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Abstract We extend Condorcet’s Jury Theorem (Essai sur l’application de l’analyse à la 
probabilité des décisions rendues à la pluralité des voix. De l’imprimerie royale, 1785) to 
weighted voting games with voters of two kinds: a fixed (possibly empty) set of ‘major’ voters 
with fixed weights, and an ever-increasing number of ‘minor’ voters, whose total weight is also 
fixed, but where each individual’s weight becomes negligible. For example, a common scenario 
in stock companies is that each shareholder is entitled with a number of votes (voting weight) 
proportional to their relative capital contribution: usually a small group of ‘major’ voters owns a 
significant number of votes – reflecting their large proportion of ownership of the capital stock – 
accompanied by a large ‘pool’ of small voters where each of these ‘minor’ voters has a 
negligible effect on voting outcomes.  
As our first main result, we obtain the limiting probability that the jury will arrive at the correct 
decision as a function of the competence of the few major players. This result assumes that 
voters vote for the alternative that seems most likely correct, given the evidence. When the 
evidence is not perfect, however, it may be that this informative voting strategy is not always 
optimal, the reason being that the consequences of an erroneous decision can be quite costly 
(e.g., a risky business strategy could end up fatal). Here, the informative strategy is not in 
equilibrium. Minor voters are usually supposed to vote informatively no matter what, since they 
                                                 

1 This paper is to be presented at the Voting Power in Practice Workshop at the University of Warwick, 
14-16 July 2009, sponsored by The Leverhulme Trust (Grant F/07-004/AJ). 
 



cannot affect the outcome. But if we think of the game as emerged from games with a growing 
number of (small) players, this conclusion is not necessarily granted. 

 

This talk summarizes results from two papers 

Lindner, I. (2008), A generalization of Condorcet’s Jury Theorem to weighted voting games with 
many small voters, Economic Theory, Vol. 35(3), 607-611. 

Lindner, I. and G. Owen (2009), Strategic Voting in Truth-Tracking Situations, Working paper.   
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1. Introduction

Condorcet (1785) considers collective decision-making, where the objective is

‘truth-tracking’. The fundamental premise is that there is a unique unanimously

preferred alternative (the ‘truth’), but voters only have partial information and im-

perfect competence for detecting it. The probability of a single voter’s choice being

correct is taken to quantify the competence of a voter. Here, the quantity of interest

is the jury competence of the decision-making body – the probability of arriving at

the correct decision. Condorcet assumes equal individual competence, greater than

1/2, on a dichotomous choice. Condorcet’s Jury Theorem shows that under simple

majority rule, jury competence approaches one with increasing size of the group or

increasing individual competence. Over the past decades, this celebrated result has

been extended in numerous ways by statisticians, economists, political scientists,

etc.1

The simple majority game as considered by Condorcet is a special case of a

weighted voting game (WVG). Here, each board member is assigned a non-negative

number as weight and a relative quota indicates the fraction of the total weight re-

quired for a win. The aim of this note is to provide a generalization of Condorcet’s

Jury Theorem to WVGs when the voters are of two kinds: a fixed (possibly empty)

set of major (big) voters with fixed weights, and an ever-increasing number of minor

(small) voters whose total weight is also fixed, but each individual weight becomes

negligible. Using the idea that asymptotically many minor voters act like a modifi-

cation of the quota for the vote among major voters,2 the limiting jury competence

is derived as a function of the competence of the few major players (as a group). As

in Condorcet’s result, the quota q = 1/2 is found to play a prominent role. We show

that it maximizes the range of values of major weights for which jury competence

converges to infallibility. This covers the case where major voters are absent, and

Condorcet’s original Jury Theorem results as a by-product.

