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Abstract 
 

The Shapley-Owen power index is reviewed and an algorithm for its computation 
in two-dimensional spatial voting models is presented. The Shapley-Owen values 
for ideal point distributions representing the UN Security Council, Bretton Woods 
institutions, US legislators, as well as Monte Carlo data are considered 

 
 
 
 
1 Introduction 
 
The Shapley-Owen value (SOV) arises in spatial voting models and the solution concepts of 
cooperative games [Shapley-Owen, 1989]. Within the context of proximity spatial voting 
models, SOV measures how likely a voter is to determine the location of an adopted proposal, 
i.e., that the voter be pivotal. As a solution concept for cooperative games, SOV attempts to 
address perceived shortcomings of the Shapley-Shubik index. 
 
In so far as SOV may be less familiar than other “power indexes” such as those of Shapley-
Shubik, Banzhaf-Coleman, Deegan-Packal, Johnston, and Penrose, we review the highlights of 
SOV. We then present an algorithm for computing in SOV based on a model proposed by 
Shapley. The algorithm includes cases not encompassed by analytic methods, such as weighted 
voting, coincident ideal points, and arbitrary dimension. 
 
 We apply this algorithm to a number of examples. The examples are designed to illustrate the 
canonical properties of SOV as well as the impact of its generalization to proximity voting 
models more general than those through which SOV was introduced by Shapley and Owen. 
 
 
2 SOV in Cooperative Games 
 
Consider a finite set of n voters, N. Introduce a strict order relation on N, <<. Define a set 
Q(i,<<) to consist of all voters j, such that j << i. Finally, let W be a set of subsets of N that we 
suggestively call winning coalitions. A voter, i, is called a pivot if and only if 
 
 

W} i { )i, ( Q and  W )i, ( Q ∈∪<<∉<< , 
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i.e., the pivot splits the set N into two disjoint sets, one of which is winning, namely  
 

W} i { )i, ( Q ∈∪<< . 
 
Shapley and Owen, in motivating consideration of SOV note that the Shapley value for voter i, 
vi(N,W), can be written  
 

!n
qv i

i =  (1) 

 
where qi is the number of orderings for which voter i is the pivot. Since n! is the total number of 
all possible orderings, i.e., the size of the sample space, vi has a natural interpretation as the 
probability that voter i will be the pivot in a random draw from a uniform distribution of 
orderings.  
 
Shapley and Owen note that it seems unlikely all possible coalitions of equal size have an equal 
probability of forming in actual political situations, as required for the probability interpretation 
of (1). Accordingly, each has suggested formal modifications of (1), the upshot being to modify 
(1) to reflect a more realistic sample space. 
 
 
3 SOV in Proximity Spatial Voting Models 
 
A particular modification of (1) proposed by Shapley involves a spatial voting model [Shapley, 
1977]. Shapley’s model consists of a finite set of n voters, N, a set of subsets of N, called 
winning coalitions, W, and a set of n points Pi, Ni∈ , in an m-dimensional affine (or projective) 
space, mℜ , representing the ideal points of the voters. These points, called ideal points, 
represent the preferred policy outcomes of each voter. The space is assumed to be measurable 
(Lebesgue) with a Euclidean metric, d(x,y) and inner product, <x,y>. In fact, d(x,y) = |<x,y>|1/2.  
 
Shapley considers unit vectors mU ℜ∈ . These vectors lie on the unit sphere Hm-1, each vector 
defining a direction in the space. Furthermore, except for a set of measure 0, each unit vector, U, 
induces a order relation << as  
 

jiU PU, PU,      j i ≤⇔<<  
 
Those U that do not induce an order Shapley notes form an m-2 dimensional subspace and so 
have measure 0, i.e., can be neglected when computing probabilities. 
 
Let U be randomly chosen from a uniform distribution, i.e., subsets of Hm-1 with equal measure 
have equal probability. Assuming the points Pi are distinct, the pivot for the order induced by U 
will be unique almost surely. Let φi denote the probability that i is the pivot under the ordering 
induced by U. Note that the sum over i of φi is unity. Then φi becomes the modified version of (1) 
for the spatial voting model. 
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Shapley and Owen use this modified version of (1) to introduce the notion of a center of power 
in a spatial voting game defined by 
 

∑
∈

φ=
Ni

iiP*P . (2) 

 
The center of power must lie within the convex hull of the points Pi as each φi ≤1. 
 
We will exploit Shapley’s model to develop our algorithm for computing SOV. But before 
proceeding to discuss our algorithm, we further develop the SOV for two-dimensional spatial 
voting models. 
 
 
4.1 SOV in Two-Dimensional Proximity Spatial Voting Models 
 
In two-dimensional spaces, m = 2, it is possible to give an explicit prescription for computing φi.  
This prescription relies on using (2). The basic idea is to show that the center of power is unique 
and has the property of minimizing the area of the win set. The SOV arises as an essential 
byproduct of determining the explicit formula for the center of power. 
 
Consider the simplest example of a proximity spatial voting model consisting of three voters 
located at points P1, P2, and P3 in a two-dimensional issue space, as well as a distinguished 
point called the status quo. The basic assumption of proximity models is that each voter prefers a 
proposal “closer” to his/her ideal point than the status quo. Assuming each voter has Euclidean 
preferences, i.e., “closer” is measured using a Euclidean metric, then indifference curves can be 
drawn as circles centered on each voter’s ideal point passing through the status quo, X. John 
Nash introduced the status quo, as a formal concept, in bargaining games calling it the 
disagreement point, the outcome under no agreement. In voting games it corresponds to the 
outcome when a proposal fails to be adopted. The location of the status quo is generally regarded 
as independent of voter ideal points. Along with the dimensions of the space, it serves to “frame” 
the decision. See [Miller-Grofman-Feld, 1989]. 
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Figure 1 – Elements of Proximity Spatial Models 

 
Under simple majority rule, those areas resulting from the intersection of a majority of areas 
enclosed by indifference curves, often called petals, represent locations where a proposal can be 
offered that will be majority preferred to the status quo. The union of these areas is generally 
called the win set. In their paper, Shapley and Owen refer to this area with the notation A(X) and 
call it the vulnerability. 
 
Shapley and Owen consider whether there exists a point S that minimizes A(X) and whether this 
point is unique. Shapley and Owen answer in the affirmative, calling S the strong point. The 
strong point is also known as the Copeland winner as this point by definition defeats the greatest 
number of proposals in pairwise votes. 
 
In order to minimize A(X) it is necessary to obtain an analytic expression for A(X). Shapley and 
Owen accomplish this by developing an expression for computing and aggregating petals. The 
results is: 
 

θ−θ= ∫
π

θ dX)(P,U2)X(A
0

2  (3) 
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where iP)(P =θ , the ideal point of voter i for those θ  for which voter i is the pivot and θU is a 
unit vector in the θ direction. Some intuition for this formula can be gained by considering it 
from the perspective of polar coordinates, in which case X)(P,X)(P −θ−θ  represents the 
radial distance between )(P θ  and X, whence (3) is just an integral for area in polar coordinates. 
The inner product with the unit directional vector handles the angular variation of the petals. 
 
A(X), as expressed in (3), is not readily minimized directly. Instead, Shapley and Owen introduce 
an auxiliary quantity,  

θ−θ−θ
π

= ∫
π

d X)(P,X)(P1)X(B
0

 

and show that )X(A)X(B −π  is independent of X. Hence, it is sufficient to minimize B(X), 
which is easier to do.  
 
The minimization of B(X) is left to the reader by Shapley and Owen; we provide the 
demonstration here. If we vary B(X) with respect to X we find 
 

( )

( )

∫

∫

∫
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where α  indicates differentiation with respect to the x and y coordinates individually. Since we 

are seeking a minimum, we set 
α∂

∂
x 

)X(B  equal to zero for each coordinate.  

∫
π

αα θθ
π

=
0

d)(P1 X  

 
As we already noted the )(P θ  are constant except for a finite number of transitions as the pivotal 
voter changes for specific values of θ . Thus, for each Pi we have 
 

∫ θ
π

=φ
iC

i d1   (4) 

where Ci denotes the concentration of the angle measure for which iP)(P =θ . Thus 
 

  Pφ X 
Ni

ii∑
∈

=  (5) 
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where 
 
∑
∈

=
Ni

i 1   φ  . (6) 

 
And so we see that the SOV plays an essential role in determining the strong point.  
 
Observe that the minimization of B(X) leading to (4) depends only on there being an inner 
product, not the specific form of the metric. The Euclidean form of the metric enters the picture 
in deriving (5), i.e., establishing that )X(A)X(B −π  is independent of X. The degree to which (5) 
is affected by departures from a Euclidean metric assumption is unknown.  
 
There are at least two cases to consider. In the first, one generalizes from Euclidean metric to a 
Riemannian metric. In the second case, more realistic, one admits a different metric for each 
voter. Whereas the former may be accessible analytically, the later seems ideally suited for 
investigation through computer simulation. 
 
On the analytic side we want to make one observation. Suppose (5) depends on the choice of 
metric and that we are free to vary the metric for each voter separately. Let’s suppose all voters 
except voter i have Euclidean preferences. Then, by virtue of (6), there is no metric i can choose 
that will yield for i a different value without either losing or gaining value relative to all other 
voters. This suggests that there is some optimal choice of metric for voter i. Extending this 
decision to all voters, we have a non-cooperative game in which each voter seeks a metric choice 
strategy to optimize his/her value given that all other voters are pursuing the same goal.  
 
