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1. Introduction 
 
The Banzhaf measure of voting power equals the chance of pivotality under the 
assumptions that (i) the voters cast their votes independently and (ii) each voter is equally 
likely to vote yes or no.  These assumptions define the so-called Bernoulli model 
(Felsenthal and Machover 1998).  But the Bernoulli model is of course not always an 
accurate representation of the real world.  We will give up both assumptions of the 
Bernoulli model.  Since it is clear how to generalize Banzhaf voting power in the absence 
of equiprobability (Dubey and Shapley 1979, Machover et al. 2007), we will focus our 
discussion on the independence assumption.  
 
The simplest approach for generalizing the notion of standard voting power is to calculate 
the probability of being pivotal under the probability model at hand, which might violate the 
independence assumption. However, as Machover et al. (2007) show, this leads to highly 
counterintuitive results. We will therefore construct a new measure that quantifies the real-
world influence of each voter.  If the assumptions of the Bernoulli model hold then our 
measure simply reduces to Banzhaf voting power.   
 
 

2. Generalized Voting Power 
 
Suppose that with person i voting no on a proposal in the actual world, the chance of 
acceptance is quite low.  If i were to vote yes instead, then the chance of acceptance 
would be much greater.  Similarly with i voting yes on a proposal in the actual world, the 
chance of rejection is quite low.  If i were to vote no instead, then the chance of rejection 
would be much greater.  Then intuitively, i has more influence than a person j for whom 
these respective differences would have been notably smaller.  Let us make this idea 
precise by constructing a measure.    
 
We introduce the following notation. We assume that there are N voters. The i th vote is 
modeled as a random variable Vi . We set  Vi = 1, if i votes yes, and Vi = 0, if she votes no. 
The outcome of the vote is described by the random variable V.  V = 1 means that the 
proposal is accepted.  V = 0 means that the proposal is rejected.  
 
We assume that we have a full probability model for the votes. The model provides us with 
probabilities for each possible voting profile (i.e. the joint probabilities of the Vi s). We 
assume that we can obtain conditional probabilities such as P(Vj  = 0| Vi = 1) from the joint 
probability distribution. (For an exception see Section 5 below.) Once we know the 
decision rule, we can calculate conditional probabilities for acceptance given some single 
vote or given a combination of votes, such as P(V = 1| Vi = 1) or P(V = 1| Vi = 1, Vj  = 0). It 
is not our concern in this paper how to obtain a realistic probability model from empirical 
data.  
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We will also assume that we have causal information about the votes.  In our models a 
person’s votes can be influenced by other people’s votes and by one’s ideological 
commitment.  This is not inconsistent with taking voting to be an instance of free agency.  
How such causal information can be obtained is not our concern in this paper.  
 
For calculating our measure of influence, we first assess the chance that a proposal is 
accepted given that i voted no, i.e. P(V =1 | Vi = 0) and the chance that a proposal is 
rejected given that i voted yes, i.e. P(V = 0| Vi = 1).  Subsequently, we construct 
counterfactual probability distributions.  We ask what the chance is that a proposal would 
have been accepted, had i voted yes (rather than no, as i did in the actual world), i.e. Qi

-(V 
= 1| Vi = 1).  And we ask what the chance is that a proposal would have been rejected, 
had i voted no (rather than yes, as i did in the actual world), i.e. Qi

+(V = 0| Vi = 0).  Let Di
- 

be the difference between the chance that the proposal would have been accepted had i 
voted yes and the chance that the proposal was accepted conditional on i having voted no.  
Let Di

+ be the difference between the chance that the proposal would have been rejected 
had i voted no and the chance that that the proposal was rejected conditional on i having 
voted yes.   
 
(1)  Di

-  = Qi
-(V = 1| Vi = 1) - P(V = 1| Vi = 0) 

 
and 
 
(2)               Di

+ = Qi
+(V = 0|Vi = 0) - P(V = 0| Vi = 1) . 

