ⊂

R∗(i) \ N[κ]
d . Since iR∗ j is non-fundamental, we also must have R∗(i) \ N[κ]

d ⊂ R∗( j) \ N[κ]
d so

that R∗(i) \ N[κ]
d = R∗( j) \ N[κ]

d . The result follows from the fact that, by assumption, all nodes

in N[κ]
d are connected through non-fundamental links. Step 2. Consider two links i ∈ N[κ]

d and

i′ ∈ N[κ′]
d with κ , κ′ that are adjacent. Assume w.l.o.g. that iR∗i′. By definition, iR∗i′ is a

fundamental link. Step 1 then implies that iE j′ for all j′ ∈ N[κ′]
d . Thus, there cannot exist nodes

j ∈ N[κ]
d and j′ ∈ N[κ′]

d so that j′R∗ j. Otherwise, we would have j′E j and j′Ei for all i ∈ N[κ]
d ,

a contradiction. Thus, there cannot exist nodes i, j ∈ N[κ]
d and i′, j′ ∈ N[κ′]

d such that iR∗i′ and

j′R∗ j. Step 3. Note that, since R∗ is perfect, by Lemma 1 all links between Nd and Nd+1 point

away from the nodes in Nd. Step 4. We now can prove Lemma 4. Take any node i ∈ N∗ and

assume w.l.o.g. that i ∈ N[κ]
d . Consider the DAG G[κ] = (N[κ]

d ,G[κ]) where G[κ] is identical to

R∗ restricted on N[κ]
d . Since R∗ is perfect, G[κ] also must be perfect. Corollary 1 from Spiegler

(2019) implies that there exists a DAG Q[κ] in which node i is ancestral and that is equivalent

to G[κ]. Choose such a Q[κ] and replace G[κ] in the original DAG R∗ by Q[κ]. Call the resulting

DAG Q∗. Step 1 implies that there are no v-colliders in Q∗, and Step 2 and 3 imply that there

are no cycles in Q∗, which proves the result. �

Proof of Proposition 7. The “if”-statement follows from Lemma 1 and Lemma 2. We prove

the “only if”-statement. Consider any two adjacent nodes i, j ∈ N∗ with iR∗ j and d(0, i) =
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d(0, j). Suppose that for any node k ∈ R∗(i) with a fundamental link kR∗i we also have k ∈

R∗( j). By Lemma 4, we can find a DAG G ∈ E in which all non-fundamental links are turned

away from node i. In this DAG, we have G(i) ⊂ G( j). From Lemma 3 it then follows that the

link iR∗ j is not fundamental. This completes the proof. �

Before we can prove Proposition 6, we need two more results. We will use the following

definitions. Recall that a path τ of length d is directed if for any h ∈ {1, ..., d} we have τh−1Rτh

on this path. For any DAG, the topological ordering is a sequence of nodes such that every

link is directed from an earlier to a later node in the sequence.

Lemma 5. Let M ⊂ N∗ \ H∗(R∗) be a set of nodes connected through non-fundamental links.

Suppose there are two nodes i, j ∈ H∗(R∗) with non-fundamental links to nodes in M. Then i

and j are adjacent.

Proof. As in the proof of Lemma 4, let Nd be the set of nodes that have distance d > 0 to

the action node 0. Let E(i) be the set of nodes k with kEi. By Lemma 1, there is a d > 0 so

that i, j ∈ Nd and M ⊂ Nd. By Lemma 2, we must have E(i) = E( j) since these nodes are

connected through non-fundamental links. Choose any node k ∈ Nd−1 with k ∈ H∗(R∗) and

kR∗i. By Lemma 2, we also have kR∗ j. We can now choose two fundamental active paths

τ[i], τ[ j] from node 0 to node n so that (i) k ∈ τ[i] and k ∈ τ[ j], (ii) i ∈ τ[i] and j ∈ τ[ j], (iii) all

nodes on τ[i] and τ[ j] before k are identical, and (iv) there is not any node on τ[i] (τ[ j]) between

k and i (k and j). Since i, j ∈ H∗(R∗) this is possible. Now define by m[i]
1 (m[ j]

