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ABSTRACT

Mobile internet has become a fundamental component of modern infrastructure. In this

paper, we consider the impact of mobile internet connectivity on household wealth in the

Philippines. We construct a granular measure of local mobile internet connectivity using

comprehensive information on approximately 0.27 million geocoded cell towers, and

identify causal impact through a novel instrumental variable based on proximity to

submarine cable landing points. Our results suggest that mobile internet connectivity

significantly increases household wealth, with effects that persist across education levels

and are more pronounced in urban areas compared to rural ones. Combining individual

survey datasets with Points-of-Interest data, we investigate mechanisms and

demonstrate that improved connectivity stimulates activities in several key economic

sectors that create employment opportunities. Additionally, mobile internet connectivity

enhances individual educational outcomes and promotes female labor force

participation, though predominantly in occasional or seasonal roles.
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I Introduction

There has been a rapid increase in the availability and use of the internet in the developing world.

As internet use has become increasingly common, the mobile phone has become the dominant

mode of access, particularly among the poor. Internet use has had a profound economic impact,

and studies in multiple contexts have shown important impacts (Aker and Mbiti, 2010; Forman

et al., 2012; Akerman et al., 2015; Bahia et al., 2024). These benefits, however, are unevenly

distributed across populations. Studies show that internet access generally has a greater positive

impact on high-skilled employment and wages than lower-skilled labor markets (Hjort and Poulsen,

2019).

In this paper, we consider how the availability and quality of mobile internet access affects

household wealth in the Philippines, a lower-middle-income country which saw a rapid rollout

of mobile internet access in the 2010s, from initially low levels. Between 2010 and 2022 the

share of the population using the internet went from 25 to 75 percent, and the number of mobile

cellular subscriptions per 100 people went from 88 to 144.1 The Philippines possesses a unique

geography whereby it is comprised of over 7,000 islands. Given this, the cost and complexity of

rolling out infrastructure has been an ongoing challenge. As such, fixed broadband internet in

the Philippines has historically been expensive and slow. This has led to the vast majority of the

population accessing the internet via their phones (Kanehira et al., 2024). Over this period, the

Philippines experienced rapid economic growth, largely driven by its expanding service sector.

This sector includes business process outsourcing, digital financial services, and e-commerce, all

of which depend heavily on reliable internet access.

Since mobile internet coverage is not rolled out randomly, causally identifying its impact on

household economic outcomes poses significant empirical challenges. In developing countries, for

example, mobile internet usage is often poorly documented due to limited availability of high-quality

survey data. Furthermore, failing to account for local socioeconomic conditions that affect both

household wealth and cell tower deployment could result in omitted variable bias. Beyond that,

another plausible endogeneity concern is reverse causality: while improvedmobile internet access

may boost household wealth, wealthier communities and metropolitan urban centers, by contrast,

1 More details on the temporal trends of individual internet usage and mobile cellular subscriptions in

the Philippines can be found in the following links: https://data.worldbank.org/indicator/IT.NET.USER.ZS?

locations=PH and https://data.worldbank.org/indicator/IT.CEL.SETS.P2?locations=PH.

https://data.worldbank.org/indicator/IT.NET.USER.ZS?locations=PH
https://data.worldbank.org/indicator/IT.NET.USER.ZS?locations=PH
https://data.worldbank.org/indicator/IT.CEL.SETS.P2?locations=PH


might also wield greater lobbying power to attract public investments in internet infrastructure or

draw more commercial investments because of their larger market sizes.

To address these empirical challenges, our identification strategy begins by developing a

granular measure of local mobile internet connectivity, proxied by the density of cell towers

whose coverage scopes overlap with local communities. This measure is constructed using

geospatial big data comprising approximately 0.27 million geocoded cell towers sourced from

OpenCelliD—a comprehensive, large-scale database providing precise locations and detailed

information on cell towers. To overcome the endogeneity of mobile internet connectivity, we

exploit the Philippines’ archipelago geography to develop a novel instrumental variable based on

local communities’ geographical proximity to the nearest submarine cable landing points. The

underlying intuition is that shorter distances to landing points reduce construction costs

associated with expanding internet infrastructure, thereby influencing geographic patterns of

mobile internet connectivity.2 Indeed, we find evidence that better access to these landing points

leads to substantial increases in mobile internet connectivity. Moreover, conditional on province

fixed effects, the associations between distance to submarine cable landing points and various

local socioeconomic factors—such as population density, nightlight luminosity, and livestock

density—are statistically insignificant, supporting the plausibility of the exclusion restriction

assumption.

Based on this approach, we first examine the overall impact of mobile internet connectivity on

household wealth, using household survey data from the 2017 and 2022 waves of the

Demographic and Health Survey (DHS). We find that better access to mobile internet is

positively associated with household wealth, as measured by the DHS wealth index, which is

constructed using principal component analysis of household asset ownership. Consistent with

the relevance assumption of the instrumental variable approach, the first-stage results reveal a

significant negative relationship between mobile internet connectivity and distance to the nearest

2 Identification leveraging gradual rollout of submarine cables has become an important empirical technique.

For instance, Hjort and Poulsen (2019) employ a Difference-in-Differences strategy based on proximity to

terrestrial cables and the timing of gradual arrival of submarine cables to estimate the causal impact of

high-speed internet on employment in Africa. We build on this literature with a focus on mobile internet

access coming from proximity to cell towers, rather than fixed broadband, and introduce a new instrumental

variable approach that uses distance to submarine cable landing points, rather than timing. While specific

landing point locations are influenced by geography, distance of households from landing points is plausibly

random and orthogonal to economic conditions, with controlling for province fixed effects, as we demonstrate

in Section IV.
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submarine cable landing point. Our 2SLS estimates indicate that doubling density of mobile

internet cell towers in a neighborhood leads to a 0.04 standard deviation increase in the

household wealth index, a magnitude roughly ten times larger than the corresponding OLS

estimates. These findings are robust to alternative measures of mobile internet connectivity,

including varying the default coverage scopes of cell towers and using a service quality measure

incorporating mobile internet download or upload speeds.

We conduct a series of placebo tests and robustness checks to assess key threats to

identification, as well as to validate our measurement and estimation strategies. First, using data

from the 2003 DHS wave, when some submarine cables and their landing points had already

been constructed but cell towers had not yet been deployed, our reduce-form estimates show

that distance to landing points is not significantly associated with household wealth, reinforcing

the validity of our exclusion restriction that mobile internet connectivity is likely the sole channel

through which distance to submarine cable landing points affects household wealth. Second, we

apply the plausibly exogenous framework proposed by Conley et al. (2012), directly including the

instrumental variable in the second-stage regressions. The results suggest that such violations

of the exclusion restriction would have to be substantial to undermine the observed relationship

between mobile internet connectivity and household wealth, making such violations unlikely to

present a serious concern.

Third, we generate placebo instruments by randomly reassigning the values of our baseline

instrument either to other communities within the same survey wave or to communities within the

same province (possibly across survey waves). Neither approach yields statistically significant

effects or diagnostic statistics consistent with a strong instrument, supporting the interpretation

that our results are not driven by chance associations. Importantly, we also find that landing

points established prior to 2003 yield a weak instrument; however, this issue is mitigated when

we incorporate landing points established through 2017. This finding aligns with expectations

and suggests that more recent and advanced internet infrastructure is particularly relevant for the

rollout of mobile cell towers. Finally, our results remain robust across a range of additional

specifications, including alternative measures of the dependent variable and mobile internet

connectivity, as well as different methods for estimating standard errors, such as Conley

standard errors to account for spatial correlation (Conley, 1999). We also test for spillover effects

by including mobile internet density in neighboring communities and find no evidence of bias.
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Information and communication technology (ICT) is often characterized by disparities not only

in access but also in the distribution of its benefits across different types of users (e.g., Akerman

et al., 2015).3 We next investigate digital inequality in the benefits of mobile internet connectivity,

beginning with its spatial dimension, specifically, the differential impacts of connectivity across

urban and rural areas. While including all urban samples introduces weak instrument concerns

as politically and economically important areas might receive prioritized cell tower deployment

irrespective of their proximity to submarine cable landing points, excluding samples in the largest

and most densely populated urban areas, i.e., those above the 90th percentile in population

size, yields strong instrument and meaningful results: we find that the effect of mobile internet

connectivity is substantially larger in urban areas than in rural ones, by a factor of approximately

3.6. In other words, households in urban areas are likely to experience greater wealth gains from

improved access tomobile internet, at least for those inmedium-sized cities and towns. As a result,

we also cautiously interpret our aforementioned IV estimates for the full sample as local average

treatment effects for households residing in rural areas and in urban areas with population sizes

below the 90th percentile.

We also examine the heterogeneous effects of mobile internet connectivity across

educational attainment groups. Categorizing households by the education level of household

heads, we find significantly positive effects among those with the lowest levels of education. This

suggests that even basic mobile internet access can create opportunities for economic

advancement among households with lower socioeconomic status, in contrast to the substitution

argument often emphasized in the literature. However, the estimated benefits of internet access

tend to increase with higher levels of educational attainment, although the coefficients become

less statistically significant—possibly reflecting a ceiling effect, whereby households with higher

socioeconomic status may have already realized most of the gains from internet access.

The findings that households in both rural and urban areas, and across varying educational

levels, benefit in terms of wealth from mobile internet connectivity likely reflect the role of mobile

internet as a fundamental component of modern infrastructure (Greenstein, 2020), which

stimulates broader economic activities and associated employment opportunities, as well as

3 Akerman et al. (2015) examine the effects of broadband adoption on labor productivity and wages in

Norway. They find that broadband access improves labor market outcomes and productivity for skilled

workers, as it complements their ability to perform nonroutine abstract tasks, while it adversely affects

unskilled workers by substituting their roles in routine tasks.
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enhances human capital accumulation through improved access to information and digital

technologies for learning and education. We conclude our empirical analysis by examining these

underlying mechanisms. Using data on Points of Interest (POI), we show that areas with better

mobile internet connectivity tend to have a higher density of POIs associated with key economic

sectors, including Business and Professional Services, Dining and Drinking, Retail, and Travel

and Transportation. On the supply side of the labor market, we also find it increases female labor

force participation in seasonal and occasional work, while reducing participation in year-round

employment.4 Moreover, we find evidence that improved mobile internet connectivity enhances

individual educational outcomes. Overall, our results suggest that access to mobile internet is an

important tool in increasing wealth, but that it may change the structure of the labor market.

Our paper makes a number of contributions to the literature. First, we focus on household

wealth rather than income and employment, which are the focus of most earlier studies (e.g.,

Forman et al., 2012; Hjort and Poulsen, 2019; Akerman et al., 2015). Second, we examine how

the benefits of mobile internet access vary across different skill groups and between urban and

rural areas. Third, our identification strategy builds on earlier work, notably Hjort and Poulsen

(2019) and Imbruno et al. (2025), by using submarine cables as a source of variation. However,

we focus specifically on distance to cable landing points, rather than the timing of rollout, and

we are the first to apply this method in an archipelago economy. Finally, we add evidence from

Southeast Asia to literature that has mostly focused on the African context (Hjort and Tian, 2025).

