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Abstract

In a two candidate election, it might be that a candidate wins in a
majority of districts while he gets less vote than his opponent in the
whole country. In Social Choice Theory, this situation is known as the
compound majority paradox, or the referendum paradox. Although
occurrences of such paradoxical results have been observed worldwide
in political elections (e.g. United States, United Kingdom, France),
no study evaluates theoretically the likelihood of such situations. In
this paper, we propose four probability models in order to tackle this
issue, for the case where each district has the same population. For a
divided electorate, our results prove that the likelihood of this paradox
rapidly tends to 20% when the number of districts increases. This
probability decreases with the number of states when a candidate
receives significatively more vote than his opponent over the whole
country.
JEL Classification: D71.

1 Introduction

The 2000 US presidential elections remind us that voting paradoxes are not
only theoretical issues for economists and political scientists; They sometimes
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la Paix, 14032 Caen cedex, France
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Table 1: 2000 US Presidential Elections

Candidates Popular Vote Electoral College
Gore 48.4 % 267
Bush 47.9 % 271
Nader 2.7 % 0

Buchanan 0.4 % 0
Browne 0.4 % 0

happen! With 48.4% of the popular vote, A. Gore could only win 21 States
among 51, for a total of 267 electors in the Electoral College, while G.W.
Bush get 271 electors with less support from the popular vote (See Table 1).

This paradox is known in Social Choice literature as the referendum para-
dox (see Nurmi [15]). It may occur each time the decision is not taken directly
by the voters by referenda, but through representatives locally elected. Then,
the decision taken by the representatives may not reflect the will of the vot-
ers. Note that this paradox is related to other voting paradoxes, such as the
Ostrogorski paradox (see Ostrogorski [16], Nurmi [15], Laffond and Lainé
[12], Saari and Sieberg [18]). If the decision is taken through a more complex
hierarchy of committees, the same problem can occur (see Galam [7]).

In fact, the occurrence of the referendum paradox has been observed in
many democracies. The US presidential elections displayed the paradox in
1824, 1876, 1888 and 2000 (see Leip [13], Saari [17]). Since World War Two,
it happened twice in the United Kingdom (see Table 2). This paradox may
become frequent in French local elections: since 1992, many aspects of the
local public policies are no longer decided directly by the cities themselves,
but through communities of cities. For example, we have been able to identify
such a paradox in the “Grand Caen” area, which gathers 18 cities in the
surrounding of Caen. Though the left parties get a large majority of votes
over the whole area and control 13 cities since the 2001 elections, they have
been defeated in the main towns. In turns, they only control 26 seats over 70
in the council of the community (see Table 3). As there are nowdays about
90 communities of cities in France, the case of Caen is probably not a unique
one.
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Table 2: Parliamentary Elections in the United Kingdom

Year Labour Conservative Others
Votes (%) Seats Votes (%) Seats Votes (%) Seats

1951 48.7 295 48.0 321 3.7 9
1974 37.2 304 38.2 296 24.6 38

Thus two-level voting may clearly lead to undesired results. Moreover,
one of the main assumption of Public Economy, the fact that majority voting
picks out the prefered policy of the median voter when the preferences are
single peaked (see Black [1], Downs [5]) is no longer true; The social compro-
mise may be beaten by a more extremist policy in a federal system. Thus,
as many local, federal, national and international1 bodies are committees of
representatives designated by the adequate districts, it is of importance to
get a better theoretical knowledge about the occurrence of the referendum
paradox. This is what we intend to do in this paper, by adapting models
used in statistics, physics, and social choice to treat this issue. Of course,
our study is quite preliminary and uses some simplifying assumptions. We
propose to study this paradox:

• When there are two parties. Although possible, the study of the case
of more than two parties is left for further research.

• When all the states have the same population size.

• For a large number of voters in each state and for small population
sizes whenever it is possible.

• From N = 3 states (or consistuencies, districts, cities,...) to N = 100.
We get exact values for some simple cases and computer estimations
otherwise.

• With 4 different models. The first two are based upon adapted versions
of the Impartial Culture and Impartial Anonymous Culture (respec-
tively abbreviated IC and IAC hereafter) assumptions that are used in

1As an example, this problem may arise in the European Union. The Treaty of Nice
assigns to each country within the European Union a number of vote in the Council of
Minister. It is not sure that a policy supported by a majority of citizens will exceed the
threshold of 74% of the votes in the Council. For more details about the Nice Treaty
and the distribution of power among member States, see Felsenthal and Machover [6] and
Bobay [2].
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Table 3: Local Elections in Grand Caen Area

Town Population Votes Seats
Left Right Others Left Right

Authie 999 0 413 96 2
Breteville 4 489 993 1 066 0 2

Caen 117 157 14 575 20 065 0 26
Cambes 1 525 287 409 15 2

Carpiquet 1 884 428 563 51 2
Colombelles 6 272 1362 0 0 3
Cormelles 4 644 702 1371 0 3
Cuvervilles 1 797 586 0 174 2
Démouville 3 128 1 034 0 89 2

Epron 1 798 442 281 75 2
Fleury 4 305 1 065 0 0 2

Giberville 4 639 1 496 0 0 3
Hérouville 24 374 3 874 3 074 0 7

Ifs 9 290 2 436 1 100 0 3
Louvigny 1 785 651 0 322 2

Mondeville 10 678 4 126 0 0 3
Saint-Contest 2 030 530 478 73 2
Saint-Germain 2 554 748 0 31 2

Total 203 348 35 304 28 820 926 26 44
Percent 54.3 44.3 1.4 37.1 62.9

The elections took place on the 11th of March 2001 for the first round, and on the 18th of
March for the run-offs. The voting rule is different according to the number of inhabitants
in the city.
If the city has more than 3500 inhabitants, only complete lists of candidates can run into
the competition. The winner is the list which gets 50% of the vote on the first round or
the greatest number of votes in the second round. In Hérouville, the two left lists did not
merge for the second round and let the right list win with 44.2% of the popular vote.
In small towns, individual candidates can be proposed and voters can put as many manes
as seats on their ballots. A candidate needs 50% of the votes to be elected in the first
round. In the run-off, the canddiates who received the highest number of votes are selected.
Thus, in small towns, we took into account the figures from the round where more delegates
were designated. Next, we add up the votes received respectively by the left, right and
non-partisan candidates and divided them by the number of seats in competition for that
round.
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Social Choice Theory; They assume that each party has equal chance
to win. The other two propose ways to introduce a systematic bias in
favor of one candidate.

In section 2, we adapt the two classical models that are generally used
in social choice theory, for the case N = 3. In this simple case, we are able
to derive rather easily formulas for the computation of the probability of
the referendum paradox and can also illustrate the differences between both
models with figures. Section 3 displays the figures under the IC and IAC
models for the case N > 3 When N = 4 or N = 5, we are still able to
derive exact formuals, but as the computations become tedious, the details
of the computations are presented in the annexes. For all the other cases,
we rely on computer estimations in order to evaluate the likelihood of the
referendum paradox. We present two new models in section 4, by taking into
account the fact that one party is more likely to win. We discuss our results
in section 5.

