
The Category of Simple Voting Games

Simon Terrington

July 11th, 2004

In this paper I describe a notation for simple voting games that has three
properties:

• It facilitates the calculation of the measures of voting power

• It allows easy or intuitive proofs of certain theorems

• It offers us new insights into the so-called paradoxes of voting power

This notation arose from my efforts, over the last two years, to represent
simple voting games as a category. In the beginning of the paper the notation
and its uses are explained independently of category theory. The last section
describes the category of simple voting games.

There are three reasons for presenting simple voting games as a cate-
gory. Firstly, it seems that some of the reasoning in simple game theory
is fundamentally of a category-theoretic nature (for example the construc-
tion of the constant-sum extension in Taylor and Zwicker’s book). If that is
the case then the machinery of category theory should facilitate understand-
ing and discovery. Secondly, the theory of simple voting games is currently
something of an island: separate from the rest of mathematics. Most of the
significant classes of structures studied in mathematics (for example groups,
vector spaces and topological spaces) can be expressed as categories. If the
same could be done for SVGs then they could be connected to other areas of
mathematics using functors (which map between categories in a way which
preserves the structure). Last, I wondered if a category-theoretic presenta-
tion might aid calculation of power indices and related measures and this has
indeed turned out to be the case.

These ideas were developed during preliminary work for my PhD, which
is being supervised by Moshe Machover.
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1 A Notation for the Theory of Simple Vot-

ing Games

For a simple voting game with n voters, the notation consists of a vector of 2n

zeros and ones. Each entry in the vector corresponds to the outcome of the
SVG that results from one of the 2n possible divisions. Each entry is labelled
by a subscript. The vector might look like this (x0x1...x2n−1). In fact, I
write the subscripts in the binary number system like this (x0x1x10...x111...1).
For any of the 2n outcomes the binary subscript makes clear the division to
which the outcome corresponds. For example x100101 is the outcome when
the first, third and sixth voter vote ‘yes’ and all the others vote ‘no’. What
is represented is a simple voting game with the voters labelled in a defined
order.

The definition of the notation for an SVG with n voters, and a relation
< between SVGs, is by recursion (on n):

• (0) and (1) are defined as representations of SVGs with 0 voters with
(0) < (0), (0) < (1) and (1) < (1)

• If (A) and (B) are representations of SVGs with n voters and (A) < (B)
then (AB) is a representation of an SVG with n + 1 voters

• If (A) < (B) and (C) < (D) then (AC) < (BD). Of course for (AC)
and (BD) to be valid as games with (n + 1) voters we need (A) < (B)
and (C) < (D) as games with n voters

For illustration, I will show how five SVGs translate into this notation:

• The unanimity game with three voters looks like this (00000001)

• The game with three voters in which the second voter is a dictator
looks like this (00110011)

• The games with three voters where the first or third voter is a dictator
look like this (01010101) and this (00001111) respectively

• The game with minimum winning coalitions {1,2} and {3} looks like
this (00011111)

I will now show how various measures associated with simple voting games
can be calculated using this notation.
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1.1 The Bz Score

The Bz Score for the nth voter is the number of coalitions that move from
yielding a ‘0’ to yielding a ‘1’ when the nth voter is added to them:

ηn =
∑

x1dn−1dn−2...d0−
∑

x0dn−1dn−2...d0 . In other words, the sum of all the
entries on the right half minus the sum of all the entries on the left half.

The Bz scores for the third voter in the examples given above ((00000001),
(00110011), (01010101), (00001111) and (00011111)) are 1, 0, 0, 4 and 3
respectively

The Bz score for the first voter is:
ηn =

∑
xdndn−1dn−2...1 −∑

xdndn−1dn−2...0

For the example games, the scores for the first voter are 1, 0, 4, 0 and 1
respectively.

For the rth voter the Bz score is:
ηr =

∑
xdndn−1...dr+11dr−1...d1 −

∑
xdndn−1...dr+10dr−1...d1

For the example games, the scores for the second voter are 1, 4, 0, 0 and
1

1.2 The Penrose Measure

Moving from the Bz score to the Penrose measure is relatively simple. We
need to divide by 2n−1, so the formulas are:

ψr = (
∑

xdn−1dn−2...dr+11dr−1...d0 −
∑

xdn−1dn−2...dr+10dr−1...d0)/2
n−1

ψ1 = (
∑

xdn−1dn−2dn−3...1 −∑
xdn−1dn−2dn−3...0)/2

n−1

ψn = (
∑

x1dn−2dn−3...d0 −
∑

x0dn−2dn−3...d0)/2
n−1

For our example games, the Penrose measures work out as follows:
For (00000001) ψ1 = 1

4
, ψ2 = 1

4
, ψ3 = 1

4

For (00110011) ψ1 = 0, ψ2 = 1, ψ3 = 0
For (01010101) ψ1 = 1, ψ2 = 0, ψ3 = 0
For (00001111) ψ1 = 0, ψ2 = 0, ψ3 = 1
For (00011111) ψ1 = 1

4
, ψ2 = 1

4
, ψ3 = 3

4

1.3 Sensitivity

I start with some definitions:
H[G] :=

∑n
r=1 ηr

Σ :=
∑n

i=1 ψi = (
∑n

i=1 ηi)/2
n−1 = H/2n−1

E(Z)=the expected value of the number of voters who agree with the
outcome of G minus the number that do not.
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Adding up all the formulae for the ηi we have:

H[G] = nx111...1 + (n− 2)
∑

S=n−1

xdn...d1 + (n− 4)
∑

S=n−2

xdn...d1 ...