The paper is structured as follows. The next section provides background on internet access in

the Philippines, possible theoretical mechanisms, with related research. In Section III, we describe

data sources and present descriptive statistics on mobile internet connectivity, submarine cable

landing points, and household wealth. We subsequently set out our identification strategy and how

we deal with the challenges of establishing causality in Section IV. We present our main results

and examine the channels through which mobile internet connectivity affects household wealth in

Section V. Finally, we conclude and discuss the policy implications of these findings.

4 Our DHS data for the Philippines lacks data files focused specifically on male respondents, limiting our

ability to analyze male employment outcomes. A promising avenue for future research is to systematically

investigate whether the wealth-enhancing effects of mobile internet access also operate through its impact

on male employment, and to assess potential gender disparities in the economic benefits of digital

connectivity.
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II Background

II.A Internet Access Challenges in the Philippines

As is common in many lower-middle-income countries, internet usage in the Philippines has only

recently become widespread. Yet, despite these advances, the quality and affordability of mobile

internet in the Philippines lag behind other Southeast Asian countries. A significant driver of this

are regulatory barriers, of which there are several.

For instance, the Philippines is one of the only countries in the world that still requires a

legislative franchise for the construction and operation of telecommunications networks. This

means operators must obtain a franchise through an act of Congress, in addition to obtaining

standard regulatory approvals (World Bank, 2020). The effect of this is stymied competition in the

telecom sector, which subsequently fails to spur innovation that can drive down the cost of roll out

(Kanehira et al., 2024).

However, a major policy shift occurred with the passage of the “Konektadong Pinoy” law,

which lapsed into effect in August 2025 (Government of the Philippines, 2025). The law removes

the congressional franchise requirement for new players, streamlines licensing procedures, and

promotes infrastructure sharing for faster rollout. It also establishes clearer rules on the efficient

use of radio frequency spectrum, with the aim of opening the market to greater competition and

accelerating connectivity in underserved areas.

Additionally, trenching for underground fibre often accounts for as much as 80 percent of

deployment costs, largely because each operator must independently apply for rights-of-way and

excavation permits. Without coordination, roads are repeatedly dug up by different firms (World

Bank, 2024). Aerial deployment faces similar inefficiencies because electric poles are regulated

by energy-sector agencies, whereas telecom infrastructure falls under a separate body (World

Bank, 2024). This fragmentation creates unclear pole-attachment rules, bilateral contracting, and

variable rental terms; many broadband providers therefore construct their own poles, which

increases the cost of extending networks from landing points. Some reforms seek to address

these barriers, including the Bayanihan 2 Law (Congress of the Philippines, 2020) and Executive

Order No. 32 (Office of the President of the Philippines, 2023). While these measures have

simplified certain national-level permits, site acquisition is still delayed by local-government

approvals and homeowners’ association clearances (World Bank, 2024).
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In addition to these regulatory and institutional barriers, geography compounds these issues.

The Philippines’ geography, consisting of more than 7,000 islands, creates significant cost and

coordination challenges for extending digital infrastructure beyond international cable landing

stations. Fibre-optic and microwave backhaul must cross bodies of water, traverse rugged

terrain, and connect sparsely populated areas. As a result, the capital cost of backbone

infrastructure is estimated to be around five times higher than in countries located on a single

contiguous landmass (Department of Information and Communications Technology, 2019). In

this context, it is inefficient for each mobile network operator to construct its own long-haul

transmission network. A shared, open-access fibre backbone, whereby operators lease capacity

from a common provider, can reduce duplication, spread fixed costs across users, and allow

firms to focus investment on local access infrastructure rather than expensive inter-island

connections. However, until the introduction of the national open-access backbone in 2024, most

long-haul networks in the Philippines were developed by individual commercial operators,

contributing to high costs of roll-out and uneven reach (Department of Information and

Communications Technology, 2019).

Taken together, the country’s fragmented geography, absence of shared backbone

infrastructure until recently, and regulatory complexity have made it significantly more expensive

to expand broadband infrastructure inland from submarine cable landing stations.

II.B Mechanisms: Impact of Mobile Internet Access

The rapid expansion of mobile internet has had complex economic implications in the Philippines.

Significantly, the country has experienced substantial growth in the gig economy, accelerated by

the pandemic and driven by increased adoption of app-based food delivery services (ADB, 2023).

Many firms in the dominant service sector are reliant on access to fast internet. For example,

Business Process Outsourcing (BPO) firms depend on real-time digital communication to serve

overseas clients, while retail and finance increasingly use online platforms for transactions and

customer engagement. Furthermore, mobile internet plays a crucial role in facilitating remittances,

which accounted for approximately 9.4 percent of GDP in 2022, allowing recipients to access funds

with greater security and ease.5

5 Further details on the temporal trends of remittances received as a percentage of GDP can be found in:

https://data.worldbank.org/indicator/BX.TRF.PWKR.DT.GD.ZS?locations=PH.
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Access to the internet significantly reduces the cost and effort associated with finding

information, leading to enhanced efficiency and increased innovation (Kusumawardhani et al.,

2023; Akerman et al., 2022). Better internet connectivity also facilitates trade, as countries with

robust telecommunications infrastructure are more likely to engage in greater trade volumes

(Herman and Oliver, 2023). Consequently, several mechanisms can be identified through which

internet access might positively affect individual earnings within local economies.

The literature highlights various direct and indirect effects of internet access on local

economies, each potentially influencing household wealth. First, improved internet access

boosts skills development by simplifying information access, thereby increasing labor productivity

(Chiplunkar and Goldberg, 2022; Caldarola et al., 2023). Additionally, better connectivity

enhances the matching process between workers and suitable employment opportunities,

facilitating specialization.

Firms also benefit by adopting new technologies, refining management practices, and gaining

improved market insights (Hjort and Tian, 2025). Furthermore, internet access reduces barriers

to market entry, enabling both local entrepreneurs and external firms to compete in previously

isolated markets, consequently lowering price dispersion. Households and businesses further

benefit from greater access to essential online services, such as banking, government services,

and retail, which may facilitate easier access to remittances, although increased connectivity also

raises the risk of online fraud.

Crucially, these economic impacts typically manifest at the community or local economy level

rather than solely benefiting individual households with direct internet access. The effects of

mobile internet, in particular, may differ between urban and rural areas since mobile connectivity

often substitutes for inadequate physical infrastructure. However, the overall outcome depends

significantly on which groups gain internet access; limited connectivity among vulnerable

populations could potentially exacerbate existing inequalities. Additionally, improved internet

connectivity might concentrate economic activities into hubs, potentially widening spatial

disparities (Leamer and Storper, 2001).

II.C Existing Evidence

Internet connectivity generally has positive economic impacts, driving increased employment,

productivity growth, and higher household consumption, especially in developing countries (Hjort
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and Tian, 2025). Broad evidence indicates improved market efficiency, better access to

information, and enhanced welfare outcomes across various contexts (Kaila and Tarp, 2019;

Beuermann et al., 2012; Paunov and Rollo, 2015). For example, Aker and Mbiti (2010) shows

that mobile phone coverage significantly reduced price dispersion in grain markets in Niger,

reflecting improved market integration and efficiency. While experimental studies on information

provision have yielded mixed results, recent work tends to suggest positive impacts on

productivity (Fabregas et al., 2025).

More specifically, studies focused on Southeast Asia highlight nuanced and varied effects of

internet access. In Indonesia, Kusumawardhani et al. (2023) find that internet availability primarily

supports job search activities rather than directly increasing employment, particularly benefiting

younger individuals. Furthermore, Jung and Rogers (2024) reveal unintended consequences,

such as increased deforestation in Uganda, as internet-enabled information access encouraged

non-farm workers to enter agriculture.

Identifying the causal impacts of internet connectivity remains methodologically challenging,

largely due to the non-random placement of telecommunications infrastructure. Researchers

have addressed these challenges through innovative strategies, prominently using submarine

cable installations as exogenous shocks. Notably, Hjort and Poulsen (2019), Simione and Li

(2021), Goldbeck and Lindlacher (2024), and Mensah and Traore (2023) provide robust

evidence from Sub-Saharan Africa showing substantial economic growth, productivity

enhancements, and increased foreign direct investment following submarine cable connectivity.

These studies emphasize the importance of rigorous identification strategies in accurately

capturing the economic effects of improved digital infrastructure.

III Data and Measurement

Operationalizing our empirical analysis of the relationship between mobile internet connectivity

and household wealth necessitates integrating various geospatial data sources. To this end,

we combine data on (i) georeferenced cell towers across the Philippines; (ii) the geographical

locations and operational timelines of submarine cable landing points around the islands; and

(iii) information on households’ wealth status, relevant characteristics (e.g., household size and

socioeconomic features in surrounding communities), and specifically their precise residential

locations to enable alignment with our internet data. This section lays out the primary data sources
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and explains how we measure the core variables that are used in our analysis. Additional data

sources are introduced later when they are used for the first time. 6

III.A Cell Towers and Mobile Internet Density

We source mobile internet data from OpenCelliD, a large-scale global open database providing

extensive information on cell towers and their locations.7 The OpenCelliD database records

information for each cell tower, including the generation of broadband cellular network technology

(radio types: GSM/2G, UMTS/3G, LTE/4G, and NR/5G), the country and region where the cell

tower is located, and its geographic coordinates (longitude and latitude). The database also flags

whether the geographic coordinates of cell towers are provided directly by telecom companies or

derived from user-submitted data, which combines the signal strength received by user’s mobile

equipment with its positional information.8 Additionally, the database records the date each cell

tower was first added into the database and when it was seen. We restrict our analysis to cell

towers located in the Philippines that were first added into the database between 2008 and 2022.9

As a consequence, we ultimately obtain 265,246 georeferenced cell towers, all with geographic

coordinates derived from user-submitted data, and containing three radio types – GSM, UMTS,

and LTE. We use the date each cell tower was first added to the database as a proxy for its

construction time and we assume no cell towers are decommissioned due to a lack of such

information. While we acknowledge the data limitations regarding the locations, construction

times, and active durations of cell towers, OpenCelliD, to the best of our knowledge, offers themost

accurate and freely available data on cell tower locations in the Philippine context. Nonetheless, as

discussed in the next section, our empirical strategy is well-equipped to account for these potential

measurement errors.