1 ) the last node

on τ[i] (τ[ j]) before node n; by m[i]
2 (m[ j]

2 ) the penultimate node on τ[i] (τ[ j]) before node n, and

so forth. Since R∗ is perfect, m[i]
1 and m[ j]

1 must be adjacent. Since m[i]
1 and m[ j]

1 are adjacent

and R∗ is perfect, m[i]
2 and m[ j]

2 must be adjacent, and so forth. If nodes i and j are both the t’th

node from n in τ[i] (τ[ j]), we are done. Assume that this is not the case, and that w.l.o.g. node

i is the t’th node from n while node j is the t′’th node from n, with t′ > t. Then i is adjacent

to m[ j]
t , and also to all nodes on τ[ j] between m[ j]

t and j (including j) through non-fundamental

links, otherwise there would be a contradiction to E(i) = E( j). �

The next result is crucial for the proof of Proposition 6. It shows that all nodes that are not

on a fundamental active path between action and output can be made “unimportant”, in the

sense that we can find a DAG in E in which any link between a node in H∗(R∗) and a node in

N∗ \ H∗(R∗) points towards the node in N∗ \ H∗(R∗).

Lemma 6. There exists a DAG G∗ ∈ E such that in G∗ all links with one end in H∗(R∗) and the

other in N∗ \ H∗(R∗) point from H∗(R∗) to N∗ \ H∗(R∗).



Equilibrium Contracts and Boundedly Rational Expectations 40

Proof. The proof proceeds by steps. Step 1. Consider any maximal set M ⊂ N∗ \ H∗(R∗) of

nodes connected through non-fundamental links and let M+ ⊂ H∗(R∗) be the set of nodes that

have non-fundamental links to nodes in M. By Lemma 1, there is a d > 0 so that M,M+ ⊂ Nd.

Denote by M++ the set of nodes in Nd∩H∗(R∗) with fundamental links into M. Since the nodes

in M are connected through non-fundamental links, there is a fundamental link from any node

i ∈ M++ to any node in M. Thus, any node in M++ must also be adjacent to any node in M+, so

M+ ∪ M++ is a clique. Step 2. Consider the DAG Ḡ = (N, Ḡ), where N = M ∪ M+ ∪ M++ and

Ḡ is identical to R∗ restricted on N. By construction, this DAG is perfect. Hence, Corollary

1 from Spiegler (2019) implies that there exists a DAG Ḡ+ in which the clique M+ ∪ M++ is

ancestral and that is equivalent to Ḡ. We choose such a Ḡ+ with the property that the ordering

of the nodes in M+ ∪M++ is the same as in Ḡ (this is possible since M+ ∪M++ is a clique, and

all links between nodes M+∪M++ and nodes in M point towards the latter one). Consider now

the DAG G that is identical to R∗ except that Ḡ is replaced by Ḡ+. We show that there are no

cycles or v-colliders in G so that it is equivalent to R∗. Consider any node i ∈ Nd−1 ∪ Nd that is

outside M∪M+∪M++ and that has a fundamental link into a node in M. Since the nodes in M

are connected through non-fundamental links, node i has a fundamental link into every node

in M (otherwise, i would belong to M, a contradiction). This rules out v-colliders. Any link

between a node in Nd and a node in Nd+1 points into the latter one. Hence, by construction,

there cannot be cycles or v-colliders in G. We obtain G∗ by performing the same changes for

any maximal set M ⊂ N∗ \ H∗(R∗) of nodes connected by non-fundamental links in R∗. �

Proof of Proposition 6. First, we show the “if”-statement. Assume that the agent’s subjective

model R contains all the nodes in H∗(R∗). Consider the DAG G∗ ∈ E in which all links with

one end in H∗(R∗) and the other in N∗\H∗(R∗) point from H∗(R∗) to N∗\H∗(R∗). By Lemma 6,

this DAG exists. From Proposition 5 it follows that pG∗(xH∗(R∗)) = p(xH∗(R∗)) for all distributions

p(x) ∈ ∆(X). Consider the subgraphG = (G,N) where G equals G∗ restricted on N. Since none

of the nodes in N \ H∗(R∗) impacts on any node in H∗(R∗), we have pG(xH∗(R∗)) = pG∗(xH∗(R∗))

for all p(x) ∈ ∆(X). By construction, the DAGs R and G are equivalent so that we have

pR(xH∗(R∗)) = pG(xH∗(R∗)) = pG∗(xH∗(R∗)) = p(xH∗(R∗)) for all distributions p(x) ∈ ∆(X), which

proves the “if”-statement. Next, we show the “only if”-statement. Assume that there is one

node i ∈ H∗(R∗) that is not in the agent’s subjective model. This node is on a fundamental

active path τ between the action node 0 and the output node n. We then can find a probability

distribution p(x) ∈ ∆(X) so that pR(xn | x0) , p(xn | x0). Let k be the k’th node in τ. Consider a

probability distribution with the following properties: p(x j | xR∗( j)) = p(x j) for all nodes j < τ

that are between the nodes 0 and n, and p(xk | xR∗(k)) = p(xk | xk−1). Clearly, such a distribution

can have the desired property. �
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Proof of Corollary 3. Denote H∗(R1) = H∗(R2) = H. By Proposition 6, there exists a DAG

R
[1]
1 that is equivalent to R1 and in which all links between any node i ∈ H and any node

j ∈ N1 \ H is turned away from i. Thus, we have

pR1(xH) =
∑

xN1\H∈XN1\H

pR1(xN1) =
∑

xN1\H∈XN1\H

p
R

[1]
1

(xN1) = p
R

[1]
1

(xH). (A.13)

Note that for all i ∈ H we have that R[1]
1 (i) ⊂ H. Consider the restriction of R[1]

1 on H, R[H]
1 . We

then have

p
R

[1]
1

(xH) =
∏
i∈H

p(xi | xR[1]
1 (i)) =

∏
i∈H

p(xi | xR[H]
1 (i)) = p

R
[H]
1

(xH). (A.14)

Define R[1]
2 and R[H]

2 just like R[1]
1 and R[H]

1 . By assumption, the link iR[H]
1 j is in R[H]

1 if and only

if we have iR[H]
2 j or jR[H]

2 i. Thus, R[H]
1 and R[H]

2 have the same skeleton. Since R1 and R2 are

perfect, so are R[H]
1 and R[H]

2 . Hence R[H]
1 and R[H]

2 are equivalent, so that

p
R

[H]
1

(xH) = p
R

[H]
2

(xH). (A.15)

From the equations (A.13) to (A.15), we get pR1(xH) = pR2(xH), which implies the result. �

A.5 Risk and Incentives

To study the relationship between risk and incentives, the literature typically uses a setting with

continuous actions, normally distributed output and exponential utility (so that the optimal

contract is linear). To properly apply our framework, we consider a setting with discrete

actions and outputs that captures the negative relationship between risk and incentives.

Let there be a binary action a ∈ {0, 1} and three equidistant output levels, yL, yM, yH with

yH > yM > yL > 0. The level of risk is indexed by a parameter ξ ∈ [0, ξ̄]. The production

function is p(yL | a) = βL(ξ) − βa, p(yM | a) = βM(ξ), and p(yH | a) = βH(ξ) + βa, where

βL(ξ) = βH(ξ) for all ξ. An increase in risk ξ shifts probability mass from the medium output

yM to the extreme outputs yL and yH, i.e., β′L(ξ) = β′H(ξ) = ε for some ε > 0 and β′M(ξ) = −2ε.

The agent has a piecewise linear utility function u(w) = w for w ≥ 0, and u(w) = λw with

λ > 1 for w < 0; her reservation utility is Ū = 0.