−(n− 2)
∑

S=1

xdn...d1 − nx000...0

Here I have written S as an abbreviation for
∑

di

We can see from this why mean majority deficit pulls in the opposite
direction to sensitivity. If the game allows lots of small coalitions to win (i.e
coalitions which have a small number of 1s in their (binary) index) then this
is likely to make a large negative contribution to the sensitivity and, of course
a positive contribution to the mean majority deficit. Alternatively, if large
coalitions with a lot (more than n/2) of 1s in their index do not win then
this will be a missed opportunity to push up the sensitivity (and push down
the mean majority deficit). It is also easy to see from this that the game
with the minimum mean majority deficit (maximum sensitivity) is the one
in which all the coalitions greater in size than n/2 win and all smaller than
n/2 lose. If n is even then the coalitions with exactly n/2 voters voting ‘yes’
have a zero coefficient so it does not matter if they are winning or losing.

We are able to calculate the sensitivity for our example games
For (00000001), Σ = 3

4

For (00110011), Σ = 1
For (01010101), Σ = 1
For (00001111), Σ = 1
For (00011111), Σ = 5

4

1.4 Coleman Indices

There are two Coleman indices: γr and γ∗r . They measure the ability to
inhibit action and take action respectively.

To calculate these I will need:
ω :=

∑
xi the number of winning coalitions

ωr :=
∑

xd1...dr−11dr+1...dn the number of winning coalitions in which the
rth voter votes ‘yes’

The number of losing coalitions is 2n − ω. With these definitions we can
calculate γr and γ∗r as follows:

γr = (
∑

xd1...dr−11dr+1...dn −
∑

xd1...dr−10dr+1...dn)/ω

γ∗r = (
∑

xd1,...dr−11dr+1...dn −
∑

xd1...dr−10dr+1...dn)/(2n − ω)
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For (00000001)
γ1 = 1

1
γ2 = 1

1
γ3 = 1

1

γ∗1 = 1
7

γ∗2 = 1
7

γ∗3 = 1
7

For (00110011)
γ1 = 0

4
γ2 = 4

4
γ3 = 0

4

γ∗1 = 0
4

γ∗2 = 4
4

γ∗3 = 0
4

For (01010101)
γ1 = 4

4
γ2 = 0

4
γ3 = 0

4

γ∗1 = 4
4

γ∗2 = 0
4

γ∗3 = 0
4

For (00001111)
γ1 = 0

4
γ2 = 0

4
γ3 = 4

4

γ∗1 = 0
4

γ∗2 = 0
4

γ∗3 = 4
4

For (00011111)
γ1 = 1

5
γ2 = 1

5
γ3 = 3

5

γ∗1 = 1
3

γ∗2 = 1
3

γ∗3 = 3
3

2 Proving Some Existing Theorems

This notation allows new proofs to emerge for many existing theorems. I will
give two illustrations. The first is due to Penrose and is given by Felsenthal
and Machover as 3.2.16:

Theorem
P(the nth voter agrees with the outcome)=(1+β′n)/2
Proof
The probability that the nth voter agrees with the outcome is equal to the

number of ‘yes’ outcomes that result from the nth voter voting ‘yes’ plus the
number of ‘no’ outcomes that result from the nth voter voting ‘no’ divided
by the total number of outcomes (2n) or

(
∑

x1,dn−1...d1 +
∑

(1− x0,dn−1...d1))/2
n =

(2n−1 + (
∑

x1,dn−1...d1 − x0,dn−1...d1)/2
n =

=1/2+β′n/2
Theorem
For any two distinct voters a and b of a simple voting game W
ψa&b[W |a&b] = ψa[W ] + ψb[W ]
Proof
Without loss of generality, let a be the first voter and b the second.
ψa[W ] = (

∑
xdn−1dn−2dn−3...d11 −∑

xdn−1dn−2dn−3...d10)/2
n−1

ψb[W ] = (
∑

xdn−1dn−2dn−3...1d0 −
∑

xdn−1dn−2dn−3...0d0)/2
n−1

In W |a+b, a and b vote together so we only need consider outcomes that
have two 1s or two zeros in the first two places of the subscript. i.e. we need
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to think about the xdn−1...11 when they both vote ’yes‘ and xdn−1...00 when
they vote ‘no’.