Using the cell tower data, Figure 1 illustrates the cumulative number of cell towers in the

Philippines from 2008 to 2022, categorized by radio types. We observe a rapid roll-out of cell

6 Details on auxiliary data sources are provided in Appendix A. The Appendix is available at http://dx.doi.

org/10.22617/WPS250440-2.
7 For more details and information on the methodology, visit https://opencellid.org/. The OpenCelliD project

is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
8 If the geographic coordinates of a cell tower are obtained in the second way, the database also includes

the number of (user-submitted) samples or measurements processed to determine the location, as well as

a radius indicating the range within which the actual location is likely to fall.
9 We found only one cell tower in the Philippines that was added to the database before 2008, which is likely

to come out as an erroneous entry.
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towers across all three radio types between 2012 and 2017. After 2017, the number of GSM and

UMTS towers plateaued, while LTE towers continued to grow steadily through 2022. Within this

period, GSM remained the dominant radio type in the composition of cell towers. Confirming the

aforementioned patterns, Figure 2 shows the spatial distribution of cell towers and the proportion

of population covered by mobile internet across provinces with four snapshots taken in 2008,

2012, 2016, and 2020.10 The results indicate that initial cell tower construction was concentrated

in core urban areas, particularly Manila. However, since 2016, cell towers have expanded to

cover a wide range of the country, with coverage proportions appearing relatively uniform across

provinces. We further analyze the relationship between GDP per capita, population, and new cell

tower construction at the provincial and district levels from 2018 to 2022 (see Appendix Table

E.1). We find no evidence that GDP per capita or population significantly predicts new cell tower

construction, suggesting that by this stage, cell tower deployment was no longer broadly focused

on wealthier or more populous areas but was likely aimed at achieving “last-mile” coverage.

The primary independent variable we employ in our analysis is mobile internet density, which

captures the extent of households’ exposure to mobile internet at the DHS cluster level. This

approximates villages in rural areas or streets in the urban, as detailed in Section III.C. We create

this measure of internet density by calculating the number of cell towers that overlap with DHS

clusters. Figure 4 provides a schematic representation of this approach. Our starting point is DHS

clusters, for which we create 10-km buffers around rural clusters and 2-km buffers around urban

clusters. his accounts for the intentional displacement of household coordinates to protect privacy

and prevent disclosure, as explained below. We then create buffers around each cell tower that

was active at the time of the DHS survey. The buffer size reflects the typical coverage radius

of each technology: 10 kilometers for GSM, 5 kilometers for UMTS, and 3 kilometers for LTE.

10To calculate the proportion of the population covered by mobile internet (namely, coverage share), we

overlay annual geospatial population data from WorldPop (2018) with cell tower data. The proportions

represent the percentage of the population within a specified radius of cell towers relative to the total

population in each province. Using basic engineering guidelines, we define the coverage radius as 10

km for GSM towers, 5 km for UMTS towers, and 3 km for LTE towers. We do not account for factors such as

terrain, vegetation, or weather conditions that might affect signal reach. While providing precise estimates

of individuals with mobile internet access would be of interest to many readers, it lies beyond the scope

of this paper. Instead, these calculations aim solely to illustrate broad patterns. However, as shown in

Panel B of Appendix Figure B.1, our coverage share measure is positively associated with the percentage

of households with internet access across provinces (data on household internet access is sourced from the

IPUMS International census database), providing some supporting evidence for the validity of our measure.

Panel A of Appendix Figure B.1 shows the share of the population within the coverage radius of cell towers

across the entire country from 2008 to 2020.
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These distances are based on standard engineering guidelines and are used to approximate the

area each tower could serve.11 We calculate the number of cell towers for each DHS cluster by

counting howmany tower buffers overlap with the cluster’s buffer.12 We divide this cell tower count

by the population within each DHS cluster to obtain the average, and then take the logarithm of

this value to measure mobile internet density in our subsequent analysis.13

There are two important caveats regarding our density measure to capture mobile internet

exposure. First, as discussed previously, the locations of both the DHS clusters and the cell

towers may not be exact. Because of this, our measure of internet density might be subject to

measurement error. Second, there is a conceptual issue with how exposure is defined. For

instance, a household located near just one cell tower may actually get stronger and more

consistent mobile internet than a household that happens to sit at the edge of several towers’

coverage areas. So even if a cluster overlaps with multiple towers, this does not always mean

better internet access.14 In Appendix Figure C.1, we first validate our measurement of mobile

internet density by examining the relationship between the share of households owning mobile

phones (from the DHS surveys in 2017 and 2022) and mobile internet density across DHS

clusters. The figure presents bin scatter plots of the share of households owning mobile phones

against mobile internet density, using 20 equally sized bins, weighted by population. We find

highly positive correlations between our mobile internet density measure and the share of mobile

phone ownership. Nonetheless, we provide a more comprehensive discussion of how our

identification strategy addresses these empirical concerns in Section IV.

11However, our results remain qualitatively and quantitatively similar when using buffer radii ranging from 3

km to 10 km in 1 km increments for all three types of cell towers (see Figure 6).
12Appendix Figure 6 presents average cell tower counts per 1,000 people across DHS urban and rural

clusters, varying the cell tower buffer radius from 3 km to 10 km in 1 km increments.
13To address instances where cell tower counts are zero and thus the logarithm cannot be applied, we

substitute these cell tower counts with one. However, our results remain nearly unchanged when using

values between 0.1 and 10 in increments of 0.1 (see Appendix Figure K.2). Additionally, our findings

are highly robust to other transformations, including the inverse hyperbolic sine transformation, neglog

transformation, Johnson transformation, as well as square and cube root transformations (see Appendix

Table K.1).
14To address this, in Section V.A, we examine mobile internet service quality, drawing on mobile upload and

download speed data.
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III.B Submarine Cable Landing Points

Our identification strategy relies on proximity to submarine cable landing points across the

Philippines as an instrumental variable. Landing points are coastal sites where submarine

internet cables connect to terrestrial networks. These cables enable the transmission of large

volumes of data across oceans, linking countries to the global internet infrastructure. At the

landing points, data is transferred to land-based systems such as fiber-optic networks, data

centers, and mobile networks. We collect data of georeferenced submarine cable landing points

from Infrapedia, an open-source database to provide complete and versatile infrastructure map

of the Internet.15 We obtain the geographic coordinates (longitude and latitude) of submarine

cable landing points and detailed information about the submarine cables connected to them,

including the years these cables became operational. For each landing point, we assign its

ready-for-service time based on the earliest operational year among the connected submarine

cables. Our primary instrumental variable is the Euclidean distance from a DHS cluster’s

centroid to the nearest existing submarine cable landing point.16

Figure 3 depicts the spatial distribution of of submarine cable landing points across the

Philippines, color-coded by their ready-for-service years.17 We see that the majority of

submarine cable landing points were constructed either before 2003 or between 2017 and 2022.

We focus on the most recent set of submarine cable landing points, which are expected to

provide a stronger instrumental variable (as explained in the robustness check section). To test

whether these landing points were placed in wealthier areas, we examine provincial GDP data

from 2018 to 2022. Specifically, we analyze whether provinces with higher GDP were more likely

to host new landing points during this period. To examine this, we calculate the number of

landing points constructed in each province and run a Poisson regression with province and year

fixed effects, using robust standard errors. The p-value for the coefficient on provincial GDP is

0.763 , suggesting that landing points were not disproportionately located in wealthier provinces.

Rather, their locations are more likely determined by proximity to international or national

15More details are provided in the link: https://www.infrapedia.com.
16To minimize distortion in distance measurements, we perform geocomputation based on the WGS84 UTM

Zone 51N projection system.
17Appendix Table F.1 lists the specific location name and ready-for-service year for each landing point.

Appendix Figure F.1 provides a snapshot of the submarine cable network across the Philippines, taken

from the Infrapedia database.
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submarine cable networks. Although it is not a sufficient condition for the exogeneity of our

instrumental variable, such “quasi-random assignment” lends the first piece of credence to its

validity. We discuss and consolidate the instrumental variable’ validity in more depth in Section

IV, where we provide further evidence and address potential concerns regarding its exogeneity

and relevance in our empirical analysis.

III.C Demographic and Health Survey (DHS)

Our household-level data come from Demographic and Health Survey (DHS), a global

large-scale, nationally representative cross-sectional survey that collects detailed information on

various demographic, health, and population-related topics. The DHS was conducted

approximately every five years across various countries. Within each wave, the DHS provides

separate datasets for various components, including households (HR), household members

(PR), women’s (IR), births (BR), children under five (KR), men’s (MR), and couples (CR) files.

Notably, for some waves, the DHS also provides geographical information on where households

are located, at the cluster level, approximating to villages in rural areas or streets in urban areas,

as well as additional geographic characteristics for these clusters, such as rainfall, nightlight

luminosity, livestock density, temperature, slope of terrain, and other relevant variables.18 It is

important to note that the DHS data provider employs a random displacement of the GPS

coordinates of clusters to ensure respondents’ confidentiality. Specifically, for urban clusters, the

positional error ranges between 0 and 2 kilometers. For rural clusters, the error ranges from 0 to

5 kilometers, with an additional 1% of rural clusters having their GPS positions displaced by

between 0 and 10 kilometers.

In the Philippines, there have been five waves of DHS survey since the start of the 21st century:

2003, 2008, 2013, 2017, and 2022, with each wave interviewing around 30,000 households. In

this paper, we use data from the Philippine DHS surveys conducted in 2003, 2017, and 2022. We

do not include the 2008 survey because cell tower coverage was still limited at that time, and we

exclude the 2013 survey because it does not include geographic information for the clusters. The

18The DHS surveys employ a two-stage cluster sampling method, with clusters sparsely distributed across

the country. This spatial dispersion helps mitigate potential spillover effects – such as households in

neighboring clusters benefiting from nearby mobile internet towers even if their own clusters lack coverage

– thereby addressing concerns about violations of the Stable Unit Treatment Value Assumption (SUTVA)

that could bias our causal estimates. We directly test for such spillover effects in Appendix Table K.3.
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2003 survey, as discussed later, allows us to conduct a placebo test to examine the exclusion

restriction assumption, given that cell towers had not yet been deployed at that time. In contrast,

the 2017 and 2022 survey waves provide us with the data needed to analyze the medium- to

long-term impact of mobile internet connectivity on household wealth accumulation. Our primary

dataset is household-level data from the HR file, but we also utilize the household members (PR)

and women’s (IR) files to test various mechanisms. In the case of the Philippines, we do not have

access to the men’s (MR) files.

The primary outcome variable of interest is the DHS household wealth index, which has been

extensively used in the literature as a proxy for household economic well-being in developing

countries where reliable income or expenditure data are often unavailable (e.g., Abagna et al.,

2025; von der Goltz and Barnwal, 2019; Lowes and Montero, 2021). It is a quintile-based measure

derived from data on a household’s ownership of various assets. These assets include consumer

items such as televisions and cars, dwelling characteristics such as flooring material, drinking

water source, and toilet facilities, as well as other factors related to wealth status. Each selected

asset is assigned a weight or factor score, which is generated using principal component analysis

(PCA). The final scores are then standardized to follow a standard normal distribution, with a mean

of zero and a standard deviation of one. Each household is assigned a standardized score for each

asset, based on whether the household owns that asset or not. These individual scores are then

summed to obtain a total wealth score for the household. Next, individuals are ranked according

to the total wealth score of the household in which they reside. The sample is then divided into five

population quintiles, which are used to define wealth categories labeled as: Poorest (1), Poorer

(2), Middle (3), Richer (4), and Richest (5). Appendix Table D.1 presents the share of households

owning specific items or services, categorized by the household wealth quintiles. Indeed, we find

that households with higher wealth status tend to own more durable goods, but less capital goods

related to the agricultural sector.

