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Abstract

In this paper we explore the non cooperative foundations of the bargaining power

that a voting rule confers to its users in a ’bargaining committee’. That is, a committee

that bargains in search of consensus over a set of feasible agreements under a voting

rule. Assuming complete information, we model a variety of bargaining protocols

whose stationary subgame perfect equilibria are investigated. It is also shown how

previous results obtained by us from a cooperative approach, which provided axiomatic

foundations for an interpretation of the Shapley-Shubik index and other power indices

as measures of ’bargaining power’ appear in this light as limit cases.
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1 introduction

In Laruelle and Valenciano (2005b) we address the question of the influence of the voting

rule used to settle agreements in a bargaining committee on the outcome of negotiations.

By a ’bargaining committee’ we mean a set of agents that bargain in search of consensus

on a set of feasible alternatives ’in the shadow’ of a voting rule. That is, if any agreement

can be enforced if a ’winning coalition’ supports it, what general agreements are likely to

arise? This is a frequent real world situation, as it is often the case that a committee’s

capacity goes beyond that of the dichotomous acceptance/rejection of external proposals.

In this case, when a committee has the capacity to adjust the proposal to gather consensus,

the question of the influence of the voting rule in the final agreement arises. In search of

an answer we adopted in that paper a cooperative axiomatic point of view à la Nash. That

is, we addressed the issue as an extension of Nash’s (1950) seminal bargaining question,

model and answer. The model consisted of the basic ingredients that specify a bargaining

committee: the set of feasible payoff vectors, as in Nash (1950), plus a second ingredient,

the voting rule under which negotiations take place. And the answer was based on a set

of reasonable conditions (or ’axioms’) on the expectations of rational agents in such a

situation.

Thus we provided axiomatic foundations for an interpretation of the Shapley-Shubik

index and other ’power indices’ as measures of the ‘bargaining power’ (in the precise

game theoretic sense) that a voting rule confers to its users in a bargaining committee.

In this setting, assuming the conditions that result from adapting those used by Nash

(efficiency, anonymity, independence of irrelevant alternatives, and invariance with respect

to positive transformations) and one from Shapley (1953) (null-player) a family of solutions

is characterized. Namely, a ’solution’ satisfies these conditions if and only if it is the

weighted Nash bargaining solution1 with weights (i.e., ’bargaining powers’) given by an

anonymous function of the voting rule that gives weight zero to null players. In formula,

if B denotes the bargaining element and W the voting rule, the solution has the form:

Φ(B,W ) = Nashϕ(W )(B), (1)

where Nashw denotes the w-weighted Nash bargaining solution. But the conditions on

ϕ (anonymity and null player) are satisfied by many ’power indices’. In particular if the

’transfer’ condition is also assumed2 then the unique solution is given by

Φ(B,W ) = NashSh(W )(B), (2)

1Nonsymmetric or weighted Nash bargaining solutions were introduced by Kalai (1977).
2In Laruelle and Valenciano (2005c) we provide some foundation to this condition introduced by Dubey

(1975).
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where Sh(W ) denotes the Shapley-Shubik (1954) index of voting rule W .

In this paper we switch to the noncooperative approach according to the Nash pro-

gram. As Binmore (2005) puts it: ”Cooperative game theory sometimes provides simple

characterizations of what agreement rational players will reach, but we need noncooperative

game theory to understand why.”3 This is the point of this paper. That is, in this paper we

explore the non cooperative foundations of these results. We use as primitives the same

ingredients as in the previous model. In this setting, assuming complete information, we

model a non cooperative bargaining process, or more precisely a variety of them, that

provide non cooperative foundations for the above described results, all of them obtained

from a cooperative approach, which appear in this light as limit cases. In this way the

results are consistent with the ones obtained from the cooperative axiomatic approach,

thus providing each others mutual support. In fact the results obtained extend Binmore’s

(1987) results connecting Nash (1950) and Rubinstein’s (1982) alternating offers model,

and differ from those of Hart and Mas-Colell (1996).

A close model in the literature is the one considered by Baron and Ferejohn (1989).

They address the question of the division of one dollar in a legislature by majority rule

when players are risk neutral (that is, the preference profile is transferable utility like).

They consider a probabilistic protocol: a proposer is chosen at random (all players being

equally probable), and proposes a division. If a majority accepts it, the game ends with

this distribution. Otherwise the procedure recommences, but there is a discount factor.

They show that any distribution can be sustained as a subgame perfect equilibrium. While

in stationary subgame perfect equilibrium, without delay, the proposer proposes to n−1
2

players their discounted continuation value, 0 for the others, and the rest for him/herself.

They also consider the case in which amendments are possible.

With respect to Baron and Ferejohn’s (1989) model, the situation we model differs in a

crucial feature. We consider the case of a committee (with non transferable utility profile)

in search of (unanimous) consensus, thus avoiding a ’yes’/’no’ premature final vote that,

according to the voting rule under which negotiations take place, could leave rejecters

outside the agreement. But if a unanimous agreement is desired, what is the relevance of

the voting rule? The solution to this paradox lies in the choice of the proposer, or more

precisely in the bargaining procedure. In our model the voting rule is determinant for the

chances of each player playing the role of proposer. If the voting rule is not symmetric,

players are not assumed to have the same probability of playing the role of proposer.

The basic idea for the bargaining ’protocols’ we consider is the following: A player,

3See also the Introduction in Binmore, Osborne and Rubinstein’s (1992) for a brief and clear discussion

about the cooperative and noncooperative game theoretic shared goals from different approaches, whose

philosophy we fully subscribe.
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with the support of a ’winning’ coalition to play the role of proposer, makes a proposal

that if it is accepted by all players ends the negotiations. If some player rejects it, then

with some probability negotiation ends in a failure (i.e., the status quo), otherwise a new

proposer and a winning coalition supporting him/her are chosen. Thus the negotiating

process ends either when a proposal is accepted or, if failure occurs, in the status quo. A

variation in which with some probability, instead of total failure, only the rejecters are

left out of the game is also considered. As uses to be the case with bargaining protocols,

all is in the details. In this case all depends on the way the proposer and the supporting

coalition are chosen. In particular this model accounts for the non-uniqueness of the answer

provided by (1). Different specifications concerning this point yield different outcomes. A

stationary subgame perfect equilibrium is proved to exist for a variety of protocols, which

in the limit, when the probability of failure tends to zero, approaches a solution within

the family given by (1). As to the particular case of (2) it appears as a special case with a

sort of ’focal’ appeal by virtue of the simplicity of the particular protocol associated that

confers it some normative value as a term of reference.

