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Abstract 

 
Bodenhorn et al. (2017) have recently sparked considerable controversy by arguing that the fall in adult 
stature observed in military samples in the United States and Britain during industrialisation was a 
figment of sample selection bias. While subsequent papers have questioned the extent of the bias 
(Komlos and A’Hearn 2016; Zimran 2017), there is renewed concern about selection bias in historical 
anthropometric datasets. This paper extends Bodenhorn et al.’s discussion of selection bias on 
unobservables to sources of children’s growth, specifically focussing on biases that could distort the age 
pattern of growth. Understanding how the growth pattern of children has changed is important since 
these changes underpinned the secular increase in adult stature and are related to child stunting 
observed in developing countries today. However, there is potential for selection on unobservables in 
historical datasets containing children’s and adolescents’ height, so scholars must be aware of these 
biases before analysing these sources. This paper highlights, among others, three common sources of 
bias: 1) positive selection of children into secondary school in the late nineteenth and early twentieth 
centuries; 2) distorted height by age profiles created by age thresholds for enlistment in the military; and 
3) changing institutional ecology which determines to which institutions children are sent. Accounting 
for these biases weakens the evidence of a strong pubertal growth spurt in the nineteenth century and 
raises doubts on some long run analyses of changes in children’s growth, especially for Japan. 
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From its birth forty years ago, anthropometric history, the study of human welfare 
through the analysis of body measurements, has grown and developed into a strong subfield 
within economic history (Komlos and Baten 2004; Steckel 1995; 2009). It took the tireless 
effort of many scholars to convince the wider discipline that heights proxied people’s welfare. 
This was especially true when the trends in heights departed from trends in other measures of 
living standards such as real wages and GDP per capita during industrialisation in the United 
States and Britain (Floud et al. 1990; Komlos 1993, 1998; Margo and Steckel 1983). In both 
countries, heights declined during periods when real wages and GDP per capita were growing 
strongly. This divergence in welfare measures has been explained by the negative health effects 
of urbanisation and by the cost and availability of food. However, Bodenhorn et al. (2017) have 
recently called these trends into question. They argue that because the height trends come from 
data based on military recruits rather than conscripts, unobserved factors leading certain types 
of people to join the military are influencing the trends. When opportunities were difficult in 
the civilian labour market, the military was attractive to a wider range of men. However, when 
economic conditions improved in the civilian labour market, higher quality, taller individuals 
would join the military at lower rates. This mechanism could explain a decline in heights when 
economic conditions were improving. Importantly, Bodenhorn et al. argue that this selection 
mechanism is unobservable, i.e. not correlated with or captured by the typical controls included 
in height regressions. 

Bodenhorn et al.’s working papers (2013, 2014) and final published paper (2017) 
sparked tremendous debate among anthropometric historians about selection bias and what had 
and could be done to address their concerns. However, these discussions of selection bias have 
not been as readily translated to sources of children’s growth. There has been extensive 
discussion about selection bias in the slave manifests used to study the growth pattern of slave 
children in the US South (Bodenhorn et al. 2013; Calomiris and Pritchett 2009; Pritchett and 
Freudenberger 1992, 2016; Pritchett 1997; Steckel and Ziebarth 2016). However, selection bias 
in other sources of children’s growth has been relatively understudied. As in all cases, the 
importance of different forms of selection bias is fundamentally related to the question an 
author is asking of the data. Thus, if one were examining how children’s heights changed over 
time by analysing the children at one age entering a particular institution over a long period of 
time, it would be important to consider the types of forces that Bodenhorn et al. (2017) discuss. 
This application would be relatively straight forward, so rather than discussing that in detail, 
this paper will assess how unobservable selection could lead to biased inferences about the 
growth pattern of children.  