 
We can now construct the measure:   
 
(3)                                               Di = Di

- P(Vi = 0) + Di
+ P(Vi = 1) . 

 
 
Our definition of D need not only be motivated by an intuitive argument. There is also an 
ex post justification for quantifying influence in terms of D: D yields intuitively plausible 
results if applied to a range of examples. We now turn to such examples.  
 
 

3. A simple example 
 
We start with a simple three-person example featuring a Supreme Court with Scalia, 
Thomas and Ginsburg as voters. This example will illustrate how the D-values are 
calculated. We will first assume that proposals are decided on by a simple majority vote. 
Rather than using the terminology that is fitting for the Supreme Court, we will conduct our 
presentation in terms of voters and proposals. 
 
We consider different models for the votes. Under every model, each voter votes yes with 
a probability of .5.  
 
3.a  Opinion leader 
 
Both Ginsburg and Scalia are influenced by and only by the details of the case.  Thomas 
keeps a close eye on Scalia and there is .9 chance that he will vote yes, given that Scalia 
votes yes, and there is a .9 chance that he will vote no, given that Scalia votes no. One 
can thus say that Thomas's vote causally depends on Scalia's vote. The causal influences 
in the model are represented in Fig. 1. Let us now assess the influence of each voter by 
calculating her D-value.   
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Figure 1. The causal network for the opinion leader model. 
 
 
We start with the D-value of Thomas. We consider the first addend, viz. DT

- P(VT = 0). 
Clearly, P(VT = 0) = .5.  
 
For calculating DT

- we have to assume that Thomas votes no in the real world. We first 
turn to P(V = 1| VT = 0). If Thomas votes no, then the chance that Scalia voted no is .9.  
Given that Thomas votes no, we only get acceptance in the real world, if both Scalia and 
Ginsburg vote yes. And so the conditional chance that the proposal is accepted is P(V = 1| 
VT = 0) = .1 * .5 = .05.  We now turn to QT

-(V = 1| VT = 1) = 1 – QT
-(V = 0| VT = 1).  If 

Thomas were to vote for the proposal, this would not affect the chance that Scalia voted 
yes—that chance is still .9—since the causal link does not go from Thomas to Scalia.  The 
only profile under which the proposal would be rejected, if Thomas voted yes, is a profile 
with Scalia and Ginsburg voting no.  That chance is .9 * .5 = .45.  So QT

-(V = 1| VT = 1) = 
.55 and DT

- = .55 - .05 = .5.  The argument for DT
+ runs parallel and so DT = .50.  

 
Let us now calculate the D-value for Scalia. We first consider QS

-. If Scalia votes no, then 
the chance that Thomas votes no is .9.  Given that Scalia votes no, we only get 
acceptance in the real world, if both Thomas and Ginsburg vote yes. And so the 
conditional chance that the proposal is accepted is P(V = 1| VS = 0) = .1 * .5 = .05.  We 
now turn to QS

-(V = 1| VS = 1) = 1 – QS
-(V = 0| VS = 1).  If Scalia were to vote yes, this 

would affect the chance that Thomas votes no—that chance is now .1—since the causal 
link goes from Scalia to Thomas.  The only profile under which the proposal would be 
rejected is a profile with Thomas and Ginsburg voting no. The chance is .1 * .5 = .05.  So 
QS

-(V = 1| VT = 1) = .95 and DS
- = .95 – .05 = .9.  The argument for DS

+ runs parallel and 
so DS = .9.  
 
Finally, we assess the influence of Ginsburg.  If Ginsburg votes no, then this does not 
affect the chance that Thomas or Scalia vote no.  Given that Ginsburg votes no, the 
chance that both Thomas and Scalia vote yes is .9 * .5 = .45.  So P(V = 1| VG = 0) = .45.  
Suppose that Ginsburg asks herself what the chance would be that the motion had been 
accepted had she voted yes.  The chance that both Thomas and Scalia would have voted 
no is .9 * .5 = .45.  So QG

-(V = 1| VG = 1) = 1 – .9*.5 = .55.  Hence, DG
- = .10.  The 

argument for DG
+

  runs parallel and so DG = .10.   
 



