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Abstract

This paper studies a semiparametric estimator where the associated moment condition

contains a nuisance monotone function estimated by isotonic regression. We show that the

properties of the isotonic estimator satisfy the framework of Newey (1994), and that the

associated sample moment function with a plug-in isotonic estimator is within a distance

of op(n−1/2) from its Neyman-orthogonalized sample moment function. As a result, the

estimator is
√
n-consistent, asymptotically normally distributed, and tuning-parameter-free.

Furthermore, in a number of relevant cases, the estimator is efficient.

The estimator we consider generalizes the estimation methods of existing semiparametric

models with monotone nuisance functions, such as the monotone partially linear model and

monotone single index model. We also apply the estimator to the case of inverse probability

weighting, where the propensity scores are assumed to be monotone increasing. Simulations

show that while the estimator we develop is more robust against misspecification than para-

metric plug-in estimators commonly adopted in applied work, it has similar performance

to the latter under correct specifications. Compared to methods with other nonparametric

plug-in estimators, the newly proposed method requires minimum smoothness conditions on

nuisance functions. Furthermore, we establish the asymptotic validity of bootstrap, which

ensures that the estimator is tuning-parameter-free in both estimation and inference.
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1 Introduction

This paper is concerned with the following semiparametric estimation problem. Suppose we

have a moment condition

E[m(Z, β0, p0(·))] = 0, (1)

where Z is a random vector defined on a probability space (Ω,B,P0) , and β0 ∈ B ⊂ Rk is

a real-valued parameter of interest. p0(·) is a monotone increasing nuisance function, which is

the conditional mean of some function of data and β0. (1) can be an unconditional moment

restriction or the first-order condition of a maximization problem. Let {Zi}ni=1 be independent

realizations of Z. An estimator β̂ can be solved from the sample moment condition of (1), with

a plugged-in p̂(·):
1

n

n∑
i=1

m(Zi, β, p̂(·)) = 0, (2)

where p̂(·) is an isotonic estimator of p0(·).

1.1 Motivation and challenges

Without the monotonicity assumption about p0(·), the model (1) and its plug-in estimator

based on (2) have been extensively studied, where p0(·) is usually estimated by smoothing

nonparametric methods such as sieve estimator or kernel estimator. See, e.g., van der Vaart

(1991), Newey (1994), Andrews (1994), Ai and Chen (2003), and Chernozhukov et al. (2018),

among others. Our interest in the case, where p0(·) is monotone increasing and estimated by

isotonic estimation, is motivated by the following reasons.

First, monotonicity is a natural shape restriction which can be justified in many applications

in social science, economic studies, and medical research. Well-known examples in economics

are that the demand function is usually monotone decreasing, and the supply function and

utility functions are often monotone increasing. Furthermore, many functions derived from

CDF functions inherit the monotonicity from the latter. For example, in a binary choice model

Y =

1 if X ′β0 > ε

0 if X ′β0 ≤ ε
, (3)

we can express the conditional expectation E(Y |X) = P (Y = 1|X) = Fε(X
′β0), where

Fε(·) is the CDF of ε. If we assume ε ∼ N(0, 1), (3) becomes a probit model; if we assume

ε ∼ Logistic(0, 1), (3) becomes a logit model. If we don’t impose any distributional assumptions

on ε, we can express (3) with a semiparametric model Y = Fε(X
′β0) + ν, with a nonparametric

link function Fε(·). It is monotone increasing by the nature of CDF.

Second, the well-known benefits of isotonic estimation make it a special type of nonparametric

method: (i) the isotonic estimator is a tuning-parameter-free nonparametric estimator, (ii)
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isotonic estimation imposes minimal assumptions on the smoothness of the true function. We

will discuss further features of the isotonic estimator, which makes it particularly suitable for

being a plug-in estimator in a semiparametric model.

A challenge of making inference of β̂ based on (2) is the discreteness of the isotonic estimator

p̂(·), which could make the traditional inference procedure (see, e.g., Newey and McFadden,

1994) inapplicable. Particularly in the case where the estimator p̂(·) depends on β, (2) no longer

has a continuous total derivative w.r.t β even if m(Z, β0, p0(·)) is differentiable w.r.t. β. Since

β̂ and p̂(·) usually have to be estimated simultaneously in this case, the framework of Chen

et al. (2003) cannot be applied here either. The recent developments in the monotone single

index model provide us with tools for dealing with this problem. Groeneboom and Hendrickx

(2018), Balabdaoui, Groeneboom, and Hendrickx (2019) (BGH hereafter), and Balabdaoui and

Groeneboom (2020) developed a novel score-type approach for the monotone single index model.

In this paper, we generalize their methods to the framework of the model (1). We show that

under mild conditions, the semiparametric estimator β̂ with a plug-in isotonic estimator satisfies

the framework of Newey (1994), and the associated sample moment function is within a distance

of op(n
−1/2) from its Neyman-orthogonalized sample moment function. As a result, the proposed

estimator is
√
n-consistent, asymptotically normally distributed, and has many other desirable

properties.

1.2 Examples and Literature

We give three examples of semiparametric models, which can be estimated with the procedure

described in (1) and (2). If no monotonicity assumption is imposed on nuisance functions, these

models have been extensively studied in the literature. See, e.g., Engle et al. (1986), Robinson

(1988), and Stock (1991) for the partially linear model; Stoker (1986), Hall (1989), and Härdle,

Hall, and Ichimura (1993) for the single index model; Robins and Rotnitzky (1995), Hahn (1998),

Hirano et al. (2003), Bang and Robins (2005), and Imbens and Rubin (2015) for the inverse

probability weighted (IPW) model and the augmented IPW estimators (AIPW) models, to name

a few.

With monotonicity assumptions on nuisance functions, some results have been obtained for

individual cases of semiparametric models in the past decades, including Example 1 and Example

2 below.

Example 1: Monotone partially linear model.

Y = Dβ0 + p0(X) + ε with E[ε|X,D] = 0 (4)

For monotone increasing p0(X), Huang (2002) estimates β0 with the monotone least square

method. If we set p0(X) = c+
∑k

j=1m
j(Xj), where Xj is the j-th element of the k-dimensional

vector X, we have the monotone additive model, studied in Cheng (2009) and Yu (2014).
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Alternatively, β0 can be estimated by solving the problem (1), with the moment condition

E [m(Z, β, p(·))] = E [D(Y −Dβ − p(X))] = 0. (5)

As illustrated in Chernozhukov et al. (2018), the simple plug-in method based on (5) could fail

since this moment function is not Neyman-orthogonalized. In Section 2.1, we will show that if

p0(·) is monotone increasing and estimated with isotonic regression, the estimator β̂ based on

(5) is
√
n-consistent and has the same asymptotic variance as in Robinson (1988). We do not

need to orthogonalize (5).

Example 2: Monotone single index model

Y = p0(X
′β0) + ε with E[ε|X] = 0 (6)

If Y is a binary random variable taking values in {0, 1}, this model can be derived from (3),

and p0(X) is by nature monotone increasing. This model was studied by Cosslett (1983), Klein

and Spady (1993), and Cosslett (2007), among others. For continuously distributed Y , if the

parameter β0 is the main interest, Han (1987) and Sherman (1993) showed its consistency and
√
n−normality respectively. If monotone increasing p0(X) is estimated with isotonic regression,

Balabdaoui, Durot, and Jankowski (2019) studied (6) with the monotone least square method.

Groeneboom and Hendrickx (2018), BGH, and Balabdaoui and Groeneboom (2020) estimated

β0 and p0(·) by solving a score-type sample moment function1:

E
[
X
{
Y − p(X ′β)

}]
= 0. (7)

They show that solving (7) can simultaneously estimate β0 and p0(·), at n−1/2-rate and

n−1/3-rate respectively. Note that (7) can be regarded as an individual case of the model (1)

with m(Z, β, p(·)) = X {Y − p(X ′β)}.

Example 3: IPW and AIPW with monotone increasing propensity scores

We have a triple Z = (Y, T,X), where T is a binary random variable indicating the treatment

status. The propensity score is defined as p0(X)
def.
= E(T |X) = P (T = 1|X). Examples of IPW

are:

(a) Missing At Random Model (MAR): Among the triple (Y, T,X), only Z = (T,X, T ·Y ) is

observed. Under unconfoundedness and overlapping assumptions, we are interested in E(Y ) =

E( Y ·T
p0(X)) := β0. We can estimate β0 by solving the problem (1), with the moment condition.

E[m(Z, β, p(·))] = E(
Y · T
p(X)

− β) = 0.

1Groeneboom and Hendrickx (2018) estimated the current status model by solving a profile maximum likeli-
hood estimator. The score function of their log-likelihood function takes a similar form of (7).
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(b) Average Treatment Effect Model (ATE): the triple Z = (Y, T,X) is observed, where Y

takes its values from a random vector (Y (1), Y (0)): we have Y = Y (1) if only if T = 1, and

Y = Y (0) if only if T = 0. Under unconfoundedness and overlapping assumptions, we have the

average treatment effect β0 = E( Y ·T
p0(X) −

Y ·(1−T )
1−p0(X)). We can estimate β0 by solving the problem

(1), with the moment condition

E[m(Z, β, p(·)] = E(
Y · T
p(X)

− Y · (1− T )

1− p(X)
− β) = 0.

Example of AIPW:

(c) Doubly robust MAR: in addition to the setting in (a), we also know E(Y |X) = ψ0(X).

Under unconfoundedness and overlapping assumptions, we have the conditional expectation

E(Y |X) = E( Y ·T
p0(X) −

T−p0(X)
p0(X) ψ0(X)) := β0. We can estimate β0 by solving the problem (1),

with the moment condition.

E[m(Z, β, p(·))] = E(
Y · T
p(X)

− T − p(X)

p(X)
ψ(X))− β) = 0. (8)

Here we need to plug in the estimators of both p(·) and ψ(·).
IPW and AIPW with monotone increasing propensity scores have rarely been studied. The

only exception we found is Qin et al. (2019). They applied the monotone single index model to

estimate the propensity score p(X) := θ(X ′α) of an AIPW model, then plugged p̂(·) and another

parametric estimator of ψ0(·) into (2). Their asymptotic results depend on the estimation of

both p0(·) and ψ0(·). Another different but related paper is Westling et al. (2019). They

studied a continuous version of AIPW. The monotonicity is imposed on the relation between

the continuous dose of treatments and the outcomes, instead of on the propensity score. To

the best of our knowledge, there is no paper estimating the IPW model with a plug-in isotonic

estimator of the propensity score. In the following Section 2.2, we show that our method can

give us a tuning-parameter free,
√
n-consistent, and asymptotically normal IPW estimator.

1.3 Contribution and structure of this paper

The main contributions of our paper are:

1. We develop a tuning-parameter-free semiparametric estimator of (1). It generalizes ex-

isting semiparametric models with monotone nuisance functions. Furthermore, we show

its potential applicability by applying it to the case of IPW with monotone increasing

propensity score.

2. We show that the sample moment function of the proposed estimator with a plug-in isotonic

estimator is within a distance of op(n
−1/2) from its Neyman-orthogonalized sample moment

function. Therefore,
√
n-consistency is guaranteed in many cases, without the need for

estimating and adding the correction term. As a result, the tuning-parameter-free benefit
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is twofold: we save the effort to choose tuning parameters to estimate both the monotone

nuisance function and the correction term.

3. We show this estimator is efficient in the case p0(x) is a function of a scalar x. The

semiparametric efficiency here is w.r.t. the unconditional moment condition (1). With x

being a multi-dimensional vector, the estimator is
√
n-consistent under different structures

combining monotonicity and multi-dimensional covariates.

4. Simulation results show that the proposed method is attractive: (i) while it is more robust

against misspecification than parametric plug-in estimators commonly adopted in applied

work, it has similar performance to the latter under correct specifications; (ii) compared

to methods with other nonparametric plug-in estimators, the proposed estimator requires

minimum smoothness conditions on nuisance functions.

5. We develop a bootstrap method to ensure that our semiparametric estimator is tuning-

parameter-free in both estimation and inference.

This paper is organized as follows. In Section 2, we present the basic setup and study the

theoretical properties of the proposed estimator. In Section 3, we discuss different possibilities of

allowing multi-dimensional covariates in a monotone nuisance function, as well as the theoretical

properties of the relevant estimators. In Section 4, we discuss the bootstrap inference. In Section

5, we perform simulation studies to illustrate the proposed method. All the proofs are presented

in the Appendix.