2 Adapting the Classical Models: The Case

N = 3

In order to present and compare the different models we shall use, we first
present them for the case N = 3 states (or groups, districts, consistuencies).
Let n be the number of voters in each state. We denote by ni the number
of voters who, in state i, vote for candidate A, i = 1, 2, ..., N . The other
voters are assumed to vote for candidate B; There is no abstention. A voting
situation is a vector n = (n1, n2, ..., nN) with 0 ≤ ni ≤ n. For N = 3,
n = (n1, n2, n3). A conflict between a decision made by a majority of states
and a decision made nationwide through a referendum occurs if, for example,
States 1 and 2 vote for candidate A, while a majority of voters prefer B. This
situation is described by inequalities (2.1), (2.2) and (2.3):

n1 > n/2 (2.1)

n2 > n/2 (2.2)

n1 + n2 + n3 < 3n/2 (2.3)

There are five other cases leading to a paradox, similar to this one. Thus, we
only need to estimate the probability that inequalities (2.1) to (2.3) are met
with an adequate probability model describing the behavior of the voters.
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2.1 Impartial Culture model

The Impartial Culture condition has been introduced in Social Choice liter-
ature by Guilbaut [10], for the study of the Condorcet paradox. It assumes
that each voter picks his preference randomly among the possible preference
types according to an uniform probability distribution. In our case, each
voter has a probability 1

2
to cast his vote in favor of candidate A, and a prob-

ability 1
2

to cast his vote for candidate B. The distribution of ni is a binomial
law; When the number of voters is large in each state, the distribution of ni

tends to a normal law, of mean n/2 and variance σ =
√

n/2. For each ni,
i = 1, . . . , N , let

xi =
1

σ

(
ni − n

2

)

The Central Limit Theorem implies the following convergence for the density
function as n →∞:

f(xi) 7→ 1√
2π

e
−x2

i
2 .

For the three states case, the joint distribution of x = (x1, x2, x3) as n →∞
is given by:

f(x) 7→ 1

(
√

2π)3
e
−|x|2

2

where |x|2 = x2
1+x2

2+x2
3. By subtracting or dividing the number of voters by

the same constant, the quantities change but the comparison between them is
unchanged, therefore one can claim that n satisfies conditions (2.1),(2.2),(2.3)
if and only if x satisfies (2.1)′, (2.2)′ and (2.3)′:

x1 > 0 (2.1)′

x2 > 0 (2.2)′

−x1 − x2 − x3 > 0 (2.3)′

Let PIC(∞, 3) be the probability of the referendum paradox for three states
of population n → ∞ under the IC condition. Thus, PIC(∞, 3) is equal to
six times:

I =
1

(
√

2π)3

∫

C1

e
−|x|2

2 dx1dx2dx3

where C1 = {x ∈ R3 : x satisfies (2.1)′, (2.2)′ and (2.3)′}. We must integrate
I in the triangular cone delimited by the three straight lines Oa, Ob and Oc
(See Figure 1). We write as r2dΩdr the volume element dx1dx2dx3 where dΩ

is the element of solid angle and r = (x2
1 + x2

2 + x2
3)

1
2 and the integration on

r is straighfoward. We observe that

I =
1

4π

∫
dΩ
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Hence, computing the desired probability reduces to find the measure of the
cone C1 and to divide it by the surface of the sphere, 4π. Therefore, the
measure of the cone is exactly the solid angle of this cone.

.......................................................................................................................................................................................................................................................................................................................................... .........................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..................

.................

.....................................................................................................................................................................................................................................................................................................................................................
........
.................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...............................

...........................

............
............

............
............

............
............

............
............

............
............

............
............

............
.....................................

...........................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..............................

...........................

x1

-x3

x2

O

a

b

c

αβ
γ

1

1

1

A
BC


.......................................

.............................
........................

.....................
..................

.................
...............

..............
.............
............
...........
..........
..........
.........
.........
.........
........
........
.......

.............................................................................
............
.....

........

........

........

........

........

........
........
........
........
.........
.........
.........
.........
.........
.........
.........
..........
..........

..........
...........

...........
............

............
.............

..............
................

..................
......................

...............................
............................................

............
..................

....................

...............
................

..................
....................

.......................
............................

......................................
...................................................................................................................................................

.......................................................................................

......................................................

......................................

.........
.........
..........
........

Figure 1: The cone C1 of conflicts with the IC model

In fact, C1 defines a spherical triangle on the surface of the unit sphere
in R3 (see Figure 1). To perform this surface, we notice that the respective
angles between ObOc, OaOc and OaOb are α = β = π

4
and γ = π

2
. Now, the

general formulas which give the relations among A, B and C, the angles of
the spherical triangle and α, β and γ are of the form:

cos α = cos β cos γ + sin β sin γ cos A (2.4)

plus two other formulas obtained by permutation. We immediatly obtain
A = B = arccos

√
3

3
and C = π

2
. Now, the area of a spherical triangle on a

sphere of radius 1 (i.e. the solid angle we are looking for) is:

S = A + B + C − π (2.5)

= 2 arccos

(√
3

3

)
− π

2
(2.6)
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To obtain the probability PIC(∞, 3) we divide S by 4π, the surface of the
sphere, and multiply it by 6 (as there are 6 similar cases):

PIC(∞, 3) =
3 arccos

(√
3

3

)

π
− 3

4
≈ 0.16226.

2.2 Impartial Anonymous Culture

The IAC model is based upon the assumption that every voting situation
is equally likely. It has been first introduced in Social Choice literature by
Gehrlein and Fishburn [9]. Given that the total number of voting situations
is (n + 1)N , the probability of the paradox under IAC when the number of
voters in each state is n can be written as

PIAC(n,N) =
|X(n,N)|
(n + 1)N

where X(n,N) denotes the set of situations giving rise to the paradox. For
small numbers of states, this model makes possible not only the computation
of the limiting probability PIAC(∞, N), but also the derivation of closed form
representation for PIAC(n,N) as a function of n. In what follows, we will
assume that n is odd.

For n odd, it is easily seen that a voting situation is consistent with the
inequalities (2.1) to (2.3) if and only if:

n + 1

2
≤ n1 ≤ n−1,

n + 1

2
≤ n2 ≤ 3n− 1

2
−n1, 0 ≤ n3 ≤ 3n− 1

2
−n1−n2

The corresponding number of situations is obtained as:

n−1∑

n1=n+1
2

3n−1
2
−n1∑

n2=n+1
2

3n−1
2
−n1−n2∑

n3=0

1 =
(n + 1)(n2 + 2n− 3)

48
.

As the popular winner can be either A or B and there are three ways to choose
the single state that gives a majority to A, we obtain the desired probability
by multiplying the above number by six and by dividing by (n + 1)3:

PIAC(n, 3) =
n2 + 2n− 3

8(n + 1)2
.

