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Abstract

In the urban hierarchy, what do different types, or tiers of human settlement do and what are
their competitive versus complementary relationships to each other? We specify a hierarchy
model of settlements and, in novel work, estimate the spatial relationships between them
econometrically for sub-Saharan African countries. The paper uses satellite data to determine
the number and extent of settlements (based on built area), from mega-cities down to hamlets.
Settlements in different tiers of size generally specialise in different activities. Wemodel this by
supposing three settlement types: agricultural, agro-processing and traditional manufacturing,
and higher order activities including business services and modern manufacturing. We ground-
truth this production pattern by tier for 8 African countries for which data are available. Given
many dispersed agricultural settlements, the model predicts regular spacing of agro-processing
settlements, and of fewer and larger manufacturing/service settlements. This pattern is driven
by a competitive relationship between settlements of the same type (competing for production
inputs and in outputmarkets) and a complementary relationship between settlements of different
type (producing different goods in an input-output structure). We then turn to looking at city
growth from 2000–2014 for 27 African countries, defining tiers empirically by what best
explains patterns of growth under forces of competition and complementarity. In examining
the relationships across cities in different tiers, we find a larger neighbour in the same tier
impinges on own size, or cities are in a competitive relationship within their own tier. On the
other hand, proximity to a larger settlement of a different tier than their own enhances size,
revealing a complementary relationship across tiers.
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1 Introduction

Urbanization in sub-Saharan Africa is proceeding rapidly, yet little is known about the hierarchical
structure of its urban systems. Existing empirical work in different contexts has focused largely
on the role of large cities or on whether smaller cities suffer from being in the “shadow” of urban
giants (e.g., Hornbeck et al. (2024) or Cuberes et al. (2021)). What is missing is a systematic
understanding of how settlements of different sizes interact—whether they compete or complement
each other within an urban hierarchy.

The paper studies the urban hierarchy for countries in sub-Saharan Africa. The region offers rapid
urban growth, widespread small and informal settlements, and limited transport infrastructure.
These make interactions across settlements in different tiers in a hierarchy within a country particu-
larly important. 1 Analysis of Africa will provide methodological and conceptual insights relevant
to other developing regions undergoing structural transformation. Also, for Africa and some other
regions where there is non-detailed, scarce, or uneven population data, the study will highlight the
value of satellite-based measures of the built environment.

We develop a theoretical model of an urban hierarchy and then estimate key relationships in the
hierarchy. We have two principal interests. One is to identify a hierarchy for a large set of countries.
Second is to show how interactions between settlements of different sizes and types, i.e., tiers in the
hierarchy, are shaped by patterns of competition and complementarity. We find that settlements in
the same tier are in competition, such that an increase in the size of one detracts from the sizes of
neighbours of the same type. However, an increase in the size of a settlement benefits neighbours
of other types, so settlements in different tiers complement each other. This is the first evidence of
these competition versus complementarity effects and the first empirical estimation of an economic
model of an urban hierarchy, that we know of.

We proceed in several stages. First, we describe the data and some of the technical issues involved in
defining settlements as non-random clusters of built pixels. We briefly characterise the resulting size
distribution of settlements. Akin to de Bellefon et al. (2020), who look at the built environment in
France historically, we use satellite data on the built environment largely because of the low quality
of sub-national population data for much of sub-Saharan Africa. Using the built environment data
frees us to look not just at urban giants, but also at small and even tiny settlements of which there
are thousands.

We then turn to conceptualising urban hierarchies. We were initially influenced by recent papers

1We use the term “settlement” to encompass built areas of all sizes.
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on growth in the shadows of urban giants, such as Hornbeck et al. (2024), Cuberes et al. (2021),
Beltràn Tapia et al. (2017), and Bosker and Buringh (2017). These papers explore whether smaller
cities benefit or suffer from being near larger cities, given opposing competition andmarket potential
effects, with Cuberes et al. (2021) arguing that which effect dominates the other changes over time in
the USA. In exploring this notion for Africa in Henderson et al. (2022), while some of our empirical
results suggest shadows may be an issue, we concluded that something more fundamental was at
work, invoking notions of an urban hierarchy, as proposed in Lösch (1954) with modelling in Fujita
et al. (1999) and Tabuchi and Thisse (2011), drawing on the new economic geography literature
(Krugman, 1991).

In Section 3, we develop a theoretical model of an urban hierarchy in which each settlement can
perform three possible functions. Some settlements are agricultural, using land and labour to
produce output which is costly to transport. Some are “market/agro-processing” towns which use
agricultural inputs and labour to produce consumption goods that have lower transport costs than
unprocessed agricultural output. The final type are manufacturing/service cities which use labour to
produce easy-to-ship final or intermediate goods. The ensuing structure of input-output and trade
links between settlements creates patterns of complementarity and competition between places.
Settlements can develop at any place on the geographical space and movement of labour generates
a structure of settlements with many small agricultural settlements, a smaller number of larger and
approximately equally spaced market/agro-processing towns; and a still smaller number of large,
and approximately equally spaced, manufacturing/service cities. This spatial pattern emerges as
settlements in the same tier are in a competitive relationship with each other whereby a shock to
one reduces growth in near neighbours of the same type, while settlements in different tiers are in
a complementary relationship whereby a shock in one increases growth in a near neighbour in a
different tier.

Next is estimation based on the model. We derive the urban hierarchy for the 3-tier structure from
the model for a set of 27 sub-Saharan countries. In determining the tier structure, we specify a
city growth model, where growth of a city in a tier is driven by changes in its market access to
cities in different tiers of the hierarchy and the relationships of complementarity and competition.
In determining the cut-offs for a tier structure for cities ordered by size, we estimate individual
country cut-offs between different tiers and choose the structure that maximises explanatory power.
We ground-truth the structure of the hierarchy derived from the growth specification. For eight
countries, we have data at the sub-national level on employment in three sectors which correspond
to those in the model: agriculture, manufacturing and other secondary activity, and the tertiary
sector. Although the production data are crude, we show that production patterns of sub-national
areas across these three sectors line up pretty well with the urban hierarchy of tier 1, 2 and 3 cities.
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Empirically, we think of tier-3 settlements as heavily involved in agricultural production and tier 1
as more involved in manufacturing and services, where business services are the fastest-growing
sector in most countries in sub-Saharan Africa (Henderson and Kriticos, 2018).

For city growth equations, changes in market access come from both changes in neighbours’
income and by changes in travel times between cities. We start with OLS results and also look at
this decomposition between income and travel time effects. Then we turn to IV estimation. The
IV estimation is challenged by the complexity of the model with a tier structure and the limited
quality of the road travel time data in more recent times. Exogenous variation in market access
comes from shocks to revenues of their nearby mines and to road improvements from roads that
are further from the own settlement as in Jedwab and Storeygard (2021). Generally, OLS and first
and second stage IV results are strong and plausible. As predicted by the model, settlement sizes
in the data are negatively affected if settlements are close to larger neighbours in the same tier with
which they compete. However, own sizes are generally positively affected if settlements are close
to larger settlements in other tiers which are complementary.

The remainder of the paper is structured as follows. Section 2 introduces the settlement data.
Section 3 develops the model of urban hierarchy. Section 4 presents the empirical strategy and
OLS results, while Section 5 addresses identification. Section 6 reports on industrial composition
of the hierarchy structure and reports the IV estimates. Section 7 concludes.

2 Data

Our primary data are based on the European Union’s Global Human Settlements built cover data
set, GHS-BUILT, that defines built surface derived from Landsat 30-meter resolution satellite data
for different dates: 1975, 1990, 2000, and 2014. There is a companion data set on the spatial
distribution of population from Gridded Population of the World [GPWv4], but we work with built
cover in preference to population data for several reasons. First is accuracy. The GHS population
data allocate administrative unit census population to the built cover data, smearing population
into commercial or industrial buildings and roads (impermeable surface), as well as residential
buildings. Smearing across areas of built cover is a crude procedure to determine where people
actually live. Accuracy is particularly poor if administrative units for population are large, as is
typically the case in Africa. Of the 12.9 million input population polygons worldwide in GPW,
10.5 million are in the United States, so accuracy for the USA is much higher than in much of the
world. Equally compelling for some African countries, census population numbers are irregularly
recorded and of questionable accuracy. While population numbersmay be poorly and inconsistently
measured across countries and time, built cover is more consistently measured. Thus, we use built
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cover rather than trying to ascertain where residential population lives.

In recording built cover, a 30×30 m pixel is built or not, and built area is simply the area covered by
the built 30 × 30 m pixels. In working with 30 × 30 m resolution data, for computational purposes
we aggregate to 210 × 210 m size super-pixels, summing from 30 × 30 m built pixels to get the
built area of the super-pixel. The key decision, given all the built pixels in a country, concerns
what comprises a settlement. Implicit is the idea that built pixels could be randomly located (rural)
bits such as huts or hamlets within a country, but some subset are agglomerations or clusters that
define a settlement. Settlements have high density values compared to a counterfactual: higher
than the expected intensity of clustering, beyond what one would find on a “dartboard” (Ellison
and Glaeser, 1999).

To proceed, we follow de Bellefon et al. (2020). As described in Appendix A, we use a smoothed
surface to capture disconnected parts of built pixels within a settlement, so each super-pixel has a
smoothed density from the surrounding area and itself. Super-pixels further from the own-pixel
are discounted by distance up to a maximum of 2.3 km. Most super-pixels will have zero share
of built area for themselves and surrounding pixels, meaning that the pixel is deemed not built.
The normalised maximum is 1, in which case everything around the super-pixel and itself is built.
Details are in Appendix A.

Next, we need a density cut-off or threshold to determine what is a significantly high degree of
density. For this we must pose a counterfactual. In a similar vein to de Bellefon et al. (2020), we use
a fixed large square area divided into pixels which we treat as a hypothetical country. We randomly
allocate built pixels across this area. The number of allocated built pixels and counterfactual
distribution varies by country, according to the share of actual built pixels within each country’s
total count in 2014.2 Then for each counterfactual built-up density, we calculate its smoothed
built-up density, as we did for the real spatial distribution. We bin the smoothed built-up in 10000
bins (many bins being 0). We repeat this process 500 times and sum up the counts in each bin to
generate a stable distribution by leveraging the law of large numbers. The threshold we use for
each country is the 95th percentile in the counterfactual built-up distribution. These cut-offs for
each country are shown in Figure A2 in Appendix A. They range from a value close to 0 to about
0.006 for the smoothed share density threshold value. While that may seem small even at the upper
end, in Appendix A we show that it makes a huge difference to what are defined as the extents of
settlements, using Accra as one example.

2We did not use pixel-wise distribution to ease computational burdens, since we are dealing with a much larger
area in Africa.
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Finally, we need to define settlement areas. For each country, we take all contiguous super-pixels
with smoothed density above its threshold and agglomerate them into a shell that defines the
boundaries of the settlement. For coastal settlements, for example, there is some infill for non-built
super-pixels on the coast surrounded by built surface. Then for this shell, the size of the settlement
is the actual built area within the shell, based on the sum of all 30 × 30 m built pixels within the
shell. Figures on numbers and size of settlements by country are given in Appendix Table A1. To
give a sense of our settlements, in Appendix Figure A1 we depict the greater Accra area showing
Accra distinguished from its satellite settlements.3 In the hinterland, many built pixels are shown
that are not urban and are masked out by the 95th percentile cutoff.

Table 1 depicts the summary of our 2014 data for Africa as a whole, covering 43 countries. Table
A2 shows the corresponding data for 1975. Table 1 divides the data into 10 bins of (almost) equal
share of total built area. Shares and total built area (in sq. km.) in each bin are given in columns
7 and 4 respectively. Because settlements are an integer count it is not possible, especially at the
upper end with large cities, to get exactly 10% in each bin. Size categories and the minimum and
maximum settlement sizes in each bin are given in columns 1-3. The largest city in the sample
(1370 sq.km.) is about 52% of its bin total built area (2649 sq. km.).