The rest of the paper is organized as follows. In section 2 we introduce some basic

notation and the basic ingredients in a model of a bargaining committee. In section 3

we briefly review the results in Laruelle and Valenciano (2005b) based on a cooperative

axiomatic approach. In section 4 we provide a non cooperative model of a bargaining

committee and obtain the main results. Section 5 examines some related work. Finally

section 6 contains some concluding remarks.

2 a bargaining committee

By a bargaining committee we mean a committee of n members or players that bargain

in search of consensus ’in the shadow of a voting rule’ in the following sense. They can

reach any alternative within a specified set as well as any lottery over them, as long as a

winning coalition (according to the specifications of the voting rule) supports it, and no

player is imposed upon an agreement worse than the status quo (where they will remain

if no winning coalition supports any agreement). It is assumed that every player has

expected utility (von Neumann and Morgenstern, 1944) (vNM) preferences over this set

of lotteries. Thus the situation can be summarized by two elements: the set of feasible

utility vectors or payoffs, and the voting rule to enforce agreements.

Let the set N = {1, ..., n} label the n members of the committee, and let D ⊆ RN be

the set of feasible payoffs D ⊆ Rn, and d ∈ D the disagreement or status quo payoff. Thus

the pair B = (D, d) summarizes the situation concerning the players’ decision. We denote

by ∂D the boundary of D. We assume that D is a closed, convex, comprehensive (i.e.,
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x ≤ y ∈ D⇒ x ∈ D)4 set containing d, such that there exists some x ∈ D s.t. x > d, and

Dd := {x ∈ D : x ≥ d} is bounded and nonlevel (i.e., ∀x, y ∈ ∂D∩Dd, x ≥ y ⇒ x = y). For

any S ⊆ N (S 6= ∅), let BS = (DS, dS) denote the S-person bargaining problem in which

DS = prS(D) and d
S = prS(d), where prS denotes the S-projection prS : R

N → RS . Note

the pair B = (D, d) is (the only ingredient of) a classical n-person bargaining problem,

to which here we will refer to as the preference profile of the committee to emphasize the

relevance of the committee members’ preferences in the model, in this case represented

via utility functions. B denotes the set of all such pairs. For any permutation π : N → N,

πB := (π(D), π(d)) denotes the preference profile that results from B by π-permutation of

its coordinates, so that for any x ∈ RN , π(x) denotes the vector in RN s.t. π(x)π(i) = xi.

A bargaining problem B is symmetric if πB = B, for any permutation π.

The second element in the model is the voting rule. The set N labels also the seats,

so that each i ∈ N labels a seat and the member occupying it. As only yes/no voting

is considered, a vote configuration can be represented by the set of ’yes’-voters. Thus,

depending on the context any S ⊆ N will be referred to either as a vote configuration (of

seats) or as a coalition (of players), and s will denote S’s cardinal. An N -voting rule is

specified by a set W ⊆ 2N of winning (i.e., which would lead to passing a decision) vote

configurations such that (i) N ∈ W ; (ii) ∅ /∈ W ; (iii) If S ∈ W , then T ∈ W for any T

containing S; and (iv) If S ∈ W then N\S /∈ W . W denotes the set of all such N -voting

rules. For voting rule W , M(W ) denotes the set of minimal winning configurations, i.e.,

those that do not contain any other winning configuration. For any S ∈M(W ) (S 6= N),

W ∗
S denotes the voting rule W

∗
S :=W \ {S}. For any permutation π:N → N , πW denotes

the voting rule πW := {π(S) : S ∈W}. A voting rule W is symmetric if πW = W , for

any permutation π. We will also speak of winning (or minimal winning) coalitions for a

given N -rule, with an obvious meaning. A player i ∈ N is said to be decisive in a coalition

S ∈ W if S \ i /∈W . A seat/player i ∈ N is said to be a null seat/player in W if, for any

S, S ∈W if and only if S\ {i} ∈W (in other words the player occupying seat i will never

be decisive).

Thus, the whole situation is summarized by a pair (B,W ), where B = (D, d) is a clas-

sical n-person bargaining problem that represents the configuration of preferences in the

committee over the feasible agreements, andW is the N -voting rule to enforce agreements.

Thus, any pair (B,W ) ∈ B ×W will be referred to as an N -bargaining committee.

Classical bargaining problems and simple transferable utility (TU) games can be seen

as particular cases of this model5. The n-person classical bargaining problem corresponds

4We will write for any x, y ∈ RN , x ≤ y (x < y) if xi ≤ yi (xi < yi) for all i = 1, .., n.
5As shown in Laruelle and Valenciano (2005b), B ×W is isomorphic to a subclass of NTU models, so

that these equivalences are exact because this subclass contains classical bargaining problems and simple
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to the case of a committee bargaining under the unanimity rule (i.e., W = {N}). While
when the bargaining element B is the TU-bargaining problem Λ := (∆, 0), where ∆ :=©
x ∈ RN :

P
i∈N xi ≤ 1

ª
, the pair (Λ,W ) is equivalent to the simple TU game associated

with the voting rule, vW , given by

vW (S) :=

(
1 if S ∈W,

0 if S /∈W .

3 a cooperative solution for a bargaining committee

In this section we briefly review the axiomatic cooperative game theoretic results in Laru-

elle and Valenciano (2005b).

3.1 Rationality conditions

In (2005b) we impose the following conditions on a map Φ : B ×W → RN , for vector

Φ(B,W ) ∈ RN to be considered as a reasonable expectation of utility levels of a general

agreement in a bargaining committee (B,W ). We impose as prerequisites: Φ(B,W ) ∈ D

(feasibility), and Φ(B,W ) ≥ d (individual rationality), if B = (D, d). In addition to this

we require:

1. Efficiency (Eff): For all (B,W ) ∈ B ×W, there is no x ∈ D, s.t. x > Φ(B,W ).

2. Anonymity (An): For all (B,W ) ∈ B ×W, and any permutation π:N → N , and any

i ∈ N , Φπ(i)(π(B,W )) = Φi(B,W ), where π(B,W ) := (πB, πW ).

3. Independence of irrelevant alternatives (IIA): Let B,B0 ∈ B, with B = (D, d) and

B0 = (D0, d0), such that d0 = d, D0 ⊆ D and Φ(B,W ) ∈ D0, then Φ(B0,W ) = Φ(B,W ),

for any W ∈W.
4. Invariance w.r.t. positive affine transformations (IAT): For all (B,W ) ∈ B ×W, and
all α ∈ RN

++ and β ∈ RN ,

Φ(α ∗B + β,W )=α ∗ Φ(B,W ) + β,

where α∗B+β = (α∗D+β, α∗d+β), denoting α∗x := (α1x1, .., αnxn), and α∗D+β :=

{α ∗ x+ β : x ∈ D} .
5. Null player (NP): For all (B,W ) ∈ B ×W, if i ∈ N is a null player in W , then

Φi(B,W ) = di.