On the simulation side, note that even in the case of a Euclidean metric the computation of Ci for 
arbitrary distributions of voter ideal points is hard (and tedious) to do in closed analytic form. 
There is, however, a simple and intuitive algorithm that does the job.  
 
 
4.2 An Algorithm for Computing SOV 
 
Our algorithm is a direct translation of Shapley’s model discussed earlier. The only material 
difference concerns the implementation. In place of the direction unit vectors, we fix an origin 
and rotate a line about the origin. Voter ideal points are projected on to the line for each 
increment of rotation. The pivot is determined as the voter occupying the median position using 
the natural linear order of the line to order the projected points. The following table summarizes 
the correspondences. 
 
Shapley Model Algorithm 
Direction angles: iθ ; i = 1, 2, …, n-1 Rotation angles: iθ  i = 1, 2, …, n-1 
Directional unit vector ( )iU θ  Line vector, ( )iL θ  

iPU,  iPL,  

jiU PU, PU,      j i ≤⇔<<  jLiL P P     j i ≤⇔<<  
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Although we could leave our description of the algorithm at this abstract level, it is helpful to 
consider how one might arrive at it by way of a series of approximations, starting with Median 
Voter Theorem.  
 
Consider a finite set of n voters, N, in a one-dimensional proximity spatial voting model, i.e., 
single-peaked preferences, under simple majority rule. Let Pi denote the ideal point for voter i in 
the issue space, then the linear ordering of points induces a strict order, <<, given by 
 

ji P P      j i ≤⇔<< . 
 
In the case of an odd number of voters, the pivot is the member k occupying the median position 
in the order. This position, Pk, determines the policy outcome.  
 
The pivot both determines the outcome of the vote and gains the full value of the outcome, as the 
proposal resides at the pivot’s ideal point. Considering the particular vote as a game, the full 
value of the game is allocated to the pivot. We can generalize this observation by borrowing a 
familiar concept from probability theory. According to Shapley’s model, φi is the probability the 
ith voter is the pivot. If the total value of the game is 1, then φi is just the expected payoff voter i 
receives. A subtle point, however, is that except in one dimension, the outcome may never reside 
on the ideal point of any voter. So the interpretation is purely formal. Keeping in mind that the 
notion of value in spatial voting models is purely formal, it nevertheless provides a convenient 
shorthand for describing the influence of voters on the expected outcome (strong point). 
 
Suppose now we introduce a second dimension to the issue space. As is well known, there is 
generally no Condorcet winner in such cases, i.e., no voter is pivotal. On the other hand, while it 
may seem intuitive that even in two dimensions not all voters are equally important, i.e., 
centrally located voters generally can form more winning coalitions, how are we to quantify this? 
 
If we divide the question in the two-dimensional case there is, by the Median Voter Theorem, a 
pivot for each dimension. If in one dimension we assign 1 to the pivot, then in two-dimensional 
games it seems reasonable to assign a ½ to each pivot. If it happens that there is a Condorcet 
winner, this voter gets the full value of the game. Otherwise, the two distinct pivots split the 
value evenly. Everyone else gets zero. 
 
Now imagine rotating the space of voters and again dividing the question along some new, 
albeit, mixed-issue dimensions. In general new voters will be pivotal. In fact, suppose we 
consider m such rotations. The rotations can be random but it will be easier to understand the 
limit if we imagine a sequence of rotations by an incremental angle, θ , such that  
 

π=θ  2 m  
 
i.e., one, complete revolution. Since we are dividing the question we have two pivots for each 
such increment. But we have a total of m increments. After m incremental rotations, 2 m values 
will be assigned. So we must divide by 2 m to have a net value of 1. Thus, the value assigned to 
each voter is the number times the voter is pivotal divided by 2 m. 
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We divided the question to motivate the method of assigning value. And we rotated by π2  to 
provide a complete revolution. Neither of these, however, is strictly necessary. We may consider 
pivots with respect to a single axis. Then, once the axis has rotated by π  we note that the axis 
has essentially returned to its initial condition, with voters in reverse order. Whence, it is 
sufficient to consider rotating a single line through half a revolution, leading to the formula 
 

m
q)m(v i

i =  

 
where qi is the number of times i is the pivot and m is the number of increments used to rotate 
the line through π  radians. Note that qi depends on m. In the limit that the angular increments 
become infinitesimal, i.e., ∞→m , we have 
 

)m(vlim  imi
∞→

=φ , 

 
i.e., v(m) approaches the Shapley-Owen value. 
 
Figure 2 illustrates how the algorithm works for the simple example of three ideal points 
positioned on a regular triangle. The angle measure concentration for each voter’s ideal point is 
indicated. The dashed lines represent transitions from one voter to another being pivotal. The 
solid line represents one line increment, showing the projection of each voter on to the line. 
Observe that voter P1 is the pivot, i.e., median voter, and will remain so for all lines within the 
wedge defined by the angle 1 φπ . Note also that the opposite angle for each concentration is of 
the same size. The second half of the revolution is identical except that the projections on the line 
are in reverse order. The pivots, however, remain invariant. Hence, it is sufficient to consider 
revolution of the line by π , i.e., a half revolution, when computing SOVs, as we noted earlier. 



9 

P1

P3

P21
φπ 2

φπ

3
φπ

 
Figure 2 – SOV Computation Based on Rotating Line 

 
The correspondence of our algorithm with Shapley’s model is realized when we replace the 
rotating line with a directional unit vector. A rotating line, however, is computationally more 
convenient. By translation invariance, the rotating line can be located anywhere in the plane. 
Indeed, after each increment of rotation the line can be translated anywhere in the plane without 
affecting the order of voters projected on the line. It is really only the direction of the line that 
matters, i.e., the directional unit vectors.  
 
The following diagram illustrates the projection of voters on to a line in a given direction for 
three distinct spatial translations of the line. Observe that the order of voters projected on the line 
is identical in all three cases. This is what is meant by translation invariance. 
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Figure 3 – Translation Invariance of Projections on to a Line 

 
Note that there is nothing about our algorithm that is essentially limited to rotations in the plane. 
We could extend the algorithm to arbitrary rotations of a line in an n-dimensional space using 
generalized rotation angles, e.g., Euler angles in three dimensions (roll, pitch, and yaw).  
 
The algorithm can be freed from other restrictions as well, notably, simple majority rule, odd 
number of voters, and distinct ideal points. In the case when simple majority rule is abandoned in 
favor of plurality there will in general be two pivots for each angle increment. In the case of an 
even number of voters there will always be at least two pivots. And in the case where voters have 
identical ideal points it will be necessary to identify each as a pivot when either is. The algorithm 
will give unambiguous sensible answers in all these cases, even though these conditions may 
significantly complicate analytic treatments.  
 
 
4.3 Monte Carlo – Algorithm Verification 
 
The validity of the algorithm is clear. It remains to verify that the implementation of the 
algorithm is correct. Apart from the practical value of checking the correctness of the program, 
the test cases serve to illustrate the behavior of SOV. 
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3 Voters 
 
We begin by considering the simplest, non-trivial proximity spatial voting model, namely that of 
three voters located on an equilateral triangle in a two-dimensional issue space (Fig. 4a). We 
leave the issue dimensions unspecified. A common ordinal scale running from 0 to 100 is used 
for each dimension. The SOV is displayed next to each ideal point.  
 

 
 

Figure 4a,b – SOVs for Three Voters in a Triangular Configuration 
 
Observe that each voter receives a third of the value of the game, as we would expect from 
symmetry. The sum of SOV values is 1. This is an important constraint, useful for checking for 
round-off errors. 
 
Next we move one of the members closer, roughly along a line midway between the two other 
voters (Fig. 4b). Observe that the more central voter has larger SOV = 0.51, the other two voters 
having smaller SOVs of 0.24 and 0.25, the total sum being 1. The value of the more central voter 
continues to rise until reaching the line joining the two other voters, at which point he/she 
becomes the median voter. This is the behavior we expect to see from the SOVs. 
 
Accordingly we next present the configuration of the Median Voter Theorem where we can 
anticipate that the SOV for the central voter should be 1, with the other voters receiving no value 
(Fig. 5). And indeed this is so. 
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Figure 5 – SOVs for Three Voters in a Linear Configuration 
 

Finally, we check that the SOV’s vary symmetrically, as we would expect. This checks whether 
the implementation has an orientation bias (that would be a bug!).   
 

 
 

Figure 6a,b – SOVs for Symmetrical Configurations of Three Voters 
 
In the example shown (Fig. 6 a,b) the SOV value is 0.94 for two points opposite each other 
across the line joining the two other voters. 
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5 Voters 
 
Consider a more complicated configuration consisting of five voters forming a regular pentagon 
(Fig. 7a). From symmetry we can expect each voter to receive an equal SOV of 0.20 and indeed 
each does. 
 

 
 

Figure 7a,b – SOVs of Five Voters Arrayed in a Pareto Set 
 
Now we move one of the voters in toward the center (Fig. &b). Observe that the SOV the voter 
receives increases at the expense of the two voters most opposite, attaining a value of 0.30 while 
the opposite voters each drop to 0.15. 
 