1See e.g. Fey (2001) for references to recent work.
2Dubey and Shapley (1979) use a similar argument for analyzing asymptotic properties of the
Banzhaf index.
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2. The model

Consider a partition of the set of voters into two camps. The set of major voters is

L = {1, ..., l}, where l is a natural number.3 Each k ∈ L is assigned a weight wk, and

let wL =
∑

k∈L wk ∈ [0, 1] denote the combined voting weight of L. We shall consider

a sequence of WVGs {Γν}ν∈N with a growing population of minor voters. In each of

these games Γν , the set of mν minor voters is denoted by Mν = {l + 1, ..., l + mν}.

For each ν, these voters have weights αν
1 , ..., α

ν
mν , which sum up to α = 1−wL > 0.

For any coalition S ⊂ L ∪Mν we interpret w(S) as the aggregate voting weight of

S.

Formally, the WVG Γν is described by the tuple

(1) Γν = [q; w1, . . . , wl, αν
1 , . . . , αν

mν ],

where q ∈ (0, 1] is the relative quota. S is a winning coalition in Γν iff w(S) ≥ q.

The latter (weak) inequality may be replaced by the strict inequality >. In this case

we change the bracket notation in (1) to 〈 q; w1, . . . , wl, αν
1 , . . . , αν

mν 〉.

Put Qν :=
∑

k≤mν [αν
k]2. Let {Γν}ν∈N evolve in such a way that

(2) lim
ν→∞

αν
max/

√
Qν = 0,

where αν
max := maxk≤mν αν

k. This ensures αν
max → 0 as ν → ∞, which implies

mν →∞.4

3. A Generalization of Condorcet’s Jury Theorem

In a jury trial, assume a given a priori probability θ ∈ [0, 1] that the defendant is

guilty of the offense charged. This models the existence of a truth independent of the

jury, yet unknown its members. Each jury member (voter) k is assumed to possess

a more or less reliable perception about the truth. This degree of knowledge is

modeled by pk ∈ (0, 1), the judgemental competence of voter k. It is the probability

that the voter will make the correct choice between the options ‘guilty’ or ‘not

3Note that l = 0 takes care of the case where L is empty by the general convention that {1, . . . , 0}
is empty.
4However, it can be shown that Qν tends to zero so that condition (2) is stronger than αν

max → 0.
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guilty’. Assume the minor voters’ choices are independent of one another and that

a common p ∈ (0, 1) exists, the probability of any minor voter making the correct

decision. Hence we put pk = p for all k ∈ Mν .

Jury competence is measured by the likelihood of the verdict being correct. Let

CI [Γ] denote the probability of conviction, provided the defendant is guilty. Anal-

ogously, let CII [Γ] denote the probability of acquittal in case of innocence. Jury

competence then follows as

(3) C[Γ] = θCI [Γ] + (1− θ)CII [Γ].

For the moment put θ = 1, so that C[Γ] = CI [Γ] (the defendant is guilty). In the

sequence of games {Γν}ν∈N, we should expect that in the limit the continuous ‘ocean’

of randomly voting minor voters will be divided in such a way that the aggregate

voting weight for conviction (the correct choice) is pα. Consider the games

(4) Γ0 = [q − pα;w1, ..., wl] and Γ′0 = 〈q − pα;w1, ..., wl〉,

which are well-defined for q ∈ J (p) := (pα,wL + pα). Γ0 and Γ′0 can be considered

limiting WVGs for the major players where the aggregate minor weight pα in favor

of conviction is substracted from the quota q.

Let Bl = [wL; w1, w2, ..., wl] denote the unanimity game among the major voters in

which each voter has a veto. Let B∗l = 〈0; w1, w2, ...., wl〉 represent the special case

where the major voters operate under what Rae (1969) has called a ‘rule of individual

initiative’: action (conviction) can be initiated by any single individual. We will show

that in the sequence of games {Γν}ν∈N, CI converges to a limit depending on the

quota q and wL. Figure 1 gives an illustration for p > 1/2. Within the inner triangle

J (p), the limit is the arithmetic mean of CI for the games defined in (4). Outside

the closure of J (p), the influence of the major voters is ‘destroyed’.