We now fit the marketer example from Subsection 3.2 to the present setting. The objective

causal model is given by R∗ on the left of Figure 2, while the agent’s subjective model is given

by R on the right of this figure. We use our usual parametrization, except for the output. The
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probability of low, middle, and high output conditional on x1 and x2 is given by

p(yH | x1, x2) = βH
3 (ξ) + β13(ξ)x1 + β23(ξ)x2, (A.16)

p(yM | x1, x2) = βM
3 (ξ), (A.17)

p(yL | x1, x2) = βL
3(ξ) − β13(ξ)x1 − β23(ξ)x2. (A.18)

We assume that the level of risk ξ changes the importance of consumer information and rep-

utation for the final output. The larger the risk, the more important are these two factors to

obtain a high rather than a small output. We capture this by assuming

β13(ξ) = β̄13

(
1 +

ξ

β01β̄13

)
and β23(ξ) = β̄23

(
1 +

ξ

| β02 | β̄23

)
(A.19)

for two values β̄13, β̄23 > 0 with β01β̄13 + β02β̄23 = β. We choose the functions βH
3 (ξ), βM

3 (ξ) and

βL
3(ξ) so that the objective probability model generates the production function from above.13

Proposition 9 (Risk and Incentives). Consider the marketer example of this subsection.

(a) Suppose the agent’s subjective model equals R∗. The expected wage payment needed to

implement α = 1 then increases in risk ξ, and there exists an interval [cL, cH] so that if

c ∈ (cL, cH), then for some ξ∗ ∈ (0, ξ̄) the optimal equilibrium contract implements α = 1

if ξ < ξ∗ and α = 0 if ξ > ξ∗.

(b) Suppose the agent’s subjective model equals R. The expected wage payment needed to

implement α = 1 then decreases in risk ξ if the slope β′L(ξ) = β′H(ξ) = ε is small enough.

In this case, there is an interval [cL, cH] so that if c ∈ (cL, cH), then for some ξ∗ ∈ (0, ξ̄)

the optimal equilibrium contract implements α = 0 if ξ < ξ∗ and α = 1 if ξ > ξ∗.

Below we provide the proof of Proposition 9. We explain why part (a) holds. When the

agent has rational expectations, the IC that ensures high effort equals

β(u(wH) − u(wL)) ≥ c, (A.20)

and the optimal wage schedule that implements high effort is given by

w(yL) = −
1

2λβ
c, w(yM) = 0, and w(yH) =

1
2β

c. (A.21)

13Specifically, we derive βH
3 (ξ) and βL

3 (ξ) from βH(ξ) = βH
3 (ξ) + β1β13(ξ) + β2β23(ξ) and βL(ξ) = βL

3 (ξ) −
β1β13(ξ) − β2β23(ξ). Since βH(ξ) = βL(ξ) for all ξ, we have βM

3 (ξ) = 1 − 2[βH
3 (ξ) + β1β13(ξ) + β2β23(ξ)].
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Note that a change in risk ξ affects neither the optimal wage schedule, nor the incentive com-

patibility constraint in (A.20). In terms of effort incentives, the effect of risk on the importance

of consumer information and reputation cancel each other out. However, an increase in risk

exposes the agent to more variation in her wage, so that she requires a higher risk-premium.

Hence, when the principal implements high effort, his expected payment to the agent under

the optimal contract increases in risk. Therefore, there exists an interval of cost levels [cL, cH],

so that if c ∈ (cL, cH), the optimal equilibrium contract implements high effort if and only if

the level of risk is sufficiently small. We thus obtain a negative relationship between risk and

incentives.