In the limit of an infinite number of voters, we obtain PIAC(∞, 3) = 1/8.
Observe that this value could be directly obtained in the following way: Let
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yi = ni/n and assume that n tends to infinity; Then:

PIAC(∞, 3) = 6

∫ 1

1/2

∫ 3/2−y1

1/2

∫ 3/2−y1−y2

0

dy1dy2dy3 = 1/8 = 0.125.

In order to provide a graphic comparison between the IC and IAC models,
define zi = yi − 0.5. For the IAC model with n → ∞, the density of the
points (z1, z2, z3) is uniform on the cube [−0.5, 0.5]3 and the probability that
inequalities (2.1)′ to (2.3)′ are satisfied is equal to the volume of the shaded
pyramid, divided by the volume of the cube, i.e., 1. For the IC model, the
density is uniform on the surface of the unit sphere while it is uniform on all
the cube [−0.5, 0.5]3 with the IAC assumption.
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Figure 2: Conflicts with the IAC model

3 Probablities of Conflicts for an arbitrary

number of states

3.1 The case N = 4

In the four-state case, the referendum paradox occurs when three states vote
in favor of candidate A while a majority of voters prefer B nationwide. There
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are eight possible cases, one of them being described by inequalities (3.1) to
(3.4):

n1 > n/2 (3.1)

n2 > n/2 (3.2)

n3 > n/2 (3.3)

n1 + n2 + n3 + n4 < 2n (3.4)

Using arguments and techniques similar to the ones of Section 2, we can
evaluate the probability of the referendum paradox under IC and IAC as-
sumptions.

Proposition 3.1 Let PIC(∞, 4) be the probability a referendum paradox with
four states and a large n under the IC model. Then,

PIC(∞, 4) =

∫ 1

0

6 arccos
(

1
t2+1

)
t√

3 + t2
√

6 + 5 t2 + t4π2
dt =

1

24
≈ 0.041666

Proof: see Annexe I.

Proposition 3.2 Let PIAC(n, 4) be the probability of the referendum paradox
with four states of n voters (n odd) under the IAC model. Then,

PIAC(n, 4) =
n3 − n2 − 9n + 9

48(n + 1)3

and the limit probability is:

PIAC(∞, 4) =
1

48
≈ 0.020833

Proof: see Annexe II.

3.2 The case N = 5

In the case of five states, there are two types of configurations that can give
rise to the paradox. In the first type, four states prefer A to B whereas the
total number of voters preferring B to A exceeds half of the total number of
voters, in accordance with the following inequalities:

n1 > n/2 (3.11)

n2 > n/2 (3.12)

n3 > n/2 (3.13)

n4 > n/2 (3.14)

n1 + n2 + n3 + n4 + n5 < 5n/2 (3.15)

10



Notice that there are ten configurations of this type (two times the number
of ways for choosing the single state preferring A to B).

In the second type of configuration, three states choose one of the candi-
date -say A-, two states choose B and B is the popular winner. This happens
when inequalities (3.11), (3.12), (3.13) and (3.15) are satisfied together with:

n4 < n/2 (3.16)

n5 < n/2 (3.17)

There are twenty configurations of this type (two times the number of ways
for choosing the two states preferring A to B among five states).

Proposition 3.3 Let PIC(∞, 5) be the probability of the referendum paradox
for N = 5 and a large n under IC. Thus,

PIC(∞, 5) ≈ 0.181368

Proof: See Annexe III

Proposition 3.4 Let PIAC(n, 5) be the probability of the referendum paradox
for N = 5 and n odd under IAC. Thus,

PIAC(n, 5) =
5(11n4 + 44n3 + 38n2 − 12n− 81)

384(n + 1)4

and PIAC(∞, 5) tends to 55/384 ≈ 0.143229.

Proof: See Annexe IV
Table 4 displays some values of PIAC(n, 3), PIAC(n, 4) and PIAC(n, 5) and

shows that the probabilities tend quickly to their limiting values. For this
reason, we will only consider the limiting case of a large n in our simulations.

3.3 Computer Simulations

We cannot compute anymore the exact figures when there are six states or
more. Thus, we run computer simulations for N odd and even, and get the
estimated values from 1 000 000 random draws in each case. Notice that these
results are compatible with the exact values we get theoretically for the cases
N = 3, N = 4 and N = 5. The main observation is that the values seems
to tend rapidly to a limit value as N increases. The limit should be around
20.5% for the IC model, and around 16.5% for the IAC model for N odd.
The figures are a bit lower for N even, but the probability of tied outcomes
(i.e. exactly half of the states vote for A) is then significant, and tends very

slowly to zero for N →∞. In fact, the curve is given by

(
N/2
N

)
1

2N which

decreases as
√

2
π

1
N

for large N .

11



Table 4: Probabilities as a function of n

n PIAC(n, 3) PIAC(n, 4) PIAC(n, 5)
3 0.0938 0.0000 0.1172
5 0.1111 0.0062 0.1325
7 0.1172 0.0098 0.1373
9 0.1200 0.0120 0.1395
11 0.1215 0.0135 0.1407
13 0.1224 0.0148 0.1413
15 0.1230 0.0154 0.1418
17 0.1235 0.0160 0.1421
19 0.1238 0.0165 0.1423
21 0.1240 0.0169 0.1425
. . . .
∞ 0.1250 0.0208 0.1432

Figure 3: Probabilities under IC, N odd

4 Critics of the Classical Models and Intro-

duction of a Bias

4.1 Classical Models Confronted to Reality

The question is, now, to appreciate the value of the results obtained above.
Very likely, to improve our models we must make an adaptation to the type of
election we consider. To allow some comparison with the reality, we compare
our results to some stylised facts that can be observed in the case of the

12



Figure 4: Probabilities under IC, N even

Figure 5: Probabilities under IAC, N odd
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Figure 6: Probabilities under IAC, N even

USA presidential election. Nevertheless, we have to keep in mind that the
situation we modelled is very different. All our states have equal population,
and we cannot scope with important issues such as inequalities of population
among states or malapportionement of the seats among the states. In the
previously obtained results, two main points deserve discussion.

The good agreement between IC and IAC. This agreement is some-
times found in other problems : The Condorcet effect is an example (see Berg
and Bjurulf [3]), but for the analysis of the propensity to manipulation, the
results may be very different according to the assumption (see Lepelley, Pier-
ron and Valognes [14]). Nevertheless, this agreeement is a priori strange when
we consider the very different features of these two models. A positive aspect
of this feature is that, a model that would produce a distribution of the states
that is “in between” the IC and IAC case would not lead to drasticaly dif-
ferent results. Moreover, for such an hypothetical model, the distribution of

14



Table 5: Repartition of the Vote for Democrat in 2000

Percent 25-30 30-35 35-40 40-45 45-50 50-55 55-60 > 60
Number of States 4 3 4 11 14 7 4 3

the states between 0% support and 100 % would be more realistic (see Table
5 and [13]), in contrast with the flat distribution of IAC, and the extremely
concentrated distribution of the IC case.