There are two sets of notable facts in the table. First, smaller settlements can be as small as a single
30 × 30 m grid square of built area (size: 0.0009 sq. km.). In the first bin the maximum size is
just 0.25 sq. km. of built area. Those small settlements account for 94.5% of the total 111469
settlements in the sample in 2014. Second, shell area, or the land area of settlements within their
boundaries as defined in the algorithm used to characterise settlements is large, compared to the
area of actual built pixels, especially for smaller settlements.

In the growth formulation we focus on growth from 2000 to 2014 for two reasons. First, the satellite
imagery is more accurate and based on higher resolution information in the more recent time
periods. Second, we want to control for historical own size, to help in identification. We restrict the
sample to the 37007 settlements in 2014 that exist in 1975. There are 47519 settlements in 1975
from Table A2 but about 10500 merge into other (bigger) settlements. The 2014 sample in Table
1 consists of the 37007 plus 74462 births, or new cities since 1975. Of these births since 1975,
in 2014, 99.4% remain in the bottom built-area decile in Table 1. Thus, our sample restriction to
choose cities that survive since 1975 does eliminate many tiny settlements. These may be of less
interest and should be of little consequence for market access measures for other cities. We did

3The more intense the colour, the greater is the built-up area in the figure. The greater Accra area and some satellite
cities are outlined in blue. Also outlined within Accra are unoccupied areas such as forest preserves, salt ponds, or
lakes.
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check that if we use the sample of 2000 cities for growth from 2000 to 2014 (with then no control
on lagged own sizes), results are similar for the two samples. The details of transition matrices and
the evolution of built settlements over time, as well as other aspects such as Gibrat’s Law and the
rank size rule are in Henderson et al. (2022). They are not central to this paper.

We now turn to modelling an urban hierarchy, which will inform the empirical implementation.

3 The Geographical Pattern of Settlements: A Model of Urban
Hierarchy

The central idea is that hierarchical patterns of settlements arise, with a particular geographical
distribution, as a consequence of a pattern of competing and complementary interactions between
settlements specialising in different sectors or functions. Competing, as places may supply similar
outputs (goods that are close substitutes), and compete for similar primary inputs. Complementary,
as places may produce quite different goods and services which are supplied to households in
nearby locations, and are also used by firms as intermediate inputs. Demand from neighbours
creates a demand or backwards linkage, and access to supply of intermediate inputs constitutes a
cost or forwards linkage.

We capture this in a model with three different sectors which correspond broadly to activities in
developing countries, in which primary sectors of production employ a large part of the labour force.
Sector 3 is agriculture, using land and labour to produce goods that go both to final consumption
and further processing, but are costly to ship (bulky or prone to rapid deterioration). Sector 2 is
agro-processing, or more broadly manufacturing activities that support the agricultural sector; it
uses sector 3 output as an input, and its output (such as processed food products) is less costly to
ship. Sector 1 is modern manufacturing and services, outputs that are also relatively easy to ship
between places.

A starting question is, where do these sectors locate? We suppose that there are many possible
locations, each ex ante identical (endowed with the same amount of land and technology) and that
labour is perfectly mobile between places and sectors. Starting from a position in which all places
are identical we show how a pattern of settlement emerges, with settlements becoming of different
types, i.e., specialising, at least partially, in different sectors. There is regularity in the spacing of
settlements of different types, with types having different sizes and spatial frequencies. Along the
path to this outcome settlements grow faster if they are near to settlements of different types and
remote from settlements of the same type.
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3.1 Model Structure:

We set up the model for a general input-output structure and geographical space. Results come from
simulation and details of implementation and parameters are given in the following sub-section.

There are N points (or places) in a geographical space, labelled with subscripts i, j . The distance
between two places is 38 9 , this underpinning the costs of shipping goods and services around the
space. Each place has a fixed endowment of land. There are three sectors of production, as outlined
above, indexed by superscripts s, r = 1, 2, 3. There is place and firm specific product differentiation,
represented by CES modelling of differentiation.

Sectoral demand: The price index for sector s products sold in place i is the usual CES aggregator,
%B
8
,

%B8 = [
∑
9

=B9 (CB98?B9 ) (1−f
B)]1/(1−fB) , s = 1, 2, 3, i = 1....#. (1)

The price and number of varieties produced in place j are ?B
9
and =B

9
, CB
98
is the iceberg trade cost

factor shipping from j to i, and fB is the elasticity of substitution between sector s varieties. All
these variables and parameters are sector specific. The value of demand for sector s output in place
j is � B

9
, so total demand (across all locations) for a sector s variety produced in place i is

GB8 = (?B8 )−f
B
∑
9

� B9 (%B9 ) (f
B−1) (CB8 9 ) (1−f

B) , s = 1, 2, 3, i, j = 1....#. (2)

Production: Production uses primary factors (labour and, in sector 3, also land) and intermediates
with Cobb-Douglas technologies, so has unit cost functions (equal to price)4

?B8 = (FB8 ) (1−0
1B−02B−03B) (%18 )0

1B (%28 )0
2B (%38 )0

3B
, s = 1, 2, 3, i = 1....#. (3)

The exponents 0AB are the value share of sector r in production of sector s and FB
8
is the place i

sector s price of primary factors. This allows for all sectors to be used as input to all other sectors,
although we will set some of these input-output coefficients to zero in what follows. A key link is
032, the input of primary in agro-processing, sector 3 to sector 2.

Sectors 1 and 2 (agro-processing, manufactures and services) are monopolistically competitive,
with an endogenously determined number of firms each producing a distinct variety which breaks

4Equation (3) is average cost at unit scale of production.
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even when producing and selling one unit of output, so

GB8 = (?B8 )−f
B
∑
9

� B9 (%B9 ) (f
B−1) (CB8 9 ) (1−f

B) = 1, B = 1, 2, i = 1....#. (4)

Labour is the only primary factor used in these sectors, so Eqs. (3) and (4) can be thought of as
defining a wage equation, i.e., giving the value of FB

8
at which firms break even, as a function of

price indices, numbers of varieties, and expenditure levels throughout the economy.

Sector 3 is agriculture, and we give it a slightly different and simpler treatment. Each place is
endowed with the same quantity of land and uses land and labour with fixed coefficients to produce
a fixed quantity of a single place specific variety.5 Sector 3 employment, !3, is therefore the same
everywhere and, in equations (3) and (4) =3

8
= 1, and G3

8
takes fixed value, G3. However, since

demand may vary across places, so too does the market clearing price of each place’s agricultural
variety, ?3

8
, and hence also F3

8
, the return to primary factors, labour and land. This return could be

divided between a wage and a rent component but, since much African land is operated by family
farms under traditional communal land tenure, we leave it as a combined return to labour and land.
We assume that the return is large enough to retain !3 units of labour in each place.

Income and expenditure: Wage bills in each sector and place are the share of labour in the value of
output,

FB8 !
B
8 = (1 − 01B − 02B − 03B)=B8 ?B8 GB8 , B = 1, 2, 3, i = 1....#. (5)

where, as noted above, in sector 3 this takes the form F3
8
!3 = (1−01B −02B −03B)?3

8
!3, with F3

8
!3,

interpreted as a combined return to land and labour. Summing across sectors, total income in each
place, . 8, is given by

.8 = F
1
8 !
1
8 + F28 !28 + F38 !3, i = 1....#. (6)

Expenditures in each place i on products of sector s come from final and derived demands and are

� B8 = `
B.8 +

∑
A=1,2,3

0BA=A8 ?
A
8 G
A
8 , B = 1, 2, 3, i = 1....#. (7)

where consumer preferences are Cobb-Douglas, with sector shares `B. The consumer price index
in each place, %8, and per worker utility in each place-sector pair, DB8 , are therefore

%8 = (%18 )`
1 (%28 )`

2 (%38 )`
3
, DB8 = F

B
8 /%8, B = 1, 2, 3, i = 1....#. (8)

The total labour force is fixed at L, of which #!3 workers are engaged in agriculture, and the

5This is “Armington” product differentiation, in contrast to the firm-specific differentiation of sectors 1 and 2.
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remaining ! − #!3 are perfectly mobile between sectors 1 and 2 and all places. It follows that all
places that have employment in either sector 1 or 2 have equal values for DB

8
, s = 1,2, with utility

less than or equal to this in places-sectors where there is no employment in these sectors.

Before moving to implementation of the model a few further comments are in order. First, all places
– including large settlements with manufacturing or agro-processing – also have agriculture, sector
3. This is partly for simplicity, but also supported by evidence on widespread agricultural output
produced in African urban areas Henderson and Kriticos (2018). Second, land is not explicitly
modelled, except as an input to agriculture, where it is combined in fixed proportions with labour.
Neither rent, nor amenity or congestion, enter consumer utility. This is for simplicity, although
it also reflects the difficulty of modelling African land tenure across the range of settlements we
study. Third, product differentiation and variety effects create agglomeration and spatial structure
in this model, exactly as in the basic core-periphery model (Krugman 1991, and its extension to
intermediate products in Fujita et al. 1999). The model is isomorphic to one in which the number
of varieties is fixed and replaced by technological agglomeration externalities.

3.2 Implementation

We use numerical simulation to track the evolution of the system of settlements, focusing on several
stylised cases. The simplest, and that which yields the greatest symmetry is to assume that places
are located on the circumference of a circle – the racetrack economy – with radius of unity and
distance between places measured around the circumference. For a richer picture we also show
results for places on a hexagonal lattice set on a (near) circular disk. This has the advantage of being
a two-dimensional space, but is complicated by having an edge (i.e., not being a featureless natural
geography). Transport costs are assumed to be exponential in distance, CB

8 9
= 4G?(−CB38 9 ), as in

much of the theory (but not empirical) literature. For clarity, we present results only for the case
in which just one of the input-output linkages is switched on, that of agricultural supply to agro-
processing, so 032 > 0. Agricultural products from each place are assumed to be close substitutes
(fB = 20) with high transport costs, such that shipping just 6 degrees around the circumference of
the circle loses 50 percent of output. Elasticities of substitution and trade costs are lower in the
other two sectors, and a full list of parameter values is given in Appendix C.

Our main experiment is to start this model from an equilibrium in which all places are identical,
so employment in each sector is uniformly distributed across space. This is an equilibrium which
is stable if trade costs are all very high, making each of the places autarkic. Spatial reorganisation
is initiated by (a) reducing trade costs to a point at which this equilibrium is unstable, and (b)
perturbing the equilibrium by a small random redistribution of the labour force, and having labour
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move in response to utility differences between sectors and places, DB
8
.

The ensuing long-run equilibrium is illustrated in Figure 1. The top panel is the racetrack economy,
and has N = 600 places on the horizontal axis, the two ends connecting around the circle. Employ-
ment in sectors 1 plus 2 is on the vertical, (employment relative to mean employment in settlements
and measured in log units, so 0 is the mean). Agricultural employment !3, (tier-3 activity in the
data) takes place everywhere and is not shown on the figure. Sectors 1 and 2 each concentrate in
subsets of places, constituting tier-1 and tier-2 settlements, noting that tier-1 settlements contain
both sector 1 and sector 2, while tier-2 settlements have only sector 2. Sector 1 operates in just
four evenly spaced places and these are relatively large, the tall spikes in the figure. Sector 2
operates in these places and also in the 24 places indicated by the smaller spikes. The reason for
concentration is the usual home-market effect, as consumers are attracted to places with a large
supply of locally produced varieties, and firms are attracted to the large market created by these
consumers. The relatively larger number of tier-2 places arises because sector 2 uses sector 3 output
which is produced everywhere and is particularly costly to transport. Since it operates in more
places, tier-2 settlements are (ceteris paribus) smaller than tier-1 settlements. In short, there are
many “market towns” (tier-2 settlements) fairly evenly spread since they are supplied by dispersed
agriculture, and fewer but larger manufacturing/service cities.