We also source a rich set of household-level characteristics from the DHS survey, including

household size, the age, gender, and educational attainment of the household head. In addition,

we gather cluster-level features from the DHS geospatial covariate datasets, such as whether

the cluster is located in an urban area, population size, population density, nightlight luminosity,

rainfall, and daytime land surface temperature. These variables are used in our subsequent
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analysis. Summary statistics for these variables, along with our primary variables, are reported in

Appendix Table G.1.

IV Empirical Strategy: Instrumental Variable from Submarine Cables

Our parameter of interest is the medium- to long-term impact on household wealth accumulation,

stemming from the staggered rollout of cell towers and the resulting variation in mobile internet

exposure across localities in the Philippines. Specifically, we examine whether mobile internet

connectivity contributes to improving households’ wealth status by leveraging exogenous

variations in cell tower density driven by the extent of remoteness from the submarine and

territorial cable network. In other words, we instrument mobile internet density using the

Euclidean distance from the centroid of each DHS cluster to the nearest existing submarine cable

landing point. The Philippines is an archipelagic country that depends on a network of submarine

and land-based cables to provide internet access. Our instrumental variable is based on the idea

that areas farther from cable landing points face higher costs for building internet infrastructure.

As a result, these areas tend to have fewer cell towers. We assume that, after conditional on a

key set of covariates and focusing on comparisons within a small geographic area, the distance

to the nearest landing point is not correlated with other factors that affect household wealth.

Before examining the identification assumption in detail, we first describe our baseline

econometric model, which is estimated using two-stage least squares (2SLS):

Wealthicpt = µt αp γ0 · ̂Mobile internet densitycpt X ′
icptΩ0 εicpt, (1)

Mobile internet densitycpt = µt αp γ1 · Distancecpt X ′
icptΩ1 εcpt, (2)

where Wealthicpt denotes household wealth status, measured in quintiles of the DHS

Household Wealth Index on a scale from 1 (poorest) to 5 (richest), for household i, residing in

DHS cluster c, within province p, and interviewed in wave t (2017 or 2022).19 We standardize the

quintile dependent variable for ease of interpretation. Our primary explanatory variable is mobile

19As mentioned above, the two waves of the DHS survey correspond to periods following a surge in the

number of cell tower rollouts across the Philippines, at least 9 years after the construction of cell towers

began in the country (see Figure 1 for details). This timing allows us to study the medium- to long-term

impact of mobile internet connectivity on household wealth accumulation.
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internet density, Mobile internet densitycpt, defined as the log of cell tower counts per 1,000

residents for each DHS cluster. γ0 therefore denotes the parameter of our interest. The

instrument, Distancecpt, denotes the Euclidean distance from the centroid of each DHS cluster to

the nearest existing submarine cable landing point.20

Our specifications also include fixed effects for the survey wave and province (µt and αp) to

capture overall differences in household wealth across the time and regional dimensions. For

example, survey wave fixed effects enable comparisons within each wave, thus accounting for

the issue that the Wealth Index constructed from a mix of household assets might be statistically

inconsistent between waves due to changes in the composition of assets involved. Moreover,

the importance of distance in influencing cell tower rollouts may diminish over a broad

geographic scale (e.g., mobile internet operators might prioritize distant but economically or

politically significant areas despite higher construction costs). By incorporating provincial fixed

effects, we narrow the focus to comparisons among DHS clusters within a relatively small

geographic scale, where distance is more likely to play a crucial role as a determinant of cell

tower construction. Additionally, as we demonstrate below, focusing on a smaller geographic

scale increases the likelihood that DHS clusters are balanced across other socio-economic

factors that might also affect cell tower deployment.

We control for a rich set of covariates at both the cluster and household levels, denoted as

X ′
icpt. Our cluster-level controls include: (i) a dummy variable indicating whether DHS clusters

are situated in urban areas; (ii) population density and nightlight luminosity, which broadly capture

local economic development (urbanization and economic activities); (iii) rainfall and temperature,

reflecting overall climatic conditions that may influence both economic activities and the feasibility

of cell tower construction (e.g., lightning strike intensity has been shown to impact mobile phone

coverage (Manacorda and Tesei, 2020)); and (iv) slope of terrain that could influence the strength

and quality of mobile internet signals (e.g., Wang, 2021). At the household level, we control

for the number of household members, as well as the age, gender, and educational attainment

of the household head, as these factors are likely to directly affect household wealth status.

20For the 2017 DHS survey wave, we calculate the distance for DHS clusters based on landing points

that were operational in 2017 (i.e., those constructed before 2017), taking out of consideration those that

became operational only after that year. For the 2022 DHS survey wave, we include all landing points that

were operational by 2022. Our results, however, remain robust when using alternative sets of instruments,

such as the distance to landing points established before 2003 (see columns (1) and (2) of Table I.1 for

more details).
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Importantly, we include mobile phone ownership as a control variable because our dependent

variable—constructed using principal component analysis (PCA)—is based on various household

asset ownership indicators, including mobile phones. Incorporating mobile phone ownership helps

mitigate potential omitted variable bias. εicpt and εcpt represent the error terms, and we cluster

standard errors at the DHS cluster level.21 Throughout the paper, we apply sampling weights in

estimations to ensure our samples’ representativeness.

The empirical strategy presented above allows us to address a range of endogeneity

concerns with respect to identifying the causal effects of mobile internet density on household

wealth. First, our approach, conditional on the validity of the instrumental variable, enables us to

rule out bias resulting from a variety of omitted variables, such as differences in local economic

performance that may determine both household wealth and cell tower density. It also addresses

concerns of reverse causality, wherein mobile internet connectivity could enhance household

wealth, but conversely, higher household wealth may, in turn, influence the density of cell tower

construction in the locality (e.g., residents from wealthier areas lobby government for more

mobile internet infrastructure). Furthermore, the strategy accounts for measurement error issues

inherent in the data. For instance, as mentioned above, DHS clusters are intentionally displaced

to preserve respondents’ anonymity, which introduces imprecision in the geographical locations.

Similarly, cell tower data, being crowdsourced from a global community of volunteers, may suffer

from inaccuracies in the construction timelines and reported locations.22 Additionally, the method

of measuring mobile internet density—using an overlay of cell tower buffers with DHS cluster

buffers—presents conceptual challenges, e.g., some clusters may be in close proximity to a

limited number of cell towers, while others might overlap with the periphery of multiple cell tower

buffers without substantial coverage or connectivity. By employing the instrumental variable

approach, we not only mitigate omitted variable bias and reverse causality but also reduce the

distortions caused by measurement errors in our data.

21Our results remain robust when alternative methods are used to estimate standard errors. For instance, we

cluster standard errors at the province-by-wave level or apply Conley standard errors with varying distance

cutoffs (Conley, 1999). More details are provided in Appendix Table K.2.
22This is particularly true given that we can only use the time when the cell tower was first recorded in

the database as a proxy for its construction time. Additionally, the GPS locations of the cell towers are

approximated based on the strength of the signal received and the positions of user equipment, although

the OpenCellid data provider has processed billions of measurements to estimate the positions of millions

of cell towers.
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Instrument Relevance To examine the validity of our instrumental variable, we begin by testing

whether remoteness from submarine cable landing points reduces mobile internet density. Figure

5 presents binned scatterplots illustrating the relationship between the local density of cell towers

and the distance to the nearest submarine cable landing points across DHS clusters. In addition to

considering all cell towers collectively, we further disaggregate them by radio types—GSM, UMTS,

and LTE—and calculate the corresponding measures of mobile internet density for each type. The

descriptive results align with our theoretical expectations, showing a negative association between

the instrument and mobile internet density, regardless of the cell tower type used for measuring

density. In our subsequent estimations, we provide 2SLS regression results including first-stage

estimates. Together, these results indicate sufficient instrument relevance.

Exclusion Restriction A major identifying assumption of our empirical approach is that the

distance to the nearest existing submarine cable landing point influences household wealth

solely through its effect on mobile internet density, conditional on a key set of covariates and

fixed effects. In the previous sections, we demonstrated that landing points are not preferentially

located in wealthier provinces but are instead determined by geographical factors and the need

to integrate with the global submarine cable network or internal internet infrastructure. However,

this finding does not fully establish the exogeneity of distance to landing points, as this measure

may also capture proximity to coastlines, which is therefore closely correlated with local

economic development and violate the exclusion restriction assumption. Table 1 investigates the

associations between the distance to submarine cable landing points and various local

socio-economic factors across DHS clusters. In columns (1) and (2), we examine the

relationships with population density and nightlight luminosity using the full set of DHS clusters,

whereas columns (3) through (7) focus on livestock density, restricting our focus to rural clusters.

Indeed, we find that in the absence of province fixed effects, DHS clusters located farther away

from submarine cable landing points tend to exhibit lower population density, dimmer nightlight

luminosity, and lower density of livestock such as pigs and chickens. However, these differences

across socio-economic dimensions diminish once province fixed effects are included, suggesting

that socio-economic factors are more likely to be balanced with respect to distance from

submarine cable landing points when comparisons are made within a relatively small geographic

scale. Consequently, we include province fixed effects in all subsequent 2SLS estimations.
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In our empirical exercises as described below, we perform a range of robustness checks

and placebo tests to further evaluate the validity of the exclusion restriction. First, we utilize the

DHS survey conducted in 2003 – prior to the rollout of cell towers in the Philippines but after

the establishment of an early wave of submarine cable landing points – to assess whether the

distance to these landing points predicts household wealth at that time. If distance is found to

influence household wealth in 2003, it is plausible that it operates through channels other than

mobile internet density, therefore invalidating the exclusion restriction. Additionally, we perform

placebo tests by randomly assigning the baseline instrument values to other DHS clusters within

the same survey wave or within the same province. A valid instrument should reveal that these

placebo instruments exhibit weak instrument characteristics and lack significant association with

household wealth status. We also employ the plausibly exogenous framework proposed by Conley

et al. (2012), allowing our instrumental variable to exert direct effects on the main outcomes of

interest. This method enables us to assess the sensitivity of our findings to varying degrees

of instrument invalidity. We provide detailed discussions of these robustness checks and the

associated results in the following sections.

V Empirical Results

V.A Impacts on Household Wealth

Our empirical analysis begins by estimating our baseline specification, as defined in Equation (1)

and Equation (2), leveraging the distance to the nearest existing submarine cable landing point

as an instrument for mobile internet density, while controlling for survey wave fixed effects and

province fixed effects. As a benchmark, we report simple OLS results to illustrate the

endogenous correlational relationship between mobile internet density and the household wealth

index constructed based on asset ownership. Both the OLS and 2SLS results are presented in

Table 2.

We find a positive and statistically significant association between mobile internet density

and the standardized household wealth index, a finding that holds across all specifications as

we sequentially introduce controls for locality (column (1)) and household characteristics (column

(2)), and mobile phone ownership which we include to address concerns that our results may be
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skewed by access to mobile devices, rather than access to mobile internet infrastructure like cell

towers (column (3)). While the coefficient estimates for mobile internet density reduce slightly in

magnitude, they all remain positive and significant at the 1 percent level.