A more interesting test comes when we move the member inside the Pareto set (Fig. 8).  Voters 
inside the Pareto set have a more central role and so should receive considerably more value. 
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Figure 8a,b - Five Voters Arrayed Near and in a Plott Condition 
 
We have placed the voter so at to approximate a Plott condition (Fig 8a). We therefore expect the 
central player to command a significant share of the game’s value, and indeed the central voter 
does, with an SOV of 0.89. If we arrange a precise Plott condition, the central voter should 
receive the entire value of the game, which we confirm (Fig. 8b). 
 
4 Voters 
 
Much attention is given in the literature to the study of odd-sized committees. Even-sized 
committees are subtler in their properties. In an even committee no single member can be 
pivotal, i.e., there can be no single median voter. We can, however, define a pair of median 
voters, corresponding to the voters just before and after the would-be median position; e.g., often 
the median is defined the average of their positions. Thus for even committees we will have the 
convention of referring to these voters as a median-pair. 
 
We consider now the simplest non-trivial even-sized committee consisting of four voters on a 
square (Fig. 9a). Each receives a quarter of the game value, as we would expect from symmetry.  
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Figure 9a,b - Four Voters in Arrayed in a Pareto Set 
 
As we move one of the voters toward the center of the square the voter’s share of the game value 
increases until it reaches half the value of the game (Fig. 9b). 
 
Remarkably, once the voter steps inside the Pareto set his/her SOV does not change but remains 
at 0.50 throughout the Pareto set.  The following images illustrate this point (Fig 10a,b). 
 

 
 

Figure 10a,b - SOV Constant Inside Pareto Set for Four Voters 
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On reflection this should seem reasonable, even obvious. The voter within the Pareto set in this 
case will be a member of all median-pairs, thereby taking half the value of the game. So this 
perhaps counter-intuitive result adds confidence both in the algorithm but also in the utility of the 
SOV in understanding coalition formation in proximity spatial voting models. 
 
11 Voters 
 
As a final verification we wish to make use of a theorem by Feld and Grofman relating the radius 
of the yolk to SOVs [Feld-Grofman, 1990]. Given a voter i in two dimensions with Euclidean 
preferences a distance d from a yolk of radius r, then the SOV of the voter is bounded as 
 

π









≤φ d
r arcsin2

i  

 
where the yolk is the smallest circle that intersects every line that divides the space into two 
groups of voters neither of which is the majority, called median lines.  
 
The theorem rests on the observation that a voter can be pivotal only if he/she is on a median 
line. As all median lines pass through the yolk, the only angles for which the voter can be pivotal 
correspond to lines through the yolk. The two most extreme angles are tangent at opposite sides 
of the yolk; the SOV angle can be no greater than the angle subtended by these two tangents 
meeting at the voter.  
 
Let d be the distance of the voter from the yolk center along some ray. Let θ  be the angle 
formed between this ray and each of the lines tangent to the yolk. From elementary geometry 
 

d
rsin =θ  

 
where r is the radius of the yolk. And so 
 







=θ

d
r arcsin  

 
The total angle is just twice this and the SOV is just this angle divided by π , which proves the 
theorem. 
 
We can use this theorem to check that no computed SOV exceeds the Feld-Grofman bound. 
Consider 11 voters distributed randomly according to uniform distributions in Dimensions 1 and 
2 (see Fig. 11). Next to each voter is the corresponding SOV. 
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Figure 11 - A Random Distribution of 11 Voter Ideal Points 
 
Next, we compute the yolk. This is a two-step process. First we determine the smallest circle 
intersecting all limiting median lines, i.e., median lines that pass through one voter and 
infinitesimally close to another. Usually this step suffices to determine the yolk, but in some 
cases, as pointed out by Tovey, exceptions occur. The second step consists in identifying 
whether a “Tovey anomaly” exits, which voters are responsible, and adding non-limiting median 
lines to represent their circumstance. In the present example there is no anomaly (Fig 12a).  
 

 
 

Figure 12a,b -Yolk and Feld-Grofman Bounds on SOV 
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With the yolk determined, we can compute the Feld-Grofman bounds. We display representative 
values as concentric rings centered on the yolk (Fig 12b). Or, for greater legibility, we display 
representative Feld-Grofman bounds without the median lines and yolk displayed (Fig 13). 
 

 
 

Figure 13 - Feld-Grofman Bounds on SOV 
 
Observe that few voters challenge the Feld-Grofman bound. In fact, only one voter, with an SOV 
0.16, appears to attain the bound. 
 
Weighted Voting 
 
As a final example we take the case of weighted voting. This problem goes beyond the warrants 
of the Shapley-Owen theory, but is tractable under the algorithm in a way we hope this example 
illustrates.  
 
We consider first the case of four voters. We take the voter from the previous example and move 
him/her to be coincident with another voter (Fig. 14a). This violates an assumption of Shapley-
Owen that excludes the case of coincident ideal points. Observe that the coincident voters have 
equal values of 0.37, the total of which is 0.74. 
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Figure 14 a,b - Superposition of Two Voters Compared with One Weighted Voter 
 
Suppose we remove one of the two coincident voters and grant the remaining voter a vote equal 
to the vote of the two voters jointly, i.e., if each voter has a vote of 1 the voter will have a vote of 
2 (Fig 14b). This is an example of weighted voting.  
 
Observe that the single voter with twice the vote weight has essentially twice the voting power. 
The slight discrepancy in numbers is due to the approximations involved. Note, as a quality 
check, that the sum of SOVs is one. 
 
The Shapley-Owen theory does not apply when voters have different vote weights. Nor does it 
apply when some voters occupy the same ideal point. So it is not immediately clear in what sense 
these models represent SOVs. Our algorithm, based on Shapley’s model, rigorously implements 
SOV when the Shapley-Owen assumptions hold. The same algorithm, without modification, can 
be used to compute values for voters whose voting weights differ or who occupy the same ideal 
point. This suggests that our algorithm is a natural extension of the Shapley-Owen theory.  
 
But there is a difficulty. To draw it out, observe that any weighted voting model with a finite 
number of voters can be transformed into a weighted voting model with integer-valued votes by 
rescaling the weights. Weighted voting thus appears very similar to voters with coincident ideal 
points. The main difference concerns assigning value to voters at the same ideal point whose 
votes differ in weight. The problem is acute if some subset of the voters determines the quota. 
This voting problem is non-spatial, i.e., zero-dimensional, the solution for which is to use a 
combinatorics-based index such as Shapley-Shubik. The suggestion, therefore, would be to 
compute the value of ideal points according to a weighted voting model and distribute that value 
to coincident voters on a combinatorial basis. The algorithm reported in this paper shares value 
equally; the case when coincident voters have different weights does not arise in any example 
considered. Handling the general case just described is beyond the scope of this paper. 
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5.1 Case Study: US Congress – Empirical Evidence for Shapley-Owen 
 
The following case study considers SOV in the context of significant legislative battle in the 
Congress of the United States that took place in 1993 shortly after Clinton was first elected 
President.  
 
Health care was and continues to be a major domestic issue. Clinton aimed to dominate the 
legislative agenda with a bold initiative in health care reform. The Republicans, recognizing the 
political threat, mounted a fierce opposition and succeeded in defeating the measure. Arguably 
this defeat set the stage for an even greater debacle, resulting in the eventual dominance of the 
Republican Party in US politics by the turn of the millennium. So this is a particularly interesting 
piece of legislation to consider from a “power” perspective. 
 
The data for this case study is taken from Kenneth Goldstein’s study of grassroots lobbying 
[Goldstein, 1999]. The data is based on interviews with 21 lobbying firms (special interest 
groups or SIGs), as well as major stakeholders in the political process. What makes Goldstein’s 
data particularly useful for an SOV analysis is that he reports on whom SIGs perceived to be the 
pivotal legislators on a particular issue. We are thus able to contrast SOV values with the 
mobilization behavior of SIGs. Goldstein did not collect his data, however, with spatial modeling 
in mind. Thus the spatial analysis we offer here represents an extension of his findings. 
 
Based on his interviews and analysis, Goldstein determined that the political debate could be 
framed in terms of two dimensions, a political dimension of party affiliation and a second of 
(small) business affinity. He used for these dimensions ratings assembled by two SIGs, the 
Americans for Democratic Action (ADA), well recognized as a measure of party affiliation, and 
the National Federation of Independent Businesses (NFIB), an association advocating for the 
interests of small businesses. 
 
Without getting into the complexities of the US legislative process, it suffices for our purposes to 
note that the health reform measure was referred to a number of committees for markup. Not all 
committees carry equal weight politically, however, as has been pointed out by Fenno [Fenno, 
1973]. Committees may be classified as influence, policy, and re-election committees, with the 
influence committees being considered the most powerful. 
 
We can get a sense of Fenno’s thesis by contrasting the full Senate with two Senate committees 
that considered Clinton’s bill, Finance and Labor and Human Resources, using the strong point 
as a basis of comparison (Fig 15a,b,c). We assume for this comparison Euclidean preferences for 
all members in regard to the health bill. This may not be realistic for all Senators. Some Senators, 
for example, may feel more strongly about their party affiliation than their small business 
interests. Nevertheless, Goldstein reports that for the health bill debate both party affiliation and 
business dimensions were salient for a majority of Senators (and Representatives). Furthermore, 
in the absence of specific preference data, the assumption of Euclidean preferences is the least 
biased. 
 
