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Abstract Suppose that a vote consists of a linear ranking of alternatives, and that
in a certain profile some single pivotal voter v is able to change the outcome of an
election from s alone to t alone, by changing her vote from Pv to P ′

v . A voting rule F
is two-way monotonic if such an effect is only possible when v moves t from below s
(according to Pv) to above s (according to P ′

v). One-way monotonicity is the strictly
weaker requirement forbidding this effect when v makes the opposite switch, by mov-
ing s from below t to above t . Two-way monotonicity is very strong—equivalent over
any domain to strategy proofness. One-way monotonicity holds for all sensible voting
rules, a broad class including the scoring rules, but no Condorcet extension for four
or more alternatives is one-way monotonic. These monotonicities have interpretations
in terms of strategy-proofness. For a one-way monotonic rule F , each manipulation
is paired with a positive response, in which F offers the pivotal voter a strictly better
result when she votes sincerely.
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1 Introduction

A real-valued function f is said to be monotonically increasing if whenever x1 < x2
we have f (x1) < f (x2) (for strictly increasing) or f (x1) ≤ f (x2) (for weakly increas-
ing). Monotonicity properties for voting rules are loosely based on this idea; we say
that such a rule F is monotonic if whenever one or more voters change their votes
in a certain “direction,” the effect is to move the outcome of the election in a simi-
lar direction. A vote, in our context, consists of a strict preference ranking—a linear
ordering without ties—of all alternatives, so it is not completely clear what “direction”
means; the variety of possible interpretations leaves room for a number of different
monotonicity properties. This is the case even for resolute rules, which yield a unique
winning alternative for each profile. For irresolute rules, in which several alternatives
may be tied as winners, the possibilities ramify further. In the current paper, we confine
ourselves to resolute rules, but take up monotonicity in the irresolute context in the
sequel, Sanver and Zwicker (2009).

The monotonicity properties considered in the voting literature are typically of the
weakly increasing, or ≤ type, because it is unreasonable to expect the outcome of an
election to change each time a few voters change their votes—the winner’s margin of
victory may be too large to be easily overcome. Among these properties, two major
classes stand out.

The first class contains monotonicities having a normative appeal independent of
any strategic concern. Simple monotonicity, which has most often been called mono-
tonicity, is certainly the best-known representative of this class. Loosely, it asserts
that raising a single alternative s in a voter’s preferences (while leaving the ranking
otherwise unchanged) is never detrimental to s’s prospects for winning.1 Most voting
rules considered in the literature satisfy simple monotonicity, but the following closely
related rules are exceptions: all scoring elimination rules (Smith 1973), including Hare
(or “alternative vote”), and plurality run-off. Fishburn (1982) discusses other exam-
ples. Simple monotonicity is a rather “weak” monotonicity but it does discriminate,
albeit to a limited extent, among reasonable voting rules.

This is in contrast to the second class of monotonicities, wherein the normative
appeal rests on strategic considerations. These properties arose as a consequence
of explorations of strategy-proofness and implementation. For example, Muller and
Satterthwaite (1977) prove that for social choice functions that do not admit ties and
that are defined over the full domain of preference profiles, strategy-proofness is equiv-
alent to strong positive association—a monotonicity condition which Maskin (1977,
1999) showed to be necessary (but not sufficient) for Nash implementability. On other
hand, Nash implementability is equivalent to Danilov (1992) monotonicity which,
although generally stronger, is equivalent to Maskin monotonicity for social choice
rules that do not admit ties and that are defined over the full domain. In this case, a
failure of the condition can typically be identified with a situation in which one voter
can manipulate the outcome so as to obtain a preferred outcome by misrepresenting

1 This may be the oldest known monotonicity property. Other names have also been used over its relatively
long history, which predates the modern resurrection of social choice theory in Black (1958). See Brams
and Fishburn (2002) and comments on page 120 of Fishburn (1982), including footnote 1.
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her preference. On other hand, we know from Gibbard (1973) and Satterthwaite (1975)
that over the full domain of preference profiles, a strategy-proof social choice func-
tion whose range contains at least three alternatives is dictatorial. Thus monotonicity
properties in this second class are so strong that they hold for no reasonable (resolute)
voting rule. While their theoretical importance is significant, they are less useful as a
basis for comparing realistic voting systems in terms of manipulability.2

Our investigations arise from the following question. Suppose that when the vote
of some particular voter v is the ranking Pv , alternative s is the sole winner of a certain
election, but that when v votes instead for the ranking P ′

v, while all other votes remain
unchanged, some different alternative t is the sole winner. Given such a pivot, what
should “monotonicity” require, in terms of how Pv and P ′

v rank s and t , relative to
each other?

We introduce here two new monotonicity properties, based on answers to this
question. The stronger property, two-way monotonicity, requires that the voter v

described above must have lifted t from below s in Pv , to above s in P ′
v , and falls

squarely into the second class, as it is equivalent to strategy-proofness. This property
is not of independent interest, but it helps frame the idea for one-way monotonicity,
its weaker cousin, which requires that v must not have lifted s from below t in Pv , to
above t in P ′

v .
We may, if we wish, impose one of two possible interpretations on our voter, by

identifying one of the rankings with her sincere preferences and the other with an
attempt at manipulation:

Interpretation 1 Pv represents v’s sincere ranking and P ′
v represents an attempt at

manipulation
Interpretation 2 P ′

v represents v’s sincere ranking and Pv represents an attempt at
manipulation

Symmetry suggests that we consider both interpretations. Two-way monotonicity
is equivalent to the assertion that neither identification ever represents a successful
manipulation. One-way monotonicity asserts that whenever one identification repre-
sents a successful manipulation, the other represents a failure. But in such a “failure”,
voter v does strictly better by casting the sincere ballot than by casting the insincere
one. Arguably, each such positive response represents a disincentive to any attempt at
manipulating the social choice rule; for example, we may imagine that the voter does
not know the rest of the profile with complete certainty, and is leery of outsmarting
herself.

This line of reasoning leads us to the following interpretation of one-way monoto-
nicity for a voting rule F : every example of a manipulation of F is also an example
of a positive response when interpreted in the “opposite order.” In this sense, for a
one-way monotonic rule any instance of manipulability can be seen as part of the cost
of doing business—a payment made in order to respond appropriately to the will of
the electorate.

2 However, it is possible to compare rules in terms of their frequency or probability of vulnerability to
manipulation; see Aleskerov and Kurbanov (1999); Smith (1999); Favardin et al. (2002) and Favardin and
Lepelley (2006).
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One-way monotonicity is of “medium” strength, in that it is satisfied by a number
of natural voting rules, yet fails of a number of others, thus discriminating usefully
among standard voting rules. We argue that it partakes of some traits from both classes
of monotonicities.