 4 

This is not unreasonable. Scalia does have more influence than Thomas, because he 
takes Thomas along with him as he changes votes, but not vice versa.  Ginsburg has very 
little influence because she faces a quasi-block vote of the two other voters.   
 

Justice  Scalia Thomas Ginsburg 

D-value 0.9 0.5 0.1 

 
 

Table 1. Results under the opinion leader model 
 
3.b   Common causes 
 
Let us now change our assumptions in the following way:  
 
1. We introduce a parameter ε which permits us to vary the correlation between the votes 
of Scalia and Thomas.  The parameter ranges from –1 for full negative correlation over 0 
for independence to +1 for full positive correlation: 
 
 P(VS = 1, VT = 1) = P(VS = 0, VT = 0) = .25*(1+ ε) .   
 
     and  
 
 P(VS = 0, VT = 1) = P(VS = 0, VT = 1) = .25*(1 – ε) .   
   
2. Correlations do not arise due to a direct causal influence from Scalia to Thomas or vice 
versa as in Subsection 3.a.  Rather, they are due to a common cause (see Figure 2).  
Positive correlations are due to shared ideological backgrounds.  Negative correlations are 
due to diverging ideological backgrounds.  We can model this in the following way.  We 
introduce a random variable which captures the nature of the proposal.  If C = 0, then the 
proposal is such that both Scalia and Thomas vote no; if C = 1, then the proposal is such 
that Scalia votes no and Thomas votes yes; if C = 2, then the proposal is such that Scalia 
votes yes and Thomas votes no; if C = 3, then the proposal is such that both vote yes.  C 
models, in Dretske’s terms (Dretske 1988, pp. 42–4), a triggering cause for the voting 
behaviour of Thomas and Scalia.  The features of the proposal trigger votes that match the 
ideological commitments of Thomas and Scalia.  By specifying the probability values in 
Table 2 we can characterize the degree to which Thomas and Scalia’s votes are 
correlated or anti-correlated.   
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Figure 2. The causal network for the common cause model. 
 
 
 

C = i P(VS = 1| C = j) P(VT = 1| C = j) P(C = i) 

C = 0 P(VS = 1 | C = 0 ) = 0 P(VT = 1 | C = 0) = 0 .25*(1+ ε) 

C = 1 P( VS = 1 | C = 1) = 0 P(VT = 1 | C = 1) = 1 .25*(1 – ε) 

C = 2 P(VS = 1 | C = 2) = 1 P(VT = 1 | C = 2) = 0 .25*(1 – ε) 

C = 3 P(VS = 1 | C = 3) = 1 P(VT = 1 | C = 3) = 1 .25*(1+ ε) 

 
 

Table 2. The probability model for the common cause model. The variable VG is not 
included – it is independent from the other variables Vi and takes values of 0 and 1 with a 

probability of .5 each. 
  
 
In the following, we will omit the details of our calculations. A general algorithm for 
calculating the Qi

-s and Qi
+s is provided in Appendix A.  

 
Applying this algorithm, we obtain the following results:  
 
 

Justice  Scalia Thomas Ginsburg 

D-value 0.5 0.5 0.5 * (1 – ε) 

 
 

Table 3. Results under the common cause model 
 
Thus, under the common cause model, the D-values for Scalia and Thomas do not 
depend on the strength of the correlations. On our model, the influence of a voter is the 
same regardless whether there is a shared ideology with another voter or not.  However, 
the influence of Ginsburg depends on whether and how the votes of the other justices are 
correlated. If Scalia and Thomas always vote the same, then Ginsburg has no influence. If, 
on the other hand, Scalia and Thomas always cast opposing votes, then Ginsburg has 
maximal influence. Clearly, if the votes of Scalia and Thomas are independent, then every 
voter has a D-value of .5. Note that this D-value for independent votes coincides with the 
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Banzhaf measure for this simple voting game. As we will show in Section 4, this is due to a 
more general connection between Banzhaf voting power and the D-value. 
 