Next, we present the instrumental variable estimates in columns (4) to (6). Panel A shows that

the second-stage results suggest a positive causal effect of mobile internet density on household

wealth. This finding is consistent across all three models, which control for locality-level and

household-level confounders, including mobile phone ownership. Consistent with our theoretical

expectations, we can see a significantly negative relationship from the first-stage results in Panel B:

as the distance from a submarine cable landing point increases, mobile internet density declines.

Furthermore, the first-stage Kleibergen-PaapWald rk F statistics all exceed the standard threshold

of 10, and the Anderson-Rubin tests reject the null hypothesis. Together, these results indicate

that our instrument is a strong predictor of local cell tower density.

One can also see that our 2SLS estimates are notably larger than the OLS estimates

(approximately tenfold). In the fully specified model, doubling the number of cell towers per 1,000

people within neighborhoods is associated with a 0.04 (≈ 0.145 × log2) standard deviation

increase in the household wealth index. This implies that the OLS approach underestimates the

role of mobile internet density in improving household wealth status. Beyond the influence of

omitted variables, measurement errors (and thus attenuation bias), and reverse causality, as

discussed earlier, the larger 2SLS estimates may reflect local average treatment effects (LATE)

specific to areas where the construction of cell towers is primarily determined by ease of access

to the cable network, a point we will elaborate on in the next section.

A natural concern regarding our measurement of mobile internet density is whether

coverage, based on prescribed buffers around cell towers (i.e., proximity of users to mobile

towers) and the average count of locally built cell towers, effectively captures mobile internet

connectivity or the quality of internet service available. We examine this issue through two

approaches. First, we acknowledge that distance-based measures of mobile internet access

may not capture connectivity consistently across different localities due to factors such as

geographical topography, climate, and other local conditions. For instance, flat areas farther

from cell towers than mountainous regions may still experience better mobile internet access (it

is important to note that our inclusion of terrain slope as a control variable could partially account
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for this issue). Consequently, we vary the coverage radius for our measure of mobile internet

density and re-estimate our IV equations in Figure 6.

Our results are shown on the left side of the figure. They display the coefficient estimates

for mobile internet density and their 95 percent confidence intervals, using the benchmark radii.

These are based on three models that include different sets of controls, as shown in Table 2. Next,

we recalculate mobile internet density using different cell tower radii, shown on the horizontal axis.

The baseline estimates are marked with dashed lines for comparison. The figure shows that the

results remain stable, even when all cell towers are assumed to cover areas up to 10 kilometers.

This suggests that the specific choice of cell tower radius has little effect on the main findings.

As a second check to account for differences in internet service quality, we supplement our

analysis with mobile internet performance data. Specifically, we use upload and download speed

data from Ookla®, accessed through the Development Data Partnership. The data is available

quarterly from 2019 to 2024 at a resolution of approximately 610 squaremeters. It is collected each

time the Speedtest® application is used on a mobile device. Its measurements have been filtered

to only include GPS-quality location accuracy. In doing so, we first generate buffers around DHS

clusters with radii of 10 kilometers for rural clusters and 2 kilometers for urban clusters, overlaying

these buffers with mobile internet speed shapefiles from Ookla® to calculate the annual average

speed within each buffer (see more details in Appendix A). We then construct a mobile internet

quality measure by multiplying the local average number of cell towers (per 1,000 people) by the

mobile internet speed, before applying a logarithmic transformation. Subsequently, we perform the

IV estimations as described above, using the Euclidean distance from the DHS cluster’s centroid

to the nearest existing submarine cable landing point to instrument for mobile internet quality.23

Table 3 presents the associated results, with themeasure of mobile internet quality constructed

from download speed in columns (1) to (3) and from upload speed in columns (4) to (6). Across

all permutations, we find that an increase in mobile internet quality, whether measured by upload

or download speeds, leads to a rise in overall household wealth. Within diagnosis checks, the

first-stage results continue to show significantly negative associations between our instrument

and mobile internet quality. The F-statistics remain above 10, and the AR tests are statistically

significant at the 1 percent level, suggesting that our instrument is not weak for mobile internet

23Note that the regressions are conducted only on the sample from the 2022 wave of the DHS survey, as

the Ookla® data available to us aligns exclusively with this period.
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quality. Taken together, the results indicate that the density of mobile internet cell towersmeasured

in our analysis positively impacts household wealth conditions, with the effect primarily driven by

mobile internet connectivity and service quality.

Robustness Checks We now turn to evaluating the robustness of our empirical strategy,

probing the validity of distance to submarine cable landing points as an instrument for mobile

internet density. As demonstrated below, our findings are robust to a range of placebo tests and

to variations in several salient dimensions of our measurements and estimation approaches.

First, we provide plausible empirical evidence on exclusion restriction that mobile internet

access is the only channel through which distance to submarine cable landing point impacts

household wealth, conditional on a crucial set of control variables. To this end, we conduct

reduced-form estimations by regressing the standardized household wealth index on distance

to submarine cable landing point, using DHS data from the combined 2017 and 2022 waves and

more importantly, using DHS data from the 2003 wave, a period when submarine cables existed

but mobile cell towers had not yet been rolled out in the Philippines.

Appendix Table H.1 presents the results, with columns (1) and (2) showing the reduced-form

relationship between distance to submarine cable landing point and household wealth in 2003

as a placebo test (note that mobile phone ownership is not controlled for, as this variable was

unavailable in that wave), and columns (3)–(5) reporting the relationship for the 2017 and 2022

waves. Conditional on province fixed effects, and local and household characteristics, one can

see the expected negative and statistically significant relationship between household wealth and

distance from submarine cable landing point in the post-rollout period; however, while there is

a negative association before the rollout, it was not statistically significant at the conventional

level. The absence of a significant relationship between household wealth and distance from

submarine cable landing point before the rollout of mobile cell towers, but its emergence after the

rollout, suggests that mobile internet access is likely the sole channel through which the distance

influences household wealth.

Second, we further examine the assumption of instrument exogeneity by following the plausibly

exogenous framework proposed by Conley et al. (2012). The main idea of this approach is to allow

our instrumental variable to have direct effects on the main outcomes of interest; specifically, the

instrumental variable is involved in the second-stage regression with a coefficient δ. If the exclusion
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restriction assumption holds, δ would be equal to zero with perfect instrument exogeneity. By

contrast, various values of δ imply violation of the exclusion restriction assumption. The magnitude

of δ therefore allows us to assess how robust our findings are to different degrees of instrumental

invalidity. In Appendix Figure J.1, we find that our estimated relationship between mobile internet

density and household wealth remains robust even with substantial violations of the exclusion

restriction assumption. We discuss the application of this plausibly exogenous framework with

empirical findings in more depth in Appendix J.

Third, we employ several alternative instrument variables, with results reported in Appendix

Table I.1. As opposed to our baseline instrumental variable, which captures the distance to the

nearest existing submarine cable landing point at the time of the survey, columns (1) and (2) use

alternative sets of landing points to construct the instrument. Column (1) utilizes only landing

points established before 2003, while column (2) relies on those constructed before 2017 (recall

that in our baseline estimations on the DHS survey in wave 2022, we should also consider landing

points established between 2017 and 2022). As the table shows, we find that constructing our

instrument using landing points established before 2003 leads to a weak instrument (F-statistics

= 6.13), but this issue is mitigated when including landing points established until 2017. Indeed,

landing points established before 2003 may not provide a valid instrument due to their outdated

relevance for mobile cell towers.24 This corroborates our explanation underlying the instrument

that proximity to more advanced internet infrastructure, specifically submarine cables, is positively

associated with the current distribution of mobile internet access.

Columns (3) and (4) test placebo instruments: column (3) randomly assigns the baseline

instrument values to other clusters within the same survey wave, while column (4) assigns these

values randomly to clusters within the same province (possibly across the survey waves). Our

results show that the placebo instruments indeed fail to identify the effects of mobile internet

density on household wealth, with insignificant first-stage effects and the associated IV diagnostics

indicating instrument weakness. This analysis suggests that our previous IV estimates are not

merely arising by chance.

We further assess the robustness of our results by varying the measurement of our outcome of

interest, key explanatory variable, and the estimation approach for standard errors. Our findings

24But it is not due to a limited number of landing points, which could otherwise make distance less important,

as areas would roughly share a common distance from a small number of cell towers. In fact, landing points

established before 2003 account for 47% of all points considered (see Figure 1 and Appendix Table F.1).
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remain consistent and are not meaningfully affected across all these robustness checks. We use

the original dependent variable of the household wealth index, measured in quintiles on a scale of

1 (poorest) to 5 (richest), without any standardization, in Appendix Figure K.1. Our results remain

qualitatively unchanged when using the original categorical outcome instead of the standardized

one. Results from varying the logarithmic transformation for mobile internet density—where, for

clusters without cell towers (zero counts), we replace zero values with incremental small numbers

ranging from 0.1 to 10 in steps of 0.1—are reported in Appendix Figure K.2. Relative to the

baseline specification, the coefficient estimates and 95 percent confidence intervals on mobile

internet density are largely unchanged in both magnitude and sign.

Additionally, in Appendix Table K.1, we apply various transformations to our measurement of

mobile internet density, including the inverse hyperbolic sine transformation, a neglog

transformation, a Johnson transformation, as well as square root and cube root transformations.

These transformations have minimal impact on our core findings. Appendix Table K.2 applies

different approaches to estimating standard errors. Specifically, we cluster standard errors at the

province-by-wave level and implement Conley standard errors (Conley, 1999), with distance

cutoffs set at 50 km, 100 km, 150 km, and 200 km, respectively, to account for potential spatial

correlation in the data. Across all these specifications, our core coefficient estimates remain

statistically significant at conventional levels. A final potential concern is spillover effects –

specifically, that households in neighboring clusters may benefit from nearby mobile internet

coverage despite the absence of local cell towers. Although the DHS sampling procedure

ensures that clusters are sparsely distributed, we formally test for such spillovers by including

mobile internet density in the nearest neighboring clusters as additional controls in our 2SLS

regressions. The results, as reported in Appendix Table K.3, show no evidence that mobile

internet density in the first, second, or third nearest clusters has any significant effect on local

household wealth, whereas the coefficients on local mobile internet density remain statistically

significant and quantitatively similar.

V.B Unequal Benefits of Mobile Internet Access

Inequality remains a persistent challenge in developing countries, often exacerbated by uneven

access to technology. Moreover, even in situations where access to technology is equitable, the

resulting benefits can vary significantly among different social groups due to differential
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technology usage behavior (e.g., using internet for e-commerce vs. addiction to video games).25

The Philippines, an archipelago with significant regional and geographical disparities, offers a

case study for examining how internet access can influence wealth distribution.

We begin our analysis of digital inequality by examining the impacts of mobile internet

connectivity across urban and rural areas. To capture potential differential effects on household

wealth, we split our sample into urban and rural households, allowing mobile internet connectivity

to have distinct impacts depending on the area of residence. Comparing columns (1) and (2) in

Table 4, we observe significantly positive effects of mobile internet density on the standardized

household wealth index in rural clusters, while the effects in urban areas are positive, with a

coefficient estimate approximately 2.6 times larger in magnitude than that for rural areas, but

statistically insignificant. Columns (3) and (4) focus on urban clusters using an alternative

definition of urbanization. Column (3) restricts the sample to households located in Barangays

(local administrative units at the third level in the Philippines) classified as cities by the Global

Human Settlement Layer (GHSL) project. Column (4) expands the sample to include households

in Barangays classified as dense towns by the GHSL project. The results indicate that changing

the urban definitions does not yield significant effects for urban households. Indeed, the

Kleibergen-Paap Wald rk F statistics and AR tests suggest that the 2SLS estimates for urban

households might suffer from a weak instrument.