The rest of the paper is organized as follows. In Sect. 2, we set the context and
present necessary background material. The sensible voting rules we introduce in
Sect. 3 include all scoring rules and more, and are one-way monotonic. Not every
one-way monotonic rule is sensible, however. In Sect. 4, we turn to the no-show par-
adox of Brams and Fishburn (1983), wherein a voter may obtain a preferred outcome
by staying home rather than voting. Moulin (1988a,b) shows that the participation
axiom, which asserts that no no-show paradoxes occur, is satisfied by no Condorcet
extension. Campbell and Kelly (2002) provide several rules that satisfy participation
but not simple monotonicity; we recycle one of their examples in Sect. 3. We establish
that participation implies half-way monotonicity, a weak form of one-way monotonic-
ity, and that the converse holds for voting rules satisfying homogeneity and reversal
cancellation. As stand-alone properties one-way monotonicity and participation are
independent, but we show some logical connections for the special case of three or
four alternatives.

In Sect. 5 we present our main negative result. By exploiting the parallels between
participation and one-way monotonicity, and using some of the ideas from Sect. 4, we
are able to elaborate on Moulin’s argument and show that no Condorcet extension is
one-way monotonic. Hare’s rule also fails one-way monotonicity, as does the closely
related plurality run-off rule, albeit with a small qualification. In the concluding Sect. 6
we point to future areas of research, including that of further clarifying the relation-
ship among the various monotonicity properties in the context of irresolute voting rules
that are both neutral and anonymous. This issue bears directly on the methodology we
use throughout the paper, of rendering all voting rules resolute by employing a fixed
tie-breaking agenda.

2 Basic notions

Let N = {i, j,…} be a finite set of n voters and A = {s, t, …} be a finite set of m ≥ 3
alternatives. A profile P = {Pi }i∈N for N consists of an assignment, to each i ∈ N ,

of a strict linear ordering Pi of A; t Pi s indicates that a voter i strictly prefers t to s.
A social choice rule is a mapping F that returns, for each profile P for N , a

non-empty set of alternatives F(P) ⊆ A. A variable-electorate social choice rule
is one that is defined for every finite set N of voters.3 If #F(P) = 1 for every profile
P,F is a resolute social choice rule (of either variety), or a social choice function
(SCF), and we write F(P) = s in place of F(P) = {s}.

3 Any property for SCFs (such as one-way monotonicity) may also be thought of as a property for variable
electorate SCFs, simply by asserting the property for all choices of N. However, properties that entail add-
ing or removing voters (such as participation, discussed later) make sense only in the variable electorate
context. In §6 we discuss a recent result by Doğan and Giritligil that argues for the fixed electorate context
in studying one-way monotonicity.
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Fig. 1 Two-way monotonicity.
If a change in vote from Pv to
P ′
v switches the winner of the

election from s to t, then the
pivotal voter must have raised t
from below s according to Pv,

to above s according to P ′
v

Given any profile P , and alternatives s and x , let Net P (s > x) denote the net
pairwise majority of s over x : the number of voters who rank s over x minus the
number of voters who rank x over s. An alternative s is the Condorcet winner at
the profile P if NetP (s > x) > 0 for each alternative x �=s. The Copeland score of
an alternative s is the number of alternatives x satisfying NetP (s > x) > 0 while the
Simpson score of an alternative s for profile P is tP *(s) = Min{NetP (s > x)|x �= s}.
The Copeland rule and the Simpson rule are the social choice rules that select all
alternatives with maximal Copeland and Simpson scores, respectively. Note that both
rules are Condorcet extensions—they select the (unique) Condorcet winner whenever
it exists.

Let v ∈ N , Q be a profile for the set N − {v}, and Pv be any strict ranking of A.
Then Q∧Pv denotes the profile for N obtained from Q by adding v’s vote for Pv: for
each i ∈ N

(Q ∧ Pv)i =
{

Qi , if i �= v

Pv, if i = v

A pre-focus represents some focal voter’s choice between two options; formally, it
is a vector (Q, v, Pv, P ′

v) in which v ∈ N is a voter, Q is a profile for N − {v}, and Pv

and P ′
v are strict rankings of A. A focus for a SCF F records the consequences of such

a choice; it is a vector (Q, v, Pv → s, P ′
v → t) in which (Q, v, Pv, P ′

v) is a pre-focus,
F(Q ∧ Pv) = s, and F(Q ∧ P ′

v) = t. A focus for which s �= t is a pivot ; v’s choice
affects the winner. A social choice function F is two-way monotonic if every pivot
(Q, v, Pv → s, P ′

v → t) for F satisfies s Pvt and t P ′
vs. It is straightforward to see

that two-way monotonicity is equivalent to the standard definition of strategy-proof-
ness: a SCF is strategy-proof if s Pvt holds for every pivot (Q, v, Pv → s, P ′

v → t)
for F . It would be less strong to require that whenever the change by v switches the
election winner from s to t, v must not have dropped t from above s according to
Pv , to below s according to P ′

v (see Figs. 1 and 2). Thus, we say that a SCF F is
one-way monotonic if every pivot (Q, v, Pv → s, P ′

v → t) for F satisfies s Pvt or
t P ′

vs.
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Fig. 2 One-way monotonicity.
If a change in vote from Pv to
P ′
v switches the winner of the

election from s to t, then the
pivotal voter must not have
raised s from below t according
to Pv, to above t according to P ′

v

We now compare two well-known monotonicities of the literature to our new one.
A SCF F is Maskin monotonic if for every pivot (Q, v, Pv → s, P ′

v → t), P ′
v

differs from Pv by moving some alternative from below s in Pv to above s in P ′
v .4

A SCF F is simply monotonic if for every profile P with winning alternative s,
if one voter changes by moving s up in her ranking (while making no changes in
the relative order of the other alternatives) then s remains the winner. As Muller
and Satterthwaite (1977) show, Maskin monotonicity is equivalent to strategy-proof-
ness—hence to two-way monotonicity. Maskin monotonicity easily implies both one-
way monotonicity and simple monotonicity, which are logically independent of each
other.5

3 Positive results: virtues and sensible rules

A vector 〈w〉 = 〈w1, w2, . . . , wm〉 is a vector of scoring weights provided that the
wi are real numbers satisfying w1 ≥ · · · ≥ wm . Such a vector is proper if w1 > wm

and is strict if w1 > w2 > · · · > wm . Every vector 〈w〉 of scoring weights induces a
corresponding scoring rule as follows: each voter assigns w1 points to her top-ranked
alternative, w2 to her second-ranked, etc., and the rule chooses the alternatives with
maximal score (where the score of an alternative s is the sum of all points awarded
to s by all voters). We say that the scoring rule is strict (resp., proper) if it is induced
by some strict (resp., proper) vector.6

We consider voting rules that can be characterized in terms of certain type of “score”
that generalizes the score from a scoring rule. All such rules are one-way monotonic.