Figure 1 was generated by a small random perturbation of employment causing the system to evolve
away from a uniform distribution of activity. Different simulations with the same parameters but
different initial (small) perturbations all produce a very similar outcome for reasons first expounded
(in a different context) by Turing (1952) and applied to the spatial context by Fujita et al. (1999).6
The bottom panel of Figure 1 is a similar equilibrium, constructed with the same parameters but
now with the geographical space being an entire disk, rather than just its circumference. The largest
settlements ( tier-1) are yellow shading to orange, smaller ones (tier-2) light-blue, and sector 3
(agriculture only) everywhere (dark-blue). A clear structure of settlements has emerged, with a
central large tier-1 settlement, a further 8 such settlements further out with regular spacing (and
rotational symmetry of order 4) and “market towns” (18 tier-2 settlements) interspersed between
them.

Sensitivity of resultswith respect to key parameters is explored inAppendixC. Lower transport costs
for primary output (sector 3) leads to fewer and larger tier-2 settlements as the benefits of locating
agro-processing very close to agriculture are reduced. Lower transport costs for agro-processing

6Figure 1 displays an extreme degree of regularity that does not hold generally. Tier-1 and tier-2 settlements form
at different frequencies, and the example in Figure 1 is constructed such that they mesh together in a regular way (i.e.,
24 type-2 divided by 4 tier-1 is an integer).
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(sector 2) increases the number of tier-2 settlements; proximity to consumers of output in tier-1
cities is less important than proximity to suppliers of inputs from tier-3 agricultural settlements.
Lower transport costs for sector 1 reinforces agglomeration, increasing the size and reducing the
number of tier-1 settlements. Similar experiments can be conducted with other parameters. The
input-output linkage between sectors 2 and 3 is important, and reducing this below a critical point
causes sectors 1 and 2 to co-locate, so there are no distinct tier-2 settlements.

Complementarity and competition between settlements is illustrated by perturbing one settlement
and seeing its implications on neighbours. For example, raising productivity in a single tier-2
settlement, holding employment in all other places constant, has the effect of reducing utility in
nearby tier-2 settlements, and raising it in nearby tier-1, the competing and complementary effects
we expect. Letting employment in other places change in response to these utility differences
creates spatial waves or ripples of activity. Nearby tier-2 places contract, their contraction causing
places further away to expand, and so on. Since there is no sunk capital in the model, changes
of this type may well cause settlements to move, i.e., some places empty out completely, and new
settlements form.

For the following empirical analysis we need a quantitative measure of how the size of each
settlement varies with proximity to other settlements in the same and in other tiers and we use the
theory to suggest how to do this, working with place/sector employment in the theory, and with
settlements’ built area in the empirics. We measure place i’s proximity to sector r employment in
other places j as

∑
9≠8 \8 9!

A
9
assuming, in this section, \8 9 = 4G?(− 38 9 ). Figure 2 (4 panels) uses

repeated simulations to construct scatter plots of sector s employment in each place as a function of
proximity to employment in the same and other sectors, r. The scatter plot in the upper-left panel
has employment in sector s = 1 (!1

8
, in places where it is positive) on the vertical axis, and proximity

to other places’ sector s = 1 activity on the horizontal, while the lower left has !1
8
, against proximity

to sector s = 2 employment. The plots combine 5 separate runs of the model, each with different
random draws of productivity levels in each place, so the number of data points is the sum of all
tier-1 settlements in the 5 runs, or 40 size and proximity pairs. The negative relationship in the
upper panel illustrates the competing relationships that we expect between settlements of the same
type, and the positive relationship in the lower panel illustrates the complementary relationship
between different settlements of different types. The right hand column gives the relationships
for sector 2 employment, !2

8
. In short, competing and complementary interactions show up with

negative same-sector and positive cross-sector effects.

This suggests regressions of the form !B
8
= UB + VBB∑ 9≠8 \8 9!

B
9
+ VAB∑ 9≠8 \8 9!

A
9
+ DB

8
, A, B = 1, 2.

Using the simulation output in the scatter plots gives significant negative own effects, VBB, and
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significant positive cross effects, VAB. The empirical work in the next section takes the African data
to regressions adapted from this model.

4 Competition and Complementarity in the Urban Hierarchy:
Correlations

In this section, we describe and report results from an empirical estimation of the model from
Section 3. We work with three types of settlements, which represents the maximum differentiation
we are comfortable with empirically given the data, and also aligns with the model. We first present
the empirical specification and then the results. Description of the assignment of settlements into
tiers is postponed until section 4.2.1.

4.1 Specification of the Basic Model

For each country, we categorise settlements by the size of their built area into three tiers, denoted
as G, H = 1,2,3. For settlements of each type, we aim to determine the effect of proximity to other
settlements of the same type (i.e., � = �), and to settlements in different tiers (� ≠ �). The log
of built area for settlement j in tier-G is ;=+�

9
, and we define

"���8C =
∑

9∈�,8≠ 9
\8 9 C ;=+

�
9C , G, H = 1, 2, 3. (9)

"���
8C

captures the market access of settlement i in tier-H at time C to settlements in tier-G and
is the weighted sum of the log built area of settlements j in tier-G, ;=+�

9C
. Built area is a measure

of scale, or economic mass of neighbours in tier-� to city 8. These terms will be used to capture
interactions between settlements in different tiers. For cities in the same tier where G = H, we
exclude the own effect, so 8 ∉ �. In this equation, \8 9 measures the proximity of settlement i to
j, which we will define later as \8 9 = (1 + g8 9 )−W where g8 9 is travel time from 8 to 9 and W is a
parameter from the literature, capturing the rate at which interactions diminish with travel time.

The extension of the approach suggested by theory gives model equations for settlements i in each
tier-H,

;=+�8C = U
� + V1�"�1�8C + V2�"�2�8C + V3�"�3�8C + [8 + `�C + -8C + n8C , � = 1, 2, 3. (10)

In (10), cities in tier-� experience market access effects separately from cities in each of the 3 tiers,
where we expect these effects, the V’s, to differ by tier. We will estimate this equation as a simple
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first difference between 2000 and 2014, which eliminates the area fixed effect [8 and the Δ`�C will
be part of the constant term. Control variables -8C are discussed below. Thus, the OLS formulation
becomes:

Δ;=+�8C = 0
� + V1�Δ"�1�8C + V2�Δ"�2�8C + V3�Δ"�3�8C + Δ-8C + n8C , � = 1, 2, 3. (11)

We note that one can decompose the Δ"���
8C

impact using a first order Taylor series expansion into
a change in built mass (an “income” effect),

∑
9∈� \8 9 C−1 [+�9C −+�9C−1]/+

�
9C−1, and a change in travel

time effect,
∑
9∈� −W [g8 9 C − g8 9 C−1] (1 + g8 9 C−1)−(1+W);=+�9C−1. Given the difficulties in measuring

historical travel times across African countries in the final data set, this decomposition will be
instructive.

The coefficients of interest are the nine V coefficients. The estimated coefficients V�� capture the
effect on built-up area of tier-H of market access to settlements in tier-G. From the model, we
expect V11, V22, and V33 to be less than 0. This would be evidence of competition effects, or that
settlements of the same type are in a competing relationship with each other. We expect V�� > 0
for � ≠ �, indicating that settlements of different types complement each other: a positive shock
to a city in � generates greater demand for products of a settlement in tier-�, thus enhancing that
tier-� city’s size.

To obtain travel times, we utilised Michelin map data kindly shared by Jedwab and Storeygard
(2021) covering 40 years. We assign a travel speed of 80 km/hr to highways, 60 km/hr to paved
roads, 40 km/hr to improved roads, 12 km/hr to dirt roads, and 6km/hr when there are no roads
and any remaining distance is straight line. We calculate the quickest route between all 8 and 9

within a country using the Dĳkstra’s algorithm. The discount factor, W, is based on Donaldson
(2018)’s basic elasticity of trade costs (represented by travel times) with respect to transport costs
of trade, which is 0.169. We then need to multiply this by the elasticity of trade flows with respect
to trade costs, which varies widely in the literature. Following Milsom (2023), we use the figure
from Donaldson and Hornbeck (2016) (ftn, 55) of 3.8. The W we use is 0.169*3.8, or 0.64. One
remaining issue is units of travel time. Travel time is measured in minutes. In the results in the
text, we divide by 900 or measure g8 9 in units of 15 hours. Given these assumptions, for a day’s
truck drive, say 12 hours, economic activity a day away is discounted by 31% and for 36 hours by
54%. In robustness checks, we will discuss results with overall sharper discounting and different
patterns of discounting such as sharper at short distances and milder at longer ones.

The system above is described for any single country. In implementation we assume that spatial
interactions occur only within country, so \8 9 = 0 for i, j, based upon the very high border cost
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within Africa (e.g., Conte (2025)). We then estimate Eq. (11) separately for each country in our
African sample, yielding different U, V coefficients for each country. We drop countries that have
less than 200 settlements total and we lose more because of lack of data and drop the DRC because
of very poor quality road data. In total we have 27 countries.

4.2 OLS Results

We start with OLS results. To do that we need to derive a tier structure. We describe the procedure
as we do it for OLS; but, to avoid repetition, we delay a detailed description of the tier structure
until we derive the one under IV estimation. They are similar.

4.2.1 Procedure for Deriving a Tier Structure

To derive a tier structure for each country we first rank all settlements by built-up in the initial
period, 2000, from largest to smallest, then obtain the cumulative built-up. We define groups based
on the cumulative share of built-up, using fractions :1 and :2. For the first group, :1 sets the
largest settlement in tier-1 to be the cut-off settlement such that the accumulated share of built-up
for all tier-1 settlements is strictly equal or less than :1. The second group includes the next-ranked
settlements up to the point where the cumulative share of built-up reaches :2; that cut-off defines
tier-2 settlements (between :1 and :2). The last group includes the rest of the settlements. After
some experimentation (noting how much of national built area the primate city takes up in each
country), to choose the best :1 and :2 pair, we iterate :1 from 0.75 to 0.95 with 0.01 as the interval
and :2 from 0.90 to 0.995 with 0.005 as the interval, thus defining 420 possible divisions.

For each :1, :2 cut, we estimate each of the 3 equations and calculate the sum of squared residuals
(SSR) across all observations, picking the :1, :2 combination that minimizes the SSR.We constrain
comparisons of the 420 possible divisions to those where the degrees of freedom are sufficient in
terms of counts of cities to estimate all 3 equations for a country and we require that the number of
tier-3 cities is greater than tier-2 which in turn is greater than tier-1.

In estimation of themodel, we include 3-degree grid square fixed effects to control for unobservables
as well as two sets of controls: the own city log of lagged areas from 1975 and from 1990 and the
own city mining shocks discussed later.7 The OLS results we present next are for the best :1, :2
pair for each country.

7We did experiment with a list of time invariant controls including measures of terrain ruggedness, distance to
the nearest harbour, distance to large lakes, distance to rivers, elevation, distance to the coast, the Ramankutty land
suitability index, temperature and precipitation as discussed in Henderson, et al. (2018). Results are similar.
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4.2.2 OLS Results on Complementarity and Competition

The OLS results are in Figure 3. In that figure, as in the other figures to follow, the y-axis shows
country coefficients. For OLS the x-axis apart from the country code shows the degrees of freedom
in estimation. Points with green error bands show coefficients that are significant at the 10% level,
but the error bands show 5% confidence intervals for robust standard errors. If the error bands
would stretch the graph too far only the point is shown; and these points are mostly significant. All
estimates and standard errors are in Appendix Table B2a. Orange triangles are positive and blue
dots are negative coefficients. In the figure, “columns” from left to right relate in order to the tier-1,
tier-2 and tier-3 samples and the three equations in estimation. The “rows” from top to bottom are
for tier-1, tier-2 and tier-3 Δ"� effects on cities of each type. For example in column 1 row 2 for
Angola, the tier-2 Δ"� effect on tier-1 cities shows a significant coefficient of about 0.10. The
diagonal of sub-figures in Figure 3 shows the own MA type effect on the own type of tier, going
from tier-1 effects on tier-1 cities at the top left corner to tier-3 effects on tier-3 cities at the bottom
right corner.