Next, consider part (b). If the agent does not take the reputation channel into account, an

increase in risk appears to her as an increase in the productivity of her effort, as the association

between consumer information and sales becomes stronger. The IC that ensures high effort

now equals

β01β13(ξ)(u(wH) − u(wL)) ≥ c. (A.22)

Recall that β13(ξ) increases in ξ. Hence, an increase in risk ξ relaxes this IC. The optimal

wage schedule that implements α = 1 is now given by

w(yL) = −
βH(ξ) + β − β01β13(ξ)

λ(βH(ξ) + βL(ξ))β01β13(ξ)
c, w(yM) = 0, and w(yH) =

βL(ξ) − β + β01β13(ξ)
(βH(ξ) + βL(ξ))β01β13(ξ)

c.

(A.23)

A change in risk now has two countervailing effects on the expected payment when the prin-

cipal implements high effort. It again increases the risk premium that the agent requires, but

it also relaxes the incentive compatibility constraint. Which effect dominates depends on the

probability model and the utility function. If the slope β′L(ξ) = β′H(ξ) = ε is small enough,

an increase in risk reduces the expected payment to the agent at all risk levels ξ ∈ [0, ξ̄]. We

then obtain a positive relationship between risk and incentives: For an interval of cost levels

[cL, cH], if c ∈ (cL, cH), the optimal equilibrium contract implements high effort if the level of

risk is sufficiently large, and otherwise low effort through a fixed wage.

Proof of Proposition 9. We first prove statement (a). For this, we derive the optimal contract

under the objective model R∗ that implements high effort. For convenience, we abbreviate

wH = w(yH), wM = w(yM), and wL = w(yL). Standard arguments show that both IC and PC

must be binding at the optimal contract, and that wL < 0 and wH > 0 at the optimum. Assume

for the moment that wM ≥ 0 under the optimal contract. The IC is then

β(wH − λwL) = c, (A.24)
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and the PC equals

(βH(ξ) + β)wH + βM(ξ)wM + (βL(ξ) − β)λwL = 0. (A.25)

From the IC we get

wH =
c
β

+ λwL, (A.26)

We plug this into the PC, solve for wM, and get

wM = −
βH(ξ)
βM(ξ)β

c −
βL(ξ) + βH(ξ)

βM(ξ)
λwL. (A.27)

The expected wage payment of the principal when he implements α = 1 equals

E[w | α = 1] = (βH(ξ) + β)wH + βM(ξ)wM + (βL(ξ) − β)wL. (A.28)

Using the results from above, we can write the expected wage payment as

E[w | α = 1] = c − (βL(ξ) − β)(λ − 1)wL. (A.29)

The optimal wage wL minimizes this term subject to the constraint that wM in (A.27) remains

weakly positive. The solution implies that wM = 0, and w(yL) = − 1
2λβc as well as w(yH) = 1

2βc.

We obtain the same result when we go through the same steps while assuming wM ≤ 0. With

this we can compose the expected wage payment E[w | α = 1] and obtain

∂E[w | α = 1]
∂ξ

=
ε

2β
c −

ε

2λβ
c > 0. (A.30)

Hence, the expected wage payment to implement α = 1 strictly increases in risk. The expected

wage payment to implement α = 0 is zero for all risk levels. This yields us statement (a).

Next, we prove statement (b). We first derive the agent’s beliefs about the production

function at α = 1. As in the proof of Proposition 2, we find p(x2 = 1 | x1 = 1) and p(x2 = 1 |

x1 = 0). At α = 1, we have p(x2 = 1 | x1 = 1) = p(x2 = 1 | x1 = 0) = β2 + β02, and thus

p(yH | x1 = 1) = βH
3 (ξ) + β13(ξ) + (β2 + β02)β23(ξ), (A.31)

p(yH | x1 = 0) = βH
3 (ξ) + (β2 + β02)β23(ξ), (A.32)

p(yM | x1 = 1) = βM
3 (ξ), (A.33)

p(yM | x1 = 0) = βM
3 (ξ), (A.34)

p(yL | x1 = 1) = βL
3(ξ) − β13(ξ) − (β2 + β02)β23(ξ), (A.35)

p(yL | x1 = 0) = βL
3(ξ) − (β2 + β02)β23(ξ). (A.36)
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From this, we can derive the agent’s beliefs about the production function at α = 1 as