Subject to these model assumptions and caveats, observe that the Finance strong point is much 
closer to the Senate value than that of Labor and Human Resources. If we regard the strong point 



21 

as the expected outcome of each committee, we see that Finance will produce an outcome more 
favorable to the Senate than will Labor and Human Resources. Indeed, Goldstein identifies 
Finance as an influence committee and Labor and Human Resources as a policy committee. 
 

 
 

 Senate Finance Labor and Human Resources 
ADA  65 70 80 

COC* 40 37 30 
 

*Goldstein does not have NFIB data for the full Senate; Chamber of Commerce ratings used as a surrogate. 
 

Figure 15a,b,c - The Strong Points of the Senate, Finance, and Labor and Human Relations 
 
Accordingly, SIGs seeking to influence the final outcome of the health bill would be expected to 
invest more of their resources on Finance than on Labor and Human Resources. This is in fact 
what Goldstein observed. Of the 21 SIGs, 5 mobilized for Labor and Human Resources with 
remainder, 16, mobilizing for Finance. 
 
In so far as the strong point is computed through weighted ideal points by SOVs, the 
discrimination between Senate committees serves as one example of applying the Shapley-Owen 
theory in an empirical context. We turn now to a more explicit application. 
 
We focus our attention of the influence committees, Senate Finance, House Ways and Means, 
and House Energy and Commerce. We begin with Senate Finance (Fig 16). 
 
Senate Finance Committee 
 
There are two parties, Republicans and Democrats. Republicans are generally in the upper left 
corner and are more pro-NFIB. The Democrats are generally in the lower right corner and are 
less pro-NFIB. The color-coding reflects the number of SIGs mobilizing to influences the given 
Senator. Next to each ideal point is the Senator’s name and SOV. 
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Figure 16 – Senate Finance: SIG Mobilization Targets 
 
There appears to be a rough correspondence between mobilization and SOV, but there are 
evident anomalies, such as Durenberger, Danforth, and Rockefeller for whom no SIG mobilized. 
The attention to Moynihan is understandable in so far as he was the committee chair. The 
Pearson correlation between SOV and SIG is 0.23. 
 

State Party Name ADA NFIB SOV SIG
OK D Boren, David 70 50 0.257 5
MN IR Durenberger, Dave 75 70 0.156 0
LA D Breaux, John 40 50 0.082 11
ND D Conrad, Kent 80 50 0.078 8
MO R Danforth, John 35 70 0.068 0
MT D Baucus, Max 85 50 0.060 9
AR D Pryor, David 70 10 0.060 0
WV D Rockefeller IV, John 70 10 0.060 0
MI D Riegle, Jr., Donald 80 10 0.037 0
SD D Daschle, Thomas 75 10 0.021 0
KS R Dole, Robert 10 90 0.021 0
ME D Mitchell, George 85 10 0.021 0
UT R Hatch, Orrin 5 90 0.019 0
WY R Wallop, Malcolm 5 90 0.019 0
DE R Roth, William 45 90 0.018 0



23 

OR R Packwood, Bob 35 90 0.016 0
RI R Chafee, John 55 70 0.012 8
IA R Grassley, Charles 20 90 0.012 0
NY D Moynihan, Daniel 90 10 0.012 3
NJ D Bradley, Bill 90 30 0.006 5

 
We plot the SIG mobilization count against SOV value, using a log scale for SOV (Fig. 17). 
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Figure 17 – Senate Finance: Number of SIG Mobilized Versus Shapley-Owen Value  
 
There appear to be two distinct groups, from a mobilization perspective: those that warrant 
mobilization and those that don’t. Among those that do warrant mobilization there appears to be 
some relationship between SIGs and SOV. The relationship would be striking but for the relative 
neglect of Boren: (SOV, SIG) = (0.26,5). 
 
Goldstein notes that Senators such as Durenberger, while having exceptionally high SOV, were 
not up for re-election. SIGs in such cases believe they have relatively little influence and so 
expend their resources elsewhere. In point of fact, Durenberger voted with his party and against 
the bill. Danforth, however, more Republican politically than Durenberger, voted for the bill, as 
did Chafee (who did receive considerable attention). Conrad, on the other hand, was up for re-
election, was heavily targeted, and voted against bill and against his party. 
 
Moynihan, while personally favoring a government-sponsored health plan, believed that for the 
health bill to survive a filibuster on the Senate floor bipartisan support was required. He therefore 
worked to amend the bill in such a way as to attract moderate Republicans. He did so by 
removing certain language offensive to small business interests (so called employer mandates). 
The result was a bill positioned closed to the Finance committee strong point and, therefore, the 
Senate strong point (Fig. 18).  
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Figure 18 – Senate Finance: Final Vote with Strong Point 
 
In order to reproduce the vote as shown and have the proposal reported near the strong point, 
Danforth, Chafee, Breaux, and Conrad would have to have voted as if their ideal points were 
shifted from the positions reported by Goldstein. For example, in one possible explanation, 
Danforth, Chafee, and Breaux would have voted as if further to the lower right and both 
Durenberger and Conrad as if further to the upper left. In the diagram the green X marks the 
original location of the strong point, while the blue cross + represents the adopted proposal (Fig 
19). 
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Figure 19 – Senate Finance: Final Vote “Explained”  
 
House Ways and Means Committee 
 
Next we consider the House Ways and Means committee. This committee experienced some 
turnover during the markup process but nothing that fundamentally affects the analysis. The 
plotting conventions follow those of Senate Finance (Fig 20).  
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Figure 20 – House Ways and Means: SIG Mobilization Targets 
 
In this committee the most heavily targeted legislator was also the one with highest SOV. In 
general, if we list Representatives sorted in descending order by SOV, legislators with higher 
SOV tend to have higher SIG mobilizations. The Pearson correlation between SOV and SIG is 
0.54. 
 

District Party Name ADA NFIB SOV SIG
NE-2 D Hoagland, Peter 65 50 0.228 12
TX-25 D Andrews, Michael 55 50 0.189 2
TX-10 D Pickle, J. 65 10 0.099 0
NY-21 D McNulty, Michael 60 30 0.054 0
VA-5 D Payne, L. 30 50 0.048 10
OK-3 D Brewster, Bill 25 50 0.045 10
PA-14 D Coyne, William 95 90 0.045 0
FL-11 D Gibbons, Sam 75 10 0.045 0
GA-5 D Lewis, John 100 90 0.039 0
LA-2 D Jefferson, William 95 30 0.033 6
MA-2 D Neal, Richard 95 30 0.033 3
IA-5 R Grandy, Fred 20 70 0.024 0
NY-31 R Houghton, Amo 20 70 0.024 0
TN-9 D Ford, Harold 80 10 0.021 0
WI-4 D Kleczka, Gerald 80 10 0.021 0
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CA-5 D Matsui, Robert 80 10 0.021 0
LA-5 R McCrery, Jim 0 90 0.012 0
TX-7 R Archer, Bill 5 90 0.009 0
MI-4 R Camp, Dave 5 90 0.009 0
MO-7 R Hancock, Mel 5 90 0.009 0
CA-2 R Herger, Wally 5 90 0.009 0
CT-6 R Johnson, Nancy 40 70 0.009 2
CA-13 D Stark, Fortney 100 10 0.009 0
TN-7 R Sundquist, Don 5 90 0.009 0
MD-3 D Cardin, Benjamin 90 10 0.006 0
IL-8 R Crane, Philip 15 90 0.006 0
IN-10 D Jacobs, Jr., Andy 90 10 0.006 0
OR-5 D Kopetski, Mike 85 10 0.006 0
MI-12 D Levin, Sander 95 10 0.006 2
WA-7 D McDermott, Jim 85 10 0.006 0
NY-15 D Rangel, Charles 95 10 0.006 0
IL-2 D Reynolds, Mel 90 10 0.006 0
IL-5 D Rostenkowski, Dan 90 10 0.006 0
CA-21 R Thomas, William 15 90 0.006 0
KY-4 R Bunning, Jim 10 90 0.003 0
FL-22 R Shaw, Jr., E. 10 90 0.003 0
CT-1 D Kennelly, Barbara 90 30 0.000 3
PA-18 R Santorum, Rick 20 90 0.000 0

 
If we plot the SIG mobilization count against SOV value, using a log scale for SOV, we see a 
similar pattern to Senate Finance (Fig. 21). 
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Figure 21 – House Ways and Means: Number of SIG Mobilized Versus Shapley-Owen Value  
 
Again, there are apparently two distinct groups, from a mobilization perspective, those that 
warrant mobilization and those that don’t. Among those that do warrant mobilization there 
appears to be some relationship between SIGs and SOV. 
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There is more spatial structure in this committee than Senate Finance. This becomes apparent 
when we look at the final vote on the bill by Ways and Means. The final bill after markup 
resided fairly close to the strong point of the committee, roughly between Hoagland and 
Andrews (Fig 22). 
 

 
 

Figure 22 – House Ways and Means: Final Vote  
 
Noticeable anomalies are Payne, McDermott, and Coyne/Lewis. Coyne is all the more 
remarkable because he was a co-sponsor of the bill, whereas Lewis was not – yet their votes are 
flip-flopped! Payne and McDermott are explained fairly easily using a conventional narrative 
explanation. Coyne and Lewis provide an opportunity to apply SOV. 
 