Is the frequency of the paradox too high ? This point is certainly
controversial: It seems that the conflict’s frequency (0.205 for IC, 0.165 for
IAC) is too high, as only three conflicts have been detected in the 19th century
and one (November 2000) in the 20th century. Examining the exact results
of the US elections since 1824 (see [13]) , we can detect two cases:

• A clear election, when for example more than 52% of the population
votes for one candidate. Usually, the state by state vote then amplifies
the tendency.

• A tied results, when the margin between the two top candidates is less
than 3%, with now a not negligible likelihood of conflict.

Obviously, the IC and IAC models describe only extremely tied elections,
that is, the second case. This is clear for IC: Each elector selects with equal
probability one of the two candidates. But this is also true for IAC. Indeed
some states are strongly in favor of A and others strongly in favor of B,
but there is no bias. The distribution of the total vote is not uniform on
0%-100%, but clearly present a maximum around 50% and becomes more
and more peaked when the N increases. This perfect symetry between the
two candidates, who have equal chance to win, also seems to be the reason
of the existence of a non zero limiting value of the conflict frequency when
the number of states increases, while intuitively we could have expected a
decrease. To make a comparison with the reality, notice that, since 1824,
the paradox appeared 3 times among the 10 closest US presidential elections
(see Table 6, obtained from [13]). In view of these data, our models, which
predicts around two conflicts seem quite reasonnable!

In view of these comments, two new issues arise. First of all, we assumed
equal population states. This is clearly not the case neither in the electoral
college, nor in the council of minister of the European Union. A precise
analysis of the impact of difference in size would be a major task; it should
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Table 6: The Ten Closest US Presidential Elections

Year Popular Vote Electoral College Margin
Dem. Rep. Dem. Rep.

1880 48.3 % 48.2 % 214 155 0.1 %
1884 48.5 % 48,3 % 219 182 0.2 %
1960 49.8 % 49.6 % 303 219 0.2 %
2000 48.4 % 47.9 % 267 271 0.5 %
1968 42,7 % 43,4 % 191 301 0.7 %
1888 48,6 % 47,8 % 168 233 0.8 %
1976 50.1 % 48,0 % 297 240 2.1 %
1876 51,0 % 48,0 % 184 185 3.0 %
1916 49.2 % 46.1 % 277 254 3.1 %
1892 46.1 % 43.0 % 277 145 3.1 %

also include issues on “malapportionment”, that is the fact the electoral
weight of certain states may be overestimated or underestimated (see for
example the recent paper by Samuel and Snyder [21]). In the USA case the
number of voters representing a state in the electoral college is equal to the
sum of its number of senators (which is equal to two whatever the population
of the state is) and its number of members in the House of Representatives
(which is proportional to its population). If we remove this two seat premium
to each state, Gore would have enjoyed a large victory in the new electoral
college, by 225 votes to 211!

We keep the assumption of equal population states. Now, a way to obtain
a more realistic model, and in particular to describe what happens when one
candidate clearly wins, is to introduce a systematic bias in his favor. As a
matter of fact this is exactly this bias that an election must exhibit. Let us
first consider the IC case. Then an arbitrary small but finite bias, in the
limit of a very large number of voters, implies that all the states cast a vote
in favor of the same candidate. The fact that some states are traditionally
democrats while others are republican appears only through fluctuations of
the model which cannot accommodate any bias. Thus, we turn to the IAC
model.

4.2 The Maximum Entropy Concept and the IAC Model

In the IAC model the probability of voting for A in state i is itself a random
variable pi drawn from [0, 1] using an uniform distribution. Generalizing
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the uniform distribution of pi in the IAC model, one can consider a density
function P (y) describing the distribution of the different pi = y = ni/n
that is, the a priori traditions of the different states to vote democrat or
republican. If we take P (y) = P (1 − y), we have no bias in the whole.
The bias is a consequence of the preference of one of the candidate by the
nationwide electorate which modifies the distribution P (y). We can directly
modify P (y) to take into account the fact that the mean of the yi over all
the states is not 1

2
. More precisely:

∫ 1

0

yP (y)dy = a.

Then, a − 1
2

represents the nationwide bias in favor of a candidate A. How
to select P (y) when a is known ? This is a classical problem in information
theory, the key concept of which is given by the functional S(P (y)) defined
by:

S(P (y)) = −
∫ 1

0

P (y) log(P (y))dy

S(P (y)) is called entropy in physics, but here we would better call it “un-
certainty”. The idea is to compute P (y) which maximize the uncertainty
S(P (y)) compatible with the available information given here by the nor-
malisation and the bias. This is a well posed mathematical problem (see
solution in Annexe V). We obtain:

P (y) =
λ

1− e−λ
e−λy

with λ given by the equation:

a =
1− e−λ − λe−λ

λ(1− e−λ)

Note that a < 1
2

gives λ > 0 and a > 1
2

gives λ < 0. When a → 1
2
, λ → 0 and

P (y) → 1; In the no bias case we recuperate the usual IAC model. Moreover,
we check that two values a and ā such that a+ ā = 1 give two opposite values
for λ and λ̄ with P (y, λ) = P̄ (1−y, λ̄), preserving consequently the symmetry
between A and B. Figure 7 displays the density function P (y) for a = 0.55,
λ = −0.604, and we present on Figure 8 the corresponding simulations. We
see a slow decrease of the conflicts frequency with the number of states, an
expected result. Nevertheless, the decrease is slow and the results are not
very different from the no bias IAC model. Another critic comes from the fact
that the density function P (y) does not seem to be realistic when compared
to Table 5.
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Figure 7: The density function P (y) for a = 0.55, λ = −0.604.

4.3 The Rescaled IAC Model with Bias.

The last simulations point out the remaining problem. Although we have
taken a strong bias, P (0) and P (1) are still important and our model exhibits
a strong percentage of states voting B at more than, say 75%. Such a strong
dichotomy (massively democrats or republican states) if it has ever existed in
the beginning of the union, is certainly no more true today. There is probably
a tendency to homogeneity in many states, and the range of variation of pi

from state to state is certainly narrower than 0%-100%. A measure of this
dispersion must be introduced in our model in addition to the bias; A realistic
model must be searched between the IC model, with no dispersion for the y
and an y allowed to vary from 0 to 1 in the IAC model.