The growth pattern is the age pattern in height and velocity of height across the growing 
years. It is defined by four key characteristics (see Figure 1): the final adult height, the age at 
peak velocity during the pubertal growth spurt, the growth velocity during the pubertal growth 
spurt and the age when growth stops occurring. In general, auxologists and anthropometric 
historians have found that the growth pattern has changed in four key ways over the past 
century: adult height has increased (Hatton and Bray 2010; NCD Risk Factor Collaboration 
2016); the pubertal growth spurt has occurred at earlier ages; the velocity of growth during 
puberty has increased; and the growing years have shortened with people reaching their final 
adult heights at earlier ages (Steckel 1987; Schneider 2017: 23; Tanner 1962:143-55). This 
pattern seems fairly universal although there are exceptions and the timing and causes of the 
shift in the growth pattern are not clear (Gao and Schneider 2018). 
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Figure 1: Characteristics of the Growth Pattern of Boys 

 
Notes: The growth pattern of girls is different than for boys with girls experiencing an earlier and less pronounced 
pubertal growth spurt, lower velocity and adult height and earlier age when growth stops. 

Sources: de Onis et al. (2007); data drawn from http://www.who.int/growthref/en/. 

 

The historical research that traced these changes in the growth pattern has generally 
relied upon sources that provide the heights of children at various ages measured at the same 
time. Thus, it is important to note that the vast majority of research on children’s growth in the 
past is not based on longitudinal height measures of the same children across their growing 
years but on the change in height between different groups of children at adjacent ages (though 
c.f. Arthi and Schneider 2017; Gao and Schneider 2018; Komlos et al. 1992; Schneider 2016). 
These are known as cross-sectional or period growth curves because they measure an average 
growth curve across individuals at one particular point in time (McMurray 1996). Because the 
height profile is then strongly influenced by the children who are measured at each age, most 
of the potential selection bias is a result of selection on unobservables that changes at different 
ages. 

The paper will proceed as follows. First, I will discuss three sources, school records, 
prison/criminal records and army records, that have been or could be used to analyse the growth 
pattern of children and highlight some of the potential forms of selection on unobservables that 
could influence these types of data. This discussion will be largely hypothetical though there 
will be some specific examples along the way. In the second part of the paper, I examine how 
to detect and manage selection bias on unobservables and other sources of bias and 
measurement error in actual datasets. I first discuss the selection bias diagnostics suggested by 
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Bodenhorn et al. (2017) and show that these are not appropriate for use in sources of children’s 
height. Then I present various strategies for detecting unobservable selection in sources of 
children’s growth from Japan, Tasmania, Boston, Massachusetts and Britain. I also discuss 
other sources of bias and measurement error that would influence the growth pattern and make 
it more difficult to determine whether selection on unobservables was present in the data. 

On the whole this paper shows that selection bias can be a problem in sources of 
children’s heights and needs to be considered when analysing an earlier literature that did not 
account for this as carefully as might be desired. However, selection bias on unobservable 
characteristics does not render all of these sources unusable. With careful attention to selection 
processes and analysis of the data, it is possible to determine which datasets are most 
problematic and in some cases determine ways to use parts of the data while excluding data 
subject to bias. 

 

1. Historical Sources of Children’s Growth and Potential Selection Bias 

Before discussing how to detect selection bias on unobservables with specific data, it 
is perhaps helpful to discuss important sources of potential selection bias in the typical sources 
used to reconstruct the growth pattern of children: school records, prison registers and military 
enlistment or conscription records. 

The most prominent set of sources used to reconstruct the historical growth pattern of 
children are school records. School records have been used to study growth since 1870s when 
Roberts in the UK and Bowditch in Boston collaborated with schools to collect cross-sectional 
data on children’s heights (Bowditch 1877; 1879; Roberts 1874). These types of studies were 
replicated across Europe and North America at the end of the nineteenth and in the early 
twentieth centuries (Burk 1898; Tanner 1981). In addition, state and local bureaucracies also 
began collecting school children’s height information in a number of countries including the 
UK and Japan in the early twentieth century (Floud et al. 1990: 175-82; Harris 1994; Saito 
2003). These early efforts at data collection have served as important sources for long run 
studies on changes in children’s growth (Cameron 1979; Steckel 1987; Tanner 1981). 