pR(yH | a = 1;α = 1) = βH
3 (ξ) + (β1 + β01)β13(ξ) + (β2 + β02)β23(ξ), (A.37)

pR(yM | a = 1;α = 1) = βM
3 (ξ), (A.38)

pR(yL | a = 1;α = 1) = βL
3(ξ) − (β1 + β01)β13(ξ) − (β2 + β02)β23(ξ), (A.39)

and

pR(yH | a = 0;α = 1) = βH
3 (ξ) + β1β13(ξ) + (β2 + β02)β23(ξ), (A.40)

pR(yM | a = 0;α = 1) = βM
3 (ξ), (A.41)

pR(yL | a = 0;α = 1) = βL
3(ξ) − β1β13(ξ) − (β2 + β02)β23(ξ). (A.42)

At α = 1, the IC is therefore given by

β01β13(ξ)(u(wH) − u(wL)) ≥ c. (A.43)

The rest of the proof proceeds as in the proof of statement (a). We derive the equilibrium

contract that implements α = 1 at lowest cost to the principal when the agent’s subjective

model is given by R. Assume that we have wM ≥ 0 at this contract. From the IC, we get

wH =
c

β01β13(ξ)
+ λwL, (A.44)

and from the PC we get that

wM = −
βH(ξ) + β − β01β13(ξ)

βM(ξ)β01β13(ξ)
−
βL(ξ) + βH(ξ)

βM(ξ)
λwL. (A.45)

With this, we can calculate the expected wage payment under the optimal equilibrium contract

that implements α = 1 as

E[w | a = 1;R] = c − (βL(ξ) − β)(λ − 1)wL. (A.46)

The optimal wage wL minimizes this term subject to the constraint that wM in (A.45) remains

weakly positive. The solution implies that wM = 0 as well as

wL = −
βH(ξ) + β − β01β13(ξ)

λ(βH(ξ) + βL(ξ))β01β13(ξ)
c and wH =

βL(ξ) − β + β01β13(ξ)
(βH(ξ) + βL(ξ))β01β13(ξ)

c. (A.47)

We obtain the same result when we go through the same steps while assuming wM ≤ 0. We then

can compose the expected wage payment at the optimal equilibrium contract that implements
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α = 1 as

E[w | a = 1;R] =
(λ − 1)(βH(ξ) + β)(βL(ξ) − β) + (λ + 1)β01β13(ξ)

λ(βH(ξ) + βL(ξ))β01β13(ξ)
. (A.48)

We differentiate this expression with respect to risk ξ and find

lim
ε→0

∂E[w | a = 1;R]
∂ξ

= −
λ(λ − 1)(βH(ξ) + βL(ξ))(βH(ξ) + β)(βL(ξ) − β)

[λ(βH(ξ) + βL(ξ))β01β13(ξ)]2 < 0. (A.49)

Hence, if ε is sufficiently small, the expected wage payment needed to implement α = 1

decreases in risk ξ. The rest of the proof of statement (b) proceeds in the same way as for

statement (a). �

A.6 Team Size and Incentives

Team incentives and optimal team size. We consider a simple team setting in which the princi-

pal chooses both incentives and the size of the team. Let there be m identical agents who can

choose between high and low effort a ∈ {0, 1}. We suppress notation for individual agents. For

convenience, we assume that agents are risk-neutral and protected by limited liability, so that

w(y) ≥ w̄ > 0 for all y ∈ Y . The project output is either large (y = yH) or small (y = yL). The

team size m scales these payoffs. We have yH = mθȳH and yL = mθȳL, for some θ ∈ (0, 1), and

normalize ȳL = 0. If the share k of agents exerts high effort, the probability of high output is

kB + D, where B,D are positive constants with B + D < 1. Thus, as the team becomes large,

the relative influence of a single agent on the output becomes small. The cost of high effort for

the individual agent is c and the cost of low effort is 0.