There are three clear patterns of results in Figure 3. First, on the diagonal of the 81 possible
coefficients across the 3 own-type effects, 65, or 80% are negative and at least significant at the
10% level, almost all at 5%. Only 2.5% are positive and significant at a 10% level. These
results suggest competition effects among cities in the same tier. In terms of magnitude, under the
specification in Eq. (10) it is nuanced. The elasticity for a tier-1 city of its scale with respect to the
scale of a neighbouring tier-1 city is V11 times \8 9 . On the diagonal for tier 1 and 2 own effects, the
V�� coefficients tend to be about −0.4, so a strong effect but one which needs to be depreciated by
pair travel-time. So at 36 hours travel-time distance, given \8 9 , this substitution effect is depreciated
by just over 50%, so the elasticity is typically about −0.20. Tier-3 diagonal effects are weaker with
elasticities like −0.20 before distance discounting.

Second, in terms of results, we have off-diagonal but adjacent tier effects which are the effect of
tier-2 MA on tier-1 cities, the effects of tier-1 and tier-3 MA on tier-2 cities and the effects of
tier-2 MA on tier-3 cities. Of the 108 possible coefficients, 71% are positive and significant at at
least the 10% level, and only 3.7% are negative and significant at that level. This is suggestive
of complementarity, where having cities in other tiers closer to a city is beneficial. In terms of
magnitudes of these complementary effects, they differ by pair. For example, for the effect of
tier-1 neighbours on tier-2 cities (middle column, top row), in some countries the elasticities before
distance discounting are very large (1.0 or more) while in many others they are more like 0.25. This
wide range seems to hold in most tier-pair comparisons, although for the effect of tier-3 neighbours
on tier-2 cities (middle column, bottom row), the absolute range is smaller: roughly 0.03 to 0.45
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for significant coefficients.

Finally, when looking at non-adjacent pairings – the effect of tier-3 MA on tier-1 cities or tier-1
MA on tier-3 cities– there is no clear pattern. Of these, some are positive and some are negative at
the 10% level, with half being strongly insignificant. Complementarity does not seem to extend to
tier-1 and tier-3 interactions.

4.3 Decomposition

In discussing Eq. (11), we did a decomposition of Δ"� into neighbours’ change in “income” (built
mass) and change in travel time components. Here we show the first part of the decomposition in
Figure 4 and discuss issues with the second that will lead into a discussion of the IV approach.
While results in Figures 3 and 4 are similar, Figure 4 for the income effect holding travel time
constant shows much stronger patterns of complementarity and competition. These drive the
results in Figures 3. 8 Our growth patterns are driven by changes in neighbour’s mass or income.

What about changes in travel times and the second part of the decomposition? The problem is a
data one: there is very little variation recorded in Michelin map road quality between 2000 and
2014 and we cannot reliably look at the OLS impact of pure travel time changes.9 While Jedwab
and Storeygard (2021) cite declining road investment as a source of decreasing variation, we know
of countries like Uganda and Zambia where there is huge variation from 2000 to 2014 (see Peng
and Wang (2024) and Bird and Venables (2020)), but none in the Michelin maps. The suspicion is
that the quality of recording and updating for Michelin maps deteriorates over time, as people come
to rely on GPS navigation systems and not paper maps. However, there is significant historical
variation, which could be useful when instrumenting. For 2000-2014, for 7 countries, as shown in
Appendix Table B3, there is absolutely no change in road quality in all the, typically thousands,
of pairwise connections within a country. For 9 more countries, less than one third of pairwise
connections within the country have any change, and, for many of that third, the fractions are tiny.
So overall, about 60% of countries have less than a third of pairwise routes with any travel-time
changes for 2000-2014. For 1990-2000 and 1975-1990 the 60% becomes respectively 33% and 4%,
showing much more variation. Moreover, there is only one country with no changes for 1990-2000
and none for 1975-1990. Finally only Uganda shows tiny or no changes in all 3 time periods. In
earlier years, many countries have high fractions of pairwise routes with road quality variation. In
summary, the problem we face is that there is little (semi)-exogenous variation in road quality for
2000-2014, only historical. That leads into a discussion of identification issues.

8In this specification, replacement of base period travel time by travel distance gives almost the same strong results.
9Results for the 20 countries with any variation show essentially nothing. We think that occurs because of both

the lack of variation, and, for countries with variation, very poor measurement in this time period.
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5 Identification

Estimating Eq. (10) as a first difference in Eq. (11) in principle takes care of identification issues
to do with time invariant unobservables. However, problems remain as usual. First, own growth
is subject to time-varying omitted variables that may be correlated with contemporaneous parts
of the Δ"�’s. For example, settlements could be subject to regional time-varying productivity
shocks which enhance their growth rates. If we expect V88 coefficients to be negative common
shocks could bias the coefficients upwards towards zero when shocks improve both the own and tier
8 neighbours’ + . These same shocks could also affect decisions about local road investments. To
try to deal with persistence over time from these shocks, in the estimation for growth from 2000 to
2014, one can insert variables for own 1975 and 1990 sizes, which help control for aspects of these
influences (Duranton et al., 2014). But the problem of contemporaneous regional shocks affecting
own and neighbours’ growth remains. A classic way (Arellano and Bond, 1991) to deal with this
is to instrument with lagged values, in this case 1975 and 1990 values of the neighbour-settlement
type variables. While these are strong instruments, even the weak tests for exogeneity of such
instruments cited in most empirical work completely fail in our context.

The second source of bias comes from the virtuous (or vicious) circle of NEG. A shock solely to
the own city affects its neighbours through the own city demand for neighbour products and that
neighbour effect in turn affects the own city, so effects are reinforcing. Negative effects potentially
become more negative and positive ones more positive.

To deal with these sources of bias, we undertake instrumental variable estimation. We explore two
types of instruments. One based on Jedwab and Storeygard (2021) treats changes in travel times
beyond a certain perimeter as exogenous to the own locality. Given the extensive experimentation
in Jedwab and Storeygard where results are fairly consistent across the many formulations to do
with the perimeter and direction, we use their simple version with contemporaneous changes and
historical ones. The first instrument associated with Δ"���

8C
is �Δ"���

8C
where

�Δ"���8C = (
∑

9∈�,8≠ 9 ,38, 9>A
\8 9 C+

�
9C−1 +

∑
9∈�,8≠ 9 ,38 9≤A

\8 9 C−1+
�
9C−1) −

∑
9∈�,8≠ 9

\8 9 C−1+
�
9C−1. (12)

We use this for the 2000 to 2014 time period with the perimeter set to a radius, A , of 55 km
following the base specification in Jedwab and Storeygard (2021)10, and check for robustness to

10The instrumental variable in Eq. (12) uses the change in market access due to road changes far away, while fixing
built-up area of all cities at their initial levels. Eq. (12) is written in a compact form. Formally, the instrument is
computed on a hybrid network in which roads inside the exclusion radius are fixed at their baseline (C − 1) condition,
while only roads outside the circle are updated to period t. The exclusion restriction is that road changes outside are
exogenous. This approach effectively isolates variation from non-local road improvements while maintaining network
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other distances. However, we know already there is little variation in this variable for 2000-2014.
Thus we add lags for 1990 to 2000 and 1975 to 1990 where there is more recorded variation in road
quality. Any power from the instrument must rely on correlation in road improvements over time
and lagged effects from such improvements.

The second instrument is based on shocks to mining prices for nearby mines. First, we allocate
revenue in time C for all operational mines, <C , in a country to all towns, =, based on their distance
to the mine. For neighbour city ;, where 3: 9 is distance in 100’s of kms from city : to mine 9 ,

';C =

<C∑
9=1
& 9% 9 C [3−1/d; 9

/
∑=

:=1
3
−1/d
: 9
] . (13)

In Eq. (13), & 9 will be a measure of capacity that is the same each time period in the data (see
below). Price, % 9 C is what varies over time. Then for city 8 in tier �, the mining revenue for cities
in tier � which affect it is

"'��8C =
∑
;∈�

;='��;C (1 + 38;)
−W . (14)

The instrument for Δ"���
8C

is the shock to city 8 in tier � from towns in tier � experiencing mine
revenue shocks, that is

Δ�"'��8C = "'��8,C − "'��8,C−1. (15)

We use the instrument where shocks come from price changes and any changes in number of
operating mines for 2000 to 2014 and the lagged version for those changes from 1990 to 2000. We
note for mining instruments that price shocks may be more relevant in influencing tier 3 city sizes
and those Δ"� measures, rather than larger cities as shocks may be very localised and relevant
for smaller settlements, as indicated in Provenzano and Bull (2023) and Huang et al. (2024). In
implementation in estimation of growth equations, we need to control for the own city mining
shocks, which we do by controlling for own city mine revenue for 1990, 2000, and 2014. In the
equations above, we use the same W as in Eq. (9) and set d equal to 1.

In terms of data, some details are given in Table B1. Mine locations, primary mineral types,
operational status, and primary mineral value are sourced from the African Deposit Database
(ADD)11. International prices for each mine’s primary ore or gem are obtained from theWorld Bank
Commodity Price data and supplemented by the US Geological Survey (USGS) for 1960–2024.
All nominal prices are adjusted for inflation using the World GDP deflator to ensure comparability
over time. The ADD provides estimated primary mineral value, + 9 C=>F , during 2020-2023 for the

connectivity.
11The dataset is developed and licensed by MinEx Consulting.
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relevant mineral for each mine. We recover & 9 =
+ 9C=>F
% 9C=>F

and treat & 9 as time-invariant.

6 Instrumental Variable Results

We break this discussion into two parts. The first concerns the tier structure, and the second presents
our results on the forces of competition versus complementarity.

6.1 Characterisation of the Tier Structure

We now focus on the derivation of tier structure under instrumental variable estimation. As before
we are looking over 420 possible :1, :2 pairs to find the best pair. In determining tier structure,
becausemarket access covariates are endogenous, we followHall et al. (2012) onmultiple structural
breaks with endogenous regressors. For each :1, :2 cut, we estimate each of the 3 equations by
2SLS. Then for that cut, we calculate the SSR across all observations based on estimated coefficients
and using predicted values (from the first stage) for endogenous variables. We pick the :1, :2
combination that minimizes the SSR. As noted above we constrain comparisons to those where
the degrees of freedom are sufficient in terms of counts of cities to estimate all 3 equations for the
country and we require that the number of tier-3 cities is greater than tier-2 which in turn is greater
than tier-1.

Results are in Table 2 listing the :1, :2 points and the number of cities in each country in each tier.
Results in most cases seem appropriate with a limited number of tier-1, or top cities and numerous
tier-3 settlements which are tiny ones at the bottom of the size distribution. There are 7 out of 54
cases cases where tier-1 city counts are upped to meet degrees of freedom needed for estimation.
Clearly, the tier count restriction binds when counts of cities in tier-( 9 + 1) and tier- 9 are almost
equal. We relax this restriction in robustness checks.12

Theory suggests that this tier structure should be grounded in the production structure of places in
each tier. We have data on the allocation of employment across the primary, secondary, and tertiary
sectors by sub-national units for 8 countries (Benin, Cameroon, Ethiopia, Ghana, Mozambique,
Tanzania, Uganda, and Zambia), circa 2000. These are second level sub-national units, creating
a crude spatial cut, not at the settlement level, but rather at a very aggregated level as we will see
from sample sizes. For each sub-national unit 9 in country 2, we calculate the share of sector B in
unit 9’s employment, (ℎ0A4�=3B

9 ,2
. For the three industries, we then have a share equation for each

industry across the sub-national units of a country. As explanatory variables, we use the share in

12Also, in 14 of the 54 cases we are at a corner, revealing issues with finding interior cut-offs.
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unit 9 of tier-1, -2, and -3 settlements in total urban built area within the unit, (ℎ0A41D8;CB
9 ,2
. 13

Thus, we have 3 equations, each with 2 explanatory variables: the share of tier-2 and -3 cities in
the total built-up area of the sub-national unit. Note that, with a constant term, since shares add to
one, we only have two free tier share variables. In summary we estimate

(ℎ0A4�=3B9 ,2 = W
B + W2B(ℎ0A41D8;C29 ,2 + W3B(ℎ0A41D8;C39 ,2 + a2 + n B9 ,2, B = 1, 2, 3. (16)

We focus on the pooled results for the 8 countries with country fixed effects a2 and common W
coefficients. We estimate the system of equations by MLE 14. We also report individual country
results.