2 Z-estimation with a plug-in isotonic estimator

We try to develop a general theory for Z-estimation with its plug-in nuisance parameter estimated

by isotonic estimation. Let (Y,X) be a sub-vector of random vector Z. To show the idea clearly,

we first let X be a random scalar in this section. In Section 3, we will allow X to be multi-

dimensional covariates. Now we have (1) and

E(Y |X) = p0(X), (9)

where p0(·) is a monotone increasing function in X. Condition (9) is needed to implement isotonic

estimation since it is a method for the conditional mean. We are interested in estimating

the parameter β0. To illustrate the idea clearly, we focus on the just-identified case, where

dim(β) = dim(m). All the results can be extended to over-identified moment conditions with

standard GMM procedures.
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We can extend (2) further around p0(·)

− 1

n

n∑
i=1

∂m(Zi, β0, p̂(·))
∂β

(β̂ − β0) =
1

n

n∑
i=1

m(Zi, β0, p̂(·)) + op(β̂ − β0)

=
1

n

n∑
i=1

m(Zi, β0, p0(Xi)) +
1

n

n∑
i=1

D(Zi, β0)(p̂(Xi)− p0(Xi))

+
1

n

n∑
i=1

Op(p̂(Xi)− p0(Xi))
2 + op(β̂ − β0)

:=
1

n

n∑
i=1

m(Zi, β0, p0(Xi)) + I + II + op(β̂ − β0)

D(z, β) is the functional derivative of m(z, β, p(x)) w.r.t. p(·).2
√
n-consistency of β̂ requires

both I and II to converge at least at n−1/2-rate. If ||p̂−p0|| = op(n
−1/4), we have II = op(n

−1/2).

Many nonparametric estimators can achieve this rate with properly chosen tuning parameters.

For isotonic estimator p̂(·), we usually have

||p̂− p0||2 = Op((log n)2n−2/3) = op(n
−1/2). (10)

(See, e.g., Lemma 5.15 in van de Geer, S., 2000). The condition is satisfied without involving

any tuning parameter.

We can decompose I into

I =
1

n

n∑
i=1

D(Zi, β0)(p̂(Xi)− p0(Xi))

=
1

n

n∑
i=1

{
D(Zi, β0)(p̂(Xi)− p0(Xi))−

∫
D(Zi, β0)(p̂(Xi)− p0(Xi))dP0

}
+

∫
D(Zi, β0)(p̂(Xi)− p0(Xi))dP0

:=III + IV

The condition III = op(n
−1/2) is often referred to as stochastic continuity. The condition

IV = 0 (or = op(n
−1/2)), is referred to as Neyman (Near-) orthogonality. If we have both

stochastic continuity and Neyman (Near-) orthogonality, solving the moment condition (2) with

plug-in p̂(·) will not depend on the estimation of the nuisance function p0(·). In the following

sub-section, we adapt the definition of Neyman orthogonality (see, e.g., Chernozhukov et al.,

2018) to our setting.

2To illustrate the idea, we assume a simple case, where m(z, β0, p0(x)) depends on p0(·) only through its value
on x. This assumption is not necessary. The formula can be written into the standard pathwise derivative form,
as in Newey (1994).
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2.1 Properties of the plug-in isotonic estimator

Definition 1. [Neyman orthogonality] Let T be a convex set, and Tn ⊂ T be a nuisance

realization set for p̂(·). We say the moment function m satisfy Neyman orthogonality condition

if we have E[m(Z, β0, p0(X))] = 0 and

E[D(Z, β0)(p(X)− p0(X))] = 0, for all p ∈ Tn

If m does not satisfy Neyman orthogonality condition, β̂ obtained by solving its correspond-

ing sample moment function (2) might suffer from some issues. In some cases, it is even no

longer
√
n-consistent. The following is an example in Chernozhukov et al. (2018).

Example 1 continued: The partially linear model

Y = Dβ + p(X) + U E[U |X,D] = 0

implies the moment condition E [D(Y −Dβ − p(X))] = 0. But its moment functionm(Z, β, p(·)) =

D(Y −Dβ − p(X)) is not Neyman orthogonal, since

E[
∂m(Z, β0, p0(·))

∂p
(p(X)− p0(X))] = E[D(p(X)− p0(X))] 6= 0 in general

Now we do not assume the monotonicity of p0(·), and let p̂(·) be an arbitrary nonparametric

estimator. In this case, the plug-in estimator obtained by choosing β̂, such that

1

n

n∑
i=1

Di(Yi −Diβ̂ − p̂(Xi)) = 0, (11)

can fail to be
√
n-consistent. Let us rearrange (11)

√
n(β̂ − β0) = (

1

n

n∑
i=1

D2
i )
−1 1√

n

n∑
i=1

Di(Yi −Diβ0 − p̂(Xi))

= (
1

n

n∑
i=1

D2
i )
−1 1√

n

n∑
i=1

Di(Yi −Diβ0 − p0(Xi) + p0(Xi)− p̂(Xi))

= (
1

n

n∑
i=1

D2
i )
−1 1√

n

n∑
i=1

Di(Ui + p0(Xi)− p̂(Xi))

= (
1

n

n∑
i=1

D2
i )
−1 1√

n

n∑
i=1

DiUi + (
1

n

n∑
i=1

D2
i )
−1 1√

n

n∑
i=1

Di(p0(Xi)− p̂(Xi)).

1√
n

∑n
i=1Di(p0(Xi) − p̂(Xi)) might explode since p̂(Xi) is a nonparametric estimator and

usually converges slower than n−1/2.

To fix this problem, people usually want to orthogonalize m, i.e., transform m into m∗, such
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that

1. E[m∗(Z, β0, p0(X))] = 0 still holds, and

2. E[D∗(Z, β0)(p(X)− p0(X))] = 0 for all p ∈ Tn.

In general, people obtain orthogonalized moment function by subtracting from m(Z, β0, p0) its

projection on the linear space of its derivatives w.r.t p0(·). For example, if m is a just-identified

moment condition, then

m∗(Z, β, p) = (Idm −Gp(G′pGp)−1G′p)m(Z, β, p),

where Gp is the functional derivative of m(Z, β, p) w.r.t p. In our setting (9), where p0(X)

is a conditional mean of Y , the orthogonalization can be achieved by applying Proposition 4 in

Newey (1994):

m∗∗(Z, β, p) = m(Z, β, p) + E[D(Z, β)|X](Y − p(X)).

We can check the two conditions for the Neyman orthogonalization. For m∗∗:

1. E[m∗∗(Z, β0, p0(X))] = 0 + E[E[D(Z, β0)|X](Y − p0(X))] = 0,

2. and

E[D∗∗(Z, β0)(p(X)− p0(X))] = E[
∂m∗∗(Z,β,p0(X))

∂p
(p(X)− p0(X))]

= E[D(Z, β0)(p(X)− p0(X))]− E[D(Z, β0)|X][(p(X)− p0(X))]

= E[D(Z, β0)|X][(p(X)− p0(X))]− E[D(Z, β0)|X][(p(X)− p0(X))]

= 0.

The equality in Condition 1 and the third equality in Condition 2 follow from the law of

iterated expectation.

In practice, we need to add an estimated correction term of E[D(Z, β0)|X](Y − p0(X)) into

our sample moment function. In Example 1, this term is ̂E[Di|Xi](Yi −Diβ̂ − p̂(Xi)). Then we

have the same estimator as in Robinson (1988).

An interesting feature is that with the following Lemma 1, sample moment function with

a plug-in isotonic estimator is within a distance of op(n
−1/2) from its Neyman-orthogonalized

sample moment function.

Let us have the following assumptions:

A1 X is a random scalar taking value in the space X . The space X is convex with non-empty

interiors, and satisfies X ⊂ B(0, R) for some R > 0.

A2 The true mean function E(Y |X = x) = p0(x) is monotone increasing in x. There exists

K0 > 0 such that |p0(x)| < K0 for all x ∈ X .
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A3 There exist c0 > 0 and M0 > 0 such that E[|Y |m|X = x] ≤ m!Mm−2
0 c0 for all integers

m ≥ 2 and almost every x.

A1 and A2 impose boundedness on the monotone function p0 and the support of X. These

conditions are used to control the entropy of the function classes that characterize (2). A3 is to

restrict the size of the tail of Y |X. With A3, we can show that sup
x∈X

p̂(x) = Op(log n), which is

used to obtain an entropy result associated with the
√
n-convergence rate.

Lemma 1. p̂(·) is an isotonic estimator of the conditional mean E(Y |X). δ(X) is a bounded

function of X with a finite total variation. Under A1, A2, and A3, we have 1
n

∑n
i=1 δ(Xi)(Yi −

p̂(Xi)) = op(n
−1/2).

The proof in Appendix is based on techniques applied in Groeneboom and Jongbloed (2014),

Groeneboom and Hendrickx (2018), and BGH, combining the properties of the isotonic estima-

tor and entropy results for monotone functions.

Let us assume

A4 For all β ∈ B, E[D(Z, β)|X] is a bounded function of X with a finite total variation, and

there exist c1 > 0 and M1 > 0 such that E[|D(Z, β)|m|X = x] ≤ m!Mm−2
1 c1 for all integers

m ≥ 2 and almost every x.

we have immediately:

1

n

n∑
i=1

E[D(Z, β0)|Xi](Yi − p̂(Xi)) = op(n
−1/2).

Then we add the following assumption,

A5 The first-order expansion of m(z, β, p(·)) w.r.t p(·) at p∗(·), D(z, β, p(·)− p∗(·)), is linear in

p(·)− p∗(·). Especially, D(z, β, p(x)− p∗(x)) = D(z, β) (p(x)− p∗(x)).

A5 enables us to analyze the impact of the estimation of the nuisance function p(·), it is similar

to (4.1) and (4.2) in Newey (1994). Now we have

Proposition 1. (Sample moment function) Assuming A1-A5, and p0(·) is estimated with

isotonic estimation and plugged into (2), then the semiparametric estimator β̂ estimated based

on this sample moment function is similar to that estimated based on its Neyman-orthogonalized

sample moment function, in the sense that
√
n(β̂ − β0) has the same asymptotic distribution.

Remark 1. This proposition shows that with isotonic plug-in estimator p̂(·), the difference

between the sample moment function 1
n

∑n
i=1m(Z, β, p̂(·)) and its orthogonalized version is

op(n
−1/2). Therefore, there is no need to orthogonalize it in the estimation of β̂. In this sense,

the sample moment function can be regarded as “automatic” Neyman-orthogonalized. The term

“automatic” should be understood only in the context of the estimation of β̂. It does not claim

that m(z, β, p(·)) is Neyman-orthogonalized.
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Example 1 Continued: Let p̂(X) is an isotonic estimator of E[Y − Dβ|X] and assume

E[D|X] is a bounded function of X with a finite total variation. We have by Lemma 2 (A

modified version Lemma 1 in the following Section 2.3, which can be applied to the case that

p̂(·) depends on β.)

1

n

n∑
i=1

Di(Yi −Diβ̂ − p̂(Xi)) = 0

⇒ 1

n

n∑
i=1

(Di − E[Di|Xi])(Yi −Diβ̂ − p̂(Xi)) = op(n
−1/2).

Then we have

√
n(β̂ − β0) = (

1

n

n∑
i=1

(Di − E[Di|Xi])Di)
−1 1√

n

n∑
i=1

(Di − E[Di|Xi])(Yi −Diβ0 − p̂(Xi)) + op(1)

= (
1

n

n∑
i=1

(Di − E[Di|Xi])Di)
−1 1√

n

n∑
i=1

(Di − E[Di|Xi])Ui + op(1)

+ (
1

n

n∑
i=1

(Di − E[Di|Xi])Di)
−1 1√

n

n∑
i=1

(Di − E[Di|Xi])(p0(Xi)− p̂(Xi))

Now under mild conditions, we have 1√
n

∑n
i=1(Di − E[Di|Xi])(p0(Xi)− p̂(Xi)) = op(1) and

1
n

∑n
i=1(Di−E[Di|Xi])Di

p→ E[(Di−E[Di|Xi])
2]. Then we have

√
n-consistent β̂. Also,

√
n(β̂−

β0)
d→ N(0, σ2uE(D − E[D|X])−2).

Remark 2. Huang (2012) showed the same asymptotic variance for the partially linear model

with monotone nuisance function, with monotone least square methods. Here we revisit it from

a different angle: we highlight the relation between isotonic plug-in estimator and Neyman or-

thogonalization. We start from an unorthogonalized moment function (11) and achieve the same

result as in Robinson (1988), without adding the estimated correction term ̂E[Di|Xi](Yi−Diβ̂−
p̂(Xi)). Therefore, the benefit of the isotonic plug-in estimator in terms of tuning-parameter-

free is doubled: an isotonic plug-in estimator will save us not only one tuning parameter for the

nuisance function p(·) but also other tuning parameters for estimating the nonparametric part

in the correction term ( ̂E[Di|Xi] in this case).

2.2 Efficiency and the plug-in isotonic estimator

The correction term E[D(Z, β0)|X](Y −p0(X))) is also associated with efficiency. As illustrated

in Proposition 4 of Newey (1994), for unconditional moment condition E[m(Z, β, p(X))] = 0,

where p0(X) = E(Y |X) for some sub-vector Y , the efficient influence function ψ is:

ψ(Z) = −
[∂E[m(Z, β0, p(X))]

∂β

]−1
(m(Z, β0, p0(X)) + E[D(Z, β0)|X](Y − p0(X)))

11



If we could show for an isotonic plug-in estimator p̂(·)

1

n

n∑
i=1

m(Zi, β0, p̂(Xi)) =
1

n

n∑
i=1

[
m(Zi, β0, p0(xi)) + E[D(Z, β0)|Xi](yi − p0(xi))

]
+ op(n

−1/2),

we could show the efficiency. Let’s assume the following assumptions:

A6 There are b(z) > 0 and D(z, g) that (i) ||m(z, β, p) − m(z, β, p0) − D(z, β, p − p0)|| ≤
b(z)||p− p0||2; (ii) E[b(z)] = op(n

1/6(log n)−2), for all β ∈ B.