4 An iteration argument shows that this apparently weak definition of Maskin monotonicity implies the
standard version on any path connected domain. For details, see footnote 13.
5 Any resolute refinement of Copeland rule obtained through a fixed tie-breaking rule satisfies simple
monotonicity but, as shown in Sect. 5, fails one-way monotonicity; see also footnote 12. Proposition 3.7
provides an example that is one-way monotonic but not simply monotonic.
6 The best-known scoring rules include the plurality rule, with scoring vector 〈1, 0, . . . , 0〉; the anti-
plurality rule, with 〈0, 0, . . . , 0, −1〉; and the Borda count, with 〈m, m − 1, . . . , 1〉.
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Given a finite set N of voters, and a set A of three or more alternatives, a virtue is
a function V that returns a real number VP (x), for each combination of a profile P
and an alternative x . Any virtue V yields an induced social choice rule FV which
declares the social choice for any profile R to be the alternatives x that maximize
VP (x). Examples of virtues include:

• For each scoring rule with associated vector 〈w〉 of scoring weights, let V〈w〉
P (x)

denote the total score achieved by alternative x , using the given weights. The
induced rule is, of course, the scoring rule for this vector.

• VO M N I N O M I N AT O R
P (x) =

{
1, if at least one voter top-ranks alternative x
0, otherwise.

The induced rule is the omninominator rule (see, for example, Taylor (2005)),
wherein the winners are the alternatives that are “nominated” by being top-ranked
by at least one voter.

• VO M N I V ET O E R
P (x) =

{−1, if at least one voter bottom-ranks alternative x
0, otherwise.

The induced rule is the omnivetoer rule, wherein the winners are the alternatives
that are not “vetoed” by being bottom-ranked by at least one voter (or are all
alternatives, if each alternative is bottom-ranked at least once).

• VC O P E L AN D
P (x)= the Copeland score of x . The Copeland rule is the induced

system.

In the absence of any further restrictions, the virtue concept is clearly an empty
shell, as any voting rule F is induced by the following trivial virtue:

VF-T RI V I AL
P (x) =

{
1, if x is chosen by F at P
0, otherwise.

Thus social choice rules (e.g., scoring rules) can be induced by two quite different
virtues.

Suppose some focal voter v changes her vote. We wish our virtue V to reflect the
sense of this change. Given any pre-focus Π = (Q, v, Pv, P ′

v), and any alternative x ,
let ∆xV (or just ∆x) denote VQ∧P ′

v
(x) − VQ∧Pv

(x), x’s change in virtue. If x and
y are distinct alternatives, we say that Π li f ts x over y if y Pvx and x P ′

v y. Then V
is strictly sensible at Π if for every pair x, y of distinct alternatives such that Π

lifts x over y,∆xV > ∆yV , and V is sensible at Π if for every pair x, y of distinct
alternatives such that Π lifts x over y,∆xV ≥ �yV . Finally, V is strictly sensible if it
is strictly sensible at every pre-focus, and is sensible if it is sensible at every pre-focus.
A social choice rule F is sensible (resp. strictly sensible) if there exists a sensible
(resp. strictly sensible) virtue that induces it. The following result is straightforward;
proofs are left to the reader.

Proposition 3.1 (1) V〈w〉 is sensible for every vector 〈w〉 of scoring weights and is
strictly sensible when 〈w〉 is strict.
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(2) Any assignment c = 〈cy〉y∈A of real numbers to alternatives gives rise to an
initial endowment virtue W defined by WP (x) = cx for every profile P, and
each such initial endowment is sensible.

(3) VO M N I N O M I N AT O R, and VO M N I V ET O E R are sensible.
(4) Any positive linear combination λ1V1+· · ·+λkVk (λi > 0 f or all i) of sensible

virtues is sensible.
(5) VC O P E L AN D and V B O R D A-T RI V I AL are not sensible.

Theorem 3.2 Every sensible SCF F is one-way monotonic.

Proof of 3.2 Suppose F = FV where V is sensible. Let (Q, v, Pv → s, P ′
v → t)

be a pivot for F , and assume by way of contradiction that t Pvs and s P ′
vt . As V is

sensible, ∆s ≥ ∆t . As F(Q ∧ Pv) = s,VQ∧Pv (s) > V Q∧Pv
(t). Then VQ∧P ′

v
(s) =

VQ∧Pv (s) + ∆s > V Q∧Pv
(t) + ∆t = VQ∧P ′

v
(t), which contradicts F(Q∧P ′

v) = t . ��
At the end of this section we show that the converse to 3.2 fails.
Let ≺ be any strict ranking of the alternatives used as a tie-breaking rule and

F be a social choice rule. We denote by F≺ the SCF obtained from F by setting
F≺(R) =≺ −max[F(R)] where ≺ −max[S] is the ≺-maximal element of S for any
nonempty S ⊆ A.

Theorem 3.3 For every sensible social choice rule F and any tie-breaking rule ≺,F≺
is one-way monotonic.

Proof If F = FV where V is sensible, then F≺ = FV+W , where is W is the initial
endowment given by any assignment 〈cy〉y∈A of real numbers chosen to satisfy:

• x ≺ y iff cx < cy , for each x, y ∈ A, and
• The cy are sufficiently small so that VP (x) < VP (y) ⇒ VP (x)+cx < VP (y)+cy ,

for each x, y ∈ A and each profile P for N .

Then by 3.1 V + W is sensible, and so F≺ is one-way monotonic by 3.2. ��
Thus sensible rules include omninominator, omnivetoer, and every scoring rule,

whence omninominator≺, omnivetoer≺, and every scoring rule≺ are one-way mono-
tonic. It would be interesting to learn just how large is the class of sensible rules,
perhaps by seeking a structure theorem for this class. Any such a theorem should
settle whether the omninominator and omnivetoer virtues are isolated, special cases
of sensible virtues that do not correspond to scoring rules, or are pieces of some larger
picture. If V〈w〉

R(x) represents a scoring virtue, and K is a constant, then a truncated

scoring virtue is any virtue of the form VR(x) = Min(K ,V〈w〉
R(x))for K ≥ 0, and an

anti-truncated scoring virtue is any virtue of the form VR(x) = Max(K ,V〈w〉
R(x))for

K ≤ 0. Clearly VO M N I V ET O E R and VO M N I V ET O E R are truncated versions of
plurality score (using 〈1, 0, 0, . . . , 0〉 with K = 1) and anti-truncated versions of anti-
plurality score (using 〈0, . . . , 0, 0,−1〉 with K = −1), respectively. Truncated scoring
virtues induce scoring rules with a threshold.7 Yet with 4 or more alternatives, there

7 A detailed treatment of scoring rules with a threshold can be found in Saari (1990). Moreover, Erdem
and Sanver (2005) show that minimal Maskin monotonic extensions of scoring rules can be expressed in
terms of scoring rules with a threshold that varies as a function of the preference profile.
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are truncated scoring virtues (such as truncated Borda count) whose induced rules are
not one-way monotonic.