The readers can see for themselves the precise correspondence of axioms 1 to 5 with

some of Nash’s (1950) and Shapley’s (1953) axioms.

superadditive games.
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3.2 Characterizations

Denote by Nash(B) the Nash (1950) (pure) bargaining solution of an n-person bargaining

problem B = (D, d), that is,

Nash(B) = arg maxx∈Dd

Y
i∈N
(xi − di), (3)

and by Nashw(B) the w-weighted asymmetric Nash bargaining solution (Kalai, 1977) of

the same problem for a vector of nonnegative weights w = (wi)i∈N , given by

Nashw(B) = arg maxx∈Dd

Y
i∈N
(xi − di)

wi . (4)

Nash (1950) characterized (3) as the unique (pure) bargaining solution (i.e., map B→ RN)

satisfying the conditions of ’efficiency’, ’anonymity’, ’invariance w.r.t. positive affine trans-

formations’ and ’independence of irrelevant alternatives’6. While Kalai’s (1977) solutions

emerge basically by dropping anonymity in Nash system.

The following theorem generalizes Nash’s characterization.

Theorem 1 (Laruelle and Valenciano, 2005b) Let Φ : B ×W → RN be a solution that

satisfies Eff, An, IIA, IAT and NP, then

Φ(B,W ) = Nashϕ(W )(B), (5)

where ϕ :W → RN satisfies efficiency, anonymity and null player7.

Therefore (4), any map ϕ :W → RN that satisfies efficiency, anonymity and null player

would fit into formula (5) and yield a solution Φ(B,W ) that satisfies the five rationality

conditions. A solution is singled out by adding to these conditions the adaptation to this

setting of the condition by means of which Dubey (1975) characterized the Shapley value

on the domain of simple games (i.e., the Shapley-Shubik (1954) index). This condition

can be equivalently stated as follows (Laruelle and Valenciano, 2001):

6. Transfer (T): For any two rules W,W 0 ∈W, and all S ∈M(W ) ∩M(W 0) (S 6= N) :

Φ(Λ,W )− Φ(Λ,W ∗
S) = Φ(Λ,W

0)− Φ(Λ,W 0∗
S ). (6)

6Be aware these conditions in Nash’s setting, unlike their homonymous in the previous subsection, refer

to a map B→ RN .
7In Laruelle and Valenciano (2005b) we did not assume nonlevelness of Dd. This forced us to assume

there a stronger version of NP, in which only null players have null expectations, and to impose in (4)

the disagreement payoff for players whose weight is zero. Thus this is an alternative version of the result

proved there that can be proved assuming, as we do here, nonlevelness of Dd.
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Denote by Sh(v) the Shapley (1953) value of a TU game v, given by

Shi(v) =
X

S:S⊆N

(n− s)!(s− 1)!
n!

(v(S)− v(S\i)),

and by Sh(W ) the Shapley-Shubik (1954) index of a voting ruleW , i.e., the Shapley value

of the associated simple game vW . We have the following result.

Theorem 2 (Laruelle and Valenciano, 2005b) There exists a unique solution/value Φ :

B ×W → RN that satisfies Eff, An, IIA, IAT, NP and T, and it is given by

Φ(B,W ) = NashSh(W )(B). (7)

Note that Φ(B,W ) as given by (7) becomes Nash’s classical solution of B when W

is the unanimity rule, and it becomes the Shapley-Shubik index of vW when B = Λ. In

other words, Theorem 2 integrates Nash’s and Shapley-Dubey’s (Shapley (1953), Dubey

(1975)) characterizations into one, which extends both and yields a cooperative ’solution’

to the problem of bargaining under a voting rule given by (7).

4 a non cooperative model of a bargaining committee

Formulae (5) and (7) have a clear interpretation. The asymmetric Nash solutions can be

justified as reflecting the different ’bargaining power’ of the players ”determined by the

strategic advantages conferred on players by the circumstances under which they bargain”

(Binmore, 1998, p. 78). In the case of a bargaining committee the voting rule, possibly

nonsymmetric, is the only possible source of differences in ’strategic advantages’ that can

be justified endogenously within the model. Then, according to formulae (5) and (7), under

the rationality conditions assumed in either case, either vector ϕ(W ) or Sh(W ) gives the

’bargaining power’ that the voting rule confers to each member of the committee.

Now the point is to provide some noncooperative justification or interpretation for these

formulae. A noncooperative analysis requires to specify the ’game’ within the black-box

summarily described as ”a set of agents bargaining in search of consensus ’in the shadow’

of a voting rule”. Consensus requires the acceptance of all the players of a proposal. This

involves the specification of a procedure of acceptance/rejection of proposals, which entails

two basic issues: (i) How the proposer is chosen?, and (ii) How to deal with disagreements?

To this end we will specify several bargaining protocols for a committee with a given

preference profile and a given voting rule, and investigate the resulting stationary subgame

perfect equilibria.

To proceed systematically we consider first in 4.1 two bargaining protocols strictly

probabilistic, that is, with no voting rule entering the model, in order to examine the
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effect of the likelihood of being the proposer and the effect of the way of dealing with

disagreement. Then in 4.2 consider several ways of deriving a protocol from the voting

rule.

4.1 Probabilistic bargaining protocols

The following strictly probabilistic protocol for a committee with a given preference profile

B = (D, d) will play an important role in the sequel.

Protocol 1: A proposer i ∈ N is chosen with probability pi (s.t.,
P

i∈N pi = 1) and

makes a (feasible) proposal x ∈ Dd.

(i) If all the players accept it the game ends with payoffs x.

(ii) If any player does not accept it:

-with probability r (0 < r < 1) the process recommences,

-with probability 1− r the game ends in failure or ’breakdown’ and payoffs d.

We have the following result for this protocol or family on them, one for each probability

distribution p, that will play a central role in the sequel.

Theorem 3 Let an N-person committee with preference profile B = (D, d) satisfying the

conditions specified in section 2. (i) Under protocol 1 there exists a stationary subgame

perfect equilibrium (SSPE). (ii) In the limit when r → 1, the SSPE payoffs tend to the

w-weighted Nash bargaining solution of B with weights given by wi = pi.