A7 There are ε, b(z), b̃(z) > 0 and p(·) with ||p|| > 0. Such that (i) for all β ∈ B, m(z, β, p0) is

continuous at β and m(z, β, p0) ≤ b(z); (ii) ||m(z, β, p)−m(z, β, p0)|| ≤ b̃(z)(||p− p0||)ε.

A8 E {m(z, β, p0)} = 0 has a unique solution on B at β0, and B is compact.

A9 For β ∈ interior(B), (i) there are p(·) with ||p|| > 0, ε and a neighborhood N of β0 such that

for all ||p− p0|| ≤ ε, m(z, β, p) is differentiable in β on N ; (ii) Mβ = −E
{
∂m(Z,β0,p0(X))

∂β

}
is nonsingular; (iii) E[||m(z, β, p)||2] <∞; (iv) Assumption A7 is satisfied with m(z, β, p)

there equal to each row of ∂m(Z,β,p)
∂β .

A6 is an adaption of Newey‘s Assumption 5.1. This assumption requires that the high order

term from a linear approximation is small. Combining (ii) in A6 and (10), we have the reminder

term converging faster than n−1/2. A7, A8, and A9 are adapted from Assumption 5.4, 5.5, and

5.6 in Newey (1994). They are general conditions for the consistency and asymptotical normality

for the method of moment.

Let us define

Mβ = −E
{
∂m(Zi, β0, p0(Xi))

∂β

}
M(Z) = E[D(Z, β0)|X](Y − p0(X)).

We have

Theorem 1. (Efficiency) Assuming A1-A9, for unconditional moment condition E[m(Z, β0, p0(X))] =

0, p̂(·) is an isotonic estimator of the conditional mean E(Y |X) := p0(X).

Then β̂ obtained by solving the sample moment condition (2) is
√
n-consistent and efficient,

with
√
n(β̂ − β0)

d→ N(0, V ),

where

V = M−1β E[{m(Z, β0, p0) +M(Z)}{m(z, β0, p0) +M(Z)}′]M−1β ,

The proof is in Appendix. It is based on a combination of techniques in Newey (1994),

Hirano, Imbens, and Ridder (2000, 2003), Groeneboom and Jongbloed (2014), Groeneboom

and Hendrickx (2018), and BGH.
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We can apply Theorem 1 to the IPW model by using the isotonic regression to estimate the

propensity score.

Example 3 (b) continued: For the ATE model, we have m(Z, β, p(·)) = Y ·T
p0(X) −

Y ·(1−T )
1−p(X) −β.

The p0(x) is the propensity score

p0(x) = E[T |X = x] = Pr(T = 1|X = x).

Let p̂(·) is the isotonic estimator of the propensity score. We are interested in the plug-in

estimator β̂:

β̂ =
1

n

n∑
i=1

{
Yi · Ti
p̂(Xi)

− Yi · (1− Ti)
1− p̂(Xi)

}
(12)

Here we assume

C1 T⊥(Y (1), Y (0))|X, unconfoundedness.

C2 (i) The support X of X is convex and compact; (ii) the density of X is bounded from 0 on

X .

C3 (i) E(Y (0)2) < ∞ and E(Y (1)2) < ∞; (ii) µ0(x) = E(Y (0)|X = x) and µ1(x) =

E(Y (1)|X = x) are continuously differentiable for all x ∈ X .

C4 The true propensity score p0(x) satisfies: (i) p0(·) is continuous and monotone increasing;

(ii) there exist positive number p and p̄, such that 1 > p̄ ≥ p0(x) ≥ p > 0 for all x ∈ X .

And we have

Corollary 1. Suppose Assumptions C1-C4 hold. The average treatment effect estimator β̂ is

obtained by (12). Then β̂
p→ β0, and

√
n(β̂ − β0)

d→ N(0,Ω),

where Ω = Var(E[Y (1)− Y (0)]|X) +E[Var(Y (1)|X)/p0(X)] +E[Var(Y (0)|X)/(1− p0(X))]. β̂

reaches the semiparametric efficiency bound.

2.3 The case that p̂(·) depends on β

The isotonic estimator p̂(·) can depend on β in some cases, as we have seen in the partially linear

model. We use the notation p̂β(·) to represent such an estimator. In this case, we might have a

problem of finding a root for (2). Since the isotonic estimator p̂β(·) is a step function, changes in

β might also cause discontinuous changes of p̂β(·). Groeneboom and Hendrickx (2018) and BGH

tried to solve this problem with a so-called zero-crossing root, a technique dealing with discrete
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score-type functions. Then they found that it is non-trivial to show the existence of zero-crossing

root in finite samples. Balabdaoui and Groeneboom (2020) proposed another method. They

replaced the zero-crossing root of a score function with the minimizer of L2 norm of it. They

showed that this minimizer has the same properties as the zero-crossing root for the single index

model. We extend their methods to the general case of the method of moments.

Let p̂β(X) be an isotonic estimator of the conditional mean E[T (Z, β)|X], where T is a

known function of data Z and the parameter β. An example of this case can be the partially

linear model, where T (Z, β) = Y − Xβ. A feasible version of the plug-in estimator of β̂ w.r.t

(2) can be

β̂ = argmin
β

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

m(Zi, β, p̂β(Xi))

∣∣∣∣∣∣∣∣2, (13)

where || · || is the Euclidean norm. To implement our method, we need to assume the

monotonicity holding in a neighbor of the true value β0. Let A1’ be the same as A1, and we

modify Assumptions A2 and A3 :

A2’ There exists δ0 > 0 such that E(T (Z, β)|X) := pβ(X) is monotone increasing for each

β ∈ B(β0, δ0). There exists K0 > 0 such that |p0(x)| < K0 for all x ∈ X .

A3’ There exist c0 > 0 and M0 > 0 such that E[|T (Z, β)|m|X = x] ≤ m!Mm−2
0 c0 for all integers

m ≥ 2 and almost every x and β ∈ B(β0, δ0).

We have

Lemma 2. For fixed β, p̂β(X) is an isotonic estimator of the conditional mean E(T (Z, β)|X).

δ(X) is a bounded function of X with a finite total variation. Under A1’ - A3’, we have
1
n

∑n
i=1 δ(Xi)(T (Z, β)− p̂β(X)) = op(n

−1/2).

To show the results of Lemma 2, we do not need to solve the root of a discrete moment

function. Therefore, the proof is similar to that of Lemma 1.

Similarly, let A4’ and A5’ be the same as A4 and A5, we have

Proposition 2. (Sample moment function) Assuming A1’ - A5’, and p0(·) is estimated with

isotonic estimation and plugged into the moment condition m(Z, β, p(·)). Then the semiparamet-

ric estimator β̂ estimated based on (13) is similar to that estimated based on the minimizer of the

L2 norm of its Neyman-orthogonalized sample moment function, in the sense that
√
n(β̂ − β0)

has the same asymptotic distribution.

Now let (i) A6’ be the same as A6; (ii) A7’ to A9’ are modified versions of A7 to A9, where all

the conditions in A7 to A9 satisfied withm(z, β, p) there equal to {m(z, β, p) + E(D(Z, β0)|x)T (z, β)} .

Theorem 2. (Efficiency) Assuming A1’ - A9’, for unconditional moment condition E[m(Z, β0, p0(X))] =

0, p̂(·) is an isotonic estimator of the conditional mean E(T (Z, β)|X) := pβ(X).

Then β̂ obtained by (13) is
√
n-consistent and efficient.
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3 Multi-dimensional X

The isotonic function is always a mapping from R1 to. In order to have wide applicability,

the model should be able to deal with multivariate covariates. In this section, we consider two

different ways to combine the plug-in isotonic estimator with multivariate covariates X: the

monotone single index model and the monotone additive model.

3.1 Plug-in monotone Single Index Model

For a k-dimensional data sample X, A1 can be modified to

A1” X is a random vector taking value in the space X . The space X is convex with non-empty

interiors, and satisfies X ⊂ B(0, R) for some R > 0.

We model the conditional mean function with E(Y |X) = p0(X) ≡ F0(X
′α0). α0 is a k-

dimensional vector with ||α0|| = 1.3

In this case, we need to estimate both p0 and α0 in the first step, then plug them in (2).

To estimate F0 and α0, we can apply the method of BGH. For a fixed α

F̂α = arg min
F∈M

1

n

n∑
i=1

{Yi − F (X ′iα)}2, (14)

where M is the set of monotone increasing functions defined on R. Then, F̂α(u) can be

solved with isotonic regression on the data points {ui}ni=1 := {X ′iα}ni=1.

Then α̂ can be estimated by minimizing the square sum of a score function. For example,

the simple score estimator in Balabdaoui and Groeneboom (2020) and BGH is given by solving

α̂ = argmin
α
|| 1
n

n∑
i=1

X ′i{Yi − F̂α(X ′iα)}||2 (15)

Balabdaoui and Groeneboom (2020) and BGH showed that under certain assumptions, α̂ is

a
√
n-consistent estimator for α0, and E

[
F̂α̂(X ′iα̂)− F0(X

′α0)
]2

= OP ((log n)2n−2/3). We also

include those assumptions in our framework.

We can also allow F̂ depend on β, as we did in Section 2.3. In this case, we should replace

Yi in (14) by T (Zi, β), and in the second step, we replace (15) with

(α̂, β̂) = argmin
α,β
|| 1
n

n∑
i=1

m(Zi, β, F̂α,β(X ′iα))||2.

To implement isotonic estimation to the link function F0, we need that the monotonicity

holds in the neighbors of the true values α0 and β0. For fixed α and β, we define Fα,β(u) =

E(T (Z, β)|α′X = u). The assumption A2 are modified to adapt to the current setting:

3In estimation, the constraint ||α0|| = 1 can be dealt with reparameterization or the augmented Lagrange
method by Balabdaoui and Groeneboom (2020). In this section, we discuss our model without discussing those
technical details in estimation. See BGH and Balabdaoui and Groeneboom (2020) for more details.
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A2” There exists δ0 > 0 that the true mean function u 7→ E[T (Z, β)|X ′α = u] is monotone

increasing for each α ∈ B(α0, δ0) and β ∈ B(β0, δ0).

Now let A3” be the same as A3’. We have

Lemma 3. For fixed α and β, F̂α,β(·) are solved by solving (14). δ(u) is a bounded function of u

with a finite total variation. Under A1”-A3”, we have 1
n

∑n
i=1 δ(X

′
iα)(T (Zi, β)− Fα,β(X ′iα)) =

op(n
−1/2).

Moreover, we add Assumptions A10” and A11”.

A10” For all α 6= α0 with α ∈ B(α0, δ0) and β 6= β0 with β ∈ B(β0, δ0), we have

Cov {[T (Z, β0)− T (Z, β)] + (α0 − α)′X, [T (Z, β0)− T (Z, β)] + F0(X
′α0)|X ′α} 6= 0 almost surely.

A11” E
{

[D(Zi, β0)− E(D(Zi, β0)|X ′iα0)]{Xi − E[Xi|X ′iα0]}F (1)
0 (X ′iα0)

}
is non-singular.

A10” and A11” are adapted from BGHs’ A7 and A9. These two assumptions ensure the consis-

tency and existence of limiting variances of our estimators.

Let (i) A3” and A6” be the same as A3’ to A6’; (ii) A7” to A9” are modified versions

of A7 to A9, where all the conditions in A7 to A9 satisfied with m(z, β, p) there equal to

{m(z, β, p) + E[D(Z, β0)|x′α0]T (z, β)} . Furthermore, we define

Mα = −E
{

[D(Zi, β0)− E(D(Zi, β0)|X ′iα0)]{Xi − E[Xi|X ′iα0]}′F (1)
0 (X ′iα0)

}
Mβ = −E

{
∂m(Zi, β0, F0(X

′
iα0))

∂β
+ E[D(Zi, β0)|X ′iα0]

∂T (Zi, β0)

∂β

}
M(Z) = E(D(Z, β0)|X ′α0)(T (Z, β0)− F0(X

′α0)). (16)

Then we have

Theorem 3. Suppose Assumptions A1”-A10” hold, then

√
n(α̂− α0)

d→ N(0, Vα) and
√
n(β̂ − β0)

d→ N(0, Vβ).

where

Vβ = M−1β E[{m(Z, β0, p0) +A(Z) +M(Z)}{m(z, β0, p0) +A(Z) +M(Z)}′]M−1β ,

Vα = M−1α,1E[{m1(Z, β0, p0) +B1(Z) +M1(Z)}{m1(Z, β0, p0) +B1(Z) +M1(Z)}′]M−1α,1,

with m1(Z, β, F (X ′α))
def.
= X {T (Z, β)− F (X ′α)}; Mα,1, B1, and M1 are Mα, B, and M
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corresponding to the moment function m1; A(Z) and B(Z) are defined by

−Mα(α̂− α0) :=
1

n

n∑
i=1

A(Zi) + op(n
−1/2), E [A(Z)] = 0,

−Mβ(β̂ − β0) :=
1

n

n∑
i=1

B(Zi) + op(n
−1/2), E [B(Z)] = 0.