Some additional insight into when truncation does and does not preserve sensi-
bility can be gained through the following notion. A virtue V is absolutely sensible
at a pre-focus Π if for every pair x, y of distinct alternatives such that Π lifts x
over y, ∆xV≥ 0 and �yV≤ 0; V is absolutely sensible if it is absolutely sensible at
every pre-focus, and a voting rule F is absolutely sensible if there exists some abso-
lutely sensible virtue that induces F . Clearly, any absolutely sensible virtue or rule is
sensible. Now it is straightforward to prove the following analogue to Proposition 3.1:

Proposition 3.4 The following virtues are absolutely sensible:

(1) V P LU R AL I T Y and V AN T I-P

(2) Any positive linear combination of absolutely sensible virtues.
(3) Any sum V + W of an absolutely sensible V and an initial endowment W .
(4) Any original and monotonic transform f oV of an absolutely sensible virtue V

(where f:R →R is original if f (0) = 0 and is monotonic if a ≥ b ⇒ f(a) ≥
f(b), for all a, b ∈R).

Note that truncation and anti-truncation are special cases of original monotonic
transforms. Thanks to 3.4 (iv) (which has no analogue in 3.1) we may add, to our list
of one-way monotonic voting rules, examples such as the following: the rule induced
(after imposition of a tie-breaking agenda) by the virtue 10(V P LU R AL I T Y )3 +V〈w〉 +
11VO M N I V ET O E R , for any vector 〈w〉 of scoring weights. For four or more alterna-
tives, if 〈w〉 is the Borda count vector then V〈w〉 is sensible but not absolutely sensible.
However, with three alternatives every scoring vector is equivalent to8 some positive
linear combination of the plurality and antiplurality vectors, so that every V〈w〉 is
absolutely sensible, by 3.4 (ii).

The following example appears in Campbell and Kelly (2002): given a profile P ,
take each possible ranking and divide the number of voters who chose that ranking by
2, dropping any fractional part, to obtain an induced profile 1/2 P . Apply plurality rule
to 1/2 P , and then break ties using any fixed agenda. If we set aside the tie-breaking
step, their rule is induced by the following virtue: C-KP (x) = V P LU R AL I T Y

(1/2)P (x). It is
easy to see that C-K is absolutely sensible, and it follows that their rule is one-way
monotonic. Note that C-K is an original and monotonic transform of the plurality
virtue (but quite different from a truncation).

We close the section by showing that the converse to Theorem 3.2 fails. First, we
prove that sensibility implies a strong, coalitional version of one-way monotonicity.
We then construct an example of an SCF that is one-way monotonic but does not
satisfy this stronger property. An immediate consequence is:

Corollary 3.5 Not every one-way monotonic SCF is sensible.

A SCF is weakly coalitional one-way monotonic if whenever a sub-group of voters
having a common preference ranking σ simultaneously all switch their rankings to

8 Specifically, any scoring vector for three alternatives generates the same voting rule as some shifted
version of that vector for which the middle scoring weight is 0, and any vector with middle weight 0 is a
nonnegative linear combination of 〈1, 0, 0〉 and 〈0, 0, −1〉.
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some common ranking τ ,9 and the effect is to switch the winning alternative from
s alone to t alone, then either sσ t or tτ s. Such a SCF is strongly coalitional one-
way monotonic if whenever a group of voters simultaneously all switch their rankings
(which need not agree before the switch, and need not agree after), and the effect is
to switch the winning alternative from s alone to t alone, then there exists at least one
voter v in the group for whom sTvt or for whom tT ′

vs (where Tv is v’s initial ranking,
which she switches to T ′

v). We omit the proof of the following proposition, which is
quite similar to that of 3.2.

Proposition 3.6 Every sensible SCF is strongly coalitional one-way monotonic.

Proposition 3.7 There exists a resolute voting rule F satisfying one-way monotonic-
ity, but not weak coalitional one-way monotonicity (and not simple monotonicity). It
follows that F is not sensible.

Proof of 3.7 We use n = 2 voters and m = 3 alternatives: a, s, and t . Consider the
following rankings:

α β

a a
t s
s t

Let G be the voting rule induced by the sensible virtue V +W , where V is plurality
score and W is the following initial endowment:

s �→ 2.02 points
t �→ 2.01 points
a �→ 0.00 points

Note that G is resolute and one-way monotonic, and also satisfies:

1. G(α ∧ β) = s,
2. G(2β) = s,
3. G(2α) = s,
4. G(δ ∧ α) = x = G(δ ∧ β) whenever δ /∈ {α, β} and x is top-ranked in δ (so x ∈

{s, t}).
Our desired rule F is obtained by changing G’s value on exactly two exceptional

profiles:

1. F(α ∧ β) = a
2. F(2β) = t .

Note that F is not weakly coalitional one-way monotonic, for if both voters choose
α and they simultaneously change to β then they both lift s from under t to over t ,
but the winner switches from s to t . Also, F is not simply monotonic, as F(2α) = s

9 We will use a lower case Greek letter in place of “Pv” when there is no particular voter v associated with
the preference ranking at hand.
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and F(α ∧ β) = a. To see that F is one-way monotonic, consider any pivot in which
the (single) pivotal voter changes from σ to τ . As there are but two voters, the profile
changes from P = σ ∧ λ to Q = τ ∧ λ.

Case 1 Neither P nor Q are exceptional. For the non-exceptional profiles, F agrees
with G, which is one-way monotonic.

Case 2 P = 2β and Q = α ∧ β, or vice versa. Then F(2β) = t and F(α ∧ β) = a,
which does not violate one-way monotonicity.

Case 3 P = β ∧ α and Q = 2α, or vice versa. Then F(β ∧ α) = a and F(2α) = s,
which does not violate one-way monotonicity.

Case 4 P = 2β and Q = δ ∧ β (where δ /∈ {α, β} and x is top-ranked in δ), or
vice versa. Then F(2β) = t and F(δ ∧ β) = x , which does not violate one-way
monotonicity.

Case 5 P = α ∧ β and Q = δ ∧ β (where δ /∈ {α, β} and x is top-ranked in δ), or
vice versa. Then F(α ∧ β) = a and F(δ ∧ β) = x , which does not violate one-way
monotonicity.