Results are in Table 3. The main pattern is clear. For the pooled and individual results, tier-2 and
-3 cities have significantly more agriculture, significantly less manufacturing and even less service
shares than tier-1, in line with theory structure. The problem lies in distinguishing activities of
tier-2 versus tier-3 cities. We know from Henderson and Kriticos (2018) that below the very largest
cities in a country, in census data, 40-50% of the population living in towns report their primary
occupation as farming, making it difficult to distinguish their other daily work activities. The lack
of city level data obviously doesn’t help the situation. In the individual country results in Table 3,
when there is a clearer tier-2 and-3 separation in the 8 countries in Table 2, there seems to be less
manufacturing in tier-2 compared to tier-3 (which could be focused on agro-processing). For the
clearest hierarchy of these 8 countries from Table 2, Ghana, there is a clear distinction with tier-3
compared to tier-2 being more manufacturing oriented and less service oriented.

6.2 Results on Competition and Complementarity

We now turn to the IV results on patterns of competition versus complementarity. As noted above,
in estimation, our instruments are the �Δ"���

8C
terms in Eq. (12) for 2000-2014, 1990-2000, and

1975-1990 and the Δ�"'��
8

term in Eq. (15) for 2000-2014 and for 1990-2000. IV results are in
Figure 5, following the same format as in Figure 3. Now on the x-axis, however, what is reported
are 1st stage Sanderson-Windmeĳer F’s. 15

In general, results are supportive of the qualitative OLS results, despite the demands on the data
from the tier structure and poor quality road data in the contemporaneous period. Exact coefficients

13When settlements span unit borders, we allocate built for that city in that tier in each sub-national unit according
to each unit’s share of built area of the city.

14We use iterated seemingly unrelated regressions.
15The Sanderson-Windmeĳer F-statistic builds upon the conditional first-stage F-statistic proposed by Angrist and

Pischke (2009) and allows the econometrician to bound the bias induced by weak instruments in linear IV models with
multiple endogenous variables.
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and standard errors are given in Appendix Table B2b. The IV results mimic the OLS in patterns
of complementarity and competition, with similar magnitudes for significant coefficients. It may
be that, overall, IV coefficients are arguably modestly smaller in absolute magnitude, for example
with tier-2 own effects in some cases. If smaller, that would indicate the bias in estimation under
OLS may come more from the NEG virtuous or vicious reinforcing circle, rather than common
shocks. But again overall, it seems the two sources of bias may typically approximately cancel out.
However, in the results, now there are also more “incorrect” signs. On the diagonal under OLS,
for coefficients significant at the 10% level, while 80% were negative and 2.5% positive, under
IV the percentages are respectively 52% and 15%. Similarly, on the off-diagonal but adjacent in
tier structure numbers, again at the 10% level, while under OLS, 71% were positive and 3.7%
negative, under IV the respective percentages are 42% and 14%. That said, this is very challenging
estimation with a tier structure to "� effects and within that opposing forces of competition and
complementarity where separation of the observations into tiers is itself estimated with imperfect
instruments. Some F-stats on the horizontal axis in Figure 5 are weak, especially for countries
where there is little recent recorded variation in road quality. Hansen-J stats for the estimation
are reasonable under the circumstances. For the 27 x 3 equations as reported in Appendix Table
B4, of the 27 countries, for tier-1, 59% pass the Hansen-J test at the 5% level; for tier-2 it is 48%
and for tier-3 70%. We interpret the IV evidence as supportive of the forces of competition and
complementarity that we found under OLS.

Robustness We conducted many robustness checks concerning the number of instruments, lists
of control variables, spatial rate of discount, and constraints on the tier structure.16 For all of these,
results are similar. For example we can shorten the instrument list by dropping either the lagged
mining instrument or the 1975-1990 Δ�"� instrument, or add geo-controls (but that heightens
degrees of freedom problems in tier-1). Similarly, we avoid imposing in the tier structure that tier-3
counts > tier-2 > tier-1. Results are robust across these items.17

The one we report on in the Appendix concerns the nature of spatial decay, always a source of
contention. We tried several experiments with similar outcomes. For one, rather than measuring
g8 9 in units of 15 hours, we measure it in units of 5 hours and we change W from 0.64 to 0.33 (the
number in Milsom (2023)). Relative to the base, that gives a somewhat sharper discount at low
travel times but a somewhat milder one at high travel times. Results for this are given in Appendix
Figures B1a and B1b and are similar to those in Figures 3 and 5. For example in Figures 3 and 5 on

16Additional robustness check results are available at this link.
17For example, for no restriction on counts of cities by tier in the IV estimated tier structure, we get on the diagonal

for OLS and IV respectively, 81% and 46% of negative coefficients significant at the 10% level. These are very close
to what we have in the main results.
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the diagonal under OLS and IV respectively, we had 80% and 52% of coefficients are negative and
significant at the 10% level. In Appendix Figures B1a and B1b these percents are 81% and 47%. 18

7 Conclusion

Sub-SaharanAfrica has experienced enormous urban growth since the end of the colonial era. What
has emerged is a hierarchy of settlements that is likely to shape future development for decades—if
not centuries—to come. This paper describes this process and provides insights into some of the
factors shaping this emerging hierarchy. We develop a method for characterising the hierarchy
based on explanatory power of the model and ground-truthed by production patterns at different
tiers of the hierarchy. We show that the relative performance of settlements is strongly dependent
on their relationship to neighbouring settlements. Settlements are negatively affected if they are
close to larger settlements of the same type, but are positively affected if close to larger settlements
in different tiers. We rationalise this in terms of a theoretical model in which settlements perform
different functions—primary and agriculture, primary-processing and traditional manufacturing,
and higher-tech and services. Patterns of complementarity and competition between these functions
generate the performance and emergent urban hierarchy that we see in the data.

18We also tried just g in units of 5 hours and W=0.64 which is very sharp discounting. That gives on the diagonal,
69% negative and significant at the 10% level for OLS and 35% for IV.
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Tables
Table 1: The data in the 2014 cross-section

(1) (2) (3) (4) (5) (6) (7)
Size category Min size Max size Total built Shell area Count Share built

1 [0.0009,0.251] 0.0009 0.2511 2608 447165 105366 0.1000
2 (0.251,1.44] 0.2520 1.4445 2607 112957 4716 0.1000
3 (1.44,5.85] 1.4454 5.8536 2606 62547 954 0.0999
4 (5.85,18.2] 5.8554 18.1845 2595 41014 261 0.0995
5 (18.2,43.6] 18.3942 43.6311 2586 26117 91 0.0991
6 (43.6,95.5] 43.6869 95.4792 2645 34056 41 0.1014
7 (95.5,173] 96.8661 173.4880 2494 25710 20 0.0956
8 (173,313] 173.6270 313.4980 2486 17023 10 0.0953
9 (313,544] 347.6650 543.6480 2804 20616 7 0.1075
10 (544,1.37e+03] 634.6690 1370.4000 2649 12997 3 0.1016

Note: The table depicts a summary of our 2014 data for Africa as a whole. It divides the data into 10 bins of
(almost) equal share of total built area. Shares and total built area (in sq. km.) in each bin are given in columns 7
and 4 respectively.
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Table 2: City counts by country in each tier and optimal cut-offs

Number of settlements

Isocode Country name k1 k2 tier-1 tier-2 tier-3
AGO Angola 95 99.5 124 627 640
BEN Benin 95 98 81 84 182
BFA Burkina Faso 93 98 35 87 313
BWA Botswana 94 98 36 43 232
CAF Central Afr. Rep. 95 99 222 271 302
CIV Cote d’Ivoire 91 98 862 947 951
CMR Cameroon 87 99 56 454 492
ETH Ethiopia 94 99 253 263 366
GHA Ghana 87 95 81 229 844
GIN Guinea 88 92.5 145 158 1141
KEN Kenya 95 98.5 74 106 282
LBR Liberia 85 97 31 315 365
MLI Mali 93 99 226 686 690
MOZ Mozambique 93 99.5 67 410 418
MWI Malawi 88 97.5 32 182 324
NAM Namibia 93 99 55 175 264
NER Niger 86 98 122 522 627
NGA Nigeria 95 99 789 1220 1303
SDN Sudan 95 99.5 56 196 370
SEN Senegal 92 98.5 64 196 251
SLE Sierra Leone 94 97.5 201 207 346
TCD Chad 94 99.5 46 209 251
TGO Togo 94 98.5 38 84 122
TZA Tanzania 95 99 240 473 648
UGA Uganda 94 98.5 69 142 252
ZMB Zambia 95 99.5 40 287 400
ZWE Zimbabwe 95 99 96 319 476

Note: Cut-off numbers give the fraction of national urban built area accumulated by tier 1 and tier 2 cut-offs (k1 and
k2). Corners occur if cut-offs are at 75 or 95 (tier 1) and 90 and 99.5 (tier 2). While we the pick value that
minimizes SSR as described in the text based on 2SLS and predicted values of variables, among all k1 and k2
pairs, pairs considered are constrained to values so there are sufficient degrees of freedom to conduct reduced
form estimation and to ensure the count of tier-1 cities< tier-2< tier-3.

26



Table 3: Industrial composition by tier

Country name Variables Share primary Share manu Share tertiary

Pooled

Share tier-2 0.302∗∗∗ −0.069∗∗∗ −0.233∗∗∗
(0.023) (0.005) (0.019)

Share tier-3 0.275∗∗∗ −0.065∗∗∗ −0.210∗∗∗
(0.031) (0.008) (0.025)

N 811

Benin

Share tier-2 0.578∗∗∗ −0.188∗∗∗ −0.390∗∗∗
(0.130) (0.042) (0.102)

Share tier-3 0.243 −0.102∗∗∗ −0.141
(0.159) (0.024) (0.140)

N 75

Cameroon

Share tier-2 0.376∗∗∗ −0.108∗∗∗ −0.268∗∗∗
(0.094) (0.025) (0.077)

Share tier-3 0.378 0.150 0.228
(0.433) (0.120) (0.373)

N 58

Ethiopia

Share tier-2 0.368∗∗∗ −0.108∗∗ −0.260∗∗∗
(0.111) (0.037) (0.079)

Share tier-3 0.263∗∗∗ −0.070∗∗∗ −0.193∗∗∗
(0.058) (0.020) (0.042)

N 68

Ghana

Share tier-2 0.298∗∗∗ −0.079∗∗∗ −0.220∗∗∗
(0.049) (0.022) (0.034)

Share tier-3 0.401∗∗∗ −0.107∗∗∗ −0.294∗∗∗
(0.059) (0.024) (0.042)

N 110

Mozambique

Share tier-2 0.304∗∗∗ −0.066∗∗∗ −0.239∗∗∗
(0.042) (0.008) (0.036)

Share tier-3 0.363∗∗∗ −0.083∗∗∗ −0.280∗∗∗
(0.045) (0.009) (0.037)

N 141

Tanzania

Share tier-2 0.216∗∗∗ −0.043∗∗∗ −0.173∗∗∗
(0.058) (0.013) (0.046)

Share tier-3 0.186∗∗ −0.046∗∗∗ −0.140∗∗
(0.077) (0.012) (0.068)

N 127

Uganda

Share tier-2 0.301∗∗∗ −0.060∗∗∗ −0.241∗∗∗
(0.055) (0.011) (0.046)

Share tier-3 0.236∗∗∗ −0.039∗∗∗ −0.197∗∗∗
(0.050) (0.013) (0.039)

N 160

Zambia

Share tier-2 0.277∗∗∗ −0.048∗∗∗ −0.229∗∗∗
(0.066) (0.014) (0.052)

Share tier-3 0.271∗∗∗ −0.049∗∗∗ −0.223∗∗∗
(0.057) (0.017) (0.044)