But one might object that Scalia (and Thomas) have more influence in a court in which 
their votes are correlated than in a court in which they vote independently.  This is indeed 
not an unreasonable interpretation of influence. Let us call this the block interpretation. It is 
not the interpretation that is captured by the D-measure though.  On the D-measure, 
Scalia’s influence is the same with correlated or independent votes, because if he had 
voted differently, the chance of rejection or acceptance would have been equally affected.  
But we can also construct a measure D* which is in line with the block interpretation of 
influence.  Let D* be the normalized measure of D, i.e. every D-value is divided by the sum 
of the D-values.  Then D* is monotonically increasing in ε and so according to this 
measure the influence of Scalia and Thomas increases as we move from anticorrelated 
votes over independence to correlated votes.   
 
3.c  Dictator  
 
So far we have assumed simple majority voting with equal weights. Let us now change the 
weights as follows: Scalia has a block vote of three votes, whereas Thomas and Ginsburg 
have only one vote each. The Supreme Court issues a yes (no) vote if and only if there are 
at least three yes (no) votes. Thus, Scalia is a dictator, whereas Thomas and Ginsburg are 
dummies.  
 
Whether we calculate these results under the model under which Scalia is an opinion 
leader or under the common cause model with any value of ε, we obtain the following 
results:   
 
 

Justice  Scalia Thomas Ginsburg 

D-value 1 0 0 

 
 

Table 4. Results for a voting rule in which Scalia is a dictator. 
 
 
These results are very plausible. Only the dictator has influence, whereas the dummies do 
not have influence.  This gives rise to the following observations:   
 
1. The D-value significantly depends on the voting rule. As we change the voting rule and 

keep the model for the voting profile fixed, the value of D changes. This is important, 
since, in voting theory, we are particularly interested in how different voting rules affect 
the influences of the voters. 

 
2. The results also show that the D-value does not suffer from a problem that affects other 

generalizations of Banzhaf voting power for probability models different from the 
Bernoulli model. One way of generalizing Banzhaf voting power starts from the 
observation that standard voting power is a linear transform of the probability of your 
vote coinciding with the outcome of the vote. One can then quantify influence as the 
probability of the coincidence of your vote and the outcome of the vote under the 
assumption of the probability model that we adopt for the voting profiles. As Machover 
et al. (2007) argue, this will not work, because, in the dictator model, every dummy vote 
that is perfectly correlated with the vote of the dictator will obtain the same value of the 
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measure as the dictator.  Our D-value does not have this problem.  Even if Thomas 
blindly follows Scalia as an opinion leader or even if Scalia and Thomas’s ideologies 
completely overlap (ε = 1), D assigns non-identical values to the dictator Scalia and the 
dummy Thomas.  The values of D are not dependent on the correlations between Scalia 
and Thomas’s vote.    

 
 

4. The relation to Banzhaf Voting Power 
 

We will now show that the D-measure reduces to Banzhaf voting power under conditions 
of independence and equiprobability.  On grounds of equiprobability:  
 
(4)  P(Vi = 0) = P(Vi = 1) = .5 .     
 
To understand the role of independence, consider first dependent voters, viz. Thomas with 
Scalia as opinion leader.  Suppose that Thomas votes no. This teaches us something 
about Scalia's vote in the real world. On our interpretation of counterfactuals, this 
knowledge has to be taken into account in calculating Qt

-(V = 1| Vt = 1). Thus, Qt
-(V = 1| Vt 

= 1) does not simply equal P(V = 1| Vt = 1). Next consider Ginsburg under the same 
model. The fact that Ginsburg votes no in the real world teaches us nothing about other 
votes, because Ginsburg's vote is independent. So QG

-(V = 1| VG = 1) does equal P(V = 1| 
VG = 1). More generally, if there is independence, we have 
 
(5)  Qi

-(V = 1| Vi = 1) = P(V = 1| Vi = 1) and  Qi
+(V = 0|Vi = 0) = P(V = 0|Vi = 0) .   