Case 6 P = β ∧ α and Q = δ ∧ α (where δ /∈ {α, β} and x is top-ranked in δ), or
vice versa. Then F(β ∧ α) = a and F(δ ∧ α) = x , which does not violate one-way
monotonicity. ��

4 Participation and the no-show paradox

Brams and Fishburn (1983) introduced the no-show paradox: one additional partic-
ipating voter shows up to cast her vote, and the winner is then an alternative that is
strictly inferior (according to the preferences of the participating voter) to the alterna-
tive who would have won had she not shown up. Thus, the paradox represents an oppor-
tunity to manipulate by abstaining. Moulin (1988a) and Moulin (1988b) expressed the
corresponding form of strategy-proofness: A variable electorate SCF F satisfies par-
ticipation if for each profile Q for a finite set N of voters, and each preference ranking
Pv for a participating voter v /∈ N, F(Q ∧ Pv) = F(Q) or F(Q ∧ Pv)PvF(Q).

How are one-way monotonicity and participation related? A comparison requires
some attention to the difference in context. Certainly one-way monotonicity can be
considered to be a property of variable-electorate SCFs, and this is the form of the
property we use in this section. But participation enforces some connection between
what F does for profiles with n voters and what it does for profiles with n + 1, while
one-way monotonicity does not. As we see below, this makes it easy to construct
a rule that satisfies one-way monotonicity but not participation. Such a comparison
does not seem entirely fair, however—the better question may be whether one-way
monotonicity implies participation in the presence of some mild axioms that do forge
connections among election outcomes for different size electorates. The theorem that
follows provides a positive answer, but with a strong qualification: the second axiom is

123



564 M. R. Sanver, W. S. Zwicker

not exactly “mild.” The proof makes use of an additional property, half-way monoto-
nicity, as an interpolant between one-way monotonicity and participation. After giving
the related definitions, we state the theorem.

If m is any positive integer, and P is any profile, then mP is the profile obtained
from P by replacing each single voter v of P with m voters having the same preference
as v. An anonymous, variable-electorate SCF F is homogeneous if F(m P) = F(P)

holds for all choices of P and m. 10 For any (strict) ranking σ , let rev(σ ) denoting
the ranking obtained by reversing σ , so that x σ y iff y rev(σ) x. For a profile P
and a strict ranking σ let P∧σ∧ rev(σ ) denote the profile obtained by adding two
additional voters—one with ranking σ and another with ranking rev(σ). An anony-
mous, variable-electorate SCF satisfies reversal cancellation if for all choices of P
and σ,F(P) = F(P ∧ σ ∧ rev(σ )).11 A SCF F is half-way monotonic if for every
pivot (Q, v, Pv → s, rev(Pv) → t) for F , s Pvt . Half-way monotonicity, which is
implied by one-way monotonicity, has an interesting interpretation in terms of strategy-
proofness: a rule that violates half-way monotonicity can be manipulated by some
voter who completely misrepresents her preferences, in the sense that she announces
a preference ranking that misstates every possible pairwise comparison among alter-
natives.

Our main result is

Theorem 4.1 Consider properties of variable-electorate SCFs. Then

(1) one-way monotonicity and participation are independent,
(2) participation ⇒ half-way monotonicity,
(3) [half-way monotonicity + homogeneity + reversal-cancellation] ⇒

participation,
(4) for the case of exactly three alternatives, participation ⇒ one-way monotonicity,

and
(5) for the case of exactly four alternatives, [participation + simple monotonicity]

⇒ one-way monotonicity.

Corollary 4.2 (immediate) For anonymous and variable-electorate SCFs satisfying
both homogeneity and reversal cancellation:

• Participation and half-way monotonicity are equivalent. In other words, participa-
tion is equivalent to the corresponding weak form of strategy-proofness stating that
no one can improve the outcome by completely misrepresenting their preferences.

10 Homogeneity is a very weak form of reinforcement (also known as consistency), discussed in Smith
(1973). It is known to hold for almost every social choice rule, though Fishburn (1977) shows that the
Dodgson and Young procedures can each fail to be homogeneous, depending on the details in the precise
formulation of these systems. It is probably fair to deem homogeneity an “innocuous” assumption.
11 Reversal cancellation is closely related to work by Saari (1994, 1999), and by Saari and Barney (2003),
who consider the effect of reversing an entire profile, and examines the vector component of a profile
corresponding to reversal. Every social choice rule that is pairwise (depends only on the information in
{NetP (x>y)}x �=y) satisfies reversal cancellation; these include Copeland, Simpson and Borda (see Zwicker
(1991)). But the property fails for other scoring rules, such as plurality and antiplurality (and fails for Hare)
so it can hardly be called innocuous.
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• Participation, half-way monotonicity, and one-way monotonicity are all equivalent
for the special case of three alternatives, or of four alternatives with the additional
assumption of simple monotonicity.

Proof of 4.1 The proof exploits an additional similarity between one-way monoto-
nicity and participation—there is a notion of variable electorate virtue V with some
properties analogous to those in Sect. 3. Such a V is defined for a variable electorate,
and is participation sensible if each profile Q and ranking Pv satisfies x Pv y ⇒
∆Part xV ≥ ∆Part yV , for every two alternatives x and y. Here, ∆Part xV denotes
VQ∧Pv (x) − VQ(x). We leave the reader to verify the following: ��
Claim The participation axiom is satisfied by any variable-electorate SCF that is
induced by a participation sensible variable electorate virtue.

Proof of 4.1(i) First consider the following variable electorate SCF that satisfies one-
way monotonicity but not participation: Let F act as the plurality rule≺ for profiles
with 5 or fewer voters, and as the Borda count≺ with 6 or more. Then F is one-way
monotonic by 3.3. To see that participation fails, consider the 5-voter profile below,
and a participating voter with ranking Pv . Note that F(Q) = s, while F(Q ∧ Pv) = t .

Q Pv

1 1 1 1 1
s s t x y x
t t y t t y
x y x y x s
y x s s s t

The following rule G for four alternatives satisfies participation, but not one-way
monotonicity. For the record, we note that G is anonymous, but does not satisfy neu-
trality, homogeneity, or reversal cancellation. As predicted by part (v), G also violates
simple monotonicity. Certainly it would be interesting to find a similar example with
five or more alternatives, in which simple monotonicity holds.
Description of G
(1) Our four alternatives are x, y, s, and t .
(2) Our preliminary version of G is the scoring rule with scoring weights 3, 2, 2, 1,

but this is modified by the remaining clauses.
(3) Each alternative has a fixed endowment of points before the voting begins, which

is added to that alternative’s point total, as determined by the profile at hand, to
determine that alternatives final score. The endowments are as follows:

x �→ 2.03 points
y �→ 0.02 points
s �→ 2.01 points
t �→ 2.0 points

The effect is the same as giving x, s, and t each 2 points, with 0 points to y, and
imposing the tie-breaking agenda x � y � s � t on the penultimate outcome.