Example 2 continued: The simple score estimator (SSE) for the monotone single index

model of BGH can be regarded as an individual case of the estimator in Theorem 3, where

m(Z, β0, F0(X
′α0)) = m1(Z, β0, F0(X

′α0)) = X {Y − F0(X
′α0)}. Here β0 is absent from the

model, thus B1(Z) = 0. We have

T (Z, β0) = Y,

D(Z, β0) = −X,

E(D(Z, β0)|X ′α0) = −E(X|X ′α0),

M(Z) = M1(Z) = −E(X|X ′α0)
{
Y − F0(X

′α0)
}
, and

Mα = Mα,1 = −E
{

[X − E[X|X ′α0]]{x− E[X|X ′α0]]}′F (1)
0 (X ′α0)

}
Plugging these values into the formula of Vα, we can see it is the same as the asymptotical

variance of SSE in BGH.

3.2 Plug-in monotone additive model

We can also model the conditional mean function with an additive structure. First we introduce

some notations here. k is the dimension of the vector xi. For j = 1, 2, ..., k, mj
0(·) is a strict

monotone increasing function of a scalar xji . We use xji to represent the j-th element of the ob-

servation i, with j = 1, ..., k, and i = 1, ..., n; we use boldfaced xi to represent the k-dimensional

vector of the observation i, xi = {x1i , x2i , ..., xki }; we use the boldfaced xj to represent the vec-

tor of all the j-row of our n × k matrix of covariates, xj = {xj1, x
j
2, ..., x

j
n}′, and the boldfaced

y = {y1, y2, ..., yn}′. We use the capitals Y,Xj
i ,Xi, and Xj to represent the corresponding ran-

dom variable or vectors. A slightly confusing notation is: we use Xj (non-bold typeface) to

represent the j-th element of the k-dimensional random vector X, without specifying the index

of the observation it belongs to.

The plug-in nuisance function is a conditional mean function of some random scalar, Yi, say.

It takes the form of

E(Yi|Xi) = c+m1
0(X

1
i ) + ...mk

0(Xk
i ) (17)

Without loss of generality, we assume each mj
0 is supported on [0, 1]. To identify each mj

0,
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we add the normalizing condition∫ 1

0
mj(xj) = 0 for j = 1, 2, ..., k (18)

The least square estimator of 17 can be defined as the minimizer of

arg min
c∈R1,{mj}kj=1∈M0

n∑
i=1

Yi − c− k∑
j=1

mj(Xj
i )

 (19)

whereM0 denotes the class of monotone increasing function satisfying (18). We use
{
m̂j(·)

}k
j=1

to denote the estimator from 19. Its asymptotic properties were discussed by Mammen and Yu

(2007). Cheng (2009) and Yu (2014) extended their results to the partially linear monotone

additive model. The estimator
{
m̂j(·)

}k
j=1

can be obtained with backfitting, an iterative proce-

dure that updates each time a single sub-function with isotonic estimation while treating other

sub-functions as fixed. See Mammen and Yu (2007) for a literature review of backfitting. The

procedure is described here:

For a fixed sample {yi, xi}ni=1. To solve the problem 19, we can first solve the following

problem

min
G

n∑
i=1

(yi −
k∑
j=1

gji )
2, (20)

where G is a k × n matrix of real numbers gji , and each of its column, gj , being an isotonic

vector w.r.t to the ordered xj . For example, if k = 3 and n = 3, we have

Y =


y1

y2

y3

 , x =


x11 x21 x31

x12 x22 x32

x13 x23 x33

 , and the estimator G =


g11 g21 g31

g12 g22 g32

g13 g23 g33

 .

If x12 > x11 > x13, then the least square isotonic estimator should satisfy g12 > g11 > g13. Given

G solving the problem (20), the value of the estimated monotone function m̂ on the point xji can

be assigned with m̂(xji ) = gji − ḡj , where ḡj= 1
n

∑n
i=1 g

j
i that is needed for the normalization,

and the estimated constant is ĉ =
∑k

j=1 ḡ
j . Since there is a one-to-one relationship between gji

and xji , we can rewrite gji = gj(xji ), i.e, gj(·) is a monotone function defined on xj .

Let gji,[r](·) denote the backfitting estimator of gj(·) updated at the r-th round of the iteration.

In the j-th step of the round r. We see that gji,[r](·) is obtained by regressing

{
Yi − g1[r](X

1
i )− ....− gj−1[r] (Xj−1

i )− gj+1
[r−1](X

j+1
i )− ...gk[r−1](X

k
i )
}n
i=1

on {Xj
i }ni=1 with the isotonic regression. In each round and each step, we repeat this type of

isotonic regression recursively for r = 1, 2, ... and j = 1, ..., k. After some stopping condition is
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satisfied, we can normalize these backfitting estimators and obtain ĉ and m̂.

Now we incorporate this method into the estimation of the nuisance function of the model

(1). As in Section 2.3, we should also allow the estimation of (17) to depend on β by replacing

Yi by T (Zi, β).

W.l.o.g., A1” can be modified to

A1(3) X is a random vector taking value in the space [0, 1]k.

and A2 is modified to

A2(3) There exists δ0 > 0 and K0 > 0 that the mean function E[T (Zi, β)|Xi = xi] := pβ(xi)

is a sum of k monotone increasing functions mβ(·), i.e., pβ(xi) ≡ cβ +
∑k

j=1m
j
β(xji ) each

β ∈ B(α0, δ0).

Let A3(3) be the same as A3. Similarly, we have

Lemma 4. For fixed β, p̂β(Xi) ≡ ĉβ +
∑k

j=1 m̂β(Xj
i ) is a least square isotonic estimator of the

conditional mean E(T (Zi, β)|Xi). δ(X) is a bounded function of X with a finite total variation.

Under A1(3) - A3(3), we have 1
n

∑n
i=1 δ(Xi)(T (Zi, β)− p̂β(Xi)) = op(n

−1/2).

The proof is in Appendix. It is based on Theorem 2 of Mammen and Yu (2007), which states

that for a given sample of size n, the backfitting estimator of the problem (20) will converge to

the least square estimator of this problem, with r growing to ∞.

Now let (i) A6(3) to A9(3) are the same as A6’ to A9’. We use p0 to denote pβ0 , p0(xi) =

c0 +
∑k

j=1m
j
0(x

j
i ). And we define

Mβ = −E
{
∂m(Zi, β0, p0(Xi))

∂β
+ E[D(Zi, β0)|Xi]

∂T (Zi, β0)

∂β

}
, and

M(Zi) = E(D(Z, β0)|Xi)(T (Zi, β0)− p0(Xi)).

Theorem 4. Assuming A1 (3 ) - A9 (3 ), for unconditional moment condition E[m(Z, β0, p0(X))] =

0, p̂β(·) is an isotonic estimator of the additive conditional mean E(T (Zi, β)|Xi) := pβ(Xi) ≡
cβ +

∑k
j=1m

j
β(Xj

i ).

Then β̂ obtained by (13) is
√
n-consistent and

√
n(β̂ − β0)

d→ N(0, V ),

where V = M−1β E[{m(Z, β0, p0) +M(Z)}{m(z, β0, p0) +M(Z)}′]M−1β .

Example 2 continued: If we apply Theorem 4 to the partially linear monotone additive

model
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Yi = Diβ0 + p0(Xi) + ε

= Diβ0 +
k∑
j=1

mj
0(X

j
i ) + ε with E[ε|X,D] = 0.

we can choose m(Z, β0, F0(X
′α0)) = Di

{
Yi − β0Di −

∑k
j=1m

j
0(X

j
i )
}

. For simplicity we set

Di ∈ R1 then we have

T (Zi, β0) = Y − β0Di,

D(Zi, β0) = −Di,

E(D(Zi, β0)|Xi) = −E(Di|Xi),

∂m(Zi, β0, p0(Xi))

∂β
= −D2

i

∂T (Zi, β0)

∂β
= −Di

Mβ = E [Di(Di − E(Di|Xi))] = E
[
(Di − E(Di|Xi))

2
]

M(Zi) = −E(Di|Xi)

Y − β0Di −
k∑
j=1

mj
0(X

j
i )


then V = σ2E[(Di − E[Di|Xi])

2]−1. This variance is larger than the one achieved in Cheng

(2009), which is σ2E[(Di−
∑k

j=1E[Di|Xj
i ])2]−1, because he assumed the pairwise independence

of Xi. We do not have this assumption.

4 Bootstrap inference

One advantage of the proposed estimator β̂ is tuning-parameter-free. However, since β̂ is a

semiparametric estimator, its asymptotic variance involves conditional means. The estimation

of variances might still require some smoothing methods. To obtain an estimator that is free

from tuning parameters in both estimation and inference, we propose a bootstrap method to

approximate the asymptotic distribution β̂.

Groeneboom and Hendrickx (2017) showed the bootstrap validity of the single index param-

eter in the current status model. We generalize their result to the model (1).

The bootstrap procedure is:

1. {Z∗i }ni=1 is a resample with replacement from {Zi}ni=1.

2. p̂∗(·) is an isotonic estimator w.r.t. {Z∗i }ni=1.

3. β̂∗ solves 1
n

∑n
i=1m(Z∗i , β, p̂

∗(·)) = 0 (or argmin
β

∣∣∣∣∣∣∣∣ 1n∑n
i=1m(Z∗i , β, p̂

∗
β(·))

∣∣∣∣∣∣∣∣2).
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Theorem 5. Let β̂∗ be the bootstrap counterpart of β̂ in Theorem 1, 2 or 3, which are esti-

mated based on resamples from the empirical distribution of {Zi}ni=1. Suppose the corresponding

assumptions for these theorems hold. Then

sup
t∈Rk

|P ∗{
√
n(β̂∗ − β̂) ≤ t} − P0{

√
n(β̂ − β0) ≤ t}|

p→ 0,

where P ∗ is the bootstrap distribution conditional on the data.

5 Simulation

In this section, we conduct four simulations for the proposed estimators.

5.1 Efficiency for IPW model with single covariates

We use two numerical results to show evidence that MAR model and ATE model with univariate

propensity score can achieve the semi-parametric efficiency bound. This is in accordance with

Corollary 1. We also show the bootstrap validity under each setting.

5.1.1 Missing at random model

Example 3 (a) continued: The associated moment condition for the MAR model is

E[m(Z, β0, p0(·))] = E(
Y · T
p0(X)

− β0) = 0.

Assuming that p0(·) is a monotone increasing function, we are interested in the asymptotic

properties of the plug-in estimator β̂:

β̂ =
1

n

n∑
i=1

yi · ti
p̂(xi)

,

where p̂(·) is the isotonic estimator of the propensity score

p0(x) = E[T |X = x] = Pr(T = 1|X = x).

The semi-parametric bound for the estimate β̂ is Ω = Var(E[Y |X]) + E[Var(Y |X)/p0(X)].

(See, e.g., Section 4.1 of Hirano, Imbens, and Ridder, 2000)

We set X = 0.15 + 0.7Z, Z and ν are independently uniformly distributed on [0, 1], and

Y = 2X + ε

ε ∼ N(0, 1)

T =

0 if X < ν

1 if X ≥ ν
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In this setting, we have

β0 ≡
∫
E(Y |X)dP (X) = E(2X) = 2× 0.5 = 1.

The efficient variance is

Ω = Var(E[Y |X]) + E[Var(Y |X)/p0(X)] = Var(2X) + E[1/p0(X)]

= 4 · 0.72

12
+

∫ 0.85

0.15

1

x

1

0.7
dx ≈ 2.63

The simulation results are in Table 1:

Table 1: MAR model

n µ̂β σ̂2β n µ̂∗β σ̂2∗β

100 0.9966 2.9991 100 1.2044 1.3656
1000 0.9959 2.8373 1000 0.9879 2.8921
2000 0.9972 2.7514 2000 1.0721 2.4442
5000 0.9981 2.6845 5000 1.0259 2.4274
10000 0.9987 2.6625 10000 1.0233 2.6815

∞ 1 2.63 ∞ 1 2.63

The left panel of Table 1 shows the simulation results based on 5000 Monte Carlo replications.

The sample sizes are n = 100, 1000, 2000, 5000 and 10000. We present the Monte Carlo averages

µ̂β, and variances σ̂2β (multiplied by n) of the estimates of β0. We can see with the sample size

growing, both µ̂β and σ̂2β are converging to their theoretical limit.

In the right panel, we present the corresponding simulation results based on 5000 bootstrap

samples. The sample sizes are the same. µ̂∗β and variances σ̂2∗β are defined similarly. Since all

the bootstrap samples are originated from one Monte Carlo sample, the pattern of biases and

variances could be less stable than those in the left panel, as expected. Nevertheless, µ̂∗β and

σ̂2∗β are still converging to their theoretical limit.