For θ = 0 (the defendant is innocent) we have C[Γ] = CII [Γ]. Since voting for

acquittal is now correct, minor voters vote for conviction with probability 1−p. The

limit scenario of CII follows analogously to CI by replacing p by (1−p) and putting

CII = 1 − CI . The resulting graph for CII is homeomorphic to that in Figure 1.

The inner triangle J (1− p) is however shifted to the left.
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Figure 1. Limit scenario for CI

Theorem 1. A Generalization of Condorcet Jury Theorem to WVGs

In the sequence of WVGs {Γν}ν∈N, the limiting jury competence is a function of the

competence of the few major voters. In particular, jury competence converges to

(5) lim
ν→∞

C[Γν ] = θCI + (1− θ)CII ,

where CI is given by

(6) CI =
1
2
CI [Γ0] +

1
2
CI [Γ′0], if q ∈ J (p).

For other values of q, the right-hand side of (6) simplifies to

(7) CI =



1 if q < pα,

1/2 (1 + CI [B∗l ]) if q = pα,

1/2 CI [Bl] if q = wL + pα,

0 if q > wL + pα.

CII is obtained by replacing p in (6) and (7) by 1− p and putting CII = 1− CI .
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The proof of Theorem 1 is available upon request. The main idea of the proof

can be stated as follows. Since we assume that the minor voters’ choices are in-

dependent of one another, the aggregate voting weight of any coalition of minor

voters is interpreted as a sum of independent random variables. This allows us to

analyze the asymptotic properties of jury competence by means of a generalized cen-

tral limit theorem, the Lindeberg- Feller theorem (see e.g. Theorem 4.7 in Petrov

1995, p. 123). This method is validated as long as the weights of the minor voters

are not too skewed, which is ensured by condition (2). The asymptotic behavior of

jury competence begins to manifest itself at around 20 minor players. Estimations

of convergence rates are available upon request. Figure 2 gives an illustration of

Theorem 1.
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Figure 2. Generalized Jury Theorem

In the triangle-shaped area around q = 1/2 jury competence converges to infallibility,

C = 1, for lower values of wL. Note that it contains the point marked with ‘*’ on

the horizontal wL = 0 (absence of major voters) and q = 1/2. The simple majority

rule, as considered by Condorcet, is a special case of this setting in which the block

of votes, α = 1, is broken up and divided equally among an ever-increasing number

of minor voters.
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rendues à la pluralité des voix. Paris: De l’imprimerie royale 1785

Dubey, P. and L.S. Shapley: Mathematical properties of the Banzhaf power index.

Mathematics of Operations Research 4(2), 99–131 (1979)

Fey, M.: A note on the Condorcet Jury Theorem with supermajority voting rules.

Social Choice and Welfare 20(1), 27–32 (2003)

Petrov, V.V.: Limit Theorems of Probability Theory. Oxford: Clarendon Press 1995

Rae, D.W.: Decision rules and individual values in constitutional choice. American

Political Science Review 63, 40–56 (1969)

6



Strategic Voting in Truth-Tracking Situations 
 
 

Working Paper 
June 2009 

 
 

Ines Lindner* 
Guillermo Owen** 

 
 
* Department of Econometrics and Operations Research, Free University, Amsterdam, 
Netherlands 
** Corresponding author. Department of Applied Mathematics, Naval Postgraduate 
School, Monterey, California, gowen@nps.edu 

 
 
 
 