(4) There is an exceptional profile “β“ with a single voter, to which the above rules
do not apply. That voter has a preference ranking that we also call β:
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β

y 3.02
s 4.01
t 4.0
x 3.03

The numbers in the right column give the final scores, so that the fractional
amounts, in effect, break the tie in favor of s. Instead, we declare that G(β) = t .

Proof that G satisfies participation, but fails both simple monotonicity and one-way
monotonicity. Consider the one-voter profile “α“ in which the single voter has the
following ranking α:

α

y 3.02
t 4.0
s 4.01
x 3.03

This is not the exceptional profile, and so G(α) = s. Let ∅ denote the empty pro-
file, with no voters. The pivot (∅, v, α → s, β → t) shows that G fails both simple
monotonicity and one-way monotonicity. To see that G satisfies participation consider
the transition from some profile Q to Q ∧ Pv , where v is the participating voter.

Case 1 Neither Q nor Q ∧ Pv is β. Then participation holds for this transition, as G is
completely given by clauses (1) - (3), which describe a participation-sensible virtue.

Case 2 Q ∧ Pv = β. Then Q = ∅,G(Q) = x and G(Q ∧ Pv) = t . The participating
voter has ranking β, which ranks t over x , so participation is satisfied for this transition.

Case 3 Q = β. We claim that G(Q ∧ Pv) is equal to the top-ranked alternative of Pv .
The claim suffices to show that participation is satisfied for this transition.

Subcase 3.1 s is top-ranked by Pv . By referring to the final scores for β we see that
the final score for s in profile β∧Pv is 7.01, which is greater than any
other final score, so that G(β ∧ Pv) = s.

Subcase 3.2 t is top-ranked by Pv . The argument is similar to that of the previous
subcase.

Subcase 3.3 y is top-ranked by Pv . Then the final score for y in profile β∧Pv is
6.02 and for x is at most 5.03; s and t each get at most 6.01, and
G(β ∧ Pv) = y.

Subcase 3.4 x is top-ranked by Pv . Then the final score for x in profile β∧Pv is 6.03;
each other alternative gets at most 6.02, and G(β ∧ Pv) = x .

Proof of 4.1 (2), (4) and (5) Our somewhat unorthodox approach is to launch an
attempt to prove that participation implies one-way monotonicity. This proof breaks
down in one of the cases. We then observe that the obstacle is circumvented under
the additional assumption that τ = rev(σ), or that there are only three alternatives.
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Alternatively, the obstacle is circumvented for exactly four alternatives if the rule is
simply monotonic. This approach suggests some insight into the relationships among
the four properties under consideration.

Assume that F satisfies participation, that F(P ∧ σ) = s, and F(P ∧ τ) = t . We
must show that sσ t or tτ s.

Case 1 F(P) = s or F(P) = t . If F(P) = s then as F(P ∧ σ) = t, tτ s by
participation. If F(P) = t , then as F(P ∧ σ) = s, participation implies sσ t.

Case 2 F(P ∧ σ ∧ τ) = s or F(P ∧ σ ∧ τ) = t. If F(P ∧ σ ∧ τ) = s, then as
F(P ∧τ) = t, participation implies s σ t. If F(P ∧σ ∧τ) = t then as F(P ∧σ) = s,
participation implies t τ s.

Case 3 F(P) = x with x /∈ {s, t} and F(P ∧ σ ∧ τ) = y with y /∈ {s, t}. As
F(P) = x and F(P ∧ σ) = s, participation implies s σ x. Also, from F(P) = x and
F(P ∧ τ) = t , participation implies t τ x. But from s σ x and t τ x we can draw no
conclusion about how σ or τ rank s versus t . However, if τ = rev(σ) then “s σ x and
t τ x” becomes “s σ x and t rev(σ) x,” which is “s σ x and “x σ t,” whence s σ t, as
desired. Similarly, from F(P ∧ σ ∧ τ) = y and F(P ∧ σ) = s, participation implies
y τ s. Also from F(P∧σ ∧ τ) = y and F(P∧τ) = t, participation implies y σ t. Again,
we can conclude nothing from “y τ s and y σ t,” unless τ = rev(σ), in which case
s σ t again follows. Finally, observe that we in fact have four facts to work with:

• s σ x,
• t τ x,
• y τ s, and
• y σ t

If we knew x = y, then we could conclude both s σ t and t τ s with no additional
assumption that τ = rev(σ). If there are exactly three alternatives, then the case 3
assumption implies x = y, and we conclude that F is one-way monotonic. If there are
exactly four alternatives s, t, x , and y, then the four inequalities just listed, coupled
with the assumption that one-way monotonicity fails (in that t σ s and s τ t), completely
determines the orderings σ and τ : y σ t σ s σ x, and y τ s τ t τ x. As F(P ∧ σ) = s,
and F(P ∧ τ) = t , these orderings yield a failure of simple monotonicity. Thus,
with exactly four alternatives, if F satisfies participation, then any failure of one-way
monotonicity implies a failure of simple monotonicity.

Proof of 4.1 (3) Consider a failure of participation: a profile P and a single added voter
v with ranking σ such that t = F(P ∧ σ) is ranked below s = F(P) by σ , so that
F(P)σ F(P∧σ). Then F((2P)∧σ∧rev(σ)) = F(2P) = F(P) = s, and F((2P)∧σ ∧ σ)

= F(2(P∧σ)) = F(P∧σ) = t. But the profile (2P) ∧ σ ∧ σ is obtained from the
profile (2P)∧σ∧rev(σ) by having the voter v with preference ranking rev(σ) flip his
ranking upside down so that it becomes σ . This voter raises s from below t in rev(σ)

to above t in σ , and the effect is that s now loses while t wins ... a failure of half-way
monotonicity. ��
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In the presence of homogeneity + reversal-cancellation, might one-way monotonic-
ity and participation be equivalent? Our proof of part (i) leaves this possibility open,
but we conjecture that one-way monotonicity is strictly stronger than participation
with these assumptions.

From Theorem 4.1 together with Moulin’s result that every Condorcet extension
fails participation, we can immediately conclude that every homogeneous and rever-
sal-canceling Condorcet extension fails one-way monotonicity.12 However, our direct
modification of Moulin’s proof in the next section avoids the need to assume homo-
geneity and reversal cancellation.

5 Negative results: Condorcet extensions, Hare, and plurality run-off

Our approach to the main result makes use of the following coalitional version of
half-way monotonicity: a SCF is weakly coalitional half-way monotonic if whenever
a set of voters having identical strict ranking σ all simultaneously change their votes
to rev(σ), and the effect is to switch the winner from s alone to t alone, it must be that
s σ t.