5.1.2 Average Treatment Effect Model

Example 3 (b) continued: The efficient asymptotical variance for ATE model is Ω =

Var(E[Y (1)−Y (0)]|X)+E[Var(Y (1)|X)/p0(X)+E[Var(Y (0)|X)/(1−p0(X))]. (See, e.g., Section

4.2 of Hirano, Imbens, and Ridder, 2000)
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We set X = 0.15 + 0.7Z, Z and ν are independently uniformly distributed on [0, 1], and

T =

0 if X < ν

1 if X ≥ ν

Y = 0.5T + 2X + ε

ε ∼ N(0, 1)

The average treatment effect

β0 = 0.5

The efficient variance

Ω2 = Var(E[Y (1)− Y (0)]|X) + E[Var(Y (1)|X)/p0(X)] + E[Var(Y (0)|X)/(1− p0(X))]

= Var(0.5) + E[1/p0(X)] + E[1/(1− p0(X))]

= 0 +

∫ 0.85

0.15

1

x

1

0.7
dx+

∫ 0.85

0.15

1

1− x
1

0.7
dx

≈ 2× 2.47 = 4.94

The simulation results are in Table 2:

Table 2: ATE model

n µ̂β σ̂2β n µ̂∗β σ̂2∗β

100 0.4242 6.0707 100 0.6692 2.9584
1000 0.4846 5.3859 1000 0.4794 5.8949
2000 0.4900 5.2478 2000 0.5702 5.2076
5000 0.4943 4.9404 5000 0.5013 4.8445
10000 0.4964 4.9492 10000 0.4920 5.3305

∞ 0.5 4.94 ∞ 0.5 4.94

All the simulation settings are similar to those of Table 1, so do the outcomes. In general,

Monte Carlo averages and variances for both original and bootstrap samples converge to their

theoretical limits. Overall, the simulation outcomes for both MAR and ATE are in accordance

with our theoretical results in the previous section.

5.2 Comparison with parametric plug-in estimators

5.2.1 With correctly specified parametric model

Here we compare the performances of two average treatment effect estimators, whose propensity

scores are estimated with probit estimation and isotonic estimation. We consider the following

setting:
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Y = X ′γ0 + T · β0 + ε

T =

0 if X ′α0 < ν

1 if X ′α0 ≥ ν
, (21)

where X
i.i.d.∼ U [−1, 1]3. ε and v are independently distributed standard normal random

variables. Under this setting, we have Pr(T = 1|X = x) := p0(x) = Φ(x′α0), where Φ is the

CDF of the standard normal distribution. α′0 = (1, 1, 1)/
√

3, β0 = 0.5 and γ′0 = (0.1, 0.2, 0.3).

The propensity score is correctly specified in a probit estimation. We are interested in the

average treatment effect β0.

Table 3: ATE of the model (21) with plug-in probit and isotonic estimators

probit normalized probit isotonic

n µ̂β σ̂2β MSE µ̂β σ̂2β MSE µ̂β σ̂2β MSE

100 0.5018 5.9972 5.9975 0.5045 5.7167 5.7187 0.4823 5.8732 5.9047
1000 0.5025 5.2794 5.2855 0.5025 4.9949 5.0010 0.4956 5.0885 5.1081
2000 0.4996 5.4129 5.4133 0.4997 5.0820 5.0822 0.4951 5.1846 5.2330
5000 0.5004 5.4781 5.4788 0.5006 5.2139 5.2154 0.4982 5.2466 5.2634
10000 0.5002 5.3383 5.3388 0.5004 5.0288 5.0303 0.4987 5.0643 5.0807

Table 3 shows the simulation results based on 5000 Monte Carlo replications. The sample

sizes are n = 100, 1000, 2000, 5000, and 10000. The variances and MSE is scaled with n. In

the left panel and the right panel, the ATE estimators β̂ are calculated with (12), where the

inversed propensity weights are not normalized. In the middle panel we normalize the weights

to unity. The estimator in the middle panel is calculated by

β̂ =
1

n

n∑
i=1

{
Yi · Ti
p̂(Xi)

/

(
n∑
i=1

Ti
p̂(Xi)

)
− Yi · (1− Ti)

1− p̂(Xi)
/

(
n∑
i=1

1− Ti
1− p̂(Xi)

)}

From Table 3, we can see that the ATE with isotonic plug-in estimators (the right panel) out-

performs the ATE with correctly specified parametric plug-in estimators without normalization

(the left panel), in every sample size. If we normalize the parametrically estimated propensity

scores, the probit models perform better, as pointed out by Imbens (2004). With the sample size

growing, the performance of the ATE with isotonic plug-in estimators are converging to those

with correctly specified parametric plug-in estimators with normalization (the middle panel).

With n = 10000, they are very close to each other. We can conclude that our semiparametric

method performs similarly to the parametric method under the correct model specification.
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5.2.2 Robustness

Compared to the popular choice of parametric models for propensity scores, such as the binary

probit model or logit model, our semiparametric estimator is robust to the model specification.

Considering the following setting:

Y = X3 · γ0 + T · β0 + ε (22)

with Pr(T = 1|X = x) = x3/10 + 0.5, (23)

where ε ∼ N(0, 1) and independent from X and T , γ0 = 1, and β0 = 0.5. X ∼ U [−1.5, 1.5].

Figure 1 describes the function (23), the CDF of the standard normal distribution and the

logistic function.

Figure 1: Normal CDF, logistic function, and the DGP (23)

The dotted black line is the DGP (23). The solid red line is the CDF of standard normal, y = Φ(x). The dashed

blue line is the logistic function, Pr(T = 1|X = x) = exp(a+bx)
exp(a+bx)+1

. Three lines intersect at [0, 1/2].

The idea of (23) is to find a monotone increasing function, which cannot be well approximated

by the common choices of parametric models, such as the probit model or the logit model. The

function (23) is convex for x > 0 and concave for x < 0. If we use Pr(T = 1|X = x) = exp(a+bx)
exp(a+bx)+1

to approximate this function, we have an almost linear fitted line. See Figure 2
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Figure 2: . The function (23) fitted with logistic function.

The dotted black line is the DGP (23). The solid red line is the CDF of standard normal, y = Φ(x). The dashed

blue line is the logistic function, y = exp(a+bx)
exp(a+bx)+1

. Three lines intersect at the point [0, 1/2].

While this line roughly fits the quasi-linear part of the function (23) (the piece around zero),

the departure becomes large for |x| > 1.2. If the outcome y has large values far from zero, as

the case in (22), we might have large estimation bias. Table 4 confirms this conjecture.

Table 4: ATE estimated with logistic and isotonic plug-in estimator

logistic isotonic

n µ̂β σ̂2β MSE µ̂β σ̂2β MSE

1000 0.5930 5.6958 14.3380 0.4735 5.0426 5.7442
2000 0.6044 5.6533 27.4569 0.4824 4.8256 5.4446
5000 0.6153 5.5104 71.9331 0.4886 4.6304 5.2748

Table 3 shows the simulation results based on 5000 Monte Carlo replications. The sample

sizes are n = 1000, 2000, and 5000. The variances and MSE’s are scaled with n. In the

left panel, the propensity score is estimated with the logistic function y = exp(a+bx)
exp(a+bx)+1 ; in the

right panel, the propensity score is estimated with the isotonic estimation. We can see that

the misspecified logit model cannot lead to satisfying estimators, and it presents stable biases

and growing MSE’s. Isotonic plug-in estimators do not suffer from this issue and have stable

performances across different sample sizes.

5.3 Comparison with other non-parametric plug-in estimators: smoothness

conditions

√
n−consistency and efficiency can also be achieved with series or kernel plug-in estimators.

However, tuning parameters should be carefully chosen, such that the high-order residual term

and bias term could disappear at fast rates. Moreover, the smoothness conditions for the nui-
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sance function can sometimes be demanding. For ATE estimators, Hirano, Imbens, and Ridder

(2003) require that

p0(x) is continuously differentiable of order s ≥ 7.

Compared to our assumption:

p0(x) is monotone increasing.

We even do not need continuity. Consider

Y = X · γ0 + T · β0 + ε

p0(x) = Pr(T = 1|X = x) = 0.1 + 0.8× 1(x > −1) (24)

where ε ∼ N(0, 1) and independent from X and T , γ0 = 1, and β0 = 0.5. X ∼ U [−1.5, 1.5].

We see from (24) that p0(x) is a step probability function with a jump point at −1. Figure 3

describe p0(x) and curves fitted with series estimator and isotonic estimator.

Figure 3: The function (24) fitted with series estimators and isotonic estimators

The sample size n = 1000. The black dotted lines are the function (24). The blue dashed lines are fitted with
series estimators. The red lines are fitted with isotonic estimators. In the left panel the series length k = 3. In
the right panel the series length k = 6.

We see that series estimators cannot fit the discrete function (24) very well, while isotonic

estimators do good jobs. The results are collected in Table 5. It compares ATE estimates with

series and isotonic plug-in estimators based on 5000 Monte Carlo replications. The sample sizes

are n = 100, 1000, 2000, 5000, and 10000. The MSE’s are scaled with n. Series estimations are

conducted with different series lengths ranging from 3 to 6.
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Table 5: ATE estimated with series and isotonic plug-in estimator

series isotonic

length 3 4 5 6 –

n µ̂β MSE µ̂β MSE µ̂β MSE µ̂β MSE µ̂β MSE

100 0.01 488.48 0.57 100.40 0.56 89.05 0.46 258.53 0.29 22.09
1000 -0.35 1637.11 0.43 72.82 0.44 73.97 0.42 229.40 0.42 19.28
2000 -0.49 3341.69 0.43 67.86 0.44 69.87 0.41 198.41 0.44 19.68
5000 -0.64 8470.42 0.43 82.86 0.45 68.90 0.37 241.87 0.46 20.59
10000 -0.73 17814.28 0.43 112.95 0.45 76.43 0.35 384.80 0.47 21.07

We can see that estimates with the series length 4 and 5 perform comparatively good, but

their MSE’s are still considerably larger than those with isotonic plug-in estimators, and the

biases of them seem not to shrink with the sample size growing. In comparison, the estimates

with isotonic plug-in estimators in the last two columns perform the best: MSE’s are much lower,

and with the sample size growing, biases are shrinking towards zero. Overall, Table 5 highlights

two merits of our method: (i) it saves us the bother of selecting the tuning parameter that

delivers the best result; (ii) its performances remain stable and well in the case of non-smooth

nuisance functions.

6 Application

Since the work of LaLonde (1986), National Supported Work (NSW) data and its different

variations were analyzed by many authors, including Dehejia and Wahba (1999, 2002), Smith

and Todd (2004), Dehejia (2005). We follow the setting in Dehejia and Wahba (1999) (hereafter,

DW). The data is downloaded from the website of Rajeev Dehejia (http://users.nber.org/˜rdehejia/).

6.1 Data description

The dataset is a combination of observations from NSW and two other datasets, Panel Study

of Income Dynamics (PSID) and the Current Population Survey (CPS). In the NSW dataset,

the treatment was randomly assigned, and thus the ATE estimator calculated from the NSW

dataset can be regarded as unbiased and serve as a benchmark. Since no observation in PSID

and CPS was treated, the dataset, which combines the treated observations from NSW and

the observations from PSID and CPS, can be regarded as a non-experimental dataset. The

comparison of estimators from the NSW dataset and this combined dataset can be used to

evaluate the non-experimental methods.

DW presents estimators from combinations of the NSW treated group and different subsets

of PSID and CPS. In our application, we use the PSID-2 as the control group, which is the

second row of Table 3 in DW.
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6.2 Estimation results

We choose the same set of covariates for the subset PSID-2 as DW. The details are in the

description under DW’s Table 3. Given these covariates, we estimate ATE and ATT with plug-

in logistic estimators and isotonic estimators. In Table 6, we compare these four estimators with

those obtained by DW for the same dataset.

Table 6: NSW-PSID2 estimation

Method Propensity score β̂ se(β̂)

NWS random (benchmark) — 1,794 633

DW’s stratifying estimator logistic 2,220 1,768
DW’s matching estimator logistic 1,455 2,303

IPW ATE estimator logistic 1,888 2,175
IPW ATE estimator isotonic 1,841 1,723

IPW ATT estimator logistic 1,870 1,149
IPW ATT estimator isotonic 1,802 1,496

The first three rows are from DW’s Table 3. The last four rows are from our calculations. The standard errors
are calculated with bootstrap.

All the estimators from non-experimental data have comparatively large standard deviations.

This is in line with the results of other authors analyzing this dataset. Compared to other

estimators, the ATE and ATT estimators with isotonic plug-in estimators seem to be closer to

the benchmark estimator in the first row, than other non-experimental estimators. While the

standard deviation of the ATT estimator with the isotonic plug-in estimator is larger than its

counterpart with the logistic plug-in estimator, the standard deviation of the ATE estimator

with the isotonic plug-in estimator is smaller than its counterpart. Overall, the application

results support our estimation strategy.

7 Conclusion

We study a general framework of semiparametric estimation with plug-in isotonic estimators. We

show that the proposed estimator is
√
n-consistent and asymptotically normal. In the univariate

cases, the estimator is efficient. It generalizes the estimation methods of existing semiparametric

models with monotone nuisance functions in the literature. Furthermore, we apply the estimator

to the case of inverse probability weighting for ATE models, where the propensity scores are

assumed to be monotone increasing. In this setting, the monotonicity assumption is a natural

implication of the binary selection model and is satisfied by many parametric models widely

adopted in applied work.

We show that while the proposed estimator has a similar performance to methods with

parametric plug-in estimators under correct specifications, it is more robust against misspeci-

fication than the latter. Compared to methods with other nonparametric plug-in estimators,
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the newly proposed method requires minimum smoothness conditions on nuisance functions.