Unfortunately, the individual-level data underpinning these records are almost entirely 
lost (though cf. Roberts and Warren 2016), so most of the time the only data available is the 
average heights and weights of boys and girls at one-year age intervals. At times, the 
nineteenth-century auxologists also broke down their data according to some characteristics of 
the children such as their ethnic background and their fathers’ occupational status. This is 
especially important considering that working class children were far less likely to continue in 
school at later ages than their more privileged counterparts. We can see this in the Bowditch 
data in the 1870s, which was collected largely from public schools in Boston. In his data, the 
percentage of children whose father had an unskilled occupation fell from 50 per cent at age 
five to less than 5 per cent at age eighteen (Figure 2A) (Bowditch 1879: 38-43). Because the 
average heights are given for each subgroup, it is possible to generate a growth profile and 
velocity curve that reweights the series for compositional change across observed categories 
(Figure 2B). As we can see, the composition-adjusted velocity curve is not substantially 
different from the original curve. However, the bias from compositional change may be small 
relative to selection on unobserved characteristics.  
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Figure 2: Occupational Structure and the Growth Pattern of Boys in Bowditch’s 1870s Boston 
Data 

 
Notes: The constant occupational structure line in panel B was calculated by weighting the occupational group 
growth profiles with the occupational structure at age 8 at all ages. This approach assumes that the occupational 
structure for 8-year-olds matched the true population occupational structure, which seems plausible since 
enrolment rates in Boston were highest at age 8 at nearly 80%. 

Sources: Bowditch (1879: 38-43). 

 
The more troubling question is whether the unskilled working-class children remaining 

in the sample at age eighteen were still representative of the unskilled working class more 
generally. If the working-class children remaining in school tended to be of higher status or if 
they were healthier than others in their class, then they would be taller than their average 
counterpart at the same age. This would lead to upward bias in the growth profile and would 
tend to overestimate the height interval between adjacent ages as the sample became more 
positively selected. On the other hand, Bleakley et al. (2013) argue that in the nineteenth-
century United States there was not a strong positive relationship between height and human 
capital. There was no relationship because the opportunity cost of schooling was high since 
physical labour was important in the economy and men were paid a premium for their brawn. 
This would suggest that taller and stronger working-class children would be less likely to stay 
in school, especially as other job opportunities opened up for them and they were no longer 
legally required to be in school. If this were true, then the children remaining in school at later 
ages would be negatively selected and the velocity (height intervals at adjacent ages) would be 
underestimated as the children aged. Thus, the effect of children dropping out of school on the 
growth pattern is ambiguous and needs to be analysed empirically. The next section will do 
this using the Bowditch data along with data from Japan. 
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The second set of records that could be used to analyse children’s growth would be 
prison or criminal records. Somewhat surprisingly to our modern sensibility, nineteenth-
century prisons housed numerous children; for instance, in the Wandsworth House of 
Correction in London in 1860s-1880s, the youngest prisoner was a 7-year-old English boy, and 
10 per cent of female and 26 per cent of male prisoners were aged 18 or under (Horrell et al. 
2009: 99). In Carson’s (2009) penitentiary sample for the United States covering 14 states, 13.5 
and 19.1 per cent of white and black male prisoners respectively were in their teens with the 
youngest being 12 years old. There were also substantial numbers of adolescent convicts in 
Europe and in Commonwealth countries (Depauw 2012; Inwood and Maxwell-Stewart 2017). 
Thus, one could reconstruct the growth pattern of children from this data, and historians have 
started to do this. 

However, there are a number of sources of selection that could be problematic for this 
kind of exercise. Obviously the first would be whether there were changes in the selection into 
committing crime from childhood through to adolescence. This could be tested on observable 
characteristics, but we could never entirely rule out all selection processes, though that does 
not mean that these would lead to significant bias. Another problematic source of selection 
relates to the variety of institutions available to which children could be sent. In a nineteenth-
century British context children were sometimes sent to adult prisons after committing crimes 
though they were kept separate from the general adult population under the 1823 Gaol Act. 
However, there were a host of other institutions that juvenile offenders might find themselves 
sent to depending on the severity of their offence including workhouses, poor law schools, 
industrial and reformatory schools, and juvenile detention centres (Godfrey et al. 2017: 24-36). 
Understanding this ecosystem of institutions is particularly important when analysing 
individual-level information from one institution because the researcher cannot capture the 
individuals who were sent to other institutions. Changes in the de jure or de facto rules 
regulating where children were sent could lead to selection bias that might not be clear by 
looking at observable characteristics. Thus, it is crucial for historians to learn the finer details 
of the wider institutional setting and also be wary of signs of changing institutional structures.  