 
So by (4) and (5), 
 
(6)  Di = .5 (P(V = 1| Vi = 1) – P(V = 1| Vi = 0) + P(V = 0|Vi = 0) – P(V = 0| Vi = 1))  . 
 
And by the probability calculus:  
 
(7) Di = .5 (P(V = 1| Vi = 1) – P(V = 1| Vi = 0) + (1 – P(V = 1|Vi = 0)) – (1 – P(V = 1| Vi = 1)). 
 
Thus, 
 
(8)  Di =  P(V = 1| Vi = 1) – P(V = 1| Vi = 0) . 
 
Let us now consider the probability of the vote coinciding with i’s vote, i.e. ψi: 
 
(9)  ψi = P(V = 1| Vi = 1)P(Vi = 1) + P(V = 0| Vi = 0)P(Vi = 0) . 
 
By (4) and the probability calculus,  
 
(10)  ψt  = .5(P(V = 1| Vi = 1) – P(V = 1| Vi = 0) + 1) . 
 
From (8) and (10):  
 
(11)  ψi  =.5(Di + 1) . 
 
So,  
 
(12)  Di = 2 ψi  – 1 . 
 
But we know that  
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(13)  β'i = 2 ψi  –1 , 
 
Where β'I  denotes the Banzhaf measure of voting power for i. Hence, Di coincides with β'i  
in the special case of equiprobability and independence.   
 
  

5. Machover’s Example 
 
Let us now turn to a more complex example.  Suppose that we have a five person 
Supreme Court with simple majority voting and equal weights for each justice.  The 12 
profiles in which at least four voters cast the same vote each occur with probability 1/12 – ε 
for 0 ≤ ε ≤ 1/12.  The 20 remaining profiles each occur with probability .6ε. At ε = 0, we 
reproduce the example that Machover et al. (2007), p. 3 specify – call it Machover's 
example, for short. Probability models with a finite ε correspond to generalizations of 
Machover's example. 
 
If set ε at zero, the probability of pivotality is zero for every justice.  This shows that we 
cannot measure influence by means of the probability of pivotality, because, as Machover 
et al. (2007, p. 3) write, “it would be absurd to claim that every voter here is powerless, in 
the sense of having no influence over the outcome of divisions.”  So let us examine 
whether our D-measure would yield more fitting values.  
 
For 0 < ε ≤ 1/12, we specify a causal interpretation that is consistent with the probability 
model.  We first calculate the conditional probabilities P(VA = 1), P(VB = 1| VA = 1), P(VB = 
1| VA = 0), ..., P(VE = 1| VA = 0, VB = 0, VC = 0, VD = 0, VE = 0).  We then impose the 
following opinion leader model.  A is not influenced by any other voter.  B’s vote is 
influenced by and only by A’s vote.  B votes yes with probability P(VB = 1| VA = 1) if A votes 
yes, and with probability P(VB = 1| VA = 0) if A votes no.  C is influenced by both A and B’s 
vote and so on.  So A is an opinion leader for voters B through E, B is an opinion leader for 
voters C through E,  … and E is an opinion leader for nobody.  This is illustrated in Figure 
3.  
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Figure 3. The causal relations that we assume for the generalization of Machover's 
example. 

 
 
Of course there are many other causal models that are consistent with the probability 
model.  E.g. a permutation of A,…, E would also yield a consistent opinion leader model.   
Furthermore, many more common cause models could be spelled out that are consistent 
with the probability model.  But we will assume that our particular causal model 
appropriately represents the influences in the real world.  
 
We calculate the D-values for this causal model following our methodology.  As an 
example, DA = 2/3 – 9.2ε.  Subsequently we calculate the limits as ε goes to 0 for all 
voters.  In Table n, we see that the D-values cascade downwards as we move from voters 
A to E.  This squares very nicely with the fact that A is an opinion leader to more voters 
than B, B is an opinion leaders to more voters than C etc.   
 