It is important to note that the weak instrument issue for urban clusters is expected, as

telecom companies often prioritize densely populated, politically or economically important cities,

regardless of their distances from submarine cable landing points. To further assess where our

previously estimated LATEs apply, we focus on areas beyond the rural regions where we have

found robust estimates with a strong instrument. Continuing with Table 4, our analysis proceeds

by focusing on households located in urban clusters while excluding those in Barangays with

large population sizes, using data from the GHSL project. Specifically, we progressively exclude

25The impact of internet access on inequality has been the subject of extensive and nuanced debate.

For example, one perspective suggests that the internet and modern Information and Communication

Technologies (ICTs) have the potential to reduce inequality by spreading economic activities and expanding

job opportunities across geographic boundaries (Friedman, 2007). This can lead to a more equitable

distribution of employment opportunities. However, an opposing viewpoint argues that the advent of the

internet has led to “skill-biased technological change”, favoring individuals with higher levels of education and

skills (Akerman et al., 2015), therefore, resulting in an increase in income inequality. Empirical evidence on

the effects of internet access on inequality remains limited, particularly in the context of developing countries.
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Barangays whose population size exceeds the 95th percentile in column (5), the 90th percentile

in column (6), the 85th percentile in column (7), and the 80th percentile in column (8).

One can see that excluding urban households in Barangays above the 95th percentile in

population size does not change the significance level of the coefficient estimates, compared to the

sample that includes all urban households. However, the estimates start to become statistically

significant when excluding those above the 90th and 85th percentiles. Notably, once households

in Barangays above the 90th percentile are excluded from regressions, the 2SLS estimates no

longer suffer from a weak instrument, with an F-statistic of 10.53 and an AR p-value of less

than 0.05. In this case, the estimated coefficient reaches 0.254, significant at the 10 percent

level, and is 3.6 times larger than the estimate for the rural sample. Given these results, we

cautiously conclude that: (i) our previously estimated LATEs apply to rural areas and urban areas

in Barangays with population sizes below the 90th percentile; and (ii) households in urban areas

are likely to experience greater wealth gains from access to mobile internet, at least for those in

medium-sized cities and towns.

We next examine the differential effects of mobile internet access on household wealth across

three educational attainment groups. Specifically, we test the hypothesis that mobile internet

access is more likely to result in higher wealth gains for better-educated households, as they

may have a better grasp of internet technology for productive use or access to more suitable

online job opportunities. Using the educational attainment of household heads, we categorize

our sample into three groups: households where the head has less than a primary education,

households where the head has a secondary education, and households where the head has

education beyond the secondary level. From results presented in Appendix Table L.1, we find

that the impact of internet access is the most significant for households with the lowest level of

education (column (1)). This suggests that even basic internet access may open up opportunities

for economic improvement, potentially through providing access to information, online services,

or commerce.

The relationship for households with secondary level education is significant at the 10

percent level (column (2)), whereas it loses significance for households with education higher

than secondary (column (3)). However, when we employ the measure of mobile internet quality,

the coefficient estimates for households with education beyond the secondary level become

statistically significant, though only at the 10 percent level (see Appendix Table L.2). Across all
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specifications, we observe increasing effects of mobile internet access on household wealth with

higher educational attainment. However, given the lower statistical significance on coefficient

estimates for better-educated households, we interpret these results as potentially indicating a

ceiling effect—households in developing countries with higher education levels may already be

maximizing the benefits of internet access, and further improvements in mobile internet density

may not significantly enhance their economic outcomes. It may also suggest that these

households are reliant on more expensive fixed-line broadband for internet access, making

mobile internet density less critical for wealth generation.

Taken on its own, these findings suggest that, while, on the whole, citizens benefit from

improved mobile internet access, the returns of improved access to the mobile internet varies

by location and educational attainment. Understanding these dynamics is important for informing

policies that can bridge the digital divide and promote inclusive economic growth.

V.C Mechanisms: New firms, the labour market, and education

As shown above, there are a number of potential channels through which mobile internet

connectivity might improve household wealth in the medium to long run. In this section, we

assess two key pathways through which this effect may operate: (i) stimulated local economic

activities driven by mobile internet as a fundamental infrastructure, which in turn creates more

employment opportunities; and (ii) improved educational attainment facilitated by better access

to information and digital technologies for learning and teaching.

Mobile internet access arguably plays a fundamental role in a majority of economic activities. It

can foster entrepreneurship by providing a platform for building businesses, a distribution channel

for reaching customers, and a cost-effective alternative to selling products or services without

the need for physical space. To examine whether local economic activities respond differently to

mobile internet density, we utilize data on Points of Interest (POIs) in key economic sectors from

Foursquare OS Places.26

Weextract POIs related to Arts and Entertainment, Business and Professional Services, Dining

and Drinking, Retail, and Travel and Transportation. We measure economic activities within each

26Foursquare OS Places is an open database that provides detailed information on 100 million places

worldwide, including restaurants, retail stores, landmarks, and other POIs. In the Philippines alone,

approximately 0.80 million geocoded places have been recorded since 2009. These POIs are categorized

into 1,245 classifications across six levels and we focus on the first level in our analysis.
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DHS cluster from a pool of the 2017 and 2022 waves, using POI density, defined as the number

of POIs per 1,000 people.27

With POI density as the outcome variable, we conduct our IV estimations, controlling for

wave fixed effects, province fixed effects, and cluster characteristics as in our household-level

analysis. We present the estimates in Table 5, with different columns focusing on different types

of POIs. To mitigate weak instrument issues in large urban areas as discussed above, Panel A

excludes clusters located in Barangays with population sizes exceeding the 99th percentile,

while Panel B further excludes urban clusters located in Barangays with population sizes

exceeding the 80th percentile. From results in both panels, one can see that the density of POIs

in the sectors of Business and Professional Services, Dining and Drinking, Retail, and Travel and

Transportation differentially increase in localities with higher mobile internet density. However,

we find no evidence of a positive impact on the sector of Arts and Entertainment. This suggests

that mobile internet access indeed boosts crucial economic activities that could provide more job

opportunities and, in turn, improve household wealth.

Subsequently, we analyze the supply side of the labor market, evaluating the impact of mobile

internet connectivity on individual employment status. We examine employment outcomes using

the “Individual Record” (IR) datasets of DHS survey, which primarily focus onwomen in households

(we restrict the sample to women aged 18 and above). We first estimate our baseline 2SLS

model for female respondents, using binary indicators as dependent variables to capture different

employment statuses: whether the female is employed during the seven days preceding the survey

interview or at any point in the past 12 months. As shown in columns (1) and (2) of Table 6, we

find that females are more likely to be employed—either recently or during the 12 months prior

to the interview—in areas with higher levels of mobile internet connectivity. Columns (3) to (5)

focus on employed women and examine how mobile internet connectivity influences their mode of

employment, using binary dependent variables indicating whether the respondent was employed

year-round, seasonally, or occasionally. Interestingly, the results show a negative association

between mobile internet connectivity and year-round employment among women, while seasonal

27For DHS clusters in 2017, POIs considered were those with entry dates before 2017 and not marked as

closed in the database, while for clusters in 2022, POIs were those recorded before 2022 and had not been

closed by then. It is important to note that the date a POI entered the database does not necessarily reflect

its actual opening date, just as the recorded close date may not precisely indicate when the POI ceased

operations. While the ideal approach would be to include only active POIs, data limitations prevent us from

doing so.
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and occasional employment are positively associated. This pattern suggests that mobile internet

may enable more flexible work arrangements for female workers.

Given that only 50 percent of women are currently employed in the Philippines, these

findings underscore the need for targeted interventions—such as digital literacy programs,

childcare support, and skill-building initiatives—to help women fully capitalize on the economic

opportunities enabled by internet access. The Philippine DHS survey does not include “MR” files

focused on male respondents, limiting our ability to analyze male employment outcomes. A

promising avenue for future research is to systematically examine whether the wealth-enhancing

effects of mobile internet access also operate through its impact on male employment, and to

assess gender disparities in the economic benefits of digital connectivity. Men may be better

positioned to capitalize on internet-enabled economic opportunities, possibly due to existing

gender disparities in the labor market, digital skills, or sectoral employment patterns.

We now consider educational outcomes, utilizing the “Personal Record” (PR) datasets, which

provide individual-level information on household members (the sample is restricted to

individuals aged 18 and above). The 2SLS estimates are reported in columns (6) and (7) of

Table 6, respectively. Our outcome variables of interest are a binary indicator for attaining at

least secondary education (column (6)), and the number of years of educational attainment

(column (7)). The results indicate that higher mobile internet density significantly increases the

probability of attaining secondary education and the total years of schooling, suggesting that

improved internet access could perhaps facilitate better educational outcomes by providing

access to online learning resources, educational materials, and information on schooling

opportunities. This implies that mobile internet may play a role in reducing long-term human

capital inequalities, especially in rural or underserved areas.

VI Conclusion

The growing use and importance of internet access has had profound economic impacts across

the world. This paper has considered the impact of growing mobile internet access on household

wealth in the Philippines. We use the staggered rollout of cell towers and an instrumental variable

based on distance to the nearest submarine cable landing point for causal identification. Our

results show that mobile internet connectivity leads to higher household wealth. Our estimates
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represent local average treatment effects that exclude the most densely populated urban areas

where the instrument is relatively weak in strength. Within this sample, all groups appear to

benefit from mobile internet connectivity, with more pronounced effects observed in urban areas

compared to rural ones. We also find positive effects across varying levels of educational

attainment, with the magnitude of the effects increasing as education levels rise, although the

estimates are less statistically significant for higher education groups. Overall, our findings show

that mobile internet helps raise household wealth and that the gains are broadly shared.

We test mechanisms that these benefits of mobile internet connectivity likely operate through

its role as a fundamental component of modern infrastructure, and find that it stimulates

economic activities in crucial sectors which could generate employment opportunities. On the

other hand, our results indicate that mobile internet connectivity increases female labor force

participation in occasional and seasonal employment, while reducing engagement in year-round

jobs. It also appears to enhance human capital accumulation through improved access to

information and digital learning tools. Together, our findings underscore the multifaceted value of

digital connectivity in promoting inclusive economic development, and contribute to ongoing

debates about the distributional impact of mobile internet access (e.g., Hjort and Tian, 2025).

They highlight that there are important payoffs from investments in digital infrastructure but that,

while important, these investments are not enough. Complementary investments such as digital

skills training and improved access to mobile devices will help ensure benefits are more widely

and equitably shared.