Proof: (i) A stationary strategy profile should specify for every player i the proposal

that s/he will make whenever s/he is chosen to be the proposer, and what proposals will

s/he accept from others. A proposal of i can be specified by a vector (yi, (x
i
j)j∈N\i) ∈ Dd,

where yi is the payoff i will propose for him/herself, and xij the payoff i will propose for

j 6= i. Acceptance and refusal by i of a proposal of another player should depend only on

the utility s/he receives. This can be specified by the minimal level of utility for which

s/he will accept it. In SSP equilibrium every player should be proposed at least what s/he

expects if s/he refuses. Thus (w.l.o.g. we assume d = 0, and consistently we write in the

sequel D0) it should be, for all i and all j 6= i,

xij ≥ (1− r)0 + rpjyj + r
X

k∈N\j
pkx

k
j . (8)

As the proposer will seek the biggest payoff compatible with this condition, by D0’s non

levelness, we can assume equality. And note that the right hand side of the equation does

not depend on i. Thus we can drop the superindex in xij and xkj , and rewrite the above
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condition as an equation:

xj = rpjyj + r
X

k∈N\j
pkxj = rpjyj + r(1− pj)xj ,

that can be rewritten for all j as

rpjyj = (1− r + rpj)xj . (9)

Note that if pj = 0 then xj = 0, while if pj 6= 0 (9) can be rewritten

yj = θjxj (where θj :=
1− r + rpj

rpj
(> 1)). (10)

Observe that in this case (i.e., if pj 6= 0) yj > xj . That is, being the proposer is desirable.

In fact the proposer would make the best of this advantage maximizing his/her payoff

under the constraint of feasibility, that is, for all j

yj = max {y ∈ R : (x̂, y) ∈ D} , (11)

where (x̂, y) denotes the point whose j-coordinate is y and all others coordinates equal

to those of x (this maximum exists by Dd compactness). As players with probability

0 of being the proposer will receive 0 according to equation (9), we can constrain our

attention to those players with a positive probability of being the proposer. To simplify

the notation instead of dealing with this subset as N 0 = {i1, ..in0} ⊆ N , we just take

for the sequel N 0 = N . We have then a system with 2n equations ((10) and (11)) with

2n unknown ((x1, .., xn) and (y1, .., yn)) specifying a stationary strategy profile: Each j

whenever chosen as proposer will propose yj for him/herself and xi for each i 6= j, and

accept only proposals that give him/her at least xj . That a stationary strategy profile

satisfying these equations is a subgame perfect equilibrium is immediate. The problem

is to prove that a solution for this system exists. If B is the normalized TU bargaining

problem Λ = (∆, 0), equation (11) becomes

yj = 1−
X

k∈N\j
xk,

so that a linear system results that, as can be easily proved, yields as unique solution:

xj = rpj , and yj = 1− r + rpj . But in the general case in order to prove the existence of

solution of the system given by (10) and (11) we will need a fix point argument. For each

i ∈ N , let τi : D0 → R be the (well-defined, by D0 compactness) map

τi(x) := max {y ∈ R : (x̂, y) ∈ D} .

9



In this notation x = (x1, .., xn) and τ(x) = (τ1(x), .., τn(x)) provide a solution of the

system if and only if for each i it holds τi(x) = θixi. In other terms, denoting by µi, for

each i ∈ N , the map µi : D0 → D0 defined by

µij(x) :=

(
xj , if j 6= i,
τi(x)
θi

if j = i,

we are done if we prove the existence of some x ∈ D0 such that µ
i(x) = x for all i, for in

this case (x1, .., xn) and y = (τ1(x), .., τn(x)) provide a solution of the system. To this end

we will define a continuous map ϕ : D0 → D0 a fix point of which satisfies this condition.

Let ϕ be the map given by

ϕ(x) :=
1

2
x+

1

2

X
i∈N

1

n
µi(x).

Claim 1: ϕ(x) = x if and only if µi(x) = x for all i. In effect, as x and µi(x) may only

differ on their i-coordinate, we have

(ϕ(x) = x)⇔ (x =
1

2
x+

1

2

X
i∈N

1

n
µi(x))⇔ (x =

X
i∈N

1

n
µi(x))

⇔ (xi =
n− 1
n

xi +
1

n
µii(x), ∀i ∈ N)⇔ (xi = µii(x), ∀i ∈ N)

⇔ (x = µi(x), ∀i ∈ N).

Thus there only remains to prove the following.

Claim 2: ϕ : D0 → D0 is a well-defined continuous map. Note first that, by D0 compact-

ness and convexity, τi is well-defined and continuous. Thus µ
i(x) is also well-defined and

continuous, and, by D comprehensiveness and as θi > 1, belongs to D0. Thus finally ϕ(x)

is also well-defined and continuous, and, by D0 convexity, belongs to D0.

Thus Brower’s fix point theorem ensures the existence of a fix point of ϕ : D0 → D0,

which provides the desired SSPE.
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(ii) Now let r(0 < r < 1), and denote by x(r) the point in D0 such that x(r) =

(x1(r), .., xn(r)) and τ(x(r)) := (τ1(x(r)), .., τn(x(r))) provide a solution of the system,

whose existence have been proved in (ii), specifying a SSPE. Denote by τ i(x(r)) the point

in ∂D ∩D0 (the case n = 2 is represented in Fig.1) given by

τ ij(x(r)) :=

(
xj(r), if j 6= i,

τi(x(r)) if j = i.

Claim 3: The corresponding SSPE payoffs for r are given by 1
rx(r). The (expected ex

ante) SSPE payoffs are given by
P

i∈N piτ
i(x(r)). And observe that for each coordinate i

(denoting by pri the i-projection) we have

pri(
X
j∈N

pjτ
j(x(r))) =

X
j 6=i

pjxi(r) + piτi(x(r)) = (1− pi)xi(r) + piθixi(r)

= (1− pi)xi(r) + pi
1− r + rpi

rpi
xi(r) =

1

r
xi(r),

so the claim is proved.

Claim 4: 1rx(r) = Nashp(H(r), 0), where the (’hyperplane’) bargaining problem whose

feasible set’s boundary is the hyperplane containing the n points τ1(x(r)), .., τn(x(r)). This

is in fact an immediate consequence of the equality proved in the previous claim.