 

i Limε→0Qi
-(V = 1| Vi  = 1)   

Limε→0QC
+(V = 0| Vi = 

0) 

Limε→0P(V = 0| Vi = 1) 
 Limε→0P(V = 1| Vi = 0) 

Limε→0Di 

A 5/6 1/6 4/6 
B 2/3 1/6 3/6 
C ½ 1/6 2/6 
D 5/12 1/6 3/12 
E 1/6 1/6 0 

 
Table 5. Results for the extension of Machover's example 

 
 
What happens when we set ε at 0 – as is the case of Machover’s example (2007, p. 3)?  
When ε = 0 we face a problem in calculating the D-value of voter D.  Suppose that VD = 0 
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in the real world.  We ask what the chance of acceptance would be, if D were to have 
voted yes, i.e. QD

-(V = 1| VD = 1).  One profile under which V = 1 is the profile VA = 1, VB = 
0, VC = 0, VD = 1, VE = 1.  But  
 
(14) QD

-( VA = 1, VB = 0, VC = 0, VD = 1, VE = 1| VD = 1) =  
 
QD

-(VE = 1| VA = 1, VB = 0, VC = 0, VD = 1) QD
-( VA = 1, VB = 0, VC = 0| VD = 1)  

  
with  
 
(15) QD

-(VE = 1| VA = 1, VB = 0, VC = 0, VD = 1) = P(VE = 1| VA = 1, VB = 0, VC = 0, VD = 1) 
 
(see Appendix A for details). But note that P(VE = 1| VA = 1, VB = 0, VC = 0, VD = 1) is 
undefined since  P(VA = 1, VB = 0, VC = 0, VD = 1) = 0.  Hence we cannot calculate the QD

-

(V = 1| VD = 1) for a probability model with extreme values.  For this reason, we stipulated 
a non-extreme ε-model and calculated the limiting value of the D-measure.   
 
But one might object that there are other families of models that approach Machover's 
example in some limit.  For example, we could set the probability of one profile with three 
yes-votes and two no-votes at .4ε and set the probability of another such profile at .8ε. 
Again, we will recover Machover's example, as we set ε at zero. However, if we take the 
limit ε → zero, we will obtain a slightly different limit for the D-value of D. But it can be 
shown that for all such families of models, the D-values for A, B, C and E are unaffected in 
the limit ε → zero and the D-value for D ranges from 0 to 1/3, i.e. it takes the D-values of C 
and E as its bounds.  
 
 
 

6. Causal Learning 
 
Our assessment of a voter's influence depends on a causal model.  But how do we know 
whether correlations are due to opinion leaders or to ideological commitments?  And if 
they are due to opinion leaders,  how do we know whether Scalia is an opinion leader for 
Thomas or vice versa?  The standard line in Causal Learning is that a probability model 
yields conditional independence structures that define a class of causal models.  For this 
class, it may be possible to obtain bounds on the D-values of the voters.  But if we want to 
identify a unique causal model we need additional information.  One may look at the 
temporal structure:  If Thomas always casts his vote after Scalia, then the causal direction 
is clear.  Or one may appeal to experiment:  For instance, one could toggle Scalia’s vote 
and see whether Thomas follows suit.  Once a unique causal model is specified, we can 
assess the D-value of each voter.  But how this is done and whether this can be done is 
not the subject of our inquiry.   
 
Our recourse to causal information might give rise to two objections.  
 
The first objection is that voting theorists are interested in the influence a voter has due to 
the decision rule rather than the influence that the voter has due to her influence on other 
voters. Our reply is that, in the real world, both kinds of influences are entangled in 
complicated ways. They cannot just be isolated. Our D-value measures the influence that 
a voter has in virtue of a decision rule and her influence on others.  
 
Second, one might object that is too demanding in practice to require causal information 
for calculating the D-measure. Our reply is that one cannot quantify the influence that a 
voter has in virtue of a decision rule and her influence on others without using causal 
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information.  The uncertainty in our causal information will be reflected in the uncertainty in 
the D-measure.   
 