Among many possible models to answer the above critics, we propose the
following one. P (y) will be a constant (a property which simplifies consider-
ably the computation in the N-dimension space of the xi) between values:

ym =
1

2
−D + E and yM =

1

2
+ D + E

The normalization gives 1
2D

for this constant. The parameter D is conse-
quently a measure of the dispersion while E is a measure of the bias. D can
take values between 0 and 1

2
, and 0 ≤ E ≤ 1−D. With these notations, we

see that the frequency of conflicts will only depend on the ratio p = E/D.
To prove it, we just consider how we proceed in the simulation. To obtain
yi, we draw a random number εi on [0, 1] and have:

yi =
1

2
−D + E + 2Dεi

This formula gives the density distribution P (y) as desired. Now, the winner
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Figure 8: Conflicts with the maximum entropy distribution

on the states will be given by comparing yi to 1
2

in all the states:

yi >
1

2
⇔ εi >

1

2
− E

2D

Similarly, candidate A is the popular winner if

1

N

N∑
i=1

εi >
1

2
− E

2D

In any case, only the ratio p = E
D

matters. For E = 0, the results are
independent of the value of D and the support of pi can be either [0, 1] (as
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in the classical IAC model), or [1
2
−D, 1

2
+ D], D being as small as we like.

Consequently a rescaling may be introduced. In a similar way, the IC model
introduced a rescaling of the fluctuation varying as

√
n. In the IAC model a

bias may be introduced, which is not the case in the IC model for n → ∞.
This explains why in the absence of bias, the two models give quite similar
results and justifies the name given to this model: Rescaled IAC model with
bias.

Proposition 4.1 Let PRB(∞, 3) be the probability of conflicts in two-level
elections for N = 3 and n → ∞ under the rescaled IAC model with bias, D
being the dispersion parameter, E the bias and p = E/D. Thus,

PRB(∞, 3) =
1

8
(1 + 3p2 − 8p3) if p ∈ [0,

1

3
]

PRB(∞, 3) =
1

16
(1 + 9p− 21p2 + 11p3) if p ∈ [

1

3
, 1]

Proof: See annexe VI.
We turn now to computer simulations with this model, which are pre-

sented on Figure 9 for N odd. For small values of p, the begining of the
curves are quite similar to the case p = 0 and it is only for sufficiently large
N that the bias decreases more and more strongly the conflict probability.
Table 9 combined with the curves of Figure 9 also show that the probability
of conflicts is very sensitive to the small bias values. For example, a dis-
persion of around 10% with a bias of 52% (p = 0.2) gives 7% of conflicts
for N = 51. Now, for the same dispersion and a bias of 53% (p = 0.3) the
probability of conflicts fall to arround 1.5%. For values of p larger than 0.3,
the probability of conflict pratically disppear for 51 states (or more).

5 Conclusion and open problems

In this paper, we have studied the possible differences in the results between
a direct election and a two-level one with a first election at the level of
a district (or state), which, subsequently cast all its votes in favor of the
candidate who won this district (or state). Typical of this problem is the US
presidential elections with an elected president possibly loosing the popular
vote (a rather rare issue). To evaluate the frequency of such conflicts in a
simplified model (all the states have the same population), we first use the
usual statistical models describing the behavior of the electoral body for a
simple two-candidate election.
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Figure 9: Probability of the paradox with bias

The IC model assumes, for each voter a probability 1
2

to cast a vote in
favor of a candidate, and the sole fluctuations decide of the issues. The
absolute size of these fluctuations is irrelevant.

The IAC model is a priori quite different. For each state i, a probability
pi of a vote for candidate A is introduced with equirepartition of pi on [0, 1].
In fact the two models give quite similar results with a conflict frequency
reaching a limit when the number of states increases, with a rather high rate
of conflict (16.5% to 20.5%). Actually the two classical models, IC and IAC,
describe only completely tied up elections when no systematic tendency in
favor of a candidate could be detected. We conjecture that similar results
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Table 7: The relations among E,D and p

1
2

+ E 51% 52 % 53% 54% 55% 60%
p = 0.1 ym 41% 32% 23% 14%

yM 61% 72% 83% 94%
p = 0.2 ym 46% 42% 38% 34% 30%

yM 56% 62% 68% 74% 80%
p = 0.3 ym 47.7% 45.3% 43% 40.7% 38.3% 26.7%

yM 54.3% 58.7% 63% 67.3% 71.7% 93.3%
p = 0.4 ym 48.5% 47% 45.5% 44% 42.5% 35%

yM 53.5% 57% 60.5% 64% 67.5% 85%
p = 0.5 ym 49% 48% 47% 46% 45% 40%

yM 53% 56% 59% 62% 65% 80%

could be obtained with the use of more subtle models derived from the Pólya
Eggenberger family.

New models must be introduced taking the bias into account. But in that
case, the IC model looses its meaning. We have introduced two new models
which both can be considered as a generalization of the IAC model. The
first one takes into account the average value of pi (the probability of state
i to vote for candidate A) i.e. the global bias in the election and use the
maximum entropy concept to derive the pi probability distribution. In the
no bias case, we recover the classical IAC model. But this model introduces
too many states voting quasi unanimously republican or democrate. In fact,
a realistic model will reduce the support of pi. Nevertheless, the maximum
entropy concept may be fruitfull in models where not much is known about
the preferences of the voters except the results of the vote; this is not the
case when there are only two candidates.

If pi has no dispersion in the IC model, this dispersion is much too large
in the IAC model. A new model (rescaled IAC with bias) is introduced with
equirepartition of pi on the interval [1

2
− D + E, 1

2
+ D + E]. The bias is

measured by E and the dispersion by D. It has been proven that the only
parameter is p = E/D. For E/D > 0.3 and N > 40 the rate of conflict
becomes completely negligible.

Of course, all these models assume a “veil of ignorance” assumption: Each
state or voter has the same behavior. The idea is that, even if during some
period of time, one state can be considered as rightist or leftist, in the very
long run, we cannot a priori identify a state with a particuliar behavior. We
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only study the technical aspects of the “paradox” due to the voting rule
itself, and not the sociological causes or particular political configurations
that lead to the occurence of the paradox. This is why we keep with a
probability distribution function as general as possible. In further studies,
we hope to be able to identify the parameters of the voting rule (number of
states, repartition of the population among the states, malapportionement
of the seats) that have an influence on the propability of conflicts.
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6 Annexe I: Proof of Proposition 3.1

Let xi = 1
σ
√

n
(ni − n/2). The configurations implying the occurrence of the

paradox are as follows:

x1 > 0 (6.1)

x2 > 0 (6.2)

x3 > 0 (6.3)

−x1 − x2 − x3 − tx4 > 0 (6.4)

with t = 1. When t = 0, the paradox cannot occur. The joint distribution
of x1, x2, x3 and x4 is given by:

P (x1, x2, x3, x4) =
1

(
√

2π)4
e
−|x|2

2

and

P (x1, x2, x3, x4, satisfy (6.1), to (6.4)) 7−→ 1

(
√

2π)4

∫

C2

e
−|x|2

2 dx1dx2dx3dx4

where C2 = {x = (x1, x2, x3, x4) ∈ R4 which satisfy (7.1), (7.2), (7.3), (7.4)}
and |x|2 = x2