Payne was from Virginia and objected to certain tax provisions against tobacco in the bill. In 
exchange for removing those provisions he supported the amended bill.  
 
McDermott insisted on a heavily subsidized public health issuance plan and would settle for 
nothing less. His preferences cannot be modeled as Euclidean but as absolute – his ideal point or 
nothing. His SOV can still be computed using our algorithm. The interpretation of the strong 
point suffers, however, as McDermott does not contribute to the area of the win set. We do not 
attempt to account for this perturbation in the present analysis.  
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Now let’s consider Coyne and Lewis more closely. First, we compute the regression line for the 
committee (Fig. 23).  
 

 
 

Figure 23 – House Ways and Means: Regression Line  
 
The blue lines represent the error range for the slope of the regression line; the red lines represent 
the 1-sigma corridor in which the regression line most likely falls; and the black line is the best 
estimate for the regression line. Evidently there is a pretty good correlation along the regression 
line.  
 
The strong correlation suggests that we can approximate the decision in this committee as a one-
dimensional decision along the line of correlation. Accordingly we are particularly interested in 
identifying legislators near the median position. We accomplish this by projecting all legislators 
on to the correlation line and draw a perpendicular line through the median position (cut line), 
depicted as a red dashed line (Fig 24). 
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Figure 24 – House Ways and Means: Cut Line  
 
We discover that Coyne and Lewis, along with Hoagland and Andrews, are all very close to 
median position. Indeed, Coyne is on the “Republican” side and Lewis is on the “Democratic” 
side, consistent with their final votes.  
 
The significant take away here is that the SOVs of both Coyne and Lewis are as large as Payne 
and Brewster, both of whom attracted significant SIG attention, but no SIG paid attention to 
Coyne and Lewis. Even Goldstein makes no mention of these two! Judging from their spatial 
positions, neither Coyne nor Lewis conforms to either party’s conventional profile, so perhaps 
these legislators were perceived as marginal and discounted by SIGs. A formal SOV analysis, 
however, is free of this bias and so would have identified Coyne and Lewis to be as significant 
targets as Payne and Brewster. 
 
Finally, to illustrate Payne’s negotiating position, if we adjust Payne’s position to reflect his 
actual vote, i.e., Payne votes “as if” his ideal point were in the new position, and recompute 
SOVs (Fig. 25). 
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Figure 25 – House Ways and Means: Final Vote Explanation  
 
 
Voting with the Democrats, Payne now has the single largest SOV. This reflects, perhaps, the 
challenge Republicans had in keeping Payne from defecting. 
 
Finally we consider the House Energy and Commerce Committee. This committee never voted 
on the bill so all we can do is report the data, not the final outcome. 
 
House Energy and Commerce Committee 
 
The Energy and Commerce committee was one in which the chairman, Dingle, wanting to push 
through the health bill with minimal markup, was unable to gain much cooperation. An SOV 
analysis makes the challenge particularly clear (Fig 26). Note that both Boucher and Lehman 
have the same ideal point, each receiving an SOV of 0.422. Between the two them they have 
0.844 of the total value. (In fact there appears to be some systematic round-up error in this 
committee from the SOV algorithm; it is an even committee with a many members sharing the 
same ideal point. However, experimenting with minor adjustments of ideal points to avoid the 
compounding of coincidence errors, Boucher and Lehman continue to command well over 70% 
of the game value. So qualitatively, at least, the representation is accurate.) To report the bill 
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unchanged, Dingle would have had to ask Boucher and Lehman to give up a considerable 
amount of value. And he would still have had Slattery and Cooper to persuade, whose positions 
would be strengthened if Boucher and Lehman surrendered value. 
 

 
 

Figure 26 – House Energy & Commerce: SIG Mobilization Targets 
 
Similar to Ways and Means, if we list Representatives sorted in descending order by SOV, 
legislators with higher SOV tend to have higher SIG mobilizations. Unlike Ways and Means, 
however, the legislator receiving the most SIG attention, Slattery, received a vanishing SOV. 
The Pearson correlation between SOV and SIG is 0.51. 
 

Rep Party Name ADA NFIB SOV SIG 
VA-8 D Boucher, Rick 60 50 0.422 9 
CA-19 D Lehman, Richard 60 50 0.422 9 
CA-49 D Schenk, Lynn 65 30 0.059 0 
TN-4 D Cooper, Jim 70 70 0.054 10 
NY-10 D Towns, Edolphus 80 10 0.029 0 
TX-5 D Bryant, John 80 10 0.029 0 
WA-9 D Kreidler, Mike 80 10 0.029 0 
CA-27 R Moorhead, Carlos 5 90 0.016 7 
FL-6 R Stearns, Clifford 5 90 0.016 2 
ID-2 R Crapo, Michael 5 90 0.016 0 
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IL-14 R Hastert, Dennis 5 90 0.016 0 
NJ-6 D Pallone, Jr., Frank 90 30 0.016 0 
OH-4 R Oxley, Michael 5 90 0.016 0 
TX-6 R Barton, Joe 5 90 0.016 0 
TX-8 R Fields, Jr., Jack 5 90 0.016 7 
MI-6 R Upton, Fred 30 70 0.013 0 
CT-5 R Franks, Gary 20 90 0.012 0 
FL-9 R Bilirakis, Michael 20 90 0.012 0 
IL-7 D Collins, Cardiss 85 10 0.012 0 
IN-2 D Sharp, Philip 85 10 0.012 0 
MA-7 D Markey, Edward 85 10 0.012 0 
NY-7 D Manton, Thomas 85 10 0.012 0 
OH-5 R Gillmor, Paul 20 90 0.012 0 
PA-8 R Greenwood, Jim 20 90 0.012 3 
GA-8 D Rowland, J. 50 70 0.011 0 
LA-3 D Tauzin, W. 15 70 0.011 4 
MI-16 D Dingell, John 90 10 0.011 0 
TX-18 D Washington, Craig 90 10 0.011 0 
WA-2 D Swift, Al 90 10 0.011 0 
TX-4 D Hall, Ralph 40 70 0.009 0 
NM-3 D Richardson, Bill 75 10 0.006 0 
CA-29 D Waxman, Henry 95 10 0.005 0 
MA-10 D Studds, Gerry 95 10 0.005 1 
NC-9 R McMillan, Alex 15 90 0.005 0 
NY-27 R Paxon, Bill 10 90 0.005 0 
OH-13 D Brown, Sherrod 95 10 0.005 0 
OK-2 D Synar, Michael 95 10 0.005 0 
OR-3 D Wyden, Ron 95 10 0.005 0 
VA-7 R Bliley, Jr., Thomas 15 90 0.005 0 
AR-1 D Lambert, Blanche 85 30 0.002 9 
CO-6 R Schaefer, Dan 5 50 0.000 0 
KS-2 D Slattery, Jim 75 50 0.000 13 
PA-13 D Margolies-Mezvinsky, Marjorie 80 30 0.000 0 
WI-2 R Klug, Scott 45 70 0.000 0 

 
If we plot the SIG mobilization count against SOV value, using a log scale for SOV, we see 
again a pattern of two groups (Fig 27). 
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Figure 27 – House Energy & Commerce: Number of SIG Mobilized Versus Shapley-Owen Value  
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When compute the strong point, we find that it coincides almost exactly with the ideal point of 
Boucher and Lehman (Fig. 28). If we believe the strong point estimates the likely outcome of the 
committee, this means that Boucher and Lehman were effectively median voters for this 
committee. It was wholly unrealistic for Dingle to insist on reporting the bill with minimal 
markup. The best Dingle could have hoped to accomplish was literally ask Boucher and Lehman 
to mark up the bill to their satisfaction, perhaps asking Boucher and Lehman to consult with 
Slattery and Schenk to draw the ideal point of the proposal more toward the Democratic corner. 
 

 
 

Figure 28 – House Energy & Commerce: Strong Point 
 
Had Dingle effectively delegated markup to Boucher and Lehman the result would have been a 
bill whose ideal point matched fairly closely the corresponding bills reported by Senate Finance 
and House Ways and Means. Instead no bill was reported.  
 
The result of the impasse in Energy and Commerce resulted in a breakdown of the usual 
legislative process. The House asked the Senate to work on the bill. The Senate leadership chose 
to disregard the bill reported by Senate Finance and restored the provisions Moynihan had, 
through compromise removed, ignoring the political information encoded in the Finance 
committee’s strong point. The Senate leadership, in effect, followed Dingle in refusing to 
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compromise. The result was a stillborn bill that ensured the defeat of the Clinton health initiative, 
a defeat with far reaching political implications for the Democratic Party. 
 
Comparison with Goldstein’s Model 
 
Before moving on to our next case we consider a model developed by Goldstein for predicting 
SIG mobilization. According to Goldstein SIGs are more likely to mobilize for undecided 
legislators who occupy positions on influence committees and who are facing re-election. His 
reasoning is that legislators not facing re-election do not require the political information that 
SIGs can provide to help them form their opinion about an issue. Being undecided is a necessary 
condition for influence to matter. Finally, legislators not on influence committees are essentially 
irrelevant to shaping the final form of the bill before consideration on the floor of the House and 
Senate. 
 