Abstract 
 
 
In truth-tracking situations (as, for example, in a jury trial, or in deciding on a medical 
treatment) it seems reasonable to vote for the alternative (e.g., conviction or acquittal; 
surgery or radiation) that seems most likely correct, given the evidence. When the 
evidence is not perfect, however, it may be that this informative voting strategy is not 
always optimal, the reason being that the consequences of an erroneous decision (e.g., 
convicting an innocent defendant) can be quite costly. Thus the informative strategy is 
not in equilibrium. We analyse truth-tracking situations in weighted voting games when 
there is an ocean of infinitesimal players. These players are usually supposed to vote 
informatively no matter what, since they cannot affect the outcome. But if we think of the 
game as the limit of a sequence of games with an increasingly large number of (small) 
players, this conclusion is not necessarily granted. 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Symmetric voting 
 
     Assume an a priori probability π that the defendant is guilty.1 If guilty, then each juror 
receives a signal which is either G (with probability t) or NG (with probability 1-t); if not 
guilty, then each juror receives the signal G with probability u. The several jurors’ signals 
are independent, contingent on defendant’s guilt. We assume, of course, that t > u. 
     All jurors have the same objective, namely, to convict a guilty defendant, and to acquit 
an innocent defendant. They assign a cost v1 to a type I error (convicting an innocent 
person) and v2 (usually much smaller) to a type II error (acquitting a guilty person). Then, 
the jurors’ objective function is the expected cost, namely  
 

2 1C =  Prob{acquittal |guilty} + (1 )  Prob{conviction |innocent}v vπ π−  
   
 
     We treat this as a non-cooperative game, and look for equilibria. First of all, suppose 
all jurors vote to convict on a G signal, and acquit on NG. Let us call this, the 
informative voting strategy. The question is whether this strategy is in equilibrium. 
      Consider juror i’s reasoning, under this assumption, and assuming she has received a 
signal G. Assume a relative quota q such that k =  qn  out of n votes are needed for 
conviction. She knows that her vote will make a difference if and only if exactly k-1 of 
the other n-1 jurors vote to convict. Now, if the defendant is in fact guilty, the probability 
that this happens, and that i has received the signal G, is 
 

Pa  =   t n-1 tk-1(1-t)n-k 
                                                                  k-1 
 
     If, on the other hand, the defendant is innocent, the probability of this is 
 
 

Pb   =   u n-1 uk-1(1-u)n-k 
                                                                  k-1 
 
     Now, if i votes to convict, the expected loss due to i’s vote is 
 

(1-π) v1Pb 
 
whereas, if she votes to acquit, the expected loss due to her vote is 
 
                                                 
1 One possible interpretation of π is that e.g. in U.S. defendant must be indicted before 
coming up for trial. Indictment is work of a grand jury (as opposed to petit jury during the 
trial). Grand jury may make indictments easy or difficult. If grand jury makes indictments 
easy π may be relatively low (say, 0.3). If grand jury makes indictments difficult π would 
be relatively large (say, 0.8). 
 
 



π v2 Pa 

 
     Thus, it becomes rational for i to vote for conviction if and only if 
 

π v2 Pa   ≥ (1-π) v1Pb 
 
or, equivalently, if 
 1 2  (1- ) /  (  ),  nS v vπ π≥  (1) 
 
 with  :  ( / )  [(1- ) /(1- )] -   .nS t u k t u n k=  
     
Similarly, we find that, given that everybody else is using the informative strategy, it is 
optimal for juror i to vote for acquittal, given a signal of NG, if and only if 
 
 1 2   (1- ) /  ( )   /    (1- ) /(1- ) nS v v t u u tπ π≤  (2) 
 

 
 
 
We conclude.  
 
Proposition 1.  
For symmetric voting, with k out of n votes needed for conviction, and probabilities t and 
u respectively of obtaining a G signal in case defendant is innocent or guilty, informative 
voting will be in equilibrium if and only if inequalities (1) and (2)  above both hold. 
 
Note: since we assume that t > u, the right side of (1) is smaller than that of (2), and so at 
least one of these two inequalities will hold; it is possible that both of them hold. 
 
Note: this is not the only symmetric equilibrium. There are at least two others: one in 
which everyone always votes to convict, regardless of the signal, and one in which 
everyone always votes to acquit, regardless of the signal. Since a single juror, in the 
minority (against all others) can never make a difference, these are clearly equilibria. We 
consider them trivial equilibria. 
 