Proposition 5.1 Half-way monotonicity implies weak coalitional half-way monoto-
nicity.13

Proof Assume a set of k voters having identical strict ranking σ all change their
votes to rev(σ), and the effect is to switch the winner from s to t . Let P j be the
profile in which j of these k voters have changed from σ to rev(σ), and k − j have
not changed, and consider the sequence of profiles P = P0, P1, …, Pk . Suppose
the winners for the profiles P0, P1, …, Pk are s = x0, x1, …, xu = t where xq

denotes the (common, unique) winner for profiles P j (q), P j (q)+1, . . . , P j (q+1)−1,
with 0 = j (1) < j (2) < · · · < j (u) ≤ t (and xq �= xq+1). Then by ordinary half-
way monotonicity applied to each transition from P j (q+1)−1 to P j (q+1), it follows
that s σ x1σ , …, σ xu = t , so that s σ t, as desired. ��
Theorem 5.2 With four or more alternatives and sufficiently many voters, no
Condorcet extension satisfies weak coalitional half-way monotonicity.

12 Merlin and Saari (1997) show that the Copeland rule fails a broad variety of monotonicity properties,
and one-way monotonicity is within this scope. Similar methods might extend to Condorcet extensions that
are homogeneous and pairwise (see footnote 11), but our results in Sect. 5 apply to all Condorcet extensions.
13 The proof that follows applies to any path connected domain—any domain D with the property that
every pair of profiles in D is linked by some ordered chain of “connecting” profiles such that each profile
differs in only one voter from the next in the chain. Note that the path connected domains include all
domains obtained as some cartesian product of restricted sets of preference rankings. One can formulate
a strong coalitional version of half-way monotonicity, as well as weak and strong coalitional versions of
participation, simple monotonicity, and two-way monotonicity (with strong coalitional two-way monoto-
nicity equivalent to coalitional strategy-proofness). It then turns out that there is considerable variation
as to whether the simple iteration argument used in the proof of Proposition 5.1 suffices to derive one or
both coalitional forms from the individual form. In particular, this argument does show that for every path
connected domain the strong coalitional forms of Maskin monotonicity (which is, in fact, the standard form
in the literature) and of simple monotonicity follow respectively from the individual forms we have defined
here. On the other hand, Proposition 3.7 shows that the weak coalitional form of one-way monotonicity
does not follow from the individual form.
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Corollary 5.3 With four or more alternatives and sufficiently many voters, no
Condorcet extension satisfies half-way monotonicity, and so no Condorcet extension
satisfies one-way monotonicity.

Proof of 5.2 Our proof is an elaborated version of the argument in Exercise 9.3(c),
page 251 of Moulin (1988a). The elaboration uses the ideas behind the homogene-
ity and reversal cancellation axioms, but does not require any assumption that these
axioms hold. (Rather, it uses that these axioms hold, speaking loosely, for Condorcet
winners and for Simpson scores.) Let C denote the profile, for m ≥ 4 alternatives, in
which each possible ranking occurs exactly once. Note C has m! voters. For an arbi-
trary profile P with n = n(P) voters, let k = k(P) be the maximum integer j such
that each of the m! rankings occurs at least j times in P . Informally, k(P) represents
the “number of copies of C contained in P .” Let n∗(P) denote n(P) − (m!)k(P).
Informally, n∗(P) is the number of voters remaining once one ignores the copies of
C. We will say that a profile P satisfies Condition M if 2k(P) ≥ n*(P) + 2. Informally,
condition M says that P contains “enough” copies of C relative to the number of voters
who would remain if all copies of C were removed.

Claim Let F be a Condorcet extension satisfying weak coalitional half-way mono-
tonicity. Let a and b be any two alternatives, and P be any profile for four or more
alternatives that meets the following three conditions:

• condition M ,
• the Simpson score t∗(b) is even and t∗(b) ≤ 0, and
• Net (b > a) > −t∗(b) + 2.

Then F does not elect alternative a at profile P .

Proof of Claim Let a, b, and P be as stated. Note that in general, we know that t∗(b)

satisfies −n ≤ t∗(b) ≤ n. However, copies of profile C have no effect on the value of
t∗(b), so in fact we know −n∗ ≤ t∗(b) ≤ n∗, whence −t∗(b) + 2 ≤ n∗ + 2 ≤ 2k.

Let r = −t∗(b)+2
2 , a strictly positive integer. Choose σ to be any ranking such that a

is at the bottom, b is immediately above a, and all other alternatives are ranked above b.
By assumption M there exist at least r voters who voted σ . Now let Q be obtained
from P by having r voters who voted σ all change their votes to rev(σ). For each
alternative x other than a or b, the effect of these changes is that

Net Q(b > x) = Net P (b > x) + 2r = Net P (b > x) + −t∗(b) + 2.

As Net P (b > x) ≥ t∗(b), this makes Net Q(b > x) > 0. Furthermore
Net Q(b > a) = Net P (b > a) − 2r = Net P (b > a) + t∗(b) − 2 > 0.

Hence, b is a Condorcet winner for profile Q (and a is not a winner). If a had been
a winner for P , this would be a violation of weak coalitional half-way monotonicity.
This completes the proof of the claim.

Next consider profile R:

6 6 10 8
a a d b
d d b c Profile R
c b c a
b c a d
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Note that n(R) = n∗(R) = 30. Let P be obtained from R by adding 28 copies of
the profile C . Then n∗(P) = n∗(R) = 30.

The claim can now be applied three times to show that b, c, and d cannot be elected
at profile P , so that a is the sole winner. (Note that when calculating any value of t∗ or
Net (x > y), C can be ignored, so the values for P are the same as those for R.) Next
suppose that four of the voters from P who have ranking dσbσaσc, simultaneously
reverse their rankings, yielding some new profile Q. Note that n∗(Q) = 30 + 8 = 38
and k(Q) = k(P) − 8 = 20, so that Q satisfies condition M . Apply the claim two
more times to show that neither a nor c can be elected at Q. This contradicts our
assumption that F is weakly coalitional half-way monotonic. ��

The situation painted by Corollary 5.3 seems somewhat odd. On the one hand, it is
easy to see that on the domain DCon of profiles having Condorcet winners, pairwise
majority rule satisfies the strong property of two-way monotonicity. But it is impossi-
ble to extend pairwise-majority rule over the full domain without violating the weaker
property of one-way monotonicity. Meanwhile, there are rules such as scoring rules or
the omninominator rule that “do less well” than does pairwise majority rule on DCon ,
yet do better on the full domain. It is almost as if pairwise majority rule paints itself
into a corner by trying too hard on DCon .

Next, we consider two closely related voting rules. In plurality with run-off, if no
candidate achieves a strict majority of first-place votes, there is a run-off between the
two alternatives x and y achieving the greatest number of first-place votes: the winning
alternative is whichever of x or y is ranked over the other by a majority of voters. In
the Hare rule (or “alternative vote,” as it termed in Moulin (1988a)) alternatives are
eliminated in sequential stages, based on fewest first-place votes. Each stage consid-
ers only the relative rankings over surviving alternatives, and the winner is the last
alternative (or final group of tied alternatives) remaining.