1+x2
2+x2

3+x2
4. Using the same arguments as in section 2, we can

prove that the computation of the probability reduces to finding the measure
of the cone C2, that is the measure of the spherical simplex defined by (6.1)
to (6.4) on the surface the unit hypersphere in R4. In order to compute this
area, we use the same technique as Saari and Tataru [19]. By Schläfli [20],
Coxeter [4] and Kellerhals [11], the differential volume on the set of spherical
p-simpleces is given by:

dvolp(C2) =
1

p− 1

∑

1≤j<k≤4

volp−2(Sj ∩ Sk)dαjk

with Sj the hyperplane (or facet) corresponding to inequality (6.j) and αjk

the angle between hyperplanes Sj and Sk. As t will be the parameter of
integration, vol(C2) = 0 when t = 0. Let Wj be a normal vector to Sj

pointing inside the simplex:

W1 = (1, 0, 0, 0)
W2 = (0, 1, 0, 0)
W3 = (0, 0, 1, 0)
W4 = (−1,−1,−1,−t)
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Thus

α12 = arccos

( −W1W2

||W1|| ||W2||
)

=
π

2

α14 = arccos

( −W1W4

||W1|| ||W4||
)

= arccos

(
1√

3 + t2

)

Note that α12 = α13 = α23 and α14 = α24 = α34. This implies:

dα12 = dα13 = dα23 = 0

dα14 = dα24 = dα34 =
t√

3 + t2
√

6 + 5 t2 + t4

Finding the vertex P123 = S1 ∩ S2 ∩ S3 reduces to solving the system:





x1 = 0
x2 = 0
x3 = 0
−x1 − x2 − x3 − tx4 > 0

By solving similar linear systems, we obtain directions of the vertices of the
cone C2 to be equal to :

P123 = (0, 0, 0,−1)
P124 = (0, 0, t,−1)
P134 = (0, t, 0,−1)
P234 = (t, 0, 0,−1)

Also we compute:

vol(S1 ∩ S4) = vol(S2 ∩ S4) = vol(S3 ∩ S4) = ̂(P123, P134) = arccos

(
1

1 + t2

)

Thus:

dvol(C2)

dt
=

3 arccos((t2 + 1)
−1

)t

2
√

3 + t2
√

6 + 5 t2 + t4

We have to integrate this differential volume between 0 and 1, to multiply
this value by 8, and to divide it by ω4 = 2π2, the area of the unit sphere in
R4 to get the probability of the paradox for N = 4:

PIC(∞, 4) =

∫ 1

0

6 arccos((t2 + 1)
−1

)t√
3 + t2

√
6 + 5 t2 + t4π2

dt =
1

24
≈ 0.041666
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7 Annexe II: Proof of Proposition 3.2

The only type of configuration implying the occurrence of the paradox is as
follows:

n1 < n/2, n2 < n/2, n3 < n/2 and n1 + n2 + n3 + n4 > 2n.
In this configuration, the three first states vote for B and A obtains a

majority of votes at the global level. This implies for n odd:

2 ≤ n1 ≤ n− 1

2
,

n + 3

2
− n1 ≤ n2 ≤ n− 1

2
,

n + 1− n1 − n2 ≤ n3 ≤ n− 1

2
, 2n + 1− n1 − n2 − n3 ≤ n4 ≤ n.

From these inequalities, it can be obtained that the number of voting situ-
ations giving rise to the paradox in the configuration under consideration is
equal to:

(n + 1)(n3 − n2 − 9n + 9)

384
.

To obtain the probability of the paradox, we multiply this number by eight
(as there are eight configurations similar to the one we have analyzed) and
we divide the product by (n + 1)4:

PIAC(n, 4) =
n3 − n2 − 9n + 9

48(n + 1)3
.

From this representation, it follows that PIAC(∞, 4) = 1/48.

8 Annexe III: Proof of Proposition 3.3

We assume that n →∞ in the five states under IC. Thus, the joint distribu-
tion of x1, x2, x3, x4 and x5 is given by

P (x1, x2, x3, x4, x5) =
1

(
√

2π)5
e
−|x|2

2

where |x|2 = x2
1 + x2

2 + x2
3 + x2

4 + x2
5. Consider the first type of configurations

that lead to the referendum paradox for N = 5. They are characterized by
situations similar to the ones described by equations (3.11) to (3.15). It is
equivalent to estimate the probability that x1, x2, x3, x4, x5 satisfy:

x1 > 0 (8.1)

x2 > 0 (8.2)

x3 > 0 (8.3)

x4 > 0 (8.4)

−x1 − x2 − x3 − x4 − tx5 > 0 (8.5)
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with t ∈ [0, 1]. Again, these inequalities define a cone, C3, which intersects
the unit hypersphere in R5. Computing the probability of these events re-
duces to finding the measure of C3 on the surface of the hypersphere. By
Schläfli’s formula:

dvolp(C3) =
1

p− 1

∑

1≤j<k≤5

volp−2(Sj ∩ Sk)dαjk

where Sj is the facet defined by equation (8.j), and αjk the angle between
facets Sj and Sk. When t = 0, vol(C3) = 0.

Computation of the dihedral angles.

Let Uj be a vector normal to facet Sj, pointing inside the cone:

U1 = (1, 0, 0, 0, 0)
U2 = (0, 1, 0, 0, 0)
U3 = (0, 0, 1, 0, 0)
U4 = (0, 0, 0, 1, 0)
U5 = (−1,−1,−1,−1,−t)

In deriving the dihedral angles, we are only interested in the angles which
depends upon t. There are four of them:

α15 = α25 = α35 = α45 = arccos
(

1√
4+t2

)

Hence:

dα15 = dα25 = dα35 = dα45 =
t√

3 + t2 (4 + t2)

The vertices of the dihedral volumes.

In order to evaluate the surfaces of the remaining dihedral volumes, first find
their vertices. A direction in R5 is given by solving a system of four linear
equations. We find the coordinates of the vertices by solving systems similar
to the following one:





x1 = 0
x2 = 0
x3 = 0
x4 = 0
−x1 − x2 − x3 − x4 − tx5 > 0
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The solutions of this system gives the direction P1234 = S1 ∩ S2 ∩ S3 ∩ S4.
There are 5 such linear systems, which give five directions:

P1234 = (0, 0, 0, 0,−1)
P1235 = (0, 0, 0, t,−1)
P1245 = (0, 0,−t, 0,−1)
P1345 = (0,−t, 0, 0,−1)
P2345 = (−t, 0, 0, 0,−1)

The vertices of (Sj ∩ Sk) are the directions Pabcd where both j and k
appear as indices. We shall now detail the computations for the volume of
S1 ∩S5. This volume is the triangle on the sphere in R3 defined by the three
direction P1235, P1245 and P1345. The area of this triangle is equal to the sum
of the angles on its surface minus π (see equation 2.4) Let β23, β24 and β34 be
the angles on the surface of the triangle, respectively defined by the vertices

P1235, P1245 and P1345; δ2, δ3 and δ4 are respectively the angles ̂P1235, P1245,
̂P1235, P1345 and ̂P1245, P1345. Hence, using again equation 2.5:

cos(β23) =
cos(δ4)− cos(δ2) cos(δ3)

sin(δ2) sin(δ3)

In our case:

δ2 = δ3 = δ4 = arccos

(
1

t2 + 1

)

In turns,

β23 = β24 = β34 = arccos

(
1

t2 + 2

)

V olp−2(S1 ∩ S5) = β23 + β24 + β34 − π = 3 arccos

(
1

t2 + 2

)
− π

In fact, by symmetry, we also obtain:

V olp−2(S1 ∩ S5) = V olp−2(S2 ∩ S5) = V olp−2(S3 ∩ S5) = V olp−2(S4 ∩ S5)

As p = 4, by Schläfli’s formula,

dvolp(C3) = I1(t) =

(
12 arccos

(
1

t2+2

)− 4 π
)
t

3
√

3 + t2 (4 + t2)

We have to integrate the differential volume between 0 and 1, to multiply
this value by 10 and to divide it by the surface of the hypersphere in R5,
ω5 = (8π2)/3. Thus

30

8π2

∫ 1

0

I1(t)dt ≈ 0.009106
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is the likelihood of the first type of configurations.