 
2. Passage to the Limit  
   
  
Let us suppose now that there is an ocean of infinitesimal players. These voters are 
usually supposed to vote informatively no matter what, since they cannot affect the 
outcome. We will call this the non-strategic case. But if we think of the game with 
infinitesimal players as the limit of a sequence of games with an increasingly large 
number of (small) players, the question is whether this conclusion is necessarily granted. 
If we assume strategic behavior for small jury sizes n and let n increase at which jury size 



n does a voter feel that the probability to affect the outcome (his or her voting power) is 
too small to make a difference and disregards strategic aspects? Under what conditions 
does it make a difference at all, i.e. under what conditions does the informative strategy 
stay in equilibrium for an increasing amount of players? We start by addressing the latter 
question.    
 
For fixed q, consider a sequence of situations with n jurors, and k = qn votes needed for 
conviction. In general, we have 
 
Proposition 2. The non-strategic case  
 
As n → ∞ the expected loss C approaches the following limits: 
 

(1-π)v1           if t > u > q 
(1-π)v1/2             if u = q 
0                     if t > q > u 
πv2/2                    if t = q 
πv2                 if q > t > u 

  
Proof: The proof appears in the Appendix. 
 
 
Note that the expected loss tends to zero for t > q > u . The reason is that with increasing 
n it becomes almost certain that a share of t voters vote ”conviction” when the defendant 
is guilty but only a share of u voters vote to convict when the defendant is innocent. Since 
t > q > u this ensures convergence to infallibility of the collective decision when n 
increases. Note also that this proposition confirms the finding of the classical Condorcet 
Jury Theorem which is a statement on the special case u < q = 1/2 < t.  
 
We will next analyze the strategic case. Suppose n, the size of the jury, is fixed. What is 
the optimal value for q for the non-strategic case? Of course, this is not a well-posed 
question. Presumably, the desire is, as before, to minimize the expected loss. There is a 
problem, however, as it is not easy to determine how the jurors will act. We assume each 
will try to minimize the expected loss due to errors of either type, but, especially where 
there is more than one equilibrium, the “optimality” of the design will depend too much 
on the equilibrium chosen. 
     Suppose, then, that we would like to encourage the jurors to use informative voting. 
According to Proposition 1 the question is whether the equations (1) and (2) are met for n 
→ ∞. We get   
 
 

 ( ) ( ) ( ){ }1 //   / 1 / 1
nk nk n

nS t u t u
−

= − −    (3) 

 



We find that Sn tends to 0 if the term in curly brackets is smaller than 1. This can be 
achieved by setting q=  k/n smaller than  
 
  :  ln(1- ) /(1- )  /   { ln(1- ) /(1- )  -  ln  / }.   t u t u t uµ =  (4) 
              
Note that it is always possible to set q equal to µ since µ is between 0 and 1. We can 
make an even stronger statement.    
 
Lemma 1. For any values of u and t with u<t it holds that                                                     
                      u< µ < t .   
 
For a proof see the appendix.  
 
We summarize are findings as follows.  
 
Corollary 1.  The strategic case   
For fixed q, consider a sequence of situations with n jurors, and k = qn votes needed 
for conviction. For increasing number of jurors we have the following statements.   

(i) For q < µ acquittal eventually becomes the equilibrium strategy and expected 
cost approaches C = π v2 .    

(ii) For q > µ conviction eventually becomes the equilibrium strategy and 
expected cost approaches C=(1-π)v1.    

(iii) For q = µ and if inequalities (1) and (2) above both hold the informative 
voting strategy stays in equilibrium and expected cost tend to zero.   

 
 
Next, we will answer the question whether it is always possible to choose q such that (1) 
and (2) hold.  
 