Finally, historians studying criminal records have to be cautious about changes in the 
treatment of children by courts at specific age cut-off points. In the UK the judicial process for 
children changed substantially across the nineteenth century. In the early nineteenth century 
children under the age of 14 were tried in the same manner as adults with full jury trials for 
indictable (serious) offenses. However, after the 1847 Juvenile Offenders Act and the 1879 
Summary Jurisdiction Act, children under 12 were tried in a summary court without a jury for 
all offenses except murder and manslaughter and children under 16 could opt for the summary 
option as well. These changes in the age cut off and method of trial may have influenced the 
types of children that ended up in a particular prison and therefore could be an important source 
of unobserved selection at different ages (Godfrey et al. 2017: 27). 

The final set of sources that could be analysed to understand the growth pattern of 
children are army records. While most enlistment or conscription records would not include 
many adolescents under the age of 16 or 17, these records could be used to understand the 
growth pattern after the pubertal growth spurt and notably when individuals stopped growing. 
A’Hearn et al. (2009) use Italian military registration records to trace changes in the growth 
pattern from age 17 onward for birth cohorts from 1855-1910. In addition, many studies have 
noted that military recruits appeared to be growing into their early to mid-twenties suggesting 
a much longer growing period than is typical of modern, healthy populations (Beekink and 
Kok 2017; Cinnirella 2008; Floud et al. 1990: 153-54). The literature on military recruits has 
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always been concerned about selection into their samples with particular focus on minimum 
height requirements (truncation), the rejection of medically unfit individuals and the selection 
of recruits into different units and military services (Cinnirella 2008; Floud et al. 1990, 30-83, 
118-27). However, there are a few ways in which selection by age might influence the 
reconstruction of the growth pattern. First, as we will see below, any restrictions placed at 
specific ages create incentives for men to lie about their age. For instance, if there were a 
minimum age requirement for enlistment during a period when patriotism was strong, then 
there would be incentives for men to misrepresent their age in order to enlist at earlier ages. 

In addition, as Bodenhorn et al. (2017: 191-93) point out, there could be bias in the age 
pattern of growth in military samples since recruits at earlier ages are removed from the 
population at risk of enlistment at subsequent ages. If taller troops are more likely to be 
removed in the first rounds of recruitment either because of a binding minimum height 
requirement or another selection mechanism that draws healthier men, then the population at 
risk of being recruited at later ages would be of lower quality. This effect is very difficult to 
test with actual data, but a simulation exercise below shows that the bias could be significant. 

 

2. Existing Approaches for Detecting Selection Bias on Unobservables 

Having described the hypothetical potential for selection bias on unobservables in 
sources of children’s growth, we can now turn to trying to detect selection bias. Bodenhorn et 
al. (2017: 190-200) propose a series of tests to determine whether selection on unobservables 
has biased the inferences from a dataset. These stem from the intuition that in the typical height 
regression birth year, age and year of measurement are perfectly collinear. In the absence of 
any selection on unobservables, the predicted height of a single birth cohort should be the same 
at each age between 23 and 50, the period when adult height is stable, controlling for all other 
observed characteristics. If the predicted heights in that age range were significantly different 
from one another, then that would suggest that there was unobserved selection that could bias 
the results. Likewise, the predicted final adult height (aged 23-50) of a single birth cohort 
should not vary based on the year in which the cohort was measured (year of recruitment, 
imprisonment, etc.) controlling for all other observable characteristics. If the predicted height 
of the cohort changed over measurement years, this would suggest that short run conditions 
such as the demands of the army, the business cycle or other unobserved factors influenced 
individuals’ probability of being observed within a cohort. Bodenhorn et al. (2017) propose a 
weak and strong test of this selection. The weak test simply introduces one-year age or 
measured year dummies and tests their joint significance. The stronger test interacts these one-
year age or measured year dummies with all birth cohort dummies, testing whether the 
relationship between age or measured year and height differs significantly across birth cohorts. 
Bodenhorn et al. (2017) find that many of the standard datasets used to analyse trends in adult 
heights in the US and UK fail these tests of selection on unobservables. 

These diagnostic tests are interesting and useful, but they are also limited in a few 
respects. First, although they can provide evidence that selection on unobservables may be 
present in a sample, this does not necessarily mean that the selection would reverse established 
trends in the data. Zimran (2017) analysed one potential selection mechanism into the Union 
Army and found that while selection on unobservables was present in the data, it did