The Philippines provides a useful setting for our identification strategy; however, caution is

warranted in generalizing the results beyond this context. As an archipelagic country, internet

access may play a more important role in connectivity and economic activity compared to more

geographically contiguous countries, which makes it well-suited for our approach. Moreover, the

Philippines’ service-oriented economy and its considerable reliance on remittances may shape the

relationship between mobile internet access and household wealth in ways that differ from other

settings. In addition, our findings reflect the rollout of a specific technology during a specific time

period, and these effects may not persist as technologies and usage patterns evolve. Nonetheless,

our results provide strong evidence that improved and more widespread mobile internet access

can contribute to increased household wealth. And a promising direction for future research would
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be to test the external validity of our findings by applying a similar empirical strategy in other

developing countries.
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FIGURES AND TABLES

Figure 1: Cumulative Number of Cell Towers in the Philippines Over Time, 2008-2022
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Notes: This figure shows the cumulative number of cell towers in the Philippines from 2008 to 2022,

categorized by radio types: GSM (2G), UMTS (3G), and LTE (4G). Our data includes a total of 265,246

georeferenced cell towers, sourced from the OpenCelliD database.

Source: Authors’ calculations.
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Figure 2: Mobile Internet Coverage Across the Philippines

Notes: This figure illustrates the spatial distribution of cell towers (represented by black dots) and the

proportion of population covered by mobile internet across provinces in the Philippines. To calculate

coverage shares, we overlay annual geospatial population data from WorldPop (2018) with cell tower data.

Coverage shares represent the percentage of population within a certain radius of cell towers relative to the

total population in each province. We define the coverage radius as 10 km for GSM towers, 5 km for UMTS,

and 3 km for LTE.

Source: Authors’ calculations.
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Figure 3: Landing Points of Submarine Cables Across the Philippines

Ready for Services

Before 2003
2003−2017
2017−2022

Notes: This figure illustrates the spatial distribution of submarine cable landing points across the Philippines,

color-coded by the year they became operational. Blue points represent landing points that were ready for

services before 2003, red points for those operational between 2003 and 2017, and orange points for those

that became active between 2017 to 2022.
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Figure 4: Schematic of Mobile Internet Density Measurement
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Notes: This figure provides a schematic representation of how we measure mobile internet density, defined

as the log of cell tower counts per 1,000 people across DHS clusters. To calculate the number of cell towers

covering these clusters, we generate buffers around the clusters (with a 10 km radius for rural clusters and

a 2 km radius for urban clusters) and around the cell towers (with radii of 10 km for GSM, 5 km for UMTS,

and 3 km for LTE). The cell tower count is determined by the towers whose buffers intersect with the cluster

buffer. We generate buffers around the clusters because their original locations are intentionally displaced

to protect privacy and prevent disclosure.

Source: Authors’ calculations.
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Figure 5: Mobile Internet Density and Distance to Nearest Landing Point
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Notes: This figure presents the relationship between mobile internet density and the distance to the nearest

existing submarine cable landing points across DHS clusters. Mobile internet density is measured as the log

of cell tower counts per 1,000 people (to address instances where cell tower counts are zero, we substitute

these values with one). To determine the number of cell towers covering DHS clusters, we create buffers

around clusters (with a radius of 10 km for rural clusters and 2 km for urban clusters) and buffers around cell

towers (with radii of 10 km for GSM, 5 km for UMTS, and 3 km for LTE). The cell tower count is based on

towers whose buffers intersect with the clusters’ buffers. The figure shows bin scatter plots of mobile internet

density against the distance to the nearest landing point of submarine cables, using 20 equally-sized bins,

weighted by population. We also break down cell towers by their radio types—GSM, UMTS, and LTE—and

calculate the corresponding measurement of mobile internet density across clusters.

Source: Authors’ calculations.
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Figure 6: Mobile Internet Density and Household Wealth, Varying Coverage Radius
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Notes: This figure plots the coefficient estimates for the impact of mobile internet density on household wealth. The dependent variable is household

wealth status, standardized from quintiles on a scale of 1 (poorest) to 5 (richest). The primary explanatory variable, mobile internet density, is

measured as the log of cell tower counts per 1,000 people within each DHS cluster; for clusters with zero cell towers, we replace zero values with

one to enable logarithmic transformation. For all specifications, we instrument mobile internet density using the Euclidean distance from the cluster’s

centroid to the nearest existing submarine cable landing point. The baseline results are replicated from columns (4), (5), and (6) of Table 2, where

the coverage radius is set at 10 km for GSM towers, 5 km for UMTS, and 3 km for LTE. To test the robustness of the results, we uniformly vary the

coverage radius for all cell tower types from 3 km to 10 km and replicate the same 2SLS regression specifications. Model 1 controls for factors at the

cluster level (an urban dummy, population density, nightlight luminosity, rainfall, temperature, and slope of terrain); Model 2 adds household-level

controls, including the number of household members, the age, gender, and educational attainment of the household head, while Model 3 further

controls for household mobile phone ownership. All specifications incorporate fixed effects for survey wave and province to capture temporal and

regional variations. Standard errors are clustered at the DHS cluster level, and sampling weights are applied to maintain representativeness. The

figure also presents the associated 95% confidence intervals. Baseline levels are marked by grey lines for reference.

Source: Authors’ calculations.
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Table 1: Exogeneity of Distance to Nearest Landing Point

Livestock Density

Pop. Density Nightlight Cattle Goat Pig Sheep Chicken

(1) (2) (3) (4) (5) (6) (7)

PANEL A: No Province FE

Distance -16.382*** -6.206*** -0.702 -0.161 -32.605*** 0.026 -302.846**

(6.086) (1.126) (0.982) (2.159) (7.939) (0.045) (136.668)

PANEL B: Province FE

Distance 3.857 -0.780 -0.906 0.283 1.536 0.030 102.449

(7.445) (0.767) (0.790) (1.244) (4.841) (0.028) (139.287)

Mean DV 117.14 13.66 15.59 26.43 98.97 0.24 1179.16

Observations 3184 3184 1824 1824 1824 1824 1824

Number of cluster 245 245 233 233 233 233 233

Notes: This table presents OLS regression results at the cluster level, using data from the 2003, 2017,

and 2022 DHS geospatial covariate datasets. The dependent variables are population density (thousands

per km2 ) in column (1), nightlight luminosity (0-63) in column (2), and specific livestock densities (heads
per km2) from columns (3) to (7). The primary explanatory variable is the Euclidean distance of DHS

clusters to the nearest existing submarine cable landing point. We use the full sample of both urban and

rural clusters to analyze population density and nightlight luminosity, while focusing exclusively on rural

clusters for the analysis of livestock density. Panel A presents results without province fixed effects, while

Panel B further includes them. All specifications incorporate survey wave fixed effects to account for

temporal variations. Standard errors are clustered at the province-by-wave level, and population weights

are applied. * significant at 10%, ** significant at 5%, *** significant at 1%.

Source: Authors’ calculations.

39



Table 2: The Effect of Mobile Internet Density on Household Wealth

Standardized Household Wealth Quintile

OLS 2SLS

(1) (2) (3) (4) (5) (6)

PANEL A: Second-Stage Results

Mobile internet density 0.023*** 0.019*** 0.016*** 0.202** 0.147** 0.145**

(0.009) (0.006) (0.006) (0.094) (0.067) (0.064)

Kleibergen-Paap Wald rk F statistic 21.02 20.77 20.74

AR Test p-value 0.01 0.01 0.01

Observations 53648 53648 53648 53648 53648 53648

Number of cluster 2308 2308 2308 2308 2308 2308

PANEL B: First-Stage Results

Distance -0.607*** -0.603*** -0.603***

(0.132) (0.132) (0.132)

Wave FE Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes

Cluster Controls Yes Yes Yes Yes Yes Yes

Household Controls No Yes Yes No Yes Yes

Mobile Phone Ownership No No Yes No No Yes

Notes: This table presents the results of OLS and 2SLS regressions at the household level, based on data

from the 2017 and 2022 DHS surveys, corresponding to periods of cell tower rollouts across the Philippines.

The dependent variable is household wealth status, standardized from quintiles on a scale of 1 (poorest) to 5

(richest). The primary explanatory variable, mobile internet density, is measured as the log of cell tower counts

per 1,000 people within each DHS cluster; for clusters with zero cell towers, we replace zero values with one

to enable logarithmic transformation. For 2SLS specifications, we instrument mobile internet density using the

Euclidean distance from the cluster’s centroid to the nearest existing submarine cable landing point. The table

includes Kleibergen-Paap Wald rk F statistics and Anderson-Rubin (AR) test p-values to evaluate the strength

and relevance of our instrumental variable. For 2SLS regressions, we report both first-stage and second-stage

results with Panel A and B. In columns (1) and (4), household wealth quintile is regressed on mobile internet

density, controlling for factors at the cluster level (an urban dummy, population density, nightlight luminosity,

rainfall, temperature, and slope of terrain). Columns (2) and (5) add household-level controls, including the

number of household members, the age, gender, and educational attainment of the household head, while

columns (3) and (6) further control for household mobile phone ownership. All specifications incorporate fixed

effects for survey wave and province to capture temporal and regional variations. Standard errors are clustered

at the DHS cluster level, and sampling weights are applied to maintain representativeness. * significant at 10%,

** significant at 5%, *** significant at 1%.

Source: Authors’ calculations.
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Table 3: The Effect of Mobile Internet Quality on Household Wealth, 2SLS

Download Speed Upload Speed

(1) (2) (3) (4) (5) (6)

PANEL A: Second-Stage Results

Mobile internet quality 0.208** 0.149*** 0.143*** 0.261** 0.187** 0.180**

(0.086) (0.057) (0.053) (0.119) (0.079) (0.075)

Kleibergen-Paap Wald rk F statistic 16.33 16.08 16.06 11.24 11.03 11.02

AR Test p-value 0.01 0.00 0.00 0.01 0.00 0.00

Observations 26722 26722 26722 26722 26722 26722

Number of cluster 1099 1099 1099 1099 1099 1099

PANEL B: First-Stage Results

Distance -0.782*** -0.774*** -0.774*** -0.621*** -0.615*** -0.614***

(0.193) (0.193) (0.193) (0.185) (0.185) (0.185)

Wave FE Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes

Cluster Controls Yes Yes Yes Yes Yes Yes

Household Controls No Yes Yes No Yes Yes

Mobile Phone Ownership No No Yes No No Yes

Notes: This table presents the results of 2SLS regressions at the household level, utilizing data from the 2022

DHS survey, which aligns with the period covered by the Ookla Speedtest database for mobile internet speed.