We have seen how a strong point analysis supports the differentiation between influence and 
policy committees, a component of Goldstein’s model. On a heuristic basis we can argue that 
being undecided also translates into an SOV representation. A legislator could be undecided for 
any number of reasons, but surely a common or significant reason is that he/she cannot 
determine the relative positions of the proposal and status quo. Compounding this uncertainty, 
the location of proposal is subject to change under markup. Being undecided could be a strategic 
posture to exercise influence on the markup. But even so such legislators are not outliers in the 
issue space. Such legislators generally (though not always) have larger SOVs, per the Feld-
Grofman bound. Legislators far away from the yolk center cannot have large SOVs, so the 
predominant contribution to the total sum, which must be 1, must come from legislators closer to 
the yolk center. Put simply, we expect the undecideds to reside closer to the yolk than those 
whose legislators who have made up their mind. 
 
The one piece of information not available through SOV is whether or not a legislator is up for 
re-election. Surely this is an important political consideration. As Goldstein demonstrates, SIGs 
do not mobilize for legislators that are not up for re-election. From an efficiency perspective this 
makes sense. But there may be important exceptions representing a lost opportunity for SIGs. 
The examples of both Danforth and Coynes come to mind, particularly Coynes. Coynes reversed 
his position from being a co-sponsor to being an opponent. Somehow he was influenced, but not 
by mobilization.  
 
Thus we see in all three committees that the SOV and strong point provide varying degrees of 
insight on the preferences shaping the Clinton health bill debate. Spatial models are only one 
way of considering these problems and may be subject to overly simplistic assumptions about 
legislator preferences. Nevertheless, an SOV-based analysis appears able to parallel Goldstein’s 
model and identify/explain features of the data either not considered or not explained by 
Goldstein’s model, the most dramatic example being the voting behavior of Coynes and Lewis. 
 
We turn next to examples for which comparably rich preference and voting data are not available 
and furthermore rely on the extensions of SOV involving weighted voting models and plurality 
decision rules. 
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5.2 IMF – Weighted Voting Model 
 
The IMF, formed by the Bretton Woods Conference of 1945, is a 184-nation body with all but 
two members enjoying voting rights. Two member nations currently have their voting rights 
suspended, Liberia and Zimbabwe. The IMF was founded after WWII to promote international 
financial practices to avoid a repeat of the Great Depression, but has become increasingly 
involved in loans to developing countries.  
 
The IMF is a weighted, “Yes-No” voting system. Each nation receives a single vote, weighted 
according to the percentage contribution of that nation to the world GDP. A single proposal is 
considered at a time, upon which members vote “yes” or “no.” Proposals are adopted according 
to simple majority rule. Constitutional changes and special majorities require a majority of 85%. 
The United States, with 17.1% of the votes, has an effective veto in such cases, a topic we do not 
explorer further in this case study. We do consider the relationship of veto power and weighted 
voting, however, in our next case study concerning the UN Security Council. 
 
Unfortunately, as stated on the IMF web site (http://www.imf.org/external/pubs/ft/exrp/what.htm 
accessed 6/19/2005), “the Board rarely makes decisions based on formal voting; rather, most 
decisions are based on consensus among its members and are supported unanimously.” This 
raises the level of difficulty in applying formal methods to analyzing the IMF. Due to the lack of 
empirical data and the unwieldy nature of analyzing the full body of the IMF, we will 
concentrate instead on the smaller, and administratively more significant IMF Executive 
Directors, i.e., the IMF Board.  
 
Our aim will be to provide a plausible distribution of IMF Board member ideal points from 
which to develop hypotheses regarding voting weights in the context of a proximity spatial 
model (and relying on SOV measures). Much more research would be required to develop an 
empirically well-founded proximity spatial model of the IMF Board, assuming such a model can 
be developed and found compelling. 
 
The IMF Board consists 24 directors, 5 appointed representatives from the United States, Japan, 
Germany, France, and Britain, and 19 elected representatives from 19 groups of countries. These 
groups are summarized below.  The lines in gray identify the group, below which are enumerated 
the group members. Each of the elected groups is identified by the country of the currently 
elected representative of the group, followed by the geography of the majority of group members 
– except in cases where the group has only one member, Russia, China, and Saudi Arabia. The 
elected groups have formed more or less organically, outside any formal IMF framework, but do 
generally share a common geography. [Leech, 2002] 
 
APPOINTED  VOTE (WEIGHT) 
United States  17.08 
United States   
Japan  6.13 
Japan   
Germany  5.99 
Germany   
France  4.95 
France   

http://www.imf.org/external/pubs/ft/exrp/what.htm
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Britain  4.95 
Britain   
 
ELECTED  VOTE WEIGHT 
Belgium & Eastern Europe   5.13 
Austria Hungary Slovak Republic 
Belarus Kazakhstan Slovenia 
Belgium Luxembourg Turkey 
Czech Republic   
Netherlands & East Europe   4.84 
Armenia Cyprus  Moldova 
Bosnia and Herzegovina Georgia Netherlands 
Bulgaria Israel Romania 
Croatia Macedonia Ukraine 
Mexico & Central America   4.27 
Costa Rica Honduras Spain 
El Salvador Mexico Venezuela 
Guatemala Nicaragua  
Italy & South Europe  4.18 
Albania Malta San Marino 
Greece Portugal Timor-Leste 
Italy    
Canada & North Atlantic  3.71 
Antigua and Barbuda Canada Jamaica 
Bahamas  Dominica St. Kitts and Nevis 
Barbados Grenada St. Lucia 
Belize Ireland St. Vincent and the Grenadines 
Norway & Northern Europe  3.51 
Denmark Iceland Norway 
Estonia Latvia Sweden 
Finland Lithuania  
Korea & South Pacific  3.33 
Australia Mongolia Philippines 
Kiribati New Zealand Samoa 
Korea Palau Seychelles 
Marshall Islands Papua New Guinea Solomon Islands 
Micronesia    
Egypt & Arabia  3.26 
Vanuatu Kuwait Qatar 
Bahrain Lebanon Syria 
Egypt Libya United Arab Emirates 
Iraq Maldives Yemen 
Jordan Oman   
Saudi Arabia  3.22 
Saudi Arabia   
Malaysia & South East Asia  3.17 
Brunei Darussalam Lao People's Democratic Republic Singapore 
Cambodia Malaysia Thailand 
Fiji Myanmar Tonga 
Indonesia Nepal Vietnam 
Tanzania & Africa  3.00 
Angola Lesotho South Africa 
Botswana Malawi Sudan 
Burundi  Mozambique Swaziland 
Eritrea Namibia Tanzania 
Ethiopia Nigeria Uganda 
Gambia Sierra Leone Zambia 
Kenya   
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China  2.94 
China   
Switzerland & W & C Asia  2.84 
Azerbaijan Serbia and Montenegro Turkmenistan 
Kyrgyz Republic Switzerland Uzbekistan 
Poland Tajikistan   
Russia  2.74 
Russian Federation   
Iran & C Asia & N Africa  2.47 
Afghanistan Iran Pakistan 
Algeria Morocco Tunisia 
Ghana    
Brazil & South America  2.46 
Brazil Ecuador Panama 
Colombia Guyana Suriname 
Dominican Republic Haiti Trinidad and Tobago 
Indian Subcontinent  2.39 
Bangladesh India   
Bhutan Sri Lanka   
Argentina & South America  1.99 
Argentina Chile Peru 
Bolivia Paraguay Uruguay 
Equatorial Guinea & Africa  1.41 
Benin Congo, Republic of Mali 
Burkina Faso Côte d'Ivoire Mauritania 
Cameroon Djibouti Mauritius 
Cape Verde Equatorial Guinea Niger 
Central African Republic Gabon Rwanda 
Chad Guinea São Tomé and Príncipe 
Comoros Guinea-Bissau Senegal 
Congo, Democratic Republic of Madagascar Togo 
 
Based on the general charter of the IMF and much of the public debate surrounding the IMF, we 
will assume the principal issue dimensions concern “free trade,” the degree to which trade is 
regulated between member nations, and “easy money,” the degree to which credit is made 
available to member nations.  
 
We conjecture the location of member ideal point based on various trade reports, notably the 
Global Competitiveness Report 2003-2004 (GCR), news reports, and personal judgment [Salai-i-
Martin, 2004]. The goal here is not so much to provide an accurate picture of the IMF as to 
assess the value potential to member states of policy positions they might adopt given their 
respective vote weights. In a particular, we want to explore the extent to which the United States 
can wield exceptional power and/or to which that power can be blocked by strategic behavior of 
other IMF members. 
 
For the sake of concreteness and reproducibility we took two survey questions from the GCR 
and used these as surrogates for the “easy money” and “free trade” dimensions. The GCR was 
chosen largely due to its breadth of coverage and availability. The GCR is produced semi-
annually based on an annual Expert Opinion Survey (EOS) conducted by the World Economic 
Forum (see http://www.weforum.org/ for more details) involving 7,500 business leaders and 
entrepreneurs. 
 

http://www.weforum.org/
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The first question, identified as “2.07 Ease of access to loans,” reads 
 
“How easy is it to obtain a bank loan in your country with only a good business plan and no 
collateral (1=impossible, 7 = easy).” 
 
We use this score as surrogate for “easy money” in the following sense. The higher respondents 
score a given country then the more is capital available in that country. Such countries will not 
have as high a demand for access to loans as countries where the score is lower. There could be, 
and likely are, other factors driving demand for/against “easy money.” The biggest challenge in 
using this surrogate is that some countries, e.g., “developed countries,” may recognize the need 
for “easy money” beyond their immediate national business needs. So using these data as a basis 
for “easy money” may be biased low for “developed countries.” 
 