The following profile S is adapted from one used in Moulin (1988a) to show that
neither of these two rules are simply monotonic:

6 5 6
a c b
b a c Profile S
c b a

We reason about both plurality run-off and Hare together. In the above profile S, c
is eliminated, all 5 votes for c then turn to a, who wins the run-off against b. However,
if two of group of 6 who ranked b on top change rankings as indicated below

6 5 4 2
a c b a
b a c b Profile S′′
c b a c

Then in S′′ it is b who is eliminated and c wins the run-off against a. This represents a
failure of both simple monotonicity and weak coalitional one-way monotonicity—but
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can we obtain a failure of ordinary one-way monotonicity? It makes sense to consider
the intermediate profile below, in which only one of the six b-voters has made the
switch:

6 5 5 1
a c b a
b a c b Profile S′
c b a c

The most straightforward interpretation of “Plurality with run-off” seems to be that
for this profile both alternatives b and c would be eliminated, leaving a the winner. In
that case, the transition from S′ to S′′ provides the desired failure of one-way monoto-
nicity. This interpretation appears to be a standard one for the Hare (alternative vote),
so we conclude that Hare fails one-way monotonicity. What else might plurality run-
off actually do in a situation such as S′ ? We imagine that the ambiguity may not be
of much concern, at least not for large presidential elections in which exact ties are
extremely unlikely (or even ill-defined, as truly exact vote counts do not seem to exist in
the real world). The (only) other alternative that suggests itself is that plurality run-off
might declare a three-way tie among a, b, and c for S′. In that case, if the tie-breaking
dictator throws the contest to a, then the transition from S′ to S′′ again provides the
desired failure of one-way monotonicity. This is not an entirely satisfactory solution,
so we phrase the corresponding proposition conservatively:

Proposition 5.4 The Hare rule is not one-way monotonic. Plurality run-off violates
weak coalitional one-way monotonicity.14

6 Conclusions

One-way monotonicity stands apart from previously studied monotonicity properties
because of its distinct interpretation in terms of strategy-proofness. Our feeling is that
one-way monotonicity has some additional normative appeal, apart from this inter-
pretation, and discriminates in a useful way among realistic voting rules, so that it has
some features common to each of the classes we described in the introduction.

At the same time, one-way monotonicity shares important qualitative features with
the participation axiom, in terms both of common negative results for Condorcet
extensions, and of positive results for voting rules induced by certain types of cardinal
functions, called here sensible virtues, that respond appropriately to changes in a pro-
file. We do not yet understand the exact relationship between one-way monotonicity
and sensible virtues; the example in Proposition 3.7 leaves open the possibility that
some strong version15 of one-way monotonicity implies sensibility. Similar comments
apply to participation.

14 The referee has pointed out that if we employ the fixed agenda to break ties at each stage of a scoring
run-off rule F (rather than only at the very end), then a modification of the proof yields a stronger result:
for every choice of scoring weights, scoring run-off procedures fail to be one-way monotonic.
15 In particular, it seems that the strong coalitional version of one-way monotonicity would be involved.
Also, it can be shown that any sensible rule F extends to a social welfare rule F* that satisfies a form
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In terms of logical strength, there seems to be an intricate relationship among one-
way monotonicity, half-way monotonicity, participation, simple monotonicity, and
some other axioms that bridge the gap between properties for a fixed electorate and
those for a variable electorate. In one sense, Theorem 4.1 together with the counterex-
amples provided in Campbell and Kelly (2002) and in this paper, already tell us a lot
about these relationships.

These counterexamples, however, typically fail to be neutral or fail to be anony-
mous, and so they do not address questions such as the following:

(∗) Does participation imply one-way monotonicity for neutral and anonymous
rules?

This question may at first seem to be poorly conceived, as neutral and anonymous
rules would need to be rendered resolute before the question made sense, and the
mechanism employed (such as a tie-breaking agenda) would destroy one or the other
of neutrality and anonymity. The question would become

(∗∗) Does participation imply one-way monotonicity for neutral and anonymous
rules, after they are rendered resolute via a tie-breaking agenda?

which may not seem to be all that interesting.
On the other hand, one might approach question (∗) in a different way, by adapting

the properties directly so that they make sense when applied to irresolute voting rules:
(∗∗∗) Does the irresolute form of participation imply the irresolute form of one-way

monotonicity, for neutral and anonymous rules?
In Sanver and Zwicker (2009), we suggest some new methods for adapting one-way

and two-way monotonicity, simple monotonicity, and participation to the irresolute
context, and show that an irresolute voting rule F is irresolutely one-way monotonic
in this sense if and only if for every choice of a tie-breaking agenda ≺, the resolute
rule F≺ is one-way monotonic according to the definition we have used throughout
this paper. One implication of this result is that the method we have used in this paper,
of rendering voting rules resolute via a tie-breaking agenda, is less problematic than
may first appear. Another is that question (∗∗) is more natural than one might think;
in effect, it is identical to an instance of question (∗ ∗ ∗).

The most common approach for adapting strategy-proofness to the irresolute con-
text is to extend, in any one of a number of possible ways, a voter’s preferences
over individual alternatives to preferences over sets of alternatives (see, for example,
Gärdenfors (1979), or Taylor (2005)). This method may be applied to monotonicity
properties, as well, suggesting an alternative to the approach sketched above. In gen-
eral, we find (perhaps unsurprisingly) that the study of irresolute monotonicity is rich
and complex. However, some results suggest that there may be enough agreement
among the various approaches to avoid a devolution into Byzantine intricacy.

Any comparison of participation with one-way monotonicity requires that we
consider variable-electorate voting rules. In the fixed-electorate context, however,
neutrality and anonymity no longer necessarily force the existence of ties. In fact,

Footnote 15 continued
of one-way monotonicity appropriate to the social welfare context. (A social welfare rule yields, as the
election outcome, a ranking of all alternatives, with ties allowed.) So any version of one-way monotonicity
implying sensibility might need to be phrased in the social welfare context.
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Doğan and Giritligil (2007) have recently shown that there exists a neutral, anony-
mous, one-way monotonic, and simply monotonic (resolute) SCF if and only if the
number n of voters and m of alternatives satisfy that m! and n are relatively prime.
Their result suggests that the fixed-electorate context is the “natural home” of one-way
monotonicity; this home allows us to study properties that are ruled out for partici-
pation. Their methods also suggest possible extensions of their results. For example,
when m! and n are not relatively prime, is there a good notion of “minimally irresolute”
voting rule, and can such a rule be one-way monotonic? What do their methods tell
us when the output of a voting rule is a ranking?
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