Finally, we establish the asymptotic validity of the bootstrap, which ensures that the estimator

is tuning-parameter-free in both estimation and inference.

A Mathematical appendix

A.1 Proof of Lemma 1

The proof here is based on the supplementary material of BGH (hereafter BGH-supp). Similar

techniques can also be found in Groeneboom & Jongbloed (2014) and Groeneboom & Hendrickx

(2018).

Let {xnj}kj=1 be the subsequence of {xi}ni=1 representing all the jump points of p̂(·). By the

construction of p̂(·) (see, e.g., Lemmas 2.1 and 2.3 in Groeneboom and Jongbloed, 2014), we

have
∑nj+1−1

i=nj
{yi − p̂(xi)} = 0 for each j = 1, . . . , k, which implies

k∑
j=1

mj

nj+1−1∑
i=nj

{yi − p̂(xi)} = 0, (25)

for any weights {mj}kj=1. (See also Barlow and Brunk, 1972). We define the step function δ̄n(x):

δ̄n(x) =


δ(xnj ) if p0(x) > p̂(xnj ) for all x ∈ (xnj , xnj+1)

δ(s) if p0(s) = p̂(s) for some s ∈ (xnj , xnj+1)

δ(xnj+1) if p0(x) < p̂(xnj ) for all x ∈ (xnj , xnj+1)

,

for x ∈ [xnj , xnj+1) with j = 1, . . . , k (if j = k, set xnj+1 = max
i
xni). By (25), it holds

∫
δ̄n(x){y − p̂(x)}dPn(z) = 0,

Thus, we have

1

n

n∑
i=1

δ(Xi)(Yi − p̂(Xi))

=

∫
δ(x){y − p̂(x)}dPn(z)

=

∫
[δ(x)− δ̄n(x)](y − p̂(x))dPn(z) (26)

By assumption, δ(x) is a bounded function with a finite total variation, so is δ̄n(x). Therefore,

by a similar argument as in pp. 18-20 of BGH-supp, we have
∫

[δ(x)− δ̄n(x)](y− p̂(x))dPn(z) =

op(n
−1/2). We see that (26) can be decomposed as:
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∫
[δ(x)− δ̄n(x)](y − p̂(x))dPn(z)

=

∫
[δ(x)− δ̄n(x)](y − p̂(x))d (Pn(z)− P0(z))

+

∫
[δ(x)− δ̄n(x)](y − p0(x))dP0(z)

+

∫
[δ(x)− δ̄n(x)](p0(x)− p̂(x))dP0(z)

:=I + II + III

By Lemma 21 in BGH-supp, both δ(x) − δ̄n(x) are bounded functions with finite total

variations. With similar arguments in Groeneboom and Jongbloed (2014) we have some C0 > 0,

with all x ∈ X
|δ(x)− δ̄n(x)| ≤ C0|p0(x)− p̂(x)| (27)

For I, let us define the following function classes

MRK = {monotone increasing functions on [−R,R] and bounded by K},

GRK = {g : g(x) = p(x), x ∈ X , p ∈MRK}, [seems can be removed]

DRKv = {d : d(x) = g1(x)− g2(x), (g1, g2) ∈ G2RK , ||d(x)||P0 ≤ v},

HRKv = {h : h(y, x) = yd1(x)− d2(x), (d1, d2) ∈ D2
RKv, z ∈ Z}. (28)

And we have the integrand of I

[δ(x)− δ̄n(x)](y − p̂(x))

=[δ(x)− δ̄n(x)]y − [δ(x)− δ̄n(x)]p̂(x) (29)

Let

Fa =
{
f : f(z) = [δ(x)− δ̄n(x)]y − [δ(x)− δ̄n(x)]p̂(x), z ∈ Z

}
.

We note:

(i) By Lemma 21 in BGH-supp, [δ(x) − δ̄n(x)] is a bounded function of x with finite total

variation.

(ii) By Assumption A3, we can show supx∈X |p̂(x)| = Op(log n) (See, e.g., Lemma 7.1 in

Balabdaoui, Durot, and Jankowski, 2019). Therefore, there exists K1 > 0, such that p̂(x) ∈
GR(K1 logn) with probability approaching one.

(iii) By (10) and (27), we have ||δ(x) − δ̄n(x)||2 ≤ C1(log n)n−1/3, for some C1 > 0. Thus,

there exists a positive constant C2 that is larger than twice the bound of δ(x), and v1 =
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C1(log n)n−1/3, such that [δ(x)− δ̄n(x)] ∈ DRC2v1 .

(iv) By (ii), a similar argument of (iii), (10), and Jensen’s inequality, we have [δ(x) −
δ̄n(x)]p̂(x) ∈ DR(K2 logn)v2 for a large enough constant K2 > 0 and v2 = C3(log n)2n−1/3 for

some C3 > 0, with probability approaching one.

We choose K = max{C2,K2 log n} and v = max{v1, v2}. Now we have (29)∈ HRKv.
Now we define some notations. Let ||Gn||F = supf∈F |

√
n(Pn − P0)f |,

HB(ε,F , || · ||) = logN[](ε,F , || · ||)

be the entropy of the ε-bracketing number of the function class F under the norm || · ||, and

Jn(δ,F , || · ||) def.
=

∫ δ

0

√
1 +HB(ε,F , || · ||)dε.

Let || · ||B,P0 be the Bernstein norm under a measure P0. In this section, we use Jn(δ) to

denote Jn(δ,F , || · ||B,P0) .

By similar arguments in Lemma 13 of BGH-supp (In our case we can ignore the single-index

coefficients), we have, with probability approaching one:

HB(ε, F̃a, || · ||B,P0) ≤ C3

ε
, (30)

for some C3 > 0, where F̃a = (C4 log n)−1Fa with some C4 > 0. Also, there exists a constant

C5 > 0 such that

||f̃ ||B,P0 ≤ C5(log n)n−1/3, (31)

for all f̃a ∈ F̃a, with probability approaching one. We use E to denote the event that both (30)

and (31) happen, and we have lim
n→∞

P (E ) = 1.

Let δn = C5(log n)n−1/3 and Ij be the j-th component of I. For any positive constants A

and ν, there exist positive constants B1, and B2, for all n large enough, such that
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P{|Ij | > An−1/2} ≤ P
{
|Ij | > An−1/2,E

}
+ P (E c)

≤ P {||Gn||Fa > A,E }+
ν

2

≤ E[||Gn||Fa |E ]

A
+
ν

2

=
C4 log n

A
E[||Gn||F̃a

|E ] +
ν

2

.
C4 log n

A
Jn(δn)

(
1 +

Jn(δn)√
nδ2n

)
+
ν

2

.
log n

A
(δn + 2B

1/2
1 δ1/2n )

(
1 +

δn + 2B
1/2
1 δ

1/2
n√

nδ2n

)
+
ν

2

.
1

A
(log n)3/2n−1/6

(
1 +

B2

(log n)3/2

)
+
ν

2

. ν, (32)

The second inequality follows from the definition of Fa; The third inequality follows from the

Markov inequality, the first equality follows from the definition of F̃a, the first wave inequality

(.) comes from Lemma 3.4.3 of van der Vaart and Wellner (1996) and the definition of δn,

the second wave inequality comes from (30) and Equation (.2) in BGH-supp, the third wave

inequality follows from δn . δ
1/2
n and the definition of δn. Therefore,

I = op(n
−1/2). (33)

For II, we have by the law of iterated expectation.

II =

∫
[δ(x)− δ̄n(x)](y − p0(x))dP0(z) = 0

For III, we have

III =

∫
[δ(x)− δ̄n(x)](p0(x)− p̂(x))dP0(z)

.
∫

(p0(x)− p̂(x))2dP0(z)

= Op((log)2n−2/3) = op(n
−1/2),

Where the first wave inequality follows from (30), the second equality follows from (10).

Finally, we can conclude that
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A.2 Proof of Proposition 1

Under A1-A4, we have 1
n

∑n
i=1E[D(Z, β0)|Xi](Yi − p̂(Xi)) = op(n

−1/2). Then we have

1

n

n∑
i=1

m(zi, β, p̂(·)) = 0 (34)

⇒ 1

n

n∑
i=1

{m(zi, β, p̂(·)) + E[D(Z, β0)|Xi](Yi − p̂(Xi))} = op(n
−1/2) (35)

Let β̂ be the solution of (34), and β̃ be the solution of

1

n

n∑
i=1

{m(zi, β, p̂(·)) + E[D(Z, β0)|Xi](Yi − p̂(Xi))} = 0.

Then by (35),
√
n(β̂ − β0) and

√
n(β̃ − β0) should have the same limit distribution.

A.3 Proof of Theorem 1

The proof is a combination of the techniques for isotonic regression applied in Groeneboom and

Hendrickx (2018) and BGH, and the framework of Newey (1994).

Let u = y − p0(x) and M(z) = δ(x)u. We verify the assumptions 5.1-5.6 in Newey (1994).

Step 1: Verify Assumption 5.1 in Newey (1994).

Assumption 5.1 (Newey, 1994): (i) There is a function D(z, p) that is linear in p such that for

all p with ||p− p0|| small enough,

||m(z, p)−m(z, p0)−D(z, p− p0)|| ≤ b(z)||p− p0||2;

(ii)E(b(z))
√
n||p̂− p0||2

p→ 0

(i) is a restatement of A6 (i). (ii) can be derived by A6(ii) and the fact

||p̂− p0||2 = Op((log n)2n−2/3)

(See, e.g., Lemma 5.15 in van de Geer, S., 2000).

Step 2: Verify Assumption 5.2 in Newey (1994).

Assumption 5.2 (Newey, 1994): 1
n

∑n
i=1D(z, p̂(x) − p0(x)) −

∫
D(z, p̂(x) − p0(x))dP0(z) =

op(n
−1/2).
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By A5, we have

1

n

n∑
i=1

D(Z, β0, p̂(x)−p0(x))−
∫
D(z, β0, p̂(x)−p0(x))dP0(z) =

∫
D(z, β0)(p0(x)−p̂(x))d(Pn−P0)(z)

(36)

let

Fb =
{
f : f(z) = D(z, β0)(p0(x)− p̂(x)), x ∈ X

}
.

To avoid heavy notations, we re-define some constant terms in this section, such as Ai, Ci,

Ki,δn v, etc.. They are not related to the same constants in other sections.

By similar arguments as in Section A.1, for some C1, C2 > 0, we have

p0(x)− p̂(x) ∈ DR(C1logn)(C2n−1/3 logn), (37)

with probability approaching one.

By Theorem 2.7.5 in van der Vaart and Wellner (1996) and Lemma 11 in BGH-supp, with

R,C, v > 0, we have

HB(ε,DRCv, || · ||P0) ≤ AC

ε
,

for some A > 0. Now we define

H(2)
RKv = {h : h(z) = D(z, β0)d(x), d(·) ∈ DRCv, z ∈ Z}.

Let
(
dL, dU

)
to be any ε-bracket of the function class DRKv.

Let us define

hL =

D(z, β0)d
L(x) if D(z, β0) ≥ 0

D(z, β0)d
U (x) if D(z, β0) < 0

,

and

hU =

D(z, β0)d
U (x) if D(z, β0) ≥ 0

D(z, β0)d
L(x) if D(z, β0) < 0

.

We see that
(
hL, hU

)
is a bracket of h, its size is∫

Z

[
hU (z)− hL(z)

]2
dP0(z) =

∫
Z
D(z, β0)

2
(
dU (x)− dL(x)

)2
dP0(z)

=

∫
X
E
[
D(z, β0)

2|x
] (
dU (x)− dL(x)

)2
dP0(x)

= A1ε
2,

for some A1 > 0. The last equality follows from Assumption A4 and the definition of

ε-bracket. Now for some Ã > 0, we have
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HB(ε,H(2)
RCv, || · ||P0) ≤ ÃC

ε
. (38)

Now we switch to Bernstein norm since we do not want to put a bound on D(z, β0). By the

definition of Bernstein norm

||h||2B,P0
= 2P0 [exp(|h|)− |f | − 1]

= 2

∫ ∞∑
k=2

1

k!
|h|kdP0(z),

by the extension of the natural exponential function. Now we try to bound the Bernstein

norm of h
H , where H is some positive number we choose in the following steps to achieve a finite

upper bound.

||H−1h||2B,P0
= 2

∫ ∞∑
k=2

1

Hk

1

k!
|D(z, β0)d(x)|kdP0(z)

≤ 2

∫ ∞∑
k=2

1

Hk

1

k!
|D(z, β0)|k|d(x)|kdP0(z)

≤ 2

∞∑
k=2

1

Hk

(2C)k−2

k!
k!Mk−2

1 c1

∫
|d(x)|2dP0(z)

=
2

H2

∞∑
k=2

(2M1C)k−2

Hk−2 c1

∫
|d(x)|2dP0(z)

=
2

H2

∞∑
k=2

(
2M1C

H

)k−2
c1v

2

=

(
2

H

)2

c1v
2

The second inequality follows from Assumption A4 and the fact d(·) ∈ DRCv, where c1 and

M1 are the same constants in Assumption A4. (different from the capital C1 defined before

(37)) The third equality follows from the definition of v inDRCv. The last equality follows by

choosing H = 4M1C. Now we have

|| h
H
||B,P0 .

v

H
(39)

Now we set C = C1logn, v = C2n
−1/3 log n

Fb ⊂ H
(2)

R(C1logn)(C2n−1/3 logn)

and let H̃ = 4M1C1logn, then we have for some C3 > 0,

F̃b = H̃−1Fb
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Combined with (38) and (39), we have with probability approaching one

HB(ε, F̃b, || · ||B,P0) ≤ C3

ε
, (40)

for some C3 > 0, and

and ||f̃ ||B,P0 ≤ C4n
−1/3, (41)

for all f̃b ∈ F̃b, for some C4 > 0.