The strategy is similar for the computation of the likelihood of the second
configuration of the paradox. Together with equations (8.1), (8.2) and (8.3),
also consider:

−x4 > 0 (8.6)

−x5 > 0 (8.7)

−x1 − x2 − x3 − tx4 − tx5 > 0 (8.8)

with t ∈ [0, 1]. Again, these equations define a cone C4 which intersects the
unit hypersphere R5. Computing the probability of these events reduces to
finding the measure of C4 on the surface of the hypersphere. Again, we can
use the Schläfli formula

dvolp(C4) =
1

p− 1

∑

j<k

volp−2(Sj ∩ Sk)dαjk

where Sj is the facet defined by equation (8.j), j = 1, 2, 3, 6, 7, 8.

Computation of the dihedral angles.

Let Uj be a vector normal to facet Sj, pointing inside the cone:

U1 = (1, 0, 0, 0, 0)
U2 = (0, 1, 0, 0, 0)
U3 = (0, 0, 1, 0, 0)
U6 = (0, 0, 0,−1, 0)
U7 = (0, 0, 0, 0,−1)
U8 = (−1,−1,−1,−t,−t)

In deriving the dihedral angles, we are only interested in the angles which
depends upon t. There are five of them:

α18 = α28 = α38 = arccos
(

1√
3+t2

)

α68 = α78 = arccos
(

−t√
3+2t2

)

Hence:

dα18 = dα28 = dα38 =
√

2t√
1+t2(3+2 t2)

dα68 = dα78 = 3√
3+t2(3+2 t2)
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Table 8: Vertices of the simplices

V olumes Directions
S1

⋂
S8 Q1268, Q1368, Q1278, Q1378

S6

⋂
S8 Q1268, Q1368, Q2368

The vertices of the dihedral volumes.

We find the coordinates of the vertices by solving systems similar to the
following one:





x1 = 0
x2 = 0
x3 = 0
−x4 = 0
−x5 > 0
−x1 − x2 − x3 − tx4 − tx5 > 0

The solution of this system gives the direction Q1234. There are 15 such linear
systems, but only 8 of them will have a solution.

Q1236 = (0, 0, 0, 0,−1)
Q1268 = (0, 0, t, 0,−1)
Q1368 = (0, t, 0, 0,−1)
Q2368 = (t, 0, 0, 0,−1)
Q1237 = (0, 0, 0,−1, 0)
Q1278 = (0, 0,−t,−1, 0)
Q1378 = (0,−t, 0,−1, 0)
Q2378 = (−t, 0, 0,−1, 0)

The vertices of (Sj∩Sk) are the directions Qabcd where both j and k appear
as indices. According to the situation, there will three or four of them (see
Table 8). By symmetry, the volumes (Sj ∩ S8), j = 1, 2, 3 are equivalent,
and the volume (Sk

⋂
S8), k = 6, 7 are equivalent too. This leaves only two

volumes to compute.

We shall now detail the computations for the volume of S1

⋂
S8. This

volume is petrulater on the sphere in R3 defined by the four directions Q1268,
Q1368, Q1278 and Q1378. We can divide this petulater into two spherical trian-
gles and use again the Gauss-Bonnet theorem. After several computations,

30



we prove that the area of the petrulater is:

V olp−2(S1 ∩ S8) = 2

(
arccos(

1√
1 + 2 t2

) + arccos(
t√

2 + t2
)

)

−2

(
arccos(

t√
1 + 2 t2

√
2 + t2

)

)

Similarly, we get:

V olp−2(S6 ∩ S8) = 3 arccos(
(
2 + t2

)−1
)− π

As p = 4, by Schläfli’s formula,

dvolp(C4) = I2(t)

=
6
√

2t
(
arccos( 1√

1+2 t2
) + arccos( t√

2+t2
)− arccos( t√

1+2 t2
√

2+t2
)
)

√
1 + t2(3 + 2 t2)

+
18 arccos

(
1

2+2t2

)− 6π√
3 + t2(3 + 2t2)

We have to multiply this value by 20 and divide it by the surface of the
hypersphere in R5, ω5 = (8π2)/3.Thus

60

8π2

∫ 1

0

I2(t)dt ≈ 0.172262

is the likelihood of the second configuration of the paradox.

9 Annexe IV: Proof of Proposition 3.4

In the case of five states, there are two types of configuration that can give
rise to the paradox. In the first type, four states prefer, for example, B to
A whereas the total number of voters preferring A to B is greater than one
half of the voters, in accordance with the following inequalities:

n1 < n/2, n2 < n/2, n3 < n/2, n4 < n/2 and n1+n2+n3+n4+n5 > 5n/2.
Let Y be the set of voting situations satisfying the above inequalities.

There are ten configurations of this type (two times the number of ways for
choosing the single state preferring A to B).

In the second type of configuration, three states choose one of the candi-
date -say B-, two states choose A and A is the popular winner:

n1 < n/2, n2 < n/2, n3 < n/2, n4 > n/2, n5 > n/2 and n1 + n2 + n3 +
n4 + n5 > 5n/2.
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Let Z be the set of voting situations consistent with these inequalities.
There are twenty configurations of this type (two times the number of ways
for choosing the two states preferring A to B among the five states). Hence,
the cardinality of the set X of voting situations giving rise to the paradox is
given by:

|X| = 10 |Y | + 20 |Z|.
It can be checked that a voting situation belongs to Y if and only if

2 ≤ n1 ≤ n− 1

2
,

n + 3

2
−n1 ≤ n2 ≤ n− 1

2
, n+1−n1−n2 ≤ n3 ≤ n− 1

2
,

3n + 1

2
−n1−n2−n3 ≤ n4 ≤ n− 1

2
,

5n + 1

2
−n1−n2−n3−n4 ≤ n5 ≤ n.

The cardinality of Y directly follows:

|Y | = (n + 1)(n4 + 4n3 − 14n2 − 36n + 45)

3840
.