N 72

Note: These regressions are estimated using maximum likelihood estimation (MLE). We use iterated seemingly unrelated regressions. Note
that since tier shares add to 1, there are only two free share-tier variables. In share primary, mining employment is excluded. In the pooled
results, we control for the country fixed effects. Robust standard errors are in parentheses. ***, **, * denote statistical significance at the 1%,
5%, 10% levels, respectively. 27



Figures

Figure 1: Model simulation: employment

 Employment around a circle (600 locations) 

 

 Employment on a disk (hexagonal lattice, 1147 locations) 
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Figure 2: Employment and own- and cross-tier effects
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Figure 3: OLS coefficients by country code

Note: Columns show coefficients for cities in tiers 1 to 3 from left to right. Rows are for tier 1, 2 and 3 (top to
bottom) Δ"� effects on cities of each type. Points with green error bands show points that are significant at the
10% level, but error bands show 5% confidence intervals. Blue [orange] points are negative [positive]. Numbers
on horizontal axis are degrees of freedom in estimation.
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Figure 4: Decomposition coefficients by country code: Income effects

Note: Columns show coefficients for cities in tiers 1 to 3 from left to right. Rows are for tier 1, 2 and 3 (top to
bottom) Δ"� effects on cities of each type. Points with green error bands show points that are significant at the
10% level, but error bands show 5% confidence intervals. Blue [orange] points are negative [positive]. Numbers
on horizontal axis are degrees of freedom in estimation.
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Figure 5: IV coefficients by country code

Note: Columns show coefficients for cities in tiers 1 to 3 from left to right. Rows are for tier 1, 2 and 3 (top to
bottom) Δ"� effects on cities of each type. Points with green error bands show points that are significant at the
10% level, but error bands show 5% confidence intervals. Blue [orange] points are negative [positive]. Numbers
on horizontal axis show 1st stage partial Sanderson-Windmeĳer F-stats.
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Appendix

A Data

A.1 The Method to Define Urban Area

We first upsample (aggregate smaller pixels to bigger pixels by taking the mean) built-up in 30 × 30 pixels
to 210 × 210 pixels, which we call super-pixles. This step is simply to reduce the computational burden,
since we are targeting the whole SSA. We then generate a smoothed built-up surface by smoothing over
using a 11 × 11 kernel. This is to capture continuous built-up area by filling potentially disconnected parts
in cities. The width and height of the kernel is thus 2.3km (≈ 210< × 11). Weight is a decreasing function
of distance as in de Bellefon et al. (2020), that is, weight  ℎ (38 9) = [1 − (

38 9

ℎ
)2]21{38 9 < ℎ}, where 38 9

is the distance of a pixel in coordinates (G8 , H8) to the center pixel in coordinates (G 9 , H 9) in the kernel
38 9 =

√
(G 9 − G8)2 + (H 9 − H8)2, ℎ is the bandwidth of (≈ 210< × 11/2). Smoothed density Î 9 in pixel

(G 9 , H 9) is 1∑
8  ℎ (38 9)

∑
8  ℎ (38 9)I8 , where I8 is the built-up density in pixel 8. The aggregation includes the

own pixels in both the smoothed actual built-up and the counterfactual built-up.

The built-up surface is continuous between 0 and 1. To decide which area is urban, we need a threshold.
This threshold is obtained based on a counterfactual smoothed built-up density where built-up are randomly
allocated.

Counterfactual distribution of random built-up We take the following steps to generate a counterfactual
distribution of random built-up:

1. Generate a matrix of 7000 × 7000 with 0 and 1, with the mean of actual country-specific share of
built-up in the year 2014 based on the 30m × 30m pixels. Using the mean built-up in earlier years,
e.g. 1990, gives less rigorous results for year 2014 as measurement is better in 2014. Varying years
is also not desirable as this makes comparing built-up over time problematic. This corresponds to the
original 30m data.

2. Downsample to 1000 × 1000 by taking average over 7 × 7 patches, which corresponds to the 210m
data.

3. Generate smoothed built-up surface using the 11 × 11 kernel as we did for the raw built-up.

4. Bin the smoothed share of built-up into 100000 groups, and take the count of observations in each
bin. Bins are evenly distributed between 0 and 119. The size of each bin is 1

100000 .

5. Repeat steps 1-4 500 times and sum up the counts of obs by bins in each iteration.

19As the weight in the kernel are normalised, the max of smoothed built-up is still 1.
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We choose the 95th percentile of the distribution in each country as the threshold; these are shown in Figure
A2.

Identified urban area
As in de Bellefon et al. (2020), continuous pixels with smoothed built-up density above the threshold are
defined as the smoothed urban boundary, which we call the shell. Within the shell, we have the actual
built-up (not smoothed) from the GHSL data in the resolution of 30 m by 30 m.

Smoothed shells
Settlements that are defined in this way have a generous shell around the actual built-up. This is not obvious
for large cities, e.g., Accra and Nairobi, as shown in Figure A1(a) and (c)), but quite significant for small
towns, as shown in Figure A1(d), in which Nyeri is a small town to the north of Nairobi. There are
occasionally holes within the boundaries that were created in this approach. As a remedy, these enclosed
areas are filled using the Aggregate polygon tool in ArcGIS.

Note, using the 95th percentiles as the cut-off is important to isolate cities, especially in dense areas. If we
don’t cut the distribution, although we have the entire built-up, we have a much smaller count of settlements.
This occurs because we have huge agglomerations of cities that are unreasonable. For example, as shown
in Figure A1(b), Accra cannot be isolated from the second largest city Kumasi if no cut-off is applied. On
the other hand, if we cut the distribution at a higher threshold, we capture less built-up and risk missing out
some important towns.

Table A1 shows the built-up by countries using the methodology defined above in 2014.
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Table A1: Built by countries 2014

Built-up area

Isocode Country Name
Numbers of
Settlements

Total Shell
(km2)

Total
(km2)

Mean
(km2)

Min
(km2)

Max
(km2)

Share
(%)

COD DR Congo 19498 120336.80 2048.09 0.11 0.0009 163.48 7.85
NGA Nigeria 10221 97178.38 7370.73 0.72 0.0009 1370.40 28.26
MLI Mali 6142 36976.31 435.62 0.07 0.0009 188.15 1.67
AGO Angola 5977 33587.40 1199.91 0.20 0.0009 543.65 4.60
CIV Cote d’Ivoire 5369 31568.46 1172.27 0.22 0.0009 252.83 4.49
NER Niger 4657 52041.15 400.70 0.09 0.0009 60.48 1.54
ETH Ethiopia 4162 26189.77 506.41 0.12 0.0009 136.58 1.94
TZA Tanzania 4087 30131.74 870.39 0.21 0.0009 311.89 3.34
ZMB Zambia 3648 20705.72 578.58 0.16 0.0009 163.21 2.22
MOZ Mozambique 3363 31042.95 978.79 0.29 0.0009 357.85 3.75
GIN Guinea 3285 18326.49 510.91 0.16 0.0009 186.73 1.96
ZWE Zimbabwe 3069 25198.89 524.29 0.17 0.0009 304.98 2.01
SDN Sudan 2982 25877.56 840.06 0.28 0.0018 368.81 3.22
CMR Cameroon 2980 22154.09 703.53 0.24 0.0009 173.63 2.70
MDG Madagascar 2733 12921.70 184.82 0.07 0.0009 74.82 0.71
GHA Ghana 2489 24045.29 2063.33 0.83 0.0009 634.67 7.91
UGA Uganda 2489 14524.96 427.30 0.17 0.0009 249.92 1.64
BFA Burkina Faso 2078 11140.58 359.06 0.17 0.0009 171.35 1.38
KEN Kenya 2023 16338.74 288.30 0.14 0.0009 108.49 1.11
SLE Sierra Leone 1836 9896.72 238.55 0.13 0.0009 68.47 0.91
CAF Central Afr. Rep. 1644 11275.89 147.76 0.09 0.0009 64.84 0.57
LBR Liberia 1634 9628.08 233.42 0.14 0.0009 109.05 0.90
TCD Chad 1536 11425.47 185.68 0.12 0.0009 84.15 0.71
SEN Senegal 1524 14165.55 661.50 0.43 0.0018 347.67 2.54
BWA Botswana 1288 11332.85 302.26 0.23 0.0018 113.68 1.16
COG Republic of the Congo 1189 9164.72 214.87 0.18 0.0009 128.01 0.82
MWI Malawi 1167 7279.15 164.84 0.14 0.0009 61.30 0.63
NAM Namibia 1079 7818.23 110.69 0.10 0.0009 24.66 0.42
BEN Benin 1073 11136.86 597.71 0.56 0.0009 307.60 2.29
SOM Somalia 995 10179.89 585.61 0.59 0.0009 120.02 2.25
SSD South Sudan 860 6048.82 100.75 0.12 0.0009 42.03 0.39
GAB Gabon 694 3609.37 86.61 0.12 0.0009 46.77 0.33
TGO Togo 610 4338.59 257.66 0.42 0.0009 173.49 0.99
GNB Guinea-Bissau 582 3377.96 68.20 0.12 0.0009 29.50 0.26
RWA Rwanda 499 3624.15 154.92 0.31 0.0009 95.48 0.59
BDI Burundi 389 1961.55 72.78 0.19 0.0009 41.22 0.28
MRT Mauritania 384 3049.38 126.70 0.33 0.0009 99.68 0.49
SWZ Eswatini 344 3485.37 56.60 0.16 0.0018 29.68 0.22
LSO Lesotho 229 2738.02 71.76 0.31 0.0018 52.71 0.28
GNQ Equatorial Guinea 227 1159.11 35.18 0.16 0.0009 19.95 0.13
ERI Eritrea 224 1881.98 9.31 0.04 0.0009 4.39 0.04
GMB Gambia 202 1310.90 132.55 0.66 0.0027 98.14 0.51
STP Sao Tome and Principe 8 27.66 0.35 0.04 0.0036 0.31 0.00

Note: We drop countries that have less than 200 settlements existing from 1975 to 2014 in total and we lose more
because of lack of data and drop the DRC because of very poor quality road data. In total we have 27 countries for
our analysis. The “Share” column indicates the proportion of an individual country’s built-up area relative to the
sum of built-up areas across all sample countries.
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Table A2: The data in the 1975 cross-section

(1) (2) (3) (4) (5) (6) (7)
Size category Min size Max size Total built Shell area Count Share built

1 [0.0009,0.222] 0.0009 0.2223 1071 171039 44790 0.1001
2 (0.222,1.35] 0.2232 1.3464 1068 37138 2068 0.0998
3 (1.35,5.37] 1.3572 5.3730 1070 20892 424 0.1000
4 (5.37,13.5] 5.4747 13.4703 1060 12627 123 0.0991
5 (13.5,26.9] 13.5765 26.8965 1063 11355 56 0.0993
6 (26.9,56.9] 27.0990 56.9205 1046 6482 27 0.0977
7 (56.9,95.6] 61.4259 95.6313 1075 8200 14 0.1005
8 (95.6,146] 102.7250 146.0940 1077 7779 9 0.1006
9 (146,213] 182.7150 212.9180 1000 7137 5 0.0935
10 (213,472] 328.6430 472.2970 1169 4383 3 0.1093

Note: The table depicts a summary of our 1975 data for Africa as a whole. It divides the data into 10 bins of
(almost) equal share of total built area. Shares and total built area (in sq. km.) in each bin are given in columns 7
and 4 respectively.

Figure A1: Accra, Nairobi, Small towns

(a) Accra (b) Accra(No cut-off)

(c) Nairobi (d) Nyeri

Note: The Figure shows the boundaries of four sample cities. Panel (a), (c), (d) show the boundaries generated using
the 95% cut-off in year 1975 and 2014. Panel (b) shows the boundaries generated if using zero cut-off for Accra.
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Figure A2: Smoothed density cut-off

Note: Y axis shows the smoothed built-up density cut-off by 210 × 210.
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A.2 Travel Time Calculation

This section outlines the methodology used to compute the matrix of bilateral travel times along the African
road network shared by Jedwab and Storeygard (2021) between all settlements in our sample. For each
country, we conduct the following steps:

1. Prepare road data: Check the topological consistency of the road network data and fix disconnected
segments. Figure A3 shows the road data.