The principal chooses both team size m and agents’ incentives w(y). If he wishes to

implement high effort from m agents, the optimal wage scheme is a bonus scheme with

w(yH) = w̄ + mc
B and w(yL) = w̄. The principal’s profit is then given by

(B + D)
(
mθȳH −

m2c
B

)
− mw̄. (A.50)

Observe that w(yH) converges to infinity for m → ∞. As the team size increases, it becomes

prohibitively costly to provide effort incentives, as an individual agent’s influence on the output

becomes small. If the principal wishes to implement low effort from m agents, the optimal

wage scheme is a fixed-wage w(yH) = w(yL) = w̄ and the corresponding profit is DmθȳH −mw̄.

Denote by m[a](c) the optimal team size if the principal implements action a ∈ {0, 1} and effort

costs are given by c. This value is uniquely defined. We then get the following result: There

is a c∗ > 0 such that the principal optimally implements high effort with team size m[1](c) if

c ≤ c∗, and low effort with team size m[0](c) if c > c∗.
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Figure 8: The objective model R∗ (right) and the agent’s subjective model R (left) in the team size example.

Team incentives and optimal team size with misspecified model. We now consider an extended

production function that is consistent with the production function indicated above, and that al-

lows us to study how team size and incentives change when agents do not take their colleagues’

effort into account. Consider the objective model R∗ on the left of Figure 8. Node 0 is the effort

of a single agent. We use the fact that all agents are symmetric, and assume that each of the

other m − 1 agents exerts high effort with probability αo. Through her effort, the single agent

affects an intermediate outcome x2 ∈ {0, 1}. Denote by x3 ∈ {0, 1}m−1 the m − 1-dimensional

vector of intermediate outcomes of all other agents. The probability of high output increases

linearly in the number of high intermediate outcomes, p(yH | x2, x3) = β24x2 + β24 ‖ x3 ‖,

where ‖ . ‖ is the sum of entries in a vector. There is a common shock x1 ∈ {0, 1} that oc-

curs with probability p(x1 = 1) = β1. It positively affects each agent’s intermediate outcome,

p(x2 = 1 | a, x1) = β02a + β12x1, where β02 + β12 < 1 and β1β12 ≥
1
2 ; for any other agent, the

probability of a high intermediate outcome is β02α
o if x1 = 0 and β02α

o + β12 if x1 = 1. We de-

fine B ≡ β02β24 with β24 =
β̄24
m for some β̄24, and D ≡ β1β12β̄24. The production function is then

the same as above; optimal team size and incentives would remain unchanged if the agents’

subjective model would be given by R∗. We assume now that agents ignore the contributions

of others. Let an agent’s subjective model be given by R on the right of Figure 8. We then

obtain the following result.

Proposition 10 (Team Size and Incentives). Consider the team size example of this section.

(a) Suppose the agent’s subjective model equals R∗. Then there is a unique value c∗ > 0

such that the principal optimally implements high effort with team size m[1](c) if c ≤ c∗,

and low effort with team size m[0](c) if c > c∗.

(b) Suppose the agent’s subjective model equals R. Then there is a unique value c∗∗ > c∗

such that the principal optimally implements high effort with team size m[1]
R

(c) > m[1](c)

if c ≤ c∗∗, and low effort with team size m[0](c) if c > c∗∗.
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Thus, if the agent’s subjective model is misspecified and effort costs are small enough, the

principal chooses a team size that is “too large” for tying the agents’ pay to the output. It then

appears as if incentives are provided to too many employees. However, the simplification in

the agents’ subjective model causes them to overestimate the importance of their effort for the

final output, so that granting these incentives remains profitable for the principal.