ψa+b[W ] = (
∑

xdn−1dn−2dn−3...11 −∑
xdn−1dn−2dn−3...00)/2

n−2

We are dividing by 2n−2 rather than 2n−1 because there are only n − 1
voters in W |a + b.

ψa[W ] + ψb[W ] =
(
∑

xdn−1dn−2dn−3...d11 −∑
xdn−1dn−2dn−3...d10)/2

n−1+
(
∑

xdn−1dn−2dn−3...1d0 −
∑

xdn−1dn−2dn−3...0d0)/2
n−1 =

(
∑

xdn−1dn−2dn−3...11 −∑
xdn−1dn−2dn−3...10)/2

n−1+
(
∑

xdn−1dn−2dn−3...01 −∑
xdn−1dn−2dn−3...00)/2

n−1+
(
∑

xdn−1dn−2dn−3...11 −∑
xdn−1dn−2dn−3...01)/2

n−1+
(
∑

xdn−1dn−2dn−3...10 −∑
xdn−1dn−2dn−3...00)/2

n−1 =
(2

∑
xdn−1dn−2dn−3...11 − 2

∑
xdn−1dn−2dn−3...00)/2

n−1 =
(
∑

xdn−1dn−2dn−3...11 −∑
xdn−1dn−2dn−3...00)/2

n−2 =
ψa+b[W ]
If we let the xis take values other than 0 and 1, this proof can be extended

to games with a general worth function.

3 The Category of Simple Voting Games

A category consists of objects and arrows that satisfy these axioms:

• Every arrow is associated with a domain (Dom(A)) and codomain
(Cod(A)). Both are objects

• For any two arrows (A and B) such that Cod(A) = Dom(B) there is
a composite arrow with domain equal to Dom(A) and codomain equal
to Cod(B). We represent this composite by BA

• Composition of arrows is associative. That is, assuming that the arrows
can be composed, A(BC) = (AB)C

• For any object (A) we have an identity arrow iA. iA has A as its domain
and codomain. When the identity is composed with another arrow F ,
with domain A, the result is F so iAF = F . If the codomain of F is A
then we have FiA = F

So what does the category of simple voting games look like? Actually we
will define a sequence of categories. There will be a category of games with
n voters for each n. This sequence will exactly mirror the recursion in the
first section.
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To start with I want to describe a relation on all games with n voters.
(A game) A is bigger than (a game) B if and only if for any division of the
voters B passes whenever A passes. The blunt version of this relation (i.e.
the relation of being at least as big) will turn out to be realised by < as
defined in the first section.

The first category that I will describe (C0) is the category whose objects
are SVGs with no voters. How can an SVG have no voters? Well these games
could be described as degenerate. Another way to think of the objects in this
category is as outcomes. C0 contains two objects: 0 and 1. These correspond
to passing the motion and not passing it, respectively.

In all of the categories of SVG an arrow from A to B will say ‘B is at
least as big as A’. In this category we have three arrows: from 0 to 0, from
0 to 1 and from 1 to 1. These arrows will be denoted by (00), (01) and (11)
respectively.

In every SVG with one voter, the voter switches between two outcomes.
The monotonicity condition says that the outcome if he votes yes must be
at least as big as the outcome if he votes no. So for the objects of C1 (the
category of games with one voter) we need pairs (AB) of outcomes (objects
of C0) where B is at least as big as A. These are exactly the arrows of C0.
We can define the objects of C1 to be the arrows of C0. This is a recognised
construction of one category from another (and so we know that the axioms
for a category must hold). C1 is referred to as the arrows category of C0.
Given two objects of C1 (arrows of C0) there is an arrow between them in
C1 if and only if, as arrows in C0, they form part of, what is referred to in
category theory as, a commuting square.

We can now go on to define all of the Cn. If Cn has all of the games with
n voters as objects then a game with n+1 voters can be seen as a decision,
made be the (n+1)th voter, to switch between two games with n voters. The
monotonicity condition implies that when the (n + 1)th voter votes ‘yes’ we
end up with a bigger game then when he votes ‘no’. So the objects of Cn+1

are just pairs (A,B) of objects with B at least as big as A. These correspond
to the arrows of Cn.

For the sake of illustration, I have calculated the objects of the first few
categories:

• In C0 the objects are 0 and 1

• In C1 there are three: (00), (01) and (11)

• In C2 there are six: (0000),(0001),(0011),(0101),(0111) and (1111)

• Finally, in C3 there are twenty:
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(00000000),(00000001),(00000011),(00000101),

(00000111),(00001111),(00010001),(00010011),

(00010101),(00010111),(00011111),(00110011),

(00110111),(00111111),(01010101),(01010111),

(01011111),(01110111),(01111111),(11111111)

The categories of simple voting games have some special properties which
suggest that we may be able to deploy category-theoretic techniques to learn
more about SVGs:

• Each has a terminal object and an initial object (the game that always
passes and the games that always blocks respectively)

• The dual category consists exactly of the duals of the games in the
original category

• The simple game-theoretic product is coincident with the category-
theoretic product
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