In order to compute the cardinality of Z, we begin by evaluating the cardi-
nality of the set W defined by the following inequalities:

n1 < n/2, n2 < n/2, n3 < n/2, and n1 + n2 + n3 + n4 + n5 > 5n/2.
Clearly, W contains Z and it turns out that its cardinality is easier to

evaluate than the one of Z. This evaluation can be obtained by partitioning
W in three subsets defined in the following way:

• Subset 1:

n1 = 0, 1 ≤ n2 ≤ n− 1

2
,

n + 1

2
− n1 − n2 ≤ n3 ≤ n− 1

2
,

3n + 1

2
− n1 − n2 − n3 ≤ n4 ≤ n,

5n + 1

2
− n1 − n2 − n3 − n4 ≤ n5 ≤ n;

• Subset 2:

1 ≤ n1 ≤ n− 1

2
, 0 ≤ n2 ≤ n + 1

2
− n1,

n + 1

2
− n1 − n2 ≤ n3 ≤ n− 1

2
,

3n + 1

2
− n1 − n2 − n3 ≤ n4 ≤ n,

5n + 1

2
− n1 − n2 − n3 − n4 ≤ n5 ≤ n;

• Subset 3:

1 ≤ n1 ≤ n− 1

2
,

n + 1

2
− n1 + 1 ≤ n2 ≤ n− 1

2
, 0 ≤ n3 ≤ n− 1

2
,

3n + 1

2
− n1 − n2 − n3 ≤ n4 ≤ n,

5n + 1

2
− n1 − n2 − n3 − n4 ≤ n5 ≤ n.
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After evaluating each of these subsets, we obtain:

|W | = 29n5 + 145n4 + 190n3 − 10n2 − 219n− 135

3840
.

Now, it can be observed that W can be written as : W = Z ∪ Y ∪ T where
T is defined by:

n1 < n/2, n2 < n/2, n3 < n/2, n5 < n/2 and n1 + n2 + n3 + n4 > 5n/2.
By symmetry, we have |T | = |Y | and, as Z, Y and T are disjointed, we
conclude that:

|Z| = |W | − 2|Y | = 9n5 + 45n2 + 70n3 + 30n2 − 79n− 75

960
.

The desired probability then easily follows as:

PIAC(n, 5) =
10|Y |+ 20|Z|

(n + 1)5
=

5(11n4 + 44n3 + 38n2 − 12n− 81)

384(n + 1)4

and PIAC(∞, 5) tends to 55/384.

10 Annexe V: Lagrange Multipliers and Max-

imum Entropy

Find P (y), such that y ∈ [0, 1], which maximizes

S = −
∫ 1

0

P (y) log P (y)dy

under the constraints
∫ 1

0

P (y)dy = 1

∫ 1

0

yP (y)dy = a

Change P (y) in P (y) + δP and take the functional derivative. We get:
∫ 1

0

δP (log P + 1)dy = 0

∫ 1

0

δPdy = 0

∫ 1

0

δPydy = 0
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Taking into account the second relation the first can be written:

∫ 1

0

δPydy = 0

Multiplying the three last relations by respectively α, −λ and -1 and adding
them together, we get:

∫ 1

0

(α− λx− log P )δPdx

a relation which must hold ∀δP . Consequently,

P = eαe−λx = Ae−λx

A and λ are given by the normalisation relation and the value of
∫ 1

0
xP (x)dx =

a

11 Annexe VI: Proof of Proposition 4.1

First consider the case p ≤ 1
3
. A graphic interpretation is provided on Figure

10, which has to be compared to Figure 2. The density is still uniform on a
cube, but this cube has been reduced, and the origin of the axis is no longer
the center of the cube. The new center of the cube is the point (E, E, E),
which indicates that there is a bias in favor of candidate A. The hyperplane
z1 + z2 + z3 = 0 (represented with dashed lines) still cuts the cube in two
parts, but no longer passes through the center of the cube. The darker
pyramid correponds to situations where candidate A wins in States 1 and 2,
but gets less vote than candidate B. The lighter polyhedron describes the
case where candidate A losses in States 2 and 3, but enjoys a victory in the
whole country. The volume of the small dark pyramid is 1

6
(D − E)3. There

are 3 similar volumes, and we have to divide this volume by the total volume
of the cube, (2D)3. Now, we perform the volume of the lightly shaded area.
It is equal the volume of a bigger pyramid minus the volume of two dashed
cones, that is :

1

6
[(D + E)3 − 2(2E)3)]

Similarly, we mutiply this volume by three and divide it by (2D)3. After
simplification, we obtain the first formula of Prop 4.1.

Consider now the case p ∈ [1
3
, 1]. A graphic interpretation is provided on

Figure 11, for the case E = 0.04, D = 0.1 and p = 0.4. We get the same
formula for the small dark pyramid. The volume of the lighter polyhedron

34



........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..................................................................................................................................................................................................................................................................................................................................................................................................................................................



.............................................................................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
....................................................................................................................................................................................

..........
..........
..........
..........
..........
..........
..........
.

...................
...................

...................
...................

...................
...................

...................
...................

...

.................................................
........
........
........
........
........
........
........
........
........
........
......................................................................................................

..........
..........
..........
.................

...................
...................

...................
...................

...................
...................

...................
................................................................................................................................................................................................................................................................................................ .........................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................
.................

...................................................................................................................................................................................................................................................................................................................................
........
...............

..

z1

z3

z2

....................................................
...........

..
...........

..
........
.....
........
.....
........
.....
.........
....
.........
....
.........
....
.........
....
.........
....
........
.....
........
.....
........
.....
.........
....
.........
....
.............

.............
............. .............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

..................................................................................................................................

.............
.............

.............
.........
....
........
.....
........
.....

.............

.............

............
.

............
.

............
....
..........

.............
.............

..

............. ............. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
..

....
...
..
..
..
..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

.

..

..

..

..

..

.

..

..

.
..
....
......

• (0.3,0.3,0.3)

•(-0.2,-0.2,-0.2)

•(0.3,-0.2,-0.2) • (0.3,0.3,-0.2)

•(0.3,-0.2,0.3)

• (-0.2,0.3,0.3)•(-0.2,-0.2,0.3)

• (-0.2,0.3,-0.2)

Figure 10: The volumes for D = 0.25, E = 0.05, and p = 0.2

is given by: 2E(D−E)2. We multiply the sum of these to volumes by three
and divide it by (2D)3 to obtain, after simplification, the second formula of
Prop 4.1.
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• (0.14,0.14,0.14)

•(-0.06,-0.06,-0.06)

•(0.14,-0.06,-0.06) • (0.14,0.14,-0.06)

•(0.14,-0.06,0.14)

• (-0.06,0.14,0.14)•(-0.06,-0.06,0.14)

• (-0.06,0.14,-0.06)

Figure 11: The volumes for D = 0.1, E = 0.04 and p = 0.4
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[20] L. Schläfli, Theorie der Vielfachen Kontinuität, Gesammelte Mathe-
matische Abhandlungen 1. Birkhäuser, Basel.
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