 
Appendix A. The algorithm for calculating the Q i

-/+-values 
  
We will follow Balke and Pearl 1994, though our notation diverges.  Let us take Qi

-( V  = 1 
|Vi = 1) as an example. This is the probability of the counterfactual that the proposal would 
have been accepted, had i voted yes, though i votes no in the actual world.  i’s vote is an 
event that is embedded in a causal structure.  It is caused by certain events and it causes 
certain effects.  Isolate all the non-effects of i’s vote.  If we learn that i votes no in the 
actual world, then this teaches us something about some of these non-effects of i’s vote.  
We determine a joint probability model for the non-effects of i’s vote, conditional on i voting 
no.  Subsequently we set i’s vote at yes, as if this came about, in Lewis’s terms, by a 
miracle, that is, as if some exogenous force interfered in the course of nature and changed 
the event from voting no to voting yes.  We evaluate how the effects of i’s vote would be 
affected by the probability model over the non-effects of i’s vote conjoint with i voting yes.         
 
Formally, for evaluating Qi

-( V = 1 | Vi = 1) we consider the actual world in which Vi = 0. Let 
the random variables C1, .., Cn be the non-effects of Vi.  The Cjs may include other votes 
and variables representing common causes. We calculate the joint probabilities P(C1 = c1, 
..., Cn = cn | Vi = 0) where the cj s range over the possible values for Cj for each j.  For each 
combination of the C1 = c1, ..., Cn = cn , we then multiply P(C1 = c1, ..., Cn = cn | Vi = 0) with 
P( V = 1 | C1 = c1, ..., Cn = cn , Vi = 1). That is, we ask: What is the probability of 
acceptance, if  Vi = 1, but if the non-effects of Vi  are as they are in the actual world. By 
summing the products  
 
 P(C1 = c1, ..., Cn = cn | Vi = 0) * P( V  = 1  | C1 = c1, ..., Cn = cn , Vi = 1) 
 
for every possible combination C1 = c1, ..., Cn = cn, we obtain Qi

-( V  = 0  | Vi = 1). To 
calculate P( V  = 1  | C1 = c1, ..., Cn = cn , Vi = 1), we average over all the effect variables of 
Vi , call them E1 , ..., Em : 
 
 

( ) ( )

( ).1,,...,|,...,P

,...,,1,,...,|1P...1,,...,|1P
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1111
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=========== ∑∑
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In terms of Bayesian Networks, we can characterize our procedure as follows: 
 
1. Construct a Bayesian Network with variables (1) for the votes of each voter, (2) for the 
common causes and (3) for the outcome of the vote. Insert arrows for opinion leaders as in 
Figure 1, for common cause ideological commitments as in Figure 2, and arrows from 
each voter into the outcome of the vote modeling the decision rule.  
 
2. Read off the prior probabilities P(Vi =1) and P(Vi = 0) from this network.  
 
3. Set the value of the variable for voter i at no and read off the probability of acceptance, 
i.e. P(V = 1| Vi = 0). 
 
4. Determine the joint probability distribution over the non-effect variables of Vi conditional 
on Vi = 0 . 
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5. Construct a node for the combination of all non-effect variables C1,..., Cn and insert this 
joint probability distribution as a new prior. 
 
6. Erase the nodes for the single non-effect variables along with their incoming and 
outgoing arrows.   
 
7. Insert the requisite arrows from the combined non-effect variable to the effect variables 
of Vi, including the node for the outcome of the vote, and put in the concomitant conditional 
probability distributions.  Note that Vi is a root node in this new network.     
 
8. Set the value of the variable for voter i at yes in this new network.  Read off the 
probability of acceptance.  This is Qi

-(V = 1| Vi = 1). 
 
9. A similar procedure yields P(V = 0| Vi = 1) and Qi

+(V = 0|Vi = 0).    
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