 
Proposition 3: Consider a sequence of situations with n jurors, and k = qn votes 
needed for conviction. There exist an N such the quota  
 

 

1

2

(1 )1 1ln ln
1

1ln ln
1

n

t
u nq t t

u u

π ν
πν
−−

−
−

=
−

−
−

 (5) 

 
ensures (1) and (2) to hold for all .n N≥   
Moreover, lim n

n q µ→∞ =  such that nq  lies between u and t for sufficiently large N.  
For t = (1-u) implying the signals are equally informative, we have lim 1/ 2.n

n q→∞ =  
 
 
 



Proof of Proposition 3: For a fixed jury size n solving for nq  such that (1) holds with 
equality provides (5). Note that we assume t > u. Hence the right side of (2) is larger than 

that of (1) such that nq  will also ensure (2). With increasing n the term 1

2

(1 )1 ln
n

π ν
πν
−  

tends to zero. According to Lemma 1 this ensures that nq  is between t and u for 
sufficiently large n.   
 
 
We summarize our findings by concluding that having any influence on the quota q it 
would be optimal to set q equal to (5) for sufficiently large n. If the voters behave non-
strategically this ensure infallibility in the limit. In the strategic case this choice 
encourages informative voting which again tends to infallibility.  
 
Note that this finding holds regardless of the quality of the signal t and u. We merely put 
the careful assumption that t > u. In fact, the conclusion even holds if the signals are 
misleading, i.e. for t and u smaller than 1/2 . (The latter could apply when evidence is 
falsified.)  
 
Remark: Note that Proposition 2 confirms Condorcet’s Jury Theorem in that if the 
signals t and 1-u are larger than ½, then the majority quota q=1/2 leads to infallibility of 
the jury. Similarly, when the quality of the signals is the same, i.e. t=1-u, the term µ 
simplifies to ½.      
 
 
4. Outlook: Large Weighted Voting Games  
 
 
    Lindner (2008) extends Condorcet’s Jury Theorem (the nonstrategic case) to weighted 
voting games with voters of two kinds: a fixed (possibly empty) set of ‘major’ voters 
with fixed weights, and an ever-increasing number of ‘minor’ voters, whose total weight 
is also fixed, but where each individual’s weight becomes negligible. As a main result, 
she obtains the limiting probability that the jury will arrive at the correct decision as a 
function of the competence of the few major players. As in Condorcet’s result the quota q 
= 1/2 is found to play a prominent role. The question is now how to extend this result to 
the strategic case, and, possibly, signals of different reliability. 
 
 
Definition 1: q-chain  
 
Let  
                                   (0) (1) (2) ....N N N⊂ ⊂ ⊂  
be an infinite increasing chain of finite non-empty sets, and let  

   ( )

0

.n

n

N N
∞

=

=∪  



Let w be a weight function that assigns to each i N∈ a positive real number iw as weight; 
and let q be a real (0,1).∈  
For each n  let ( )nW be the weighted voting game whose assembly is ( )nN  - each voter 

( )ni N∈  being endowed with the pre-assigned weight iw - and whose relative quota is q.  

We shall then say that { }( )

0

n

n
W

∞

=
 is a q-chain of weighted voting games.  

 
 
Given a q-chain of WVGs we associate with it the family of independent random 
variables { }| ,jX j N∈  indexed by N, such that for every ,j N∈  

 
{ }
{ }

P ,

P 0 1 ,

j j

j

X w t

X t

= =

= = −
 

 
if the defendant is guilty. If non-guilty t is replaced by u.  
 