The second question, identified as “10.09 Control of international distribution, “ reads 
 
“ International distribution and marketing from your country (1= takes place through foreign 
companies, 7 = is owned and controlled by local companies.)” 
 
We use this score as a surrogate for “free trade” in the following sense. The higher respondents 
score a given country then the fewer foreign companies operate within the country, giving 
natives less cause to feel threatened by foreign competition. This in turn will reduce the political 
pressure for protectionist trade policies. Conversely, in countries more heavily penetrated by 
foreign companies, we expect greater political pressure against free trade policies. Again, there 
could be, and likely are, other factors driving demand for/against “free trade.” 
 
In order to use the GCR data, some data preparation was needed. First, scores were converted 
from a 7 point Likert scale to the 100 point scale being used consistently throughout this paper. 
Second, not all IMF members are included in the GCR. Rather than attempt imputation, 
however, the average of available scores for members in each of the IMF Board groups was 
used. Generally this seemed appropriate. The largest gaps concerned groups of Arabian states 
and African states. The states for which data were available seemed representative based on 
news reports and personal judgment.  One imputation was required, namely, for Saudi Arabia. 
Values close to the Arabian group were used for this purpose. 
 
The final scales are defined as follows: 
 
Easy Money = 100 *(1 – [Q02.07]/7) 
Free Trade = 100 *(    [Q10.09]/7) 
 
Below is a diagram of these data prepared as described (Fig 29). The IMF Board members are 
identified along with their SOVs. A color-code is also used to indicate the SOV magnitude, with 
light green in this case being the highest values and blue the lowest. Observe that the largest 
SOVs are associated with elected, not appointed IMF Board members. Thus, despite the 
combinatorics advantage the United States has in its voting power, it does not actually realize 
that advantage under the posited configuration.  
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Figure 29 – IMF Board: Free Trade vs. Easy Money - Initial 
 
Is this configuration reasonable? In general placement of ideal points seems plausible. Some 
adjustments might be called for, particularly for the developed countries as regards “easy 
money.” Britain’s recent encouragement of the United States to extend more aid/loans to Africa, 
for example, suggests that Britain’s ideal point is too far left. Similarly, Northern European 
countries have a strong reputation for foreign aid. So the Northern European ideal point may be 
too far left as well. And finally, France’s recent rejection of the EU Constitution based in part on 
free trade concerns, suggests that France’s ideal point may be too high on the free trade scale. On 
the other hand, the positioning of developing members seems generally accurate. In particular, 
members who have recently experienced economic hardship have ideal points further down and 
to the right.  
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Figure 30 – IMF Board: Free Trade vs. Easy Money - Improved 
 
Making these adjustments, the United States’ SOV has actually increased, but is still relatively 
low due to its marginal position relative to other ideal points (Fig 30).  
 
Undoubtedly arguments can be made for further refinements. Unfortunately, as noted earlier, we 
cannot hope with the data available to have an accurate/precise model for IMF Board member 
preferences. Our aim here is only to provide a plausible distribution of IMF Board member ideal 
points; which we believe we have done. 
 
Let us now consider various modifications of the IMF Board member model. First, suppose we 
move the United States to the strong point. Observe that the United States commands nearly all 
the value (Fig 31). 
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Figure 31 – IMF Board: Hypothetical Adjustment of United States’ Ideal Point 
 
Instead, suppose we move to the strong point another appointed member, one with a quarter of 
the vote weight, e.g., Britain. Observe that Britain only gains about a quarter of the total SOV 
and that the strong point is shifted – toward the United States (Fig. 32). Thus while the United 
States does not command a significant amount of value in this scenario, the United States 
nevertheless has a powerful influence on the value other players can realize and the location of 
the strong point. 
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Figure 32 – IMF Board: Hypothetical Adjustment of Britain’s Ideal Point 
 
A number of scholars and critics of the Bretton Woods plan, notably Keynes, have argued that 
the IMF weighting system is flawed, particularly the large vote weight accorded the United 
States. While on its face weighting votes according to the financial contribution each member 
makes to the IMF (a percentage of GDP) seems fair, voting power, the ability to form coalitions 
and influence policy outcomes, does not necessarily scale linearly with such weighting schemes. 
This, at least, is the basis for a positive critique. Normative critiques may consider other factors 
such a population and development status. 
 
Leech, using the Banzhaf-Coleman index, has performed a positive analysis and offers these 
conclusions [Leech 2002]:  
 

1. Countries’ voting powers over ordinary decisions are much more unequal than their 
financial contributions; the power of the USA is much greater than its nominal 17% of 
the votes. 

2. The effect of the special 85% majority requirement for major decisions is to severely 
limit the effectiveness of the decision-making system. 

3. The use of the 85% majority requirement is counterproductive to the US pursuing an 
active role in the IMF by limiting its power to have its policies accepted. 
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4. The IMF should make all decisions by simple majority and scrap special majorities. That 
would make its democratic decision making system most effective. 

5. The United States should support the use of simple majorities for all decisions if it wishes 
to increase its influence within a democratic IMF. 

6. Votes of all members and executive directors should be reweighted in order to give the 
desired share of voting power to each country and director. 

 
Others, notably Timothy Lane (from the IMF), have suggested reweighting taking into account 
population and development status [Lane, 2004] 
 
We consider next a redistribution of voting power. We begin with Leech’s prescription of re-
apportioning weights and conclude with considerations of population as suggested by Lane. We 
re-apportion weights using exponential smoothing, resulting in a drop of the United States vote 
weight from 17.1% to 12.5%. Much of the difference is taken up by Japan, Germany, Belgium & 
Eastern Europe, France, and Britain, but the lowest weight members, Argentina – South America 
and Equatorial Guinea - Africa also gain a small amount. We use our initial configuration of 
ideal points as a convenient, reproducible baseline for comparison. (Fig. 33) 

 
 

Figure 33 – IMF Board: Vote Weight Adjustment by Exponential Smoothing 
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Fundamentally nothing changes. The United States has exactly the same SOV as it did in the 
initial configuration. Argentina – South America has acquired a slight non-zero SOV, but 
Equatorial Guinea – Africa remains at zero. Thus, despite the United States giving up nearly a 
third of its voting share, a substantial redistribution of value has not occurred. There is, however, 
a major difference. In this scenario the United States cannot veto. Perhaps under such a dramatic 
re-apportionment greater use would be made of simple majority, as opposed to special majority, 
for voting decisions. This might actually favor the interests of United States, as suggested by 
Keynes, given that the United States’ SOV does not change between scenarios. 
 
Suppose now we adjust by hand for the populations of India and China. We consider this in 
addition to the re-apportionment, as that reform did not have an appreciable effect. Perhaps this 
one will. In this scheme 0.5% is taken from the United States, 0.3% from Japan, and 0.2% from 
German with 0.5% being given to China and India respectively (Fig. 34).  
 

 
 

Figure 34 – IMF Board: Vote Weight Adjustment by Population 
 
Again, this has no appreciable affect on the SOVs of the United States, Japan, and Germany, but 
India – Subcontinent has benefited. China, on the other hand, continues to have zero SOV. 
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What can we conclude? It appears that the spatial context, the spatial constraint on coalition 
formation, is a significant determinant of value. Here the Shapley-Owen value, and other power 
indexes of its conception, differentiates from purely combinatorics-based indexes such as the 
Shapley-Shubik or Banzhaf-Coleman index. The value associated with a combinatorics-based 
index is fixed regardless of any strategies adopted by players. The Shapley-Owen value, on the 
other hand, can vary dramatically depending on the strategy choices of players. Thus whereas the 
United States has substantial, fixed combinatorics-based value, the value realized in decisions 
modeled accurately by proximity spatial voting models can be much less depending on the 
strategic choices of the United States and other voters. 
 
The one consideration that cannot be overcome through strategic activity in a spatial context is 
when a single voter has enough votes to defeat any measure it finds objectionable. If the IMF 
vote allocation were dynamic such that as nations states increased their GDP there resulted a 
redistribution of votes, the veto power would be dissipated.  
 
 
5.3 UN Security Council – Weighted Voting Model Used to Represent Veto Power 
 
For our final case study we look more closely at the question of veto power. For this purpose we 
use of UN Security Council as a subject. This is probably one of the most closely watched 
deliberative bodies. We aim to show that the Shapley Owen value algorithm accurately describes 
the decision-making characteristics of this body. 
 
The UN Security Council consists of 5 permanent members and 10 non-permanent members 
elected by the UN General Assembly for a two-year term.  
 
Permanent Members Non-Permanent Members 
United States, Russia, China, 
France, Britain 

Argentina, Benin, Brazil, Denmark, Greece, Japan, 
Philippines, Romania, Tanzania, Algeria 

 
Each council member has one vote. Procedural decisions require 9 affirmative votes. Substantive 
decisions require 9 votes and concurrence of all 5 permanent members, i.e., a non-concurrence 
by any permanent member is a “veto.” 
 
The UN Security Council is “Yes-No” voting system, with veto. Such systems can be 
represented as a weighted “yes-no” voting system [Taylor, 1995]. We are interested in such a 
representation so we may apply our SOV algorithm to the UN Security Council to see what we 
might learn.  
 