Claim 5: limr→1 1rx(r) = Nashp(B). As for all i

limr→1θi(r) = limr→1
1− r + rpi

rpi
= 1, (12)

and τi(x(r)) = θi(r)xi(r), then when r→ 1, kx(r)−τ(x(r))k→ 0. Therefore the distances

of the n points τ1(x(r)), .., τn(x(r)) that determine the hyperplane-boundary of H(r) to

x(r) tend to zero. Thus in the limit a supporting hyperplane of D0 contains limr→1 1rx(r)

and this point is the p-convex combination of the intersections of each axis with this

hyperplane. In other words, this point is Nashp(B).¥

Remarks 1:

(i) Protocol 1 and Theorem 3 have a clear interpretation. In Protocol 1, r represents

the patience or readiness of the committee to look for consensus. The bigger r the smaller

the risk of breakdown, and the bigger the readiness to continue bargaining in search of

consensus after a disagreement.

(ii) According to Theorem 3 the relative advantage of the proposer diminishes as

r increases. Namely, according to (12), θi(r) → 1 when r → 1, where recall θi(r) is

the proportion between player i’s expected payoff when s/he is the proposer and when

the proposer is someone else. Nevertheless the probability of being the proposer has a

determinant impact on the expected SSPE payoffs, which approach Nashp(B) as r → 1.

11



(iii) Note that the SSPE payoffs for each r, given by
P

i∈N piτ
i(x(r)), are not ’efficient’

in general (i.e., they are in the interior of D, though the bigger the r the closer to ∂D),

for they are the p-weighted average of n points in ∂D, namely, the continuation SSPE

payoffs after the choice of a proposer corresponding to the n different possible proposers.

On the contrary, as for every proposer the continuation SSPE payoffs after the choice of

a proposer are in ∂D, in the case of B being the TU-bargaining problem Λ = (∆, 0) the

SSPE payoffs are ’efficient’ (i.e., they are in ∂D) and the same for every r, and given by

(Claim 4) Nashp(H(r), 0) = Nashp(Λ) = p.

(iv) It is implicit in the model that players with a null probability of being the proposer

accept their irrelevant role, and do not hinder agreement. That is, they accept a zero

payoff, the same that they would receive if they reject.

In Protocol 1 it may seem somewhat implausible that both the players accepting the

proposal and those refusing it face the same risk of failure (disagreement payoff). We

consider the following alternative protocol.

Protocol 2: At every stage there is a set of ’active players’ S ⊆ N with preference

profile BS = (DS , dS). Initially this set is N . For each S ⊆ N , let (pSi )i∈S , s.t.,
P

i∈S p
S
i =

1, specify a random procedure to choose a proposer from S. As a condition of consistency

we assume that if i ∈ T ⊆ S, then: pSi = 0 ⇒ pTi = 0. At a stage in which the set of

players is S the game proceeds as follows:

(i) A proposer i ∈ S is chosen with probability pSi and makes a (feasible) proposal

xS ∈ DS
dS
.

(ii) If all players in S accept it the game ends with payoffs (xS, dN\S).

(iii) If any player in S does not accept it and T ⊆ S is the set of ’rejecters’:

-with probability r (0 < r < 1) the process recommences with S as the set of

active players,

-with probability 1 − r players in T drop out and the process recommences with

S \ T as the set of active players.
So now there is no risk of failure in the sense of Protocol 1. Only rejecters risk being left

out of the game. Nevertheless the situation is basically almost the same as with Protocol

1 for r sufficiently close to one.

Theorem 4 Let an N-person committee with preference profile B = (D, d) satisfying the

conditions specified in section 2. For all � > 0: (i) Under protocol 2 and for r sufficiently

close to 1 there exists a stationary subgame perfect �-equilibrium (�-SSPE). (ii) In the limit

when r → 1, the �-SSPE payoffs tend to the weighted Nash bargaining solution of B with

weights given by wi = pNi .

12



Proof: (i) Now a stationary strategy profile should specify for every player i and

any possible set S of active players containing i, the proposal that s/he will make if s/he

is chosen from S to be the proposer, and what proposals will s/he accept from other

proposers in S. A proposal (w.l.o.g. we assume d = 0) of i when S is the set of active

players, can be specified by a vector (ySi , (x
S,i
j )j∈S\i) ∈ DS

0S
, where ySi is the payoff i will

propose for him/herself, and xS,ij the payoff i will propose for j ∈ S \ i. In SSP equilibrium
every player should be proposed at least what s/he expects if s/he refuses. Thus it should

be for all i, all S containing i, and all j ∈ S \ i,

xS,ij ≥ (1− r)0 + rpSj y
S
j + r

X
k∈N\j

pSkx
S,k
j . (13)

And ySj = max
n
y ∈ R : (xS̂ , y) ∈ DS

0S

o
. Thus we have a system entirely similar to the

one given by (9) and (11), but now one for each possible subset of active players. Thus

by similar steps as in the proof of Theorem 3 we can conclude that all of them have a

solution that together define a stationary strategy profile. But now these conditions are

only necessary for it to be a SSPE. In general they are not sufficient. In fact in this

strategy profile a strategy may not be optimal against the others’ in the same profile. The

reason is that now a proposer may find it advantageous to make a proposal that offers

some players less that they would accept and forcing their rejection and their risk of being

dropped out if this probability is big enough. More precisely, assume S is the set of active

players and j is the proposer. S/he would be interested in deviating from the specified

strategy by causing a rejection by a subset of players S \ T (j ∈ T ) if j’s expected payoffs

from following it are smaller that the continuation payoffs after provoking S\T ’s rejection.
This will not be so if

ySj (r) ≥ (1− r)
1

r
xTj (r) + r

1

r
xSj (r),

or equivalently

ySj (r)− xSj (r) ≥
1− r

r
xTj (r).

Which, in view of ySj (r) =
1−r+pSj
rpSj

xSj (r), is equivalent to

xSj (r) ≥ pSj x
T
j (r).

But this condition is not guaranteed in general. Nevertheless, for any � > 0, by similar

steps inequation

ySj (r) ≥ (1− r)
1

r
xTj (r) + r

1

r
xSj (r)− �,

is equivalent to

xSj (r) ≥ pSj x
T
j (r)−

r

1− r
�,
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which for r sufficiently close to one holds for all S, all T , and all j, s.t. j ∈ T ⊆ S. Then

an induction argument (for s = 1 is trivially true) shows that the resulting stationary

strategy profile is an �-SSPE.

(ii) As in this �-SSPE (for r sufficiently close to 1) proposals are immediately accepted

in the first round, the payoffs are determined as in the case of Protocol 1 by (9) and (11).

Thus for r → 1 we have the same result in the limit as for Protocol 1.¥

At first sight it may seem surprising the little difference that this protocol makes with

respect to the first one in terms of SSPE, but on closer examination the explanation is clear.