We use E1 to denote the event described in (40) and (41), S to denote the value of (36). and

δn = C4n
−1/3. Now For any A2 > 0.

P{|S| > A2n
−1/2} ≤ P

{
|S| > A2n

−1/2,E1

}
+ P (E c

1 )

≤ P {||Gn||Fb
> A2,E1}+

ν

2

≤ E[||Gn||Fb
|E1]

A2
+
ν

2

.
log n

A2
E[||Gn||F̃b

|E1] +
ν

2

.
log n

A2
Jn(δn)

(
1 +

Jn(δn)√
nδ2n

)
+
ν

2

.
log n

A2
(δn + 2B

1/2
1 δ1/2n )

(
1 +

δn + 2B
1/2
1 δ

1/2
n√

nδ2n

)
+
ν

2

.
1

A
(log n)3/2n−1/6

(
1 +

B2

(log n)3/2

)
+
ν

2

.
log n

A2
n−1/6B2 +

ν

2
. ν, (42)

Each steps are similar to those of (32). Thus, we have
∫
D(z, β0)(p0(x)−p̂(x))d(Pn−P0)(z) =

op(n
−1/2). Newey’s Assumption 5.2 satisfied.

Assumption 5.3 :
∫
D(z, p̂(x)− p0(x))dP0(z) = 1

n

∑n
i=1M(zi) + op(n

−1/2). 4

We have ∫
D(z, β0, p̂(x)− p0(x))dP0(z) = E[D(Z, β0, p̂(X)− p0(X)]

= E
{
D(Z, β0)(p̂(X)− p0(X))

}
= E[E(D(Z, β0)|X)(p̂(X)− p0(X))]

=

∫
δ(x)(p̂(x)− p0(x))dP0(x).

4This is a simplified version of Assumption 5.3, which is mentioned in p.1366 in Newey (1994).
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The second equality follows from A5. In the last equality we set E(D(Z, β0)|X = x) := δ(x).

Therefore, by plugging in M(z) = δ(x)u

∫
D(z, p̂(x)− p0(x))dP0(z)−

1

n

n∑
i=1

M(Zi)

=

∫
δ(x)(p̂(x)− p0(x))dP0(x)− 1

n

n∑
i=1

δ(Xi)(Yi − p0(Xi))

=

∫
δ(x)(p̂(x)− p0(x))dP0(x)−

∫
δ(x)(y − p̂(x) + p̂(x)− p0(x))dPn(z)

=

∫
−δ(x)(y − p̂(x))dPn(z) +

∫
−δ(x)(p̂(x)− p0(x))d(Pn − P0)(x)

:= I + II. (43)

By Lemma 1, we have I = op(n
−1/2).

For II, by A4 and a similar argument as in p. 23 of BGH-supp, we have II = op(n
−1/2).

Assumption 5.3 is satisfied.

Assumptions 5.4 to 5.6 are adapted as A7 to A9 in this paper. Then the consistency is

proved by Lemma 5.2 of Newey (1994). Finally, we have by Lemma 5.3 of Newey (1994)

√
n(β̂ − β0)

d→ N(0, V ),

where

V = M−1β E[{m(Z, β0, p0) +M(Z)}{m(z, β0, p0) +M(Z)}′]M−1β ,

The efficiency is proved according to Proposition 4 of Newey (1994) (See also his Theorem

2.1).

A.4 Proof of Corollary 1

Let us check A1 to A9 of Theorem 1 for m(Z, β0, p(·)) = Y ·T
p0(X) −

Y ·(1−T )
1−p0(X) − β0.

C2 directly implies A1; C4 implies A2; A3 is satisfied by the fact that T ∈ {0, 1}.
For A4, we have for the ATE model E[D(Z, β)|X] = −(µ1(x)p0(x)

+ µ0(x)
1−p0(x)). It a bounded

function of X with finite total variation by C2 and C3.

A5 is satisfied since we have D(z, β, p(x)− p0(x)) =

(
y·t

p0(x)2
+ y·(1−t)

(1−p0(x))2

)
(p(x)− p0(x)) .

A6-A9 is satisfied by the same arguments in pp.26-33 of Hirano, Imbens, and Ridder (2000).

Therefore, we have all the assumptions for Theorem 1 satisfied. The asymptotical variance

matrix Ω can be obtained in the same way as pp.34-35 of Hirano, Imbens, and Ridder (2000).
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A.5 Proof of Lemma 2.

The additional complication caused by the possible dependence of p(·) on β does not affect this

lemma. The proof is similar to that for Lemma 1 in Appendix A.1, with Y replaced by T (Z, β).

A.6 Proof of Proposition 2.

The proof is similar to that of Proposition 1 in Appendix A.2.

A.7 Proof of Theorem 2

Here we might not be able to solve the sample moment condition (2)

1

n

n∑
i=1

m(Zi, β, p̂β(·)) = 0,

as we did in Theorem 1, since changing β will change the left-hand side discretely.

Now for β ∈ B(β0, δ0), we have

1

n

n∑
i=1

m(Zi, β, p̂β(Xi))

=
1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) +D(Z, β)[(p̂β(Xi)− pβ(Xi)]}+ op(n
−1/2)

=
1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) +D(Z, β)[(p̂β(Xi)− pβ(Xi)]}

+
1

n

n∑
i=1

E(D(Z, β)|Xi)(T (Zi, β)− p̂β(Xi)) + op(n
−1/2)

=
1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) +D(Z, β)[(p̂β(Xi)− pβ(Xi)]}+ op(n
−1/2)

+
1

n

n∑
i=1

{E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi)) + E(D(Z, β)|Xi)[(p̂β(Xi)− pβ(Xi)]}

=
1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) + E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi))}

+
1

n

n∑
i=1

[D(Z, β)− E(D(Z, β)|Xi)][(p̂β(Xi)− pβ(Xi)] + op(n
−1/2)

=
1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) + E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi))}+ op(n
−1/2) (44)

The first equality follows from A5’ and A6’. The second equality follows from Lemma 2.

The third equality and the fourth equality are some rearrangements. The last equality is by
1
n

∑n
i=1[D(Z, β) − E(D(Z, β)|Xi)][(p̂β(Xi) − pβ(Xi)] = op(n

−1/2), which can be proved by A4’

and similar arguments in p.23 BGH-supp.
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By (44) and the definition of β̂ in (13), we have

|| 1
n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi))||

= inf
β
|| 1
n

n∑
i=1

m(Zi, β, p̂β(Xi))||

≤ inf
β
|| 1
n

n∑
i=1

{m(Zi, β, pβ(Xi)) + E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi))}+ op(n
−1/2)||.

The leading term in the last expression,

1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) + E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi))} ,

does not depend on the discrete estimator p̂(·). It is a smooth moment function of β. Thus,

under standard conditions on m, T , and p, we have

inf
β
|| 1
n

n∑
i=1

{m(Zi, β, pβ(Xi)) + E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi))} || = 0,

and by (44) we have

|| 1
n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi))|| = op(n
−1/2). (45)

Let

Mn,β = − 1

n

n∑
i=1

{
∂m(Zi, β0, p0(Xi))

∂β
+ E[D(Zi, β0)|Xi]

∂T (Zi, β0)

∂β

}
,

Mβ = −E
{
∂m(Zi, β0, p0(Xi))

∂β
+ E[D(Zi, β0)|Xi]

∂T (Zi, β0)

∂β

}
, and

M(Zi) = E(D(Z, β0)|Xi)(T (Zi, β0)− p0(Xi)).

We have
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op(n
−1/2) =

1

n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi))

=
1

n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi)) + op(n
−1/2)

+
1

n

n∑
i=1

E(D(Z, β0)|Xi)(T (Zi, β̂)− p̂β̂(Xi))

= −Mn,β(β̂ − β0) +
1

n

n∑
i=1

m(Zi, β0, p̂β̂(Xi)) + op(n
−1/2)

+
1

n

n∑
i=1

E(D(Z, β0)|Xi)(T (Zi, β0)− p̂β̂(Xi)) + op(β̂ − β0)

= −Mβ(β̂ − β0) +
1

n

n∑
i=1

m(Zi, β0, p0(Xi)) + op(n
−1/2)

+
1

n

n∑
i=1

E(D(Zi, β0)|Xi)(T (Zi, β0)− p0(Xi)) + op(β̂ − β0)

= −Mβ(β̂ − β0) +

{
1

n

n∑
i=1

m(Zi, β0, p0(Xi)) +M(Zi)

}
+ op(n

−1/2 + (β̂ − β0)). (46)

The first equality follows from (45). The second equality follows from Lemma 2. The third

equality follows from the expansion around β0 and the definition of Mn,β. The fourth equality

follows from Mn,β −Mβ = op(1) and similar arguments in Step 1 and 2 of Appendix A.3. The

last equality follows from the definition of M(Z).

Based on (46), consistency of β̂ can be similarly proved as in Lemma 5.2 in Newey (1994).

Finally, we have

√
n(β̂ − β0) = M−1β

1√
n

n∑
i=1

{m(Zi, β0, p0(Xi)) +M(Zi)}+ op(1)

d→ N(0,Π), (47)

while M−1β {m(Zi, β0, p0(Xi)) +M(Zi)} is the efficient influence function. (See pp.1357-1361

of Newey, 1994).

A.8 Proof of Lemma 3

The proof is very similar to pp. 18-20 of BGH-supp. We replace E(X|S(β)′X) and Yi in

BGH-supp with δ(X ′α) and T (Zi, β) in our setting.
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A.9 Proof of Theorem 3

Now the nuisance function F̂α̂,β̂(x′α̂) depends on α̂ and β̂. By a similar argument to (45), we

have

|| 1
n

n∑
i=1

m(Zi, β̂, F̂α̂,β̂(X ′iα̂))|| = op(n
−1/2).

Based on A8” to A11”, the consistency of α̂ and β̂ can be shown by similar arguments as in

Newey (1994) and Otsu and Xu (2019). (See also Theorem 5 of BGH).

Let us define

E[·|u] = E[·|X ′α̂ = u],

Mn,β = − 1

n

n∑
i=1

{
∂m(Zi, β0, p0(Xi))

∂β
+ E[D(Zi, β0)|X ′iα̂]

∂T (Zi, β0)

∂β

}
, and

Mβ = −E
{
∂m(Zi, β0, F0(X

′α0))

∂β
+ E[D(Zi, β0)|X ′iα0]

∂T (Zi, β0)

∂β

}
We have

op(n
−1/2) =

1

n

n∑
i=1

m(Zi, β̂, F̂α̂,β̂(X ′iα̂))

=
1

n

n∑
i=1

{
m(zi, β̂, F̂α̂,β̂(X ′iα̂)) + E(D(Zi, β0)|X ′iα̂)(T (Zi, β̂)− F̂α̂,β̂(X ′iα̂))

}
+ op(n

−1/2)

= −Mn,β(β̂ − β0) +
1

n

n∑
i=1

m(zi, β0, F0(X
′
iα0)) + op(n

−1/2 + (β̂ − β0))

+
1

n

n∑
i=1

{
D(Zi, β0)(F̂α̂,β̂(X ′iα̂)− F0(X

′
iα0)) + E(D(Zi, β0)|X ′iα̂)(T (Zi, β0)− F̂α̂,β̂(X ′iα̂))

}
= −Mβ(β̂ − β0) +

1

n

n∑
i=1

m(zi, β0, F0)

+
1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)](F̂α̂,β̂(X ′iα̂)− F0(X

′
iα0))

}
+

1

n

n∑
i=1

E(D(Zi, β0)|X ′iα0)(T (Zi, β0)− F0(X
′
iα0)) + op(n

−1/2 + (β̂ − β0)) (48)

The second equality follows from Lemma 3. The third equality follows from extending

m(Zi, β̂, F̂α̂,β̂(X ′iα̂))+E(D(Zi, β0)|X ′iα̂)T (Zi, β̂) around β0 and F0, and by some rearrangements.

The last equality follows from Mn,β −Mβ = op(1) and

1

n

n∑
i=1

[
E(D(Zi, β0)|X ′iα0)− E(D(Zi, β0)|X ′iα̂)

]
(T (Zi, β0)− F0) = op(n

−1/2),

which can be shown by a similar argument about (C.20) in pp.21-22 of BGH-supp.
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The second term in the last equality of (48) can be rewritten into:

1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)](F̂α̂,β̂(X ′iα̂)− F0(X

′
iα0))

}
=

1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)](F̂α̂,β̂(X ′iα̂)− Fα̂,β̂(X ′iα̂))

}
+

1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)](Fα̂,β̂(X ′iα̂)− F0(X

′
iα0))

}
:=Im + IIm

Im = op(n
−1/2) by a similar argument about (C.22) in p.23 of BGH-supp.