Let us assert that non-permanent members are assigned a voting weight of 1 and the permanent 
members a voting weight of x. Let q denote the number of votes required to adopt a proposal, the 
quota. Consider the case of substantive issues. Suppose one of the permanent members exercises 
the veto then, even if all other permanent and non-permanent members vote affirmative, the UN 
Security Council will be one vote short of quota. 
 
4x + 10 = q-1. 
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On the other hand, suppose 5 permanent members and 4 non-permanent members vote 
affirmative, meeting the Charter threshold of 9 affirmative votes, then 
 
5x + 4 = q. 
 
These equations are readily solved, yielding x = 7 and q = 39. Thus, assigning a weight of 7 to 
permanent members, 1 to non-permanent members, and a quota of 39, the votes of the UN 
Security Council can be faithfully reproduced. 
 
Upon plotting the UN Security Council in an abstract two-dimensional issue space and 
experimenting with ideal point location, we quickly discover that value generally resides near the 
boundary of the Pareto set, not its interior. The following graphic in which each permanent 
member occupies a corner of a regular pentagon illustrates the point (Fig. 35).  
 

 
 

Figure 35 – UN Security Council: Shapley Owen Values 
 
It is possible for a member to realize higher value than the symmetric value of 0.20 found in this 
scenario. To do so, the member must be a permanent member and be an outlier among the 
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permanent members, as reckoned by a measure of central tendency such as the yolk center.  For 
example, in the following scenario we have moved Britain into the lower right corner (Fig. 36). 
 

 
 
 

Figure 36 – UN Security Council: Veto Favors Extreme Positions 
 
Observe that Britain has nearly doubled its SOV, principally at the expense of the United States, 
but also France. 

 
Experiments such as this suggest that value in the UN Security Council comes from staking out 
unique, relatively extreme positions. We can understand this effect as being due in large part to a 
decision rule that requires a super-majority. Thus for any direction in the decision space there are 
two pivots, unlike the case of a simple majority in which there is only one. Relative to the 
median these pivots are more toward the tails of the voter distribution.   
 
In the diagram below, voters are projected on to the blue line (Fig. 37). The red dashed lines 
indicated the locations of the pivots on the blue line and pass through the ideal point of the 
corresponding voter as a way to identify the pivot graphically. 
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Figure 36 – UN Security Council: Super-Majority Pivots 
 

In this case China and the United States are pivots. Their large SOV is not due to being pivots on 
this line, but by being pivots on a large percentage of all lines. Observe that Japan also has a 
large SOV, comparable to China.  
 
Which pivot position will win in any given vote depends, of course, on the location of the status 
quo. If the status quo is between the pivots, neither pivot will win. The status quo will prevail. If 
the status quo, however, is more extreme than either pivot, the pivot nearer the status quo will 
prevail. Thus, the highest payoffs are for relatively extreme positions. Extreme positions are only 
tenable, however, when the status quo has for some reason shifted dramatically outside the 
Pareto set.  
 
Our SOV analysis of the UN Security Council leads us to the conclusion that the decision rule 
adopted by the UN for the Security Council is very conservative. Apart from routine decisions in 
which consensus can be achieved, the only circumstances in which the UN Security Council will 
vote for a proposal against the status quo is when the status quo has dramatically changed just 
prior to the period of deliberation, e.g., a crisis, usually outside the Pareto set. The status quo 
must be outside the permanent members’ Pareto set or a permanent member would veto. There 
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are configurations involving non-permanent members where the status quo can be inside the 
Pareto set and still be defeated. 
 
This description agrees with the behavior of the UN Security Council, which gives some 
confidence the SOV algorithm, extended to weighted voting models and to super-majority 
decision rules behaves reasonably, at least in broad terms. 

 
 

6 Conclusions 
 

The Shapley-Owen value represents an important example of a probabilistic generalization to the 
Shapley-Shubik value. The Shapley-Owen value takes into account the preferences of voters in 
determining the likelihood of coalition formation according to a proximity spatial voting model. 
The spatial proximity serves as a constraint that greatly reduces the sample space. 
 
We have shown how to interpret the Shapley-Owen value through the familiar model of the 
median voter. Using the metaphor of a line rotating at a constant speed in a two-dimensional 
space on to which all voters are projected for each increment of rotation, the Shapley-Owen 
value of a voter is just the amount of time that voter occupies the pivotal position on the line. We 
have taken this model and used it as the basis for implementing an algorithm for computing 
Shapley-Owen values in two-dimensional spatial voting games. 
 
We argued that our algorithm was on its face valid. We then checked that the implementation 
functioned properly by considering a number of test cases. These test cases also served to 
illustrate properties of the Shapley-Owen value, some perhaps unexpected. We then pushed the 
envelope and considered a weighted voting model, a problem that goes beyond the theoretical 
underpinnings of Shapley-Owen. The extension appears to work except in the case when 
coincident voters have different vote weights. This case was not considered in the paper. 
 
Finally we applied our algorithm to three examples, one for which we had sufficient data for a 
basic analysis, a second for which we could hypothesize data, and a third essentially speculative 
but useful for structural analysis. These cases we believe provide evidence that the Shapley-
Owen value can be a powerful tool for understanding coalition formation in two-dimensional 
group decision-making. Specifically, we found evidence that in weighted voting, issue framing 
and strategic behavior can be used to offset the advantages of voters with vote weight 
advantages. We also observed that plurality decision rules (often equivalent to a veto when 
combined with weighted voting) have a tendency to promote extreme policy positions.  
 
We close by offering some general questions and observations: 
 
1. Much of the theoretical literature is based on Euclidean preferences.  But even in the one 

case study we could offer based on actual data, this assumption did not hold for all voters. 
How critical is this assumption? 

2. How far can the Shapley-Owen theory be generalized by weakening requirements on ideal 
point topology, metric types, etc.? How useful is the algorithm in exploring these questions? 
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3. There appear to be two separate but related issues with the Shapley Owen value, calculation 
of the strong point (some sort of expectation value for a proximity spatial voting model), and 
the probability a voter is pivotal in any given vote. It seems intuitive that the more likely a 
voter is to determine the outcome, i.e., be pivotal, the more influence that voter should have 
on the outcome. This is roughly what the strong point formula says, and accords with 
Shapley’s model. It would be interesting, however, to have this result for more complex 
models than those in which every voter has Euclidean preferences. 

4. The algorithm seems to generalize nicely to situations not covered by the analytic 
assumptions of Shapley and Owen. The UN Security Council results may seem trivial in the 
sense that these findings would be clear without a Shapley-Owen analysis. However, the fact 
that Shapley-Owen produces the same result shows that weighted voting and plurality rules 
can be successfully analyzed using Shapley-Owen values. The challenge now is to find cases 
studies with real data! 

5. Much of the work in spatial vote models is theoretical/hypothetical. There is a great need for 
data such as produced by Goldstein to put these ideas to rigorous empirical testing. 

 



52 

References  
 
Feld S L, Grofman B (1990), A Theorem Connecting Shapley-Own Power Scores and the Radius 

of the Yolk in Two Dimensions, Social Choice and Welfare (7), p 71-74 
 
Fenno R F (1973), Congressmen in Committees, Little, Brown, and Company, Canada 
 
Goldstein, K M (1999), Interest Groups, Lobbying, and Participation in America, Cambridge 

University Press, Cambridge UK. 
 
Lane T (2004), Directions for Reform of the IMF, http://www.oxonia.org/summaries/lane2/, 

accessed 6/20/2005 
 
Leech, D (2002), Voting Power in the Governance of the International Monetary Fund, Annals 

of Operations Research. (109), p 375-397 
 
Miller N R, Grofman B, Feld S L (1989), The Geometry of Majority Rule, Journal of Theoretical 

Politics, p 379-406 (also http://research.umbc.edu/~nmiller/RESEARCH/GEOMETRY.htm) 
 
Salai-i-Martin, X, ed. (2004), The Global Competitiveness Report 2003-2004, Oxford University 

Press, New York, US. 
 
Shapley L S, (1977), A Comparison of Power Indices and a Non-Symmetric Generalization, 

RAND Corporation, Santa Monica, Paper P-5872. 
 
Shapley L S, Owen G (1989), Optimal Location of Candidates in Ideological Space, 

International Journal of Game Theory, p 125-142. 
 
Taylor A D (1995), Mathematics and Politics: Strategy, Voting, Power, and Proof, Springer-

Verglag, New York US.  
 
 

http://www.oxonia.org/summaries/lane2/

	Computation of the Shapley-Owen Power Index in Two Dimensions
	1 Introduction
	2 SOV in Cooperative Games
	3 SOV in Proximity Spatial Voting Models
	4.1 SOV in Two-Dimensional Proximity Spatial Voting Models
	
	
	
	
	
	
	Figure 1 – Elements of Proximity Spatial Models







	4.2 An Algorithm for Computing SOV
	4.3 Monte Carlo – Algorithm Verification
	3 Voters
	5 Voters
	4 Voters
	11 Voters
	Weighted Voting

	5.1 Case Study: US Congress – Empirical Evidence for Shapley-Owen
	Finance
	Senate Finance Committee
	House Ways and Means Committee
	House Energy and Commerce Committee
	Comparison with Goldstein’s Model

	5.2 IMF – Weighted Voting Model
	5.3 UN Security Council – Weighted Voting Model Used to Represent Veto Power
	6 Conclusions