2. Build road network: Construct a graph representation by decomposing each road segment into its
constituent coordinate points. Each coordinate point becomes a node in the graph, with edges created
between consecutive coordinates along the same road segment. This approach preserves the exact
geometry of the road network.

3. Assign speed: To convert distance to time, we assign appropriate travel speeds based on road classi-
fication: 80 km/h for highways, 60 km/h for paved roads, 40 km/h for improved roads, and 12 km/h
for dirt roads. Areas without roads are assigned a very slow speed of 6 km/h.

4. Calculate travel time: Find the projected points of each settlement on the nearest road, and record
the off-road travel distance. The total travel time includes the off-road travel time on both ends and
the travel time through the road network. The network travel time is calculated using the Dĳkstra’s
algorithm. We also calculate the straight-line travel time between an origin and destination pair
assuming a travel speed of 6 km/h. We take the minimum travel time of the straight-line–based travel
time and the network-based travel time. This avoids travel between close neighbors being routed
through the road network unnecessarily.
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Figure A3: Road data in Africa

Note: The data were kindly shared by the authors of Jedwab and Storeygard (2021).
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B Appendix Tables and Figures

Table B1: Data source of price series and number of mining sites in different time period bymineral

Price series range Number of operating mines

Commodity First year Last year 1990 2000 2014 Source

Asbestos 1960 2022 3 3 0 USGS
Bauxite 1960 2021 7 5 5 USGS
Chromium 1960 2022 3 3 3 USGS
Coal 1984 2024 12 13 18 World Bank
Cobalt 1960 2021 3 4 6 USGS
Copper 1960 2024 41 40 62 World Bank
Diamonds 1960 2021 59 71 92 USGS
Gold 1960 2024 214 236 423 World Bank
Graphite 1960 2022 1 1 1 USGS
Iron Ore 1960 2024 6 4 12 World Bank
Lead 1960 2024 2 2 3 World Bank
Manganese 1960 2022 6 4 8 USGS
Nickel 1960 2024 9 7 5 World Bank
PGE 1960 2022 1 3 4 USGS
Phosphate 1960 2022 6 6 7 USGS
Platinum 1960 2024 1 1 1 World Bank
Soda Ash 1960 2022 1 1 1 USGS
Sulphur 1960 2022 1 1 1 USGS
Tantalum 1974 2022 2 3 4 USGS
Tin 1960 2024 9 7 7 World Bank
Tungsten 1960 2019 5 5 5 USGS
Zinc 1960 2024 1 1 3 World Bank
Zircon 1960 2021 0 0 1 USGS

Note: All nominal prices are converted to constant 1990 prices using the World GDP deflator to ensure
comparability over time. For each point in time, the mineral price is measured as the three-year average centered
around that year.
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Table B2a: Market potential coefficients, OLS

Isocode Tier 1 Tier 2 Tier 3

X1 X2 X3 X1 X2 X3 X1 X2 X3

AGO -0.942*** 0.116*** 0.037*** 2.066*** -0.347*** -0.009 0.764** 0.023 -0.133***
(0.034) (0.007) (0.005) (0.252) (0.038) (0.011) (0.314) (0.048) (0.023)

BEN 0.004 -0.011 0.003 0.039*** -0.054*** 0.007 0.039*** 0.045** -0.046***
(0.012) (0.018) (0.009) (0.014) (0.016) (0.007) (0.013) (0.018) (0.011)

BFA 0.012 -0.006 -0.001 0.007 -0.125*** 0.040*** -0.009 0.002 0.002
(0.045) (0.010) (0.007) (0.053) (0.027) (0.015) (0.033) (0.012) (0.008)

BWA -0.657*** 0.598*** -0.078* 0.092** -1.016*** 0.197*** -0.075 1.485*** -0.341***
(0.157) (0.156) (0.038) (0.036) (0.146) (0.028) (0.055) (0.279) (0.067)

CAF -0.442*** 0.258*** -0.003 0.276*** -0.349*** 0.175*** -0.212** 0.581*** -0.418***
(0.076) (0.067) (0.030) (0.048) (0.042) (0.028) (0.104) (0.088) (0.048)

CIV -0.006*** 0.004*** 0.003* -0.002 0.002 0.000 -0.001 0.002 -0.001
(0.002) (0.001) (0.001) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002)

CMR -0.026 0.005 -0.001 -0.011 0.001 0.001** -0.014 0.003 -0.000
(0.018) (0.004) (0.001) (0.007) (0.001) (0.001) (0.015) (0.003) (0.001)

ETH -0.018*** 0.021*** 0.001 0.024*** -0.024** -0.003 -0.004 0.038*** -0.032***
(0.007) (0.007) (0.009) (0.009) (0.011) (0.013) (0.008) (0.012) (0.012)

GHA -0.094** 0.035** 0.002 -0.016 -0.003 0.004* -0.108*** 0.044*** 0.001
(0.040) (0.016) (0.005) (0.015) (0.007) (0.002) (0.014) (0.007) (0.002)

GIN 0.001 -0.005 0.001* 0.052*** -0.072*** 0.005* 0.049*** -0.038*** -0.002***
(0.010) (0.008) (0.001) (0.014) (0.015) (0.003) (0.008) (0.006) (0.000)

KEN -0.891*** 0.895*** -0.110*** 0.733*** -1.005*** 0.179*** -1.257*** 2.585*** -0.663***
(0.067) (0.101) (0.033) (0.042) (0.026) (0.014) (0.245) (0.332) (0.072)

LBR -1.065*** 0.092*** 0.004 1.424*** -0.278*** 0.151*** 0.731** 0.188*** -0.228***
(0.065) (0.024) (0.025) (0.271) (0.038) (0.024) (0.328) (0.060) (0.052)

MLI 0.007** -0.002* -0.000 0.004 -0.003** 0.002 -0.002 -0.005 0.007**
(0.003) (0.001) (0.002) (0.003) (0.001) (0.002) (0.007) (0.004) (0.003)

MOZ -0.385*** 0.347*** -0.317*** 0.284*** -0.271*** 0.241*** -0.553*** 0.551*** -0.510***
(0.118) (0.104) (0.096) (0.043) (0.045) (0.041) (0.067) (0.059) (0.053)

MWI -0.971*** 0.327*** -0.102*** 2.091*** -0.812*** 0.316*** -2.436*** 1.040*** -0.447***
(0.071) (0.041) (0.028) (0.125) (0.040) (0.019) (0.329) (0.114) (0.046)

NAM -0.540*** 0.342*** -0.053* 0.237** -0.163** 0.048** -0.108 0.079 -0.026
(0.154) (0.101) (0.031) (0.095) (0.065) (0.022) (0.078) (0.048) (0.018)

NER -0.115* 0.079** -0.047** 0.164*** -0.038* -0.006 -0.314*** 0.216*** -0.134***
(0.066) (0.032) (0.020) (0.056) (0.020) (0.011) (0.050) (0.026) (0.015)

NGA -0.026*** 0.021** -0.004 0.010 -0.049*** 0.045*** -0.010** 0.099*** -0.093***
(0.010) (0.009) (0.005) (0.010) (0.016) (0.012) (0.005) (0.013) (0.013)

SDN -0.286** -0.073 0.105*** 0.105* -0.119** 0.063** -0.304*** 0.484*** -0.274***
(0.111) (0.047) (0.029) (0.061) (0.058) (0.032) (0.078) (0.086) (0.049)

SEN 0.004 -0.001 -0.001 0.079** -0.020** -0.011** 0.065*** -0.019*** -0.007***
(0.050) (0.006) (0.013) (0.032) (0.008) (0.005) (0.017) (0.005) (0.002)

SLE -0.264*** 0.399*** -0.068*** 0.296*** -0.564*** 0.143*** -0.238*** 0.537*** -0.181***
(0.039) (0.065) (0.016) (0.066) (0.111) (0.026) (0.046) (0.088) (0.028)

TCD -0.016 0.006 -0.002 0.338*** -0.136** 0.073** -0.184* 0.119*** -0.095***
(0.115) (0.041) (0.021) (0.113) (0.055) (0.035) (0.094) (0.038) (0.022)

TGO -0.174** 0.093 -0.006 0.232** -0.239** 0.075** -0.237** 0.268** -0.099**
(0.067) (0.055) (0.026) (0.091) (0.096) (0.035) (0.116) (0.113) (0.038)

TZA -0.050** 0.048* -0.010 0.076*** -0.098*** 0.034*** -0.048** 0.059*** -0.020**
(0.020) (0.025) (0.009) (0.022) (0.023) (0.008) (0.023) (0.020) (0.009)

UGA -0.845*** 0.566*** -0.126 0.222*** -0.849*** 0.453*** -0.347*** 1.208*** -0.663***
(0.147) (0.197) (0.093) (0.061) (0.063) (0.031) (0.068) (0.101) (0.054)

ZMB -1.035*** 0.076*** 0.000 4.540*** -0.382*** 0.027** 2.508*** 0.013 -0.150***
(0.081) (0.006) (0.004) (0.617) (0.046) (0.014) (0.715) (0.057) (0.025)

ZWE -0.956*** 0.258*** -0.056*** 1.604*** -0.693*** 0.302*** -1.453*** 0.725*** -0.343***
(0.070) (0.032) (0.020) (0.165) (0.061) (0.026) (0.191) (0.077) (0.037)

Note: The table reports coefficients and standard errors for Figure 3. There are three sets of columns from left to right for the samples of tier-1,
tier-2 and tier-3 cities. -1, -2 and -3 refer to the Δ"� access variables from tier-1, -2 and -3 cities as they affect cities in the three tiers.
Our control variables include the log of each city’s lagged area (1975 and 1990) and its mining revenue (1990, 2000 and 2014). Robust
standard errors are in parentheses. ***, **, * denote statistical significance at the 1%, 5%, 10% levels, respectively.
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Table B2b: Market potential coefficients, IV

Isocode Tier 1 Tier 2 Tier 3

X1 X2 X3 X1 X2 X3 X1 X2 X3

AGO -0.813*** 0.104*** 0.029*** 0.784*** -0.108*** -0.023 -1.533** 0.192** 0.063**
(0.066) (0.012) (0.006) (0.281) (0.041) (0.015) (0.649) (0.093) (0.028)

BEN 0.016 -0.029 0.006 0.032** -0.027 -0.003 0.048*** 0.030 -0.044***
(0.010) (0.021) (0.010) (0.013) (0.020) (0.010) (0.013) (0.020) (0.011)

BFA 0.010 -0.007 0.000 -0.020 -0.099*** 0.036*** -0.081** -0.006 0.018**
(0.043) (0.008) (0.006) (0.048) (0.023) (0.013) (0.038) (0.013) (0.008)

BWA -0.599*** 0.588*** -0.083*** 0.096*** -0.952*** 0.181*** -0.060 0.331* -0.072*
(0.132) (0.126) (0.029) (0.030) (0.121) (0.023) (0.045) (0.172) (0.043)

CAF -0.248*** 0.142** 0.009 -0.058 0.014 0.027 -0.126 0.108 -0.041
(0.068) (0.070) (0.035) (0.093) (0.086) (0.042) (0.171) (0.181) (0.091)

CIV -0.003 0.002 0.001 -0.003 0.003* -0.001 -0.004 0.001 0.003
(0.002) (0.001) (0.001) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002)

CMR -0.025* 0.005* -0.001* -0.025*** 0.004** 0.001 -0.020 0.003 0.000
(0.015) (0.003) (0.000) (0.008) (0.002) (0.001) (0.016) (0.003) (0.001)

ETH -0.012* 0.020** -0.005 0.015* -0.002 -0.014 -0.010 0.020 -0.006
(0.007) (0.008) (0.009) (0.009) (0.010) (0.012) (0.007) (0.014) (0.012)

GHA -0.055 0.020 0.002 -0.030* 0.010 0.001 -0.102*** 0.042*** 0.001
(0.035) (0.013) (0.005) (0.016) (0.007) (0.003) (0.014) (0.007) (0.002)