In Protocol 2 only rejecters risk being left out of the game, but condition (13) is entirely

similar to (8), although now there is one for each i and each coalition S containing i. As

in �-SSPE proposals are immediately accepted in the first round, only the probabilities

of being a proposer when all players are active do matter for r big enough. In other

words, when the probability of dropping out rejecters is sufficiently small general consensus

is secured. In this respect, the limit results for either protocol are consistent with the

intuition in real world situations, where tension between negotiating parties or lack of

patience in a negotiation makes consensus difficult.

4.2 Bargaining protocols under a voting rule

No voting rule enters either of the two precedent protocols, both entirely specified in

probabilistic terms. In fact, Theorems 3 and 4 can be seen as providing noncooperative

foundations to Kalai’s (1977) nonsymmetric Nash bargaining solutions. On the other

hand, confronting the results given by Theorems 3 and 4 with formula (5) suggests a way

of bridging these results belonging to different realms, the noncooperative and cooperative

approaches. The basic idea is linking the probabilities of being the proposer, which is the

source of bargaining power in protocols 1 and 2, with the voting rule, which is the only

element of the bargaining environment in a bargaining committee included in the model.

In principle there are infinite imaginable protocols in which the voting rule plays a role. In

other words, there are infinite ways of mapping voting rules into probability distributions

over players. Thus the question is whether there are some specially simple and reasonable

protocols based on the voting rule within the plethora of possibilities consistent with

formulae (5) and (7).

A general principle that seems reasonable is the following: Assume that in order to

play the role of proposer the support of a winning coalition s/he belongs to is needed.

In order to consider in full generality ways of going from voting rules to probabilities

respecting this principle we consider maps: P : W → PN×2N , where PN×2N denotes the

set of probability distributions over N × 2N , and use the notation pW to denote P (W ). If
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we want pW : N × 2N → [0, 1] to respect the stated principle it should be required

(pW (i, S) 6= 0) ⇒ (i ∈ S ∈W ).

As we are interested in protocols that yield (5), the map P :W 7−→ pW should satisfy

some conditions. First, if the null player principle is to be satisfied it must be

(pW (i, S) 6= 0) ⇒ (i ∈ S ∈W & S \ i /∈W ). (14)

That is, the proposer has to be decisive in the coalition that supports him/her. In order

to preserve the principle of anonymity it must be required that for any permutation π,

pW (i, S) = pπW (πi, πS). (15)

Then any p :W → PN×2N satisfying (14) and (15) ’abstracts’ a protocol determined by
the voting rule in a bargaining committee which gives probabilities of being the proposer

given by

pWi :=
X
S:i∈S

pW (i, S).

Any such protocol will yield in the limit (in the sense of Theorems 3 and 4) a particular

case of (5). But, as has been stated, any map satisfying these conditions just ’abstracts’

a protocol, and we are interested in the explicit protocols, not in their abstract summary

by a p.

Still a great variety of protocols are compatible with the above conditions. We consider

first two general and relatively simple ways of selecting a player i to play the role of

proposer and a winning coalition S containing him/her such that i ∈ S ∈W, and S\i /∈W .

1 ((i-S)-protocols): Choose first i, then choose S; and 2 ((S-i)-protocols): Choose first S,

then choose i.

It may seem at first sight more natural that the formation of a coalition in support of

a proposer should precede the choice of the proposer. What seems to advocate for (S-i)-

protocols. But this entails a coalition formation process just encapsulated in a black-box-

like probability distribution, which seems alien to noncooperative modelling. In fact from

a noncooperative point of view (i-S)-protocols seem more natural than (S-i)-protocols.

They can be interpreted in terms of players taking the initiative in search of a coalition

that supports him/her as proposer, and a probability distribution over coalitions describing

their likelihood of getting it. Nevertheless both generate the same outcomes as we will see.

Let p denote a probability distribution over coalitions described by a map p : 2N → [0, 1]

that, in order to be consistent with the anonymity assumption, assigns the same probability

to all coalitions of the same size. In other words p(S) depends only on s. Thus we will

write ps instead of p(S).
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(i-S)-Protocols (Choose first i, then choose S): Assume a given probability distribution

over coalitions p, and the following protocol: Choose at random a player i. Choose a

coalition S containing i according to p. If S ∈W and S \ i /∈W , player i is the proposer,

otherwise recommence until a proposer is chosen.

The probability of player i being the proposer after the first two steps is given by

1

n
Probp (i is decisive in S | S 3 i) =

1

n

P
S:i∈S∈W
S\i/∈W

ps

Probp (S contains i)
. (16)

But in general after the first two steps no proposer is chosen. This occurs only if i happens

to be decisive in the chosen S containing i (i.e., S ∈W and S \ i /∈W ). The probability of

player i being the proposer is a conditional probability, which is the result of dividing (16)

by the probability of a proposer being chosen. As shown in Laruelle and Valenciano (2002),

Prob (i is decisive| i ∈ S) generates for different p’s (s.t., p(S) depends on S’s size) all

semivalues8. In other words, (i-S)-protocols, for p’s such that the probability of a coalition

depends on its size, generates all (pWi )i∈N such that this vector is the normalization of a

semivalue. In particular this includes two particular distinguished cases.

Shapley-Shubik index: If ps =
1
s

n

t=1

1
t

1

(ns)
(for any S 6= ∅), then the probability of

player i being the proposer under (i-S)-protocol is given by the Shapley-Shubik index

(1954) index of the voting rule, that is, pWi = Shi(W ). Note the way of choosing a

coalition underlying this protocol: a coalition’s size (from 1 to n) is chosen with probability

inversely proportional to the size, then one coalition of size s is chosen at random, all of

them being equally probable. Note the difference with other probabilistic models of the

Shapley-Shubik index. In Laruelle and Valenciano (2005a, 2002) this ’strange’ probability

distribution emerges in two completely different contexts, where probability distributions

over vote configurations (or coalitions) represent either a probabilistic ’voting behavior’

or a random coalition in a TU coalitional game. But note that in the present context

it makes sense to weight coalitions inversely to their size. It seems easier to gather the

support of a few than that of many.

Banzhaf normalized: If ps =
1
2n , then the probability of player i being the proposer

under (i-S)-protocol is given by the normalized Banzhaf (1965) index of the voting rule.

(S-i)-Protocols (Choose first S, then choose i): Assume a given probability distribution

over coalitions p, and the following protocol: Choose a coalition S according to p. Choose

at random a player i in S. If S ∈ W and S \ i /∈ W , player i is the proposer, otherwise

recommence until a proposer is chosen.