Panel A reports the first-stage results and Panel B the second-stage results. The dependent variable of the

2SLS regressions is household wealth status, which is standardized from quintiles on a scale of 1 (poorest) to

5 (richest). The endogenous variable is mobile internet quality, measured by the log of cell tower counts per

1,000 people multiplied by mobile internet speed (in mbps). Zero cell counts are replaced with one. The mobile

internet quality measure is constructed based on download speed in columns (1) to (3), and upload speed in

columns (4) to (6). The speed data are obtained from the Ookla Speedtest database. To assess mobile

internet quality around DHS clusters, we create buffers around clusters, with radii of 10 km for rural clusters

and 2 km for urban clusters, overlaying these with Ookla’s mobile internet speed raster data to calculate the

average speed within each buffer. Across all 2SLS specifications, mobile internet quality is instrumented using

the Euclidean distance from the cluster’s centroid to the nearest existing submarine cable landing point. The

table includes Kleibergen-Paap Wald rk F statistics and Anderson-Rubin (AR) test p-values to evaluate the

strength and relevance of our instrumental variable. Columns (1) and (4) includes controls for factors at the

cluster level (an urban dummy, population density, nightlight luminosity, rainfall, temperature, and slope of

terrain). Columns (2) and (5) add household-level controls, including the number of household members, the

age, gender, and educational attainment of the household head, while columns (3) and (6) further control for

household mobile phone ownership. All specifications include province fixed effects to account for regional

differences. Standard errors are clustered at the DHS cluster level, and sampling weights are applied to ensure

the representativeness of results. This analysis is limited to 2022, the only year in which DHS and Ookla data

overlap. * significant at 10%, ** significant at 5%, *** significant at 1%.

Source: Authors’ calculations.
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Table 4: Effects of Mobile Internet Density Across Urban and Rural Areas

Alternative DEGURBA Exclude Large Barangays

Rural Urban City
City and

Dense Town
<=95 <=90 <=85 <=80

(1) (2) (3) (4) (5) (6) (7) (8)

PANEL A: Second-Stage Results

Mobile internet density 0.071** 0.185 0.443 0.338 0.162 0.254* 0.182** 0.154*

(0.030) (0.174) (0.335) (0.220) (0.184) (0.146) (0.085) (0.081)

Kleibergen-Paap Wald rk F statistic 33.46 6.68 3.33 4.59 6.13 10.53 12.57 18.60

AR Test p-value 0.02 0.25 0.02 0.03 0.34 0.03 0.02 0.05

Observations 35154 18494 14773 20498 14134 10732 8069 5975

Number of cluster 1459 849 697 934 641 478 356 264

PANEL B: First-Stage Results

Distance -0.882*** -0.538*** -0.591* -0.487** -0.533** -0.687*** -1.047*** -1.331***

(0.152) (0.208) (0.324) (0.227) (0.215) (0.212) (0.295) (0.309)

Wave FE Yes Yes Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes Yes Yes

Cluster Controls Yes Yes Yes Yes Yes Yes Yes Yes

Household Controls Yes Yes Yes Yes Yes Yes Yes Yes

Mobile Phone Ownership Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table presents the results of 2SLS regressions at the household level, based on data from the 2017 and 2022 DHS surveys,

corresponding to periods of cell tower rollouts across the Philippines. The dependent variable is household wealth status, standardized

from quintiles on a scale of 1 (poorest) to 5 (richest). The primary explanatory variable, mobile internet density, is measured as the log

of cell tower counts per 1,000 people within each DHS cluster; for clusters with zero cell towers, we replace zero values with one to

enable logarithmic transformation. Across all specifications, we instrument mobile internet density using the Euclidean distance from

the cluster’s centroid to the nearest existing submarine cable landing point. The table includes Kleibergen-Paap Wald rk F statistics

and Anderson-Rubin (AR) test p-values to evaluate the strength and relevance of our instrumental variable. We report both first-stage

and second-stage results with Panel A and B. Columns (1) and (2) restrict the sample to households located in rural and urban clusters,

respectively. Columns (3) and (4) focus on urban clusters but using alternative definition of degree of urbanization. Column (3) limits

the sample to households located in Barangays (local administrative units at the third level in the Philippines) that are classified as

cities according to the Global Human Settlement Layer (GHSL) project. Column (4) expands the sample by including households

located in Barangays that are classified as dense towns by the GHSL project. Columns (5) to (8) focus on households located in

urban clusters but exclude those in Barangays with large population sizes (data come from the GHSL project) – specifically, excluding

Barangays whose population size exceeds the 95th percentile in column (5), 90th percentile in column (6), 85th percentile in column

(7), and 80th percentile in column (8). All regressions include controls for cluster-level factors, including population density, nightlight

luminosity, rainfall, temperature, slope of terrain, as well as household-level characteristics like the number of household members,

the age, gender, and educational attainment of the household head, as well as household mobile phone ownership. Fixed effects for

survey wave and province are incorporated to account for temporal and regional variations. Standard errors are clustered at the DHS

cluster level, and sampling weights are applied to ensure representativeness. * significant at 10%, ** significant at 5%, *** significant

at 1%.

Source: Authors’ calculations.
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Table 5: Potential Transmission Channels: Economic Sectors

Arts

and

Entertainment

Business

and

Professional

Services

Dining

and

Drinking

Retail

Travel

and

Transportation

(1) (2) (3) (4) (5)

PANEL A1: Second-Stage Results,

Exclude Clusters above 99th Percentile

Mobile internet density 0.145 0.693*** 0.758*** 0.608*** 0.749***

(0.149) (0.218) (0.206) (0.195) (0.234)

Kleibergen-Paap Wald rk F statistic 11.21 11.21 11.21 11.21 11.21

AR Test p-value 0.39 0.00 0.00 0.00 0.00

Observations 2037 2037 2037 2037 2037

Number of cluster 88 88 88 88 88

PANEL A2: First-Stage Results,

Exclude Clusters above 99th Percentile

Distance -0.806*** -0.806*** -0.806*** -0.806*** -0.806***

(0.241) (0.241) (0.241) (0.241) (0.241)

PANEL B1: Second-Stage Results,

Exclude Urban Clusters above 80th Percentile

Mobile internet density 0.070 0.557*** 0.685*** 0.503*** 0.633***

(0.188) (0.188) (0.184) (0.163) (0.179)

Kleibergen-Paap Wald rk F statistic 29.87 29.87 29.87 29.87 29.87

AR Test p-value 0.72 0.02 0.01 0.02 0.01

Observations 1586 1586 1586 1586 1586

Number of cluster 86 86 86 86 86

PANEL B2: First-Stage Results,

Exclude Urban Clusters above 80th Percentile

Distance -0.855*** -0.855*** -0.855*** -0.855*** -0.855***

(0.156) (0.156) (0.156) (0.156) (0.156)

Wave FE Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes

Cluster Controls Yes Yes Yes Yes Yes

Notes: This table presents the results of 2SLS regressions at the cluster level using data in 2017 and 2022,

coinciding with periods of cell tower rollouts in the Philippines. The dependent variables are densities of Points

of Interest (POI), categorized into Arts and Entertainment, Business and Professional Services, Dining and

Drinking, Retail, and Travel and Transportation, measured as the logarithm of the number of POIs per 1,000

people. For clusters with zero POIs, values are replaced with one to enable logarithmic transformation. The

primary explanatory variable across all regressions, mobile internet density, is measured as the log of cell tower

counts per 1,000 people within each DHS cluster; for clusters with zero cell towers, we replace zero values with

one to enable logarithmic transformation. Across all 2SLS specifications, we instrument mobile internet density

using the Euclidean distance from the cluster’s centroid to the nearest existing submarine cable landing point.

To assess the strength and relevance of the instrumental variable, Kleibergen-Paap Wald rk F statistics and

Anderson-Rubin (AR) test p-values are reported. Panel A excludes clusters located in Barangays with population

sizes exceeding the 99th percentile. Panel B excludes urban clusters located in Barangays with population sizes

exceeding the 80th percentile. Population data are sourced from the GHSL project. All regressions include

controls for cluster-level factors, including an urban dummy, population density, nightlight luminosity, rainfall,

temperature, and slope of terrain. Fixed effects for survey wave and province are incorporated to account for

temporal and regional variations. Standard errors are clustered at the province level. * significant at 10%, **

significant at 5%, *** significant at 1%.

Source: Authors’ calculations.
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Table 6: Potential Transmission Channels: Employment and Education

Employment Educational Attainment

All Female Employed Female Household Member

Currently Employed Employed in Past Year All Year Seasonal Occasional >=Secondary Education Year

(1) (2) (3) (4) (5) (6) (7)

PANEL A: Second-Stage Results

Mobile internet density 0.052** 0.049* -0.067** 0.048* 0.018* 0.045* 0.626*

(0.025) (0.026) (0.032) (0.029) (0.010) (0.027) (0.335)

Mean DV 0.50 0.59 0.71 0.24 0.05 0.76 10.57

Kleibergen-Paap Wald rk F statistic 21.31 21.31 24.94 24.94 24.94 22.80 22.80

AR Test p-value 0.02 0.03 0.01 0.05 0.05 0.07 0.03

Observations 42642 42642 24704 24704 24704 146309 146309

Number of cluster 2307 2307 2306 2306 2306 2308 2308

PANEL B: First-Stage Results

Distance -0.610*** -0.610*** -0.663*** -0.663*** -0.663*** -0.631*** -0.631***

(0.132) (0.132) (0.133) (0.133) (0.133) (0.132) (0.132)

Dataset IR IR IR IR IR PR PR

Wave FE Yes Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes Yes

Personal Controls Yes Yes Yes Yes Yes Yes Yes

Household Controls Yes Yes Yes Yes Yes Yes Yes

Cluster Controls Yes Yes Yes Yes Yes Yes Yes

Notes: This table presents the results of 2SLS regressions at the individual level using data from the 2017 and 2022 DHS surveys, coinciding with periods of cell

tower rollouts in the Philippines. Columns (1) through (5) investigate employment outcomes using the “Individual Record” (IR) datasets, which primarily focus

on women in households. The sample is restricted to women aged 18 and above. Columns (1) and (2) examine women’s employment status, using binary

dependent variables indicating whether a woman was employed during the seven days preceding the survey or at any point in the past 12 months. Columns

(3) to (5) focus on women who were employed at any point in the past 12 months, using binary dependent variables that indicate whether the respondent

was employed year-round, seasonally, or occasionally. Columns (6) and (7) explore the impact on educational attainment, utilizing the “Personal Record” (PR)

datasets, which provide individual-level information on household members. The sample is restricted to individuals aged 18 and above. The dependent variable

in column (6) is a binary indicator for attaining at least secondary education, while in column (7), it is the number of years of educational attainment. The primary

explanatory variable across all regressions, mobile internet density, is measured as the log of cell tower counts per 1,000 people within each DHS cluster; for

clusters with zero cell towers, we replace zero values with one to enable logarithmic transformation. Across all 2SLS specifications, we instrument mobile internet

density using the Euclidean distance from the cluster’s centroid to the nearest existing submarine cable landing point. To assess the strength and relevance of

the instrumental variable, Kleibergen-Paap Wald rk F statistics and Anderson-Rubin (AR) test p-values are reported. The table also provides the mean values of

the dependent variables for context. All regressions include controls for cluster-level factors—such as an urban dummy, population density, nightlight luminosity,

rainfall, temperature, and terrain slope—as well as household-level characteristics (e.g., number of household members, and the age, gender, and educational

attainment of the household head) and individual-level characteristics, including age, gender, and marital status. Fixed effects for survey wave and province are

incorporated to account for temporal and regional variations. Standard errors are clustered at the DHS cluster level, and sampling weights are applied to ensure

representativeness. * significant at 10%, ** significant at 5%, *** significant at 1%.

Source: Authors’ calculations.
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