Before we prove Proposition 10, we explain its intuition. Suppose that the probabilities

of high effort α and αo are given. According to model R, the agent’s belief about how her

intermediate outcome affects the final output then equals

p(yH | x2 = 1) − p(yH | x2 = 0) = β24[1 + ξ(α, β1, β02, β12)(m − 1)], (A.51)

where ξ(α, β1, β02, β12) =
β1(1−β1)β2

12
(β12+αβ02)(1−β12−αβ02) ∈ (0, 1). In contrast, under the objective model,

the value in (A.51) would be equal to β24 and therefore vanish as the team size m becomes

large. Thus, under the subjective model, the agent overestimates the importance of her inter-

mediate outcome for the output. The reason is that a high intermediate outcome indicates a

positive common shock, which also increases the chance of high intermediate outcomes for

all other agents. Under model R, the agent falsely attributes the corresponding increase in the

probability of a high output yH to the significance of her intermediate outcome x2. We show

below that her perception of the significance of her intermediate outcome decreases in team

size, but converges against a positive constant for m→ ∞. Thus, the agent maintains a certain

belief in the importance of her effort even when her true impact on the final output vanishes.

When R is the subjective model of all agents, the principal’s profit from implementing high

effort at team size m with the optimal incentive scheme is given by

(B + D)
(
mθȳH −

m2c
B

1
1 + ξ(1, β1, β02, β12)(m − 1)

)
− mw̄. (A.52)

From this we can derive the optimal team size m[1]
R

(c) at cost c. The profit from implementing

low effort from m agents remains the same as under the objective model. Proposition 10 then

follows from a comparison of the profit levels in (A.50) and (A.52).

Proof of Proposition 10. We provide the remaining formal details needed to prove Proposition

10. For this, we fit the agent’s subjective model R to the probability distribution, taking α and

αo as given. First, we calculate the probabilities that there is a common shock, given that
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x2 = 1 and x2 = 0, respectively. We get

p(x1 = 1 | x2 = 1) =
β1β12 + αβ1β02

β1β12 + αβ02
, (A.53)

p(x1 = 1 | x2 = 0) =
β1(1 − β12 − αβ02)
1 − β1β12 − αβ02

. (A.54)

The probability of a high output yH after a high intermediate outcome x2 = 1 is then given by

p(yH | x2 = 1) =
β1β12 + αβ1β02

β1β12 + αβ02

1 +

m−1∑
k=0

(
m − 1

k

)
(β12 + αβ02)k(1 − β12 − αβ02)m−1−kk

 β24

+

(
1 −

β1β12 + αβ1β02

β1β12 + αβ02

) 1 +

m−1∑
k=0

(
m − 1

k

)
(αβ02)k(1 − αβ02)m−1−kk

 β24.

(A.55)

Using
(

m
k

)
pk(1 − p)m−kk = mp we get

p(yH | x2 = 1) = β24(1 + αoβ02(m − 1)) +
β1β12 + αβ1β02

β1β12 + αβ02
β24β12(m − 1). (A.56)

Similarly, we get

p(yH | x2 = 0) = β24α
oβ02(m − 1) +

β1(1 − β12 − αβ02)
1 − β1β12 − αβ02

β24β12(m − 1). (A.57)

From equations (A.56) and (A.57) we can then derive p(yH | x2 = 1) − p(yH | x2 = 0) and the

incentive compatibility constraint. From this IC we can derive that if the principal wishes to

implement high effort from m agents, then the optimal incentive scheme is

w(yH) = w̄ +
cm

B[1 + ξ(1, β1, β02, β12)(m − 1)]
and w(yL) = w̄. (A.58)

From this the principal’s profit in equation (A.52) follows. Note that β1β12 ≥
1
2 implies that

ξ(α, β1, β02, β12) is maximal at α = 1. Thus, the principal cannot gain by implementing a mixed

strategy profile.

Finally, we show that ξ(α, β1, β02, β12) < 1 for all admissible values α, β1, β02, β12. This

inequality is identical to β1β12(1 − β12) + αβ02(1 − 2β1β12 − αβ02) > 0. Since 1 > β02 + β12 and

α ≤ 1, this inequality is implied by β1β12(1− β12)− β1β12β02 = β1β12(1− β02 − β12) > 0, which

implies the statement above. �
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