8Semivalues were introduced by Weber (1979) (see also Dubey, Neyman and Weber (1981)).
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The probability of player i being the proposer after the first two steps is given byX
S:i∈S∈W
S\i/∈W

1

s
ps =

X
S:i∈S

1

s
ps(vW (S)− vW (S \ i)), (17)

but in general possibly no player is chosen as proposer after one single round. Nevertheless

the actual probabilities of being proposer after applying an (S-i)-protocol are proportional

to the probabilities given by (17), which yields in a different way the family of normalized

semivalues. But in this protocol a same p gives a different semivalue than for (i-S)-

protocols, or the other way round a same semivalue is associated with different probabilities

over coalitions in either protocol. In particular the two best known semivalues result for

the following probabilities.

Shapley-Shubik index: If ps =
1

n+1
1

(ns)
, then the probability of player i being the

proposer (S-i)-protocol is given by the Shapley-Shubik index (1954) index of the voting

rule, that is, pWi = Shi(W ). Thus in terms of (S-i)-protocol the Shapley-Shubik index

emerges for the more familiar probabilistic model of choosing a size at random, and then

a coalition of that size at random.

Banzhaf normalized: If ps = k s
2n , where k is a constant resulting from normaliza-

tion, then the probability of player i being the proposer under (S-i)-protocol is given by

the normalized Banzhaf (1965) index of the voting rule. Note that in this protocol the

probability of a coalition is weighted by its size9.

But more general than the two previous types of protocol is the following one of which

both can be seen as particular cases:

(i, S)-Protocols (Choose simultaneously i and S): As was already pointed out any W 7→
pW such that pW (i, S) satisfies (14) and (15) abstracts a protocol that yields in the limit a

particular case of (5). This includes as particular cases also some power indices less familiar

than Shapley-Shubik’s and Banzhaf’s and outside the family of normalized semivalues, as

Deegan-Packel’s (1978), Holler-Packel’s (1983) or even Johnston’s (1978) index.

But again the Shapley-Shubik index emerges associated with a very simple selection

procedure:

Shapley-Shubik’s Protocol (formulation 1): (i) Choose an order in N at random,

and let the players join a coalition in this order up to a winning coalition S is formed. (ii)

Then the last player entering S is the proposer.

Under this protocol:

Prob (i is the proposer) = Shi(W ).

9Note that if ps =
1
2n for all S, then the probability of a player being chosen the proposer is not the

normalized Banzhaf index of that player.
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It is worth remarking the simplicity of this procedure within the family of protocols de-

scribed above. First, the formation of the coalition appears in this case as a sequential

process, which seems at once natural and the simplest. Alternatively and equivalently it

can be described as at every step choosing at random one player to join the coalition.

As to the choice of the ’swinger’ as proposer one may wonder why not any of the other

players decisive in S. But it does not make any difference is the second step is replaced

by this: Choose at random one of the players decisive in S. It can be easily seen that the

procedure is equivalent. Thus the protocol can be alternatively specified like this:

Shapley-Shubik’s Protocol (formulation 2): (i) Starting from the empty coalition,

choose one player at random every time from the remaining players up to a winning

coalition S is formed. (ii) Then choose at random one of the players decisive in S.

Thus, under this protocol each player as a probability of being the proposer equal to

his/her Shapley-Shubik index for the current voting rule.

In sum combining Theorem 3 with the above discussion we have the following results

which are the noncooperative counterpart of Theorems 1 and 2:

Theorem 5 Let an N-person committee with preference profile B = (D, d) satisfying the

conditions specified in section 2, bargaining under voting rule W . (i) For all r (0 < r < 1),

under any (i-S)-protocol, any (S-i)-protocol, and any (i, S)-protocol, there exists a station-

ary subgame perfect equilibrium (SSPE). (ii) In the limit when r → 1, the SSPE payoffs

tend to the weighted Nash bargaining solution of B with weights given by the probabilities

of being proposer determined by W and the protocol.

In (ii), when the protocol is either a (S-i)-protocol or a (S-i)-protocol, the weights are

given by a normalized semivalue of the voting rule (i.e., of the simple TU game vW ). In

particular, for the Shapley-Shubik protocol we have:

Theorem 6 Let an N-person committee with preference profile B = (D, d) satisfying the

conditions specified in section 2, bargaining under voting rule W . (i) For all r (0 < r < 1),

under the Shapley-Shubik protocol there exists a stationary subgame perfect equilibrium

(SSPE). (ii) In the limit when r → 1, the SSPE payoffs tend to the weighted Nash bar-

gaining solution of B with weights given by the Shapley-Shubik of the voting rule W . (iii)

If B = Λ, for all r (0 < r < 1), the SSPE payoffs are given by the Shapley-Shubik index

of the voting rule W .

Similar results, replacing SSPE by �-SSPE, are obtained from Theorem 4 if the proto-

cols in Theorems 5 and 6 are modified in the sense that the probability of breakdown is

replaced by a probability of the rejecters leaving the game whenever a rejection occurs. In
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this case, it is necessary to specify the way of choosing the proposer (i.e., the probabilities

for each of the remaining players) when any group of players has abandoned the game.

Remarks 2:

(i) In the light of this bargaining model the voters’ ’power’ becomes ’bargaining power’

in the specific game-theoretic sense, so clarifying the old conceptual ambiguity concerning

the game theoretic notion of ’value’ when applied to simple games representing voting

rules, and its alternative interpretation as ’decisiveness’, or likelihood of playing a crucial

role in a decision. In a bargaining committee10, according to this model, the source of

power is the likelihood of being the proposer, related to the likelihood of being decisive via

the protocol.

(ii) By (iii) of Theorem 6, in the case of a committee with a TU preference profile,

i.e., if B = Λ, the ex ante SSPE payoffs are given by the Shapley-Shubik index of the

voting rule W , whatever r (0 < r < 1). Thus the limit result for r → 1 is trivial in this

case. But observe that the noncooperative ”implementation” of the Shapley-Shubik index

of the voting rule W (or equivalently, of the Shapley value of the associated simple game

vW ) is different from previous ones. In this model Sh(W ) represents an expectation in a

precise sense, in which no player (unless the rule is a dictatorship) has a chance of getting

the whole cake, although the proposer would benefit (the less so the bigger r) from this

role. Observe also that when r → 0, in the limit the proposer will have the whole cake,

though the ex ante expectations are the same. In other words, for r → 0, in the limit we

have a reinterpretation of original Shapley’s model applied to the simple game associated

to the voting rule.

(iii) This is the noncooperative counterpart of the fact pointed out in Laruelle and

Valenciano (2005b) that NashSh(W )(B) yields Sh(W ) when B = Λ. In cooperative terms

it was emphasized there that this particular case is not the relevant point, but the fact that

Sh(W ) appears ’up there’ for all B with a new meaning: the bargaining power that the

voting rule confers to the players. Now in this noncooperative model this interpretation is

corroborated and clarified: this is so (in the limit for r → 1) for a specific and particularly

simple protocol.