GIN 0.021** -0.020*** 0.000 0.050*** -0.071*** 0.005* 0.077*** -0.060*** -0.003***
(0.010) (0.008) (0.000) (0.013) (0.017) (0.003) (0.010) (0.007) (0.001)

KEN -0.335** 0.425** -0.067 1.340*** -1.538*** 0.186*** -0.214 0.765 -0.238***
(0.165) (0.177) (0.046) (0.203) (0.233) (0.035) (0.685) (0.701) (0.088)

LBR -1.116*** 0.104*** -0.003 0.194 -0.089** 0.077** 1.120*** -0.274*** 0.190***
(0.050) (0.018) (0.017) (0.296) (0.044) (0.035) (0.421) (0.092) (0.068)

MLI 0.006*** -0.003** 0.001 0.003 -0.003** 0.003 -0.005 -0.012*** 0.016***
(0.002) (0.001) (0.002) (0.003) (0.001) (0.002) (0.007) (0.004) (0.004)

MOZ -0.182** 0.182** -0.169** -0.052 0.071 -0.076 -0.354*** 0.354*** -0.328***
(0.093) (0.087) (0.080) (0.052) (0.050) (0.046) (0.092) (0.086) (0.077)

MWI -0.525 0.199 -0.040 4.776*** -1.597*** 0.552*** 1.727 -0.559 0.191
(0.436) (0.122) (0.071) (1.632) (0.512) (0.163) (1.296) (0.415) (0.144)

NAM -0.517*** 0.329*** -0.050** -0.011 -0.008 0.006 -0.068 0.028 0.005
(0.133) (0.087) (0.025) (0.075) (0.048) (0.014) (0.081) (0.047) (0.017)

NER 0.079 0.025 -0.040** 0.038 0.040** -0.054*** -0.143*** 0.081*** -0.049***
(0.074) (0.027) (0.018) (0.056) (0.020) (0.012) (0.043) (0.023) (0.015)

NGA -0.015* 0.016** -0.007 -0.035*** 0.050*** -0.029*** -0.009 0.026*** -0.019**
(0.008) (0.008) (0.006) (0.008) (0.009) (0.007) (0.006) (0.009) (0.009)

SDN -0.154* -0.127*** 0.114*** -0.122** 0.059 -0.010 -0.186*** 0.212*** -0.105***
(0.082) (0.031) (0.020) (0.061) (0.043) (0.021) (0.054) (0.063) (0.036)

SEN 0.087** -0.005 -0.022** 0.070** -0.017** -0.010** 0.078*** -0.022*** -0.009***
(0.039) (0.005) (0.010) (0.031) (0.008) (0.005) (0.020) (0.006) (0.003)

SLE -0.205*** 0.330*** -0.066*** -0.180** 0.260* -0.045 -0.263*** 0.441*** -0.100***
(0.036) (0.063) (0.016) (0.083) (0.140) (0.033) (0.054) (0.086) (0.020)

TCD 0.038 -0.018 0.014 0.204*** -0.068*** 0.029* -0.018 0.034 -0.036*
(0.049) (0.019) (0.012) (0.053) (0.026) (0.017) (0.086) (0.036) (0.021)

TGO -0.111** 0.061 -0.007 0.097 -0.121* 0.046* -0.080 0.054 -0.005
(0.050) (0.042) (0.022) (0.063) (0.067) (0.027) (0.085) (0.071) (0.026)

TZA -0.004 -0.004 0.005 0.026 -0.042** 0.016** -0.021 0.002 0.008
(0.017) (0.021) (0.008) (0.018) (0.019) (0.007) (0.024) (0.022) (0.008)

UGA -0.448*** 0.475** -0.186* 0.174** -0.423*** 0.201*** -0.258*** 0.516*** -0.241**
(0.155) (0.194) (0.104) (0.080) (0.109) (0.067) (0.080) (0.176) (0.100)

ZMB -1.017*** 0.074*** 0.001 0.900 -0.073 0.011 0.928 -0.023 -0.016
(0.060) (0.005) (0.004) (0.813) (0.060) (0.017) (1.011) (0.084) (0.026)

ZWE -0.934*** 0.260*** -0.065** 0.912*** -0.311*** 0.120*** -0.709* 0.060 0.076
(0.142) (0.057) (0.029) (0.272) (0.100) (0.039) (0.428) (0.191) (0.095)

Note: The table reports coefficients and standard errors for Figure 5. There are three sets of columns from left to right for the samples of tier-1,
tier-2 and tier-3 cities. -1, -2 and -3 refer to the Δ"� access variables from tier-1, -2 and -3 cities as they affect cities in the three tiers.
Our control variables include the log of each city’s lagged area (1975 and 1990) and its mining revenue (1990, 2000 and 2014). Robust
standard errors are in parentheses. ***, **, * denote statistical significance at the 1%, 5%, 10% levels, respectively.
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Table B3: Pairwise road change over time

Isocode Country name 2000-2014 1990-2000 1975-1990
AGO Angola 0.00% 47.35% 73.39%
BEN Benin 65.37% 38.20% 82.91%
BFA Burkina Faso 46.10% 33.65% 93.00%
BWA Botswana 9.05% 64.54% 95.39%
CAF Central Afr. Rep. 0.00% 28.98% 80.81%
CIV Cote d’Ivoire 47.79% 32.15% 96.99%
CMR Cameroon 75.03% 59.80% 91.04%
ETH Ethiopia 50.14% 69.00% 91.31%
GHA Ghana 62.24% 21.82% 82.47%
GIN Guinea 23.74% 79.67% 64.04%
KEN Kenya 0.00% 0.80% 94.59%
LBR Liberia 0.00% 0.00% 93.79%
MLI Mali 68.95% 51.53% 77.57%
MOZ Mozambique 50.44% 48.22% 86.09%
MWI Malawi 0.00% 0.37% 77.29%
NAM Namibia 12.00% 60.94% 88.67%
NER Niger 5.85% 37.10% 96.99%
NGA Nigeria 1.17% 52.64% 95.62%
SDN Sudan 9.57% 65.43% 89.26%
SEN Senegal 26.64% 38.25% 89.05%
SLE Sierra Leone 42.83% 43.27% 91.30%
TCD Chad 57.80% 13.80% 77.24%
TGO Togo 69.18% 42.62% 68.82%
TZA Tanzania 0.67% 29.91% 80.44%
UGA Uganda 2.29% 15.67% 8.31%
ZMB Zambia 0.00% 51.85% 90.54%
ZWE Zimbabwe 0.00% 48.31% 81.51%

Note: The table reports the share of a travel route that was changed (e.g., paved or new road) during each specified
time period. These shares are averaged across all pairwise routes (i,j) connecting the settlements included in the
sample for each country.
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Table B4: Hansen-J stats on main IV results

Tier-1 Tier-2 Tier-3

Isocode Country name Hansen-J pvalue Hansen-J pvalue Hansen-J pvalue
AGO Angola 32.746 0.000 22.327 0.008 21.539 0.010
BEN Benin 16.149 0.185 17.473 0.133 15.831 0.199
BFA Burkina Faso 10.931 0.535 17.863 0.120 11.361 0.498
BWA Botswana 20.090 0.065 15.488 0.216 17.293 0.139
CAF Central Afr. Rep. 15.228 0.085 15.221 0.085 9.947 0.355
CIV Cote d’Ivoire 49.415 1.77e-06 60.616 1.74e-08 26.860 0.008
CMR Cameroon 17.961 0.117 41.779 0.000 11.430 0.492
ETH Ethiopia 12.816 0.383 26.890 0.008 26.902 0.008
GHA Ghana 10.198 0.599 20.491 0.058 58.419 4.38e-08
GIN Guinea 20.877 0.052 23.879 0.021 54.642 2.10e-07
KEN Kenya 3.453 0.750 3.730 0.713 16.153 0.064
LBR Liberia 10.804 0.095 24.666 0.000 11.759 0.068
MLI Mali 24.382 0.018 36.947 0.000 20.128 0.065
MOZ Mozambique 12.587 0.400 19.410 0.079 29.750 0.003
MWI Malawi 8.131 0.043 2.590 0.459 3.516 0.475
NAM Namibia 20.856 0.053 23.886 0.021 13.900 0.307
NER Niger 25.456 0.013 32.761 0.001 20.726 0.055
NGA Nigeria 29.839 0.003 22.618 0.031 59.999 2.26e-08
SDN Sudan 12.669 0.394 15.586 0.211 15.272 0.227
SEN Senegal 21.054 0.050 22.661 0.031 20.902 0.052
SLE Sierra Leone 21.724 0.041 18.216 0.109 20.582 0.057
TCD Chad 17.223 0.141 11.336 0.500 18.748 0.095
TGO Togo 18.086 0.113 10.948 0.533 14.243 0.285
TZA Tanzania 24.255 0.019 26.003 0.011 17.105 0.146
UGA Uganda 23.023 0.018 26.697 0.009 14.754 0.255
ZMB Zambia 15.929 0.068 4.246 0.895 8.553 0.480
ZWE Zimbabwe 18.726 0.028 22.973 0.006 20.187 0.017

Note: These correspond to the estimates in Figure 5 and Table B2b.
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Figure B1a: Results with sharper travel time discount-OLS

Note: Columns show coefficients for cities in tiers 1 to 3 from left to right. Rows are for tier 1, 2 and 3 (top to
bottom) Δ"� effects on cities of each type. Points with green error bands show points that are significant at the
10% level, but error bands show 5% confidence intervals. Blue [orange] points are negative [positive]. Numbers
on horizontal axis are degrees of freedom in estimation.
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Figure B1b: Results with sharper travel time discount-IV

Note: Columns show coefficients for cities in tiers 1 to 3 from left to right. Rows are for tier 1, 2 and 3 (top to
bottom) Δ"� effects on cities of each type. Points with green error bands show points that are significant at the
10% level, but error bands show 5% confidence intervals. Blue [orange] points are negative [positive]. Numbers
on horizontal axis show 1st stage partial Sanderson-Windmeĳer F-stats.
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C Parameters Used in Simulation

Racetrack: Maximum distance = 1; (A038DB = 1/c)
Demand shares: `3 = 0.1; `2 = 0.7; `1 = 1 − `3 − `2;
Cost shares:
031 = 0.0; 021 = 0.0; 011 = 0.0; 11 = 1 − 031 − 021 − 011;
032 = 0.5; 022 = 0.0; 012 = 0.0; 12 = 1 − 032 − 022 − 012;
033 = 0.0; 023 = 0.0; 013 = 0.0;
Elasticities of substitution: B3 = 10; B2 = 7; B1 = 7;
Trade costs: C3 = 20; C2 = 2.5; C1 = 2.5;

Disk: Max distance = 2; 1147 cells
Parameters as above, except: Trade costs: C3 = 20; C2 = 6; C1 = 4;

Sensitivity: =1, =2 denote the number of type-1, type-2 settlements in the racetrack economy.
Base simulation: =1 = 4; =2 = =1 × 6 = 24

Cut C3 by 20 percent: =1 = 4; =2 = =1 × 4>A5 = 18
Cut C2 by 20 percent: =1 = 4; =2 = =1 × 8>A9 = 34
Cut C1 by 20 percent: =1 = 3; =2 = =1 × 8 = 24
Cut all C by 20 percent: =1 = 3; =2 = =1 × 10 = 30

Cut all f by 20 percent: =1 = 4; =2 = =1 × 4 = 16

Reducing 032 below the critical value causes the number of pure type-2 settlements to fall to zero as all sector
2 and sector 3 activities colocate.

Figure C1 illustrates an equilibrium with randomly and independently different place-sector productivity
differentials in sectors 1 and 2. It is conceptually similar to the bottom panel of Figure 1, but the rotational
tidiness of Figure 1 is disturbed. Crucially, it retains a pattern of few (8) well-spaced tier-1 settlements
interspersed with tier-2 (of which there are 22).
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Figure C1: Employment on a disk with productivity variation
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