A jury member i knows that her vote will make a difference if and only the other n-1 
jurors vote such that the combined weight sum of those voting in favor of conviction lies 

in the interval 
( ) ( )

,
n n

j i j
j N j N

q w w q w
∈ ∈

  
−        

∑ ∑ . Now, if the defendant is in fact guilty, the 

probability that this happens, and that i has received the signal G, is 
   

 ( ) ( ) ( ),

 =  

 ( )

n n n
a j i j j

j N j N j N
j i

i

P t P q w w X q w

t P t

∈ ∈ ∈
≠

¬

    − ≤ <      
=

∑ ∑ ∑  (6) 

  
 
 
 
     If, on the other hand, the defendant is innocent, the probability of this is 
 
  
                =  ( )b iP u P u¬  
 
 
Now, if i votes to convict on signal G, the expected loss due to i’s vote is 
 

(1-π) v1Pb 
 
whereas, if she votes to acquit, the expected loss due to her vote is 
 



π v2 Pa 

 
     Thus, it becomes rational for i to vote for conviction if and only if 
 

π v2 Pa   ≥ (1-π) v1Pb 
 
or, equivalently, if 
 
 

  ( )iP t¬   / ( )iP u¬  ≥ u/t  (1-π) v1/(π v2). 
 
 
Analogously, if the defendant is in fact guilty, the probability that i is critical, and that i 
has received the signal NG, is 
 
                         = (1 ) ( )c iP t P t¬−  
 
 
If, on the other hand, the defendant is innocent, the probability of this is 
 
  
                         = (1 ) ( )d iP u P u¬−  
      
 
We find that, given that everybody else is using the informative strategy, it is optimal for 
juror i to vote for acquittal, given a signal of NG, if and only if 
 
 

( )iP t¬   / ( )iP u¬  ≤ (1-u)/(1-t)  (1-π) v1/(π v2). 
 
 
In summary, the informative strategy is in equilibrium if  
 1 2 1 2/   (1- ) / (  ) P (t)/P (u) (1-u)/(1-t) (1- ) / (  ) .i iu t v v v vπ π π π¬ ¬≤ ≤  (7) 
 
The question is now as to the limit behavior of ( )iP t¬ / ( )iP u¬  for an increasing jury size 
n. Note that ( )iP t¬ and ( )iP u¬  is a distribution of a sum of independent random variables. 
It is therefore tempting to work with general versions of the central limit theorem which 
state that for sufficiently large n ( )iP t¬ and ( )iP u¬ will be approximately normal 
distributed.  
 
For any i N∈  let us put  

 ( )
( )

1/ 2( ) ( ) ( ) ( ) ( )( ) : ,        ( ) : ,         ( ) : .
n

n n n n n
i j i i i i i

k N

S t X X t E S t Var Sµ σ¬ ¬ ¬ ¬ ¬
∈

 
   = − = =     

 
∑  (8) 



 
And let ( )n

iS¬ be the ‘standardized’ form of ( )n
iS¬ , i.e.  

 
( ) ( )

( )
( )

( ) ( )( ) : .
( )

n n
n i i
i n

i

S t tS t
t
µ

σ
¬ ¬

¬
¬

−
=  (9) 

 
Using the definition of the iX   it is easy to obtain the following explicit expression for 

( )n
iµ¬  and ( )n

iσ¬   

 
( )

( )
( )

( )

( )

( ) 2 2

( )

( ) (1 ) .

n

n

n
i j ij N

n
i j ij N

t t w tw

t t t w w

µ

σ
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∑
 (10) 

 
From (6) follows  
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      
 

∑∑
 (11) 

 
 
One major difficulty is, however, that for increasing n not only the approximation error 
tends to zero but also both ( )iP t¬ and ( )iP u¬  as well as their normal approximations given 
by (11). With analyzing the limit behavior ( )iP t¬ / ( )iP u¬ by means of the approximations 
we therefore face the problem of a ratio of two zero sequences and hence whether in the 
limit process the error terms distort the problem.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix. 
 
 
Proof of Proposition 2. 
 
     Let 

C1  =  ∑      n tj (1-t)n-j 

                                                            0≤j≤k-1    j 
and  

C2  =  ∑   n uj (1-u)n-j 

                                                             k≤j≤n   j 
 
Then the expected costs are   

C  =  πv2C1  +  (1-π)v1C2 . 
 