For IIm, we have by Lemma 17 of BGH-supp.

∂

∂αj
Fα(X ′α)

∣∣∣∣
α=α0

= {xj − E[Xj |X ′α0 = x′α0]}F (1)

0,β̂
(x′α0),

= {xj − E[Xj |X ′α0 = x′α0]}F (1)
0 (x′α0) +Op(β̂ − β0),

where αj and xj are j-th elements of α and x. Then we can extend IIm around α0:

IIm =
1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)]{Xi − E[Xi|X ′iα0]}′F (1)

0 (X ′iα0) +Op(β̂ − β0)
}

(α̂− α0)

+ op(α̂− α0)

=
1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)]{Xi − E[Xi|X ′iα0]]}′F (1)

0 (X ′iα0])
}

(α̂− α0) + op(α̂− α0)

= E
{

[D(Zi, β0)− E(D(Zi, β0)|X ′iα0)]{Xi − E[Xi|X ′iα0]]}′F (1)
0 (X ′iα0)

}
(α̂− α0) + op(α̂− α0)

(49)

The second equality follows from β̂ − β0 = op(1) The last equality follows from α̂ − α0 = op(1)

and E(D(Zi, β0)|X ′iα̂)− E(D(Zi, β0)|X ′iα0) = op(1). Now let us define

M(Z) = E(D(Z, β0)|X ′α0)(T (Zi, β0)− F0(X
′α0))

Mα = −E
{

[D(Zi, β0)− E(D(Zi, β0)|X ′iα0)]{xj − E[Xj |X ′iα0]}′F (1)
0 (X ′iα0)

}
. (50)
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Combining (49) and (50) with (48), we have

1

n

n∑
i=1

m(Zi, β̂, F̂α̂,β̂(X ′iα̂))

= −Mβ(β̂ − β0)−Mα(α̂− α0) +
1

n

n∑
i=1

m(zi, β0, F0)

+
1

n

n∑
i=1

M(Zi) + op(n
−1/2 + (β̂ − β0) + (α̂− α0)). (51)

Combining the fact E [m(Z, β0, F0)] = 0 and E [M(Z)] = 0 with the assumptions A3”, A4”,

A9” and A11”, we have 1
n

∑n
i=1m(zi, β0, F0) + 1

n

∑n
i=1M(Zi) = Op(n

−1/2). Then (51) implies

both α̂ − α0 = Op(n
−1/2) and β̂ − β0 = Op(n

−1/2). Besides, from (51) we can see that α̂ − α0

and β̂ − β0 are asymptotically linear. Thus, we can rewrite the first term in the last row into:

−Mα(α̂− α0) :=
1

n

n∑
i=1

A(Zi) + op(n
−1/2),

with E [A(Zi)] = 0. Similarly, we can rewrite

−Mβ(β̂ − β0) :=
1

n

n∑
i=1

B(Zi) + op(n
−1/2),

with E [B(Zi)] = 0.

Now we can rewrite (51) to obtain asymptotical expressions of α̂ and β̂

Note that given β, α̂ is solved with the α̂ = argmin
α
|| 1n
∑n

i=1X
′
i{T (Zi, β) − F̂α(X ′iα)}||2. It

corresponds to the moment condition

m1(Z, β, F (X ′α))
def.
= X

{
T (Z, β)− F (X ′α)

}
We can express

√
n(α̂− α0) by replacing m in (51) by m1. Then we have

√
n(α̂− α0) = M−1α,1

1√
n

n∑
i=1

{m1(Z, β0, p0) +B1(Z) +M1(Z)}

= M−1α,1
1√
n

n∑
i=1

[
X − E(X|X ′α0)

]{
T (Zi, β0) +

∂T (Zi, β0)

∂β
(β̂ − β0)− F0(X

′α0)

}

where Mα,1, B1, and M1 are Mα, B, and M corresponding to the moment function m1 .

Then we have

√
n(α̂− α0)

d→ N(0, Vα) and
√
n(β̂ − β0)

d→ N(0, Vβ),
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where

Vα = M−1α,1E[{m1(Z, β0, p0) +B1(Z) +M1(Z)}{m1(Z, β0, p0) +B1(Z) +M1(Z)}′]M−1α,1
Vβ = M−1β E[{m(Z, β0, p0) +A(Z) +M(Z)}{m(z, β0, p0) +A(Z) +M(Z)}′]M−1β

A.10 Proof of Lemma 4

Let implement the iteration procedure described in p. 184 of Mammen and Yu (2007) and

stop at r-th round and j-th elements. In the last step, we actually apply isotonic regression to

regress T (Zi, β) − g1[r](X
1
i ) − .... − gj−1[r] (Xj−1

i ) − gj+1
[r−1](X

j+1
i ) − ...gk[r−1](X

k
i ) := Ỹi on Xj

i , and

the last sub-function updated in the iteration is gj[r](X
j
i ). We can replace the Yi in Lemma 1

with Ỹi, and replace Xi in Lemma 1 with Xj
i . δ(X) is assumed to be a bounded function with

a finite variation of X. Since Xj
i is an element of Xi, δ is also a bounded function of Xj

i as well.

Therefore, all the arguments in the proof of Lemma 1 still hold. We have

1

n

n∑
i=1

δ(Xi)(T (Zi, β)− g1[r](X
1
i )− ....− gj−1[r] (Xj−1

i )− gj[r](X
j
i )− gj+1

[r−1](X
j+1
i )− ...gk[r−1](X

k
i ))

= op(n
−1/2). (52)

By Theorem 2 of Mammen and Yu (2007), with r →∞, the backfitting estimator {gj[r](·)}
k
j=1

is converging to the least square isotonic estimator of the problem (20), {gj(·)}kj=1,i.e.,

lim
r→∞

gj[r](·) = gj(·) for all j = 1, ..., k (53)

in a fixed sample. As mentioned in Section 3.2, the least square estimator of the problem

(19) is obtained by normalizing {gj(·)}kj=1. Therefore, we have

ĉ+
k∑
j=1

m̂j(Xj
i ) =

k∑
j=1

gj(Xj
i ) (54)

Combining (52), (53), and (54), we have

1

n

n∑
i=1

δ(Xi)(T (Zi, β)− ĉ−
k∑
j=1

m̂j(Xj
i )) = op(n

−1/2).

A.11 Proof of Theorem 4

The following proof is mostly similar to that in Appendix A.7. The only difference is that we

need to bind the L2 norm of the additive monotone nuisance function, as discussed in Mammen

and Yu (2007).
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Now the nuisance function p̂β̂(X) depends on β̂. By a similar argument to (45) we have

|| 1
n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi)|| = op(n
−1/2).

op(n
−1/2) =

1

n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi))

=
1

n

n∑
i=1

{
m(zi, β̂, p̂β̂(Xi)) + E(D(Zi, β0)|Xi)(T (Zi, β̂)− p̂β̂(Xi))

}
+ op(n

−1/2)

= −Mn,β(β̂ − β0) +
1

n

n∑
i=1

m(zi, β0, p0(Xi)) + op(n
−1/2 + (β̂ − β0))

+
1

n

n∑
i=1

{
D(Zi, β0)(p̂β̂(Xi)− p0(Xi)) + E(D(Zi, β0)|Xi)(T (Zi, β0)− p̂β̂(Xi))

}
= −Mβ(β̂ − β0) +

1

n

n∑
i=1

m(zi, β0, p0)

+
1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|Xi)](p̂β̂(Xi)− p0(Xi))

}
+

1

n

n∑
i=1

E(D(Zi, β0)|Xi)(T (Zi, β0)− p0(Xi)) + op(n
−1/2 + (β̂ − β0)) (55)

= −Mβ(β̂ − β0) +

{
1

n

n∑
i=1

m(Zi, β0, p0(Xi)) +M(Zi)

}
+ op(n

−1/2 + (β̂ − β0)). (56)

The second equality follows from Lemma 4. The third equality follows from the expansion

around β0 and the definition of Mn,β. The fourth equality follows from Mn,β−Mβ = op(1). The

last equality follows from the similar arguments in p.187 of Mammen and Yu (2007) (see also

Theorem 9.2 in van de Geer, 2000) and Step 1 and 2 of Appendix A.3.

With A7(3) and A8(3), consistency of β̂ can be similarly proved as in Lemma 5.2 in Newey

(1994).

Finally, we have

√
n(β̂ − β0) = M−1β

1√
n

n∑
i=1

{m(Zi, β0, p0(Xi)) +M(Zi)}+ op(1)

d→ N(0, V ).

A.12 Proof of Theorem 5

The proof is based on Groeneboom and Hendrickx (2017) (hereafter GH). Here we prove the

counterpart for Theorem 2. It can be easily modified to fit the settings of Theorem 1 and

Theorem 3 by changing the relevant notations.
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Let Z∗ is the bootstrap sample of the data. β̂∗ and p̂∗(·) are the corresponding estimators

for the parameter and the nuisance monotone function. By similar arguments to (44) and (45),

we have

|| 1
n

n∑
i=1

m(z∗i , β̂
∗, p̂∗

β̂∗
(x∗i ))|| = oPM

(n−1/2), (57)

where PM is defined in p. 3450 of GH. Let

M∗n,β = − 1

n

n∑
i=1

{
∂m(Z∗i , β0, p0(X

∗
i ))

∂β
+
∂ {E[D(Z∗i , β0)|X∗i ]T (Z∗i , β0)}

∂β

}
, and

Mβ = −E
{
∂m(Zi, β0, p0(Xi))

∂β
+
∂ {E[D(Zi, β0)|Xi]T (Zi, β0)}

∂β

}
.

Step 1: Show

Mβ(β̂∗ − β0) =
1

n

n∑
i=1

{m(Z∗i , β0, p0(X
∗
i )) +M(Z∗i )}+ oPM

(n−1/2 + (β̂∗ − β0)) (58)

By extending (57) we have

oPM
(n−1/2) =

1

n

n∑
i=1

m(Z∗i , β̂
∗, p̂∗

β̂∗
(X∗i ))

=
1

n

n∑
i=1

m(Z∗i , β̂
∗, p̂∗

β̂∗
(X∗i )) + oPM

(n−1/2)

+
1

n

n∑
i=1

E(D(Z, β0)|X∗i )(T (Z∗i , β̂
∗)− p̂∗

β̂∗
(X∗i ))

= −M∗n,β(β̂∗ − β0) +
1

n

n∑
i=1

m(Z∗i , β0, p̂
∗
β̂∗

(X∗i )) + oPM
(n−1/2)

+
1

n

n∑
i=1

E(D(Z, β0)|X∗i )(T (Z∗i , β0)− p̂∗β̂∗(X
∗
i )) + oPM

(β̂∗ − β0)

= −Mβ(β̂∗ − β0) +
1

n

n∑
i=1

m(Z∗i , β0, p0(X
∗
i )) + oPM

(n−1/2)

+
1

n

n∑
i=1

E(D(Z∗i , β0)|X∗i )(T (Z∗i , β0)− p0(X∗i )) + oPM
(β̂∗ − β0)

= −Mβ(β̂ − β0) +
1

n

n∑
i=1

{m(Z∗i , β0, p0(X
∗
i )) +M(Z∗i )}+ oPM

(n−1/2 + (β̂∗ − β0))

All steps are similar to what we have in (46). In the fourth equality, we use M∗n,β −Mβ =

op(1), and the conditional bootstrapped L2-result:

1

n

n∑
i=1

{p̂∗
β̂∗

(X∗i )− p0(X∗i )}2 = OPM
((log n)2n−2/3) = oPM

(n−1/2).
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See (6.21) in GH and Proposition 4 in BGH. Now we have shown (58).

Step 2: Rearrangement

(58) can be rearranged to

Mβ(β̂∗ − β0) =

{
1

n

n∑
i=1

m(Z∗i , β0, p0(X
∗
i ))− 1

n

n∑
i=1

m(Zi, β0, p0(Xi))

}
+

{
1

n

n∑
i=1

M(Z∗i )− 1

n

n∑
i=1

M(Zi)

}
.

+
1

n

n∑
i=1

{m(Zi, β0, p0(Xi) +M(Zi)}+ oPM
(n−1/2 + (β̂∗ − β0)) (59)

Then we could subtract (46) from (59) and get

Mβ(β̂∗ − β̂) =

{
1

n

n∑
i=1

m(Z∗i , β0, p0(X
∗
i ))− 1

n

n∑
i=1

m(Zi, β0, p0(Xi))

}
+

{
1

n

n∑
i=1

M(Z∗i )− 1

n

n∑
i=1

M(Zi)

}
+ oPM

((β̂∗ − β0) + n−1/2),

Note the bootstrap mean E∗[m(Z∗i , β0, p0(X
∗
i ))] = 1

n

∑n
i=1m(Zi, β0, p0(Xi)) and E∗[M(Z∗i )] =

1
n

∑n
i=1M(Zi). Then we have by CLT

√
n(β̂∗ − β̂)

d→ N(0,Π),

where Π is defined in (47).
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