5 related work

For the two-person case the only voting rule satisfying the conditions assumed is the una-

nimity rule, and consequently we are back to the classical two-person bargaining problem

10On the contrary, as argued in Laruelle, Mart́ınez and Valenciano (2005), in a ’take-it-or-leave-it’

committee, where the relevant notion is that of success, decisiveness seems secondary.
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considered by Nash (1950). In this case the protocol and result in Theorem 5 becomes very

similar to Rubinstein’s (1982) alternating offers model and result, and extends Binmore

(1987), paralleling the way in which Theorem 1 yields Nash’s characterizing result in this

case. While for the particular case in which the ’preference profile’ of an n-player com-

mittee is TU-like, Theorem 6 establishes that whatever the probability of breakdown the

SSPE payoffs are given by the Shapley-Shubik index of the voting rule, paralleling the way

in which Theorem 2 yields in this case Shapley-Dubey’s characterization of Shapley-Shubik

index.

Hart and Mas-Colell’s (1996) noncooperative bargaining model in the context of NTU

games yields in the limit the Maschler-Owen’s (1992) consistent value, and therefore as

particular cases the Nash bargaining solution and the Shapley value11. But their setting

is different and in their model rejections are dealt with by eliminating the proposer with

some probability. As the class of situations considered here is isomorphic to a subclass

of NTU games (see Laruelle and Valenciano (2005b)), their bargaining procedure can be

applied to our case, but it gives a different result. In fact they propose the same protocol

for all NTU games. Thus when applied to the NTU game associated (equivalent in fact

as it encodes exactly the same information in a different way) to a bargaining committee

(B,W ) their protocol, unlike ours, is independent of the voting rule W .

There are also several noncooperative models related to the Shapley value. Gul’s

(1989) model of bilateral meetings in a transferable utility economy yields the Shapley

value as a limit case. Pérez-Castrillo and Wettstein (2001) propose a bidding mechanism

that implements the Shapley value. But our setting and endeavour here is different, for

we are not interested in ’implementing’ formula (1) or (2) in the sense of providing a

noncooperative game that ’decentralizes’ a desired outcome12.

In the political context, apart from the seminal Baron and Ferejohn (1989) mentioned

in the introduction, there are several papers in its wake worth mentioning. See for instance

Harrington (1990), Merlo and Wilson (1995, 1998), Banks and Duggan (2000), Eraslan

and Merlo (2002), Eraslan (2002), Snyder, Ting and Ansolabehere (2004), Montero (2005).

6 conclusions

We have provided noncooperative foundation to the results obtained in Laruelle and Va-

lenciano (2005b) from a cooperative approach: Theorems 5 and 6 give noncooperative

support to formulae (1) and (2), to which axiomatic support was previously given. Often

11See also Vidal-Puga (2005a, 2005b).
12Nevertheless, as a by-product (Remark 2 (ii)), the particularization of Theorem 6 to this case provides

a very simple implementation of the Shapley value of the TU game associated to a voting rule.
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the noncooperative approach is vindicated as superior to the cooperative one because it

incorporates strategic considerations in richer models and provides what can be seen as

positive predictions. While cooperative ’solutions’, often interpreted in normative terms,

are seen with suspicion by many. But we see no conflict here, but rather two different

approaches in search of a same goal (Binmore, Osborne and Rubinstein (1992), Binmore

(2005)). This view is consistent with the results in the case under consideration, where

both approaches become complementary, and provide two alternative and mutually sup-

porting and consistent points of view for modeling a specific situation. In this case the

complexity of the situation, a committee bargaining in search of consensus or unanimous

agreement ’in the shadow of a voting rule,’ makes any ’prediction’ problematic and de-

pendent on the bargaining protocol. We have studied a class of specially simple protocols

determined by the voting rule used by the committee. But it would be naive to interpret

the results obtained as crisp positive ’predictions’. In other words, no credible prediction

can be expected without adding some more relevant detail in the model. Of course the

results can be stated as a ’conditional prediction’: If (i) players are rational in the sense

of von Neumann-Morgenstern model; (ii) the whole situation, including the players pref-

erences, is transparent to all players (i.e., information is complete); (iii) the protocol is

respected; and (iv) a SSPE is considered a good guide for action, then Theorems 5 and 6

predict something. But the more ’if’s’, i.e., the more honest and precise the statement, the

more dubious sounds its predicting power. Nevertheless the conclusions based on these

models and results, as shown in the previous section, are consistent with the most im-

portant bargaining models (Rubinstein (1982), Binmore (1987)), and basically consistent

also with the intuition gained from the observation of real world situations. In sum, if

Theorems 1 and 2 from Laruelle and Valenciano (2005b) support (5) and (7) axiomatically,

yielding as particular cases Nash bargaining solution (when W is is the unanimity rule)

and the Shapley-Shubik index (when B = Λ, but also for any B in formula (7)), now, in

exact consistency, Theorems 5 and 6 support non cooperatively (5) and (7), and yield also

as particular limit cases Nash bargaining solution and the Shapley-Shubik index.

The variety of protocols compatible with (5) corroborate the ’indeterminacy’ of the

problem from a strictly positive point of view, as argued in Laruelle and Valenciano

(2005b). But this enhances the simplicity of the protocol that yields the Shapley-Shubik

index in (7) as a limit case, conferring it a ’focal appeal’ as a reference term. Neverthe-

less, despite our calling it ”Shapley-Shubik’s protocol” this is surely not the unique simple

protocol that yields this result. It has been shown how different protocols may yield the

same outcome in the limit, and this one in particular.

It is also worth stressing the clarification of the old conceptual ambiguity concerning
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the game theoretic notion of ’value’ when applied to simple games representing voting

rules, and its alternative interpretation as the likelihood of playing a crucial role in a

decision, since Shapley-Shubik (1954). In the bargaining model provided here: (i) The

voters’ ’power’ becomes ’bargaining power’ in the precise game-theoretic sense of the

term; (ii) The source of such power is the likelihood of being the proposer, related to the

likelihood of being decisive via the protocol; and (iii) When the preference profile is TU,

these bargaining powers coincide with the payoff vector, that is, the ’value’ of the game.

In particular these results provide additional support (to the one obtained from the

cooperative approach) to the normative assessment of the ’bargaining power’ that a voting

rule confers to its users in a bargaining committee as given by formulae (5) and (7), an

issue of consequence when the choice of the voting rule is at stake13.
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