Now 
 

C1  =  Prob{ X < k} 
 
where X is a binomial random variable with parameters n and t, and thus mean nt and 
variance nt(1-t). For large n, this will be an approximately normal variable with this mean 
Φand variance. Thus we have the approximation 

C1  ≈ Φ  k – nt                                                                           
             √nt-nt2  

 
where Φ is the normal distribution function. 
     Since k = nq, we have the further approximation 
 

k - nt       ≈   nq - nt  =  (q-t) √n  
                                             √nt-nt2          √nt-nt2         √t-t2 
 
Thus  

C1  ≈ Φ  (q-t)√n                                                                           
                √t-t2      

 
and, as n→∞ , this expression converges to 0 if q < t, to 1 if q > t, and to ½ if q = t. 
     In a similar manner, C2 converges to 0 if q > u, to 1 if q < u, and to ½ if q = u. This 
proves the theorem. 
 
 
 
 
 
 
 



Proof of Lemma 1. 
 
Part 1. Let  
 

g(t, u)  =  t ln(t/u) + (1-t) ln[(1-t)/(1-u)]. 
 
We claim that, for t, u in (0, 1), this function is non-negative. In fact, it is 0 if t=u, and 
positive otherwise. 
 
Clearly g = 0 if t = u. Differentiating, we have 
 
∂g/∂u  =  -t/u  + (1-t)/(1-u) 
 
Setting this derivative equal to zero, we obtain 
 
t/u  =  (1-t)/(1-u) 
 
t(1-u) = u(1-t) 
 
u = t. 
 
Thus, for fixed t, there is only one stationary point (in u), and it is at u = t. If we 
differentiate again, we find 
 
∂2g/∂u2  =  t/u2 + (1-t)/(1-u)2, 
 
which is clearly positive, so that we have a local minimum. But there are no other 
stationary points, and thus this is the global minimum. Since g(t, t) = 0, we conclude that 
the function is never negative, and, in fact, is positive for all u≠t. 
 
Part 2. Consider now the function  
 
F(t, u)  =   v/w, 
 
where 
 
v = ln(1-t) – ln(1-u) 
w = ln(1-t) – ln(1-u) – ln t + ln u. 
 
Clearly, v = w = 0 whenever u = t.  
Thus F(t, t) is undetermined. We can however fix t and apply L’Hôpital’s rule (in u) 
 
Limu→t v/w  =  Lim v’/w’  = Lim [1/(1-u)]/[1/(1-u) + 1/u] = Lim u  =  t. 
 
We conclude that setting F(t, t) = t gives us a continuous function. 
 



Next we differentiate F with respect to t. We find 
 
w ∂v/∂t  =  – [ln(1-t) – ln(1-u) + ln u – ln t] / (1-t)  
 
v ∂w/∂t  =  – [ln(1-t) – ln(1-u)] / (1-t)  – [ln(1-t) – ln(1-u)] / t 
 
 
 
 
Some algebra now gives us 
 
w ∂v/∂t  – v ∂w/∂t   =  t(ln t – ln u) + (1-t) [ln(1-t) – ln(1-u)]  =  g(t, u)  
                                                       t(1-t)                                        t(1-t) 
 
where g is as in part 1 above. Thus  
 
∂F/∂t  =  g(t, u) / [t(1-t)w2] 
 
All the terms appearing in this last expression are positive so long as t, u ∈ (0, 1), t ≠ u. 
Thus (for fixed u) F is an increasing function in t. It follows that, if t > u, 
 
F(t, u) > F(u, u) = u 
 
Finally, note that F is symmetric in t and u. Thus (for fixed t) F is also an increasing 
function in u. Hence, if  u < t,  
 
F(t, u) < F(t, t)  =  t. 
 
We conclude that, for u < t, 
 
u < F(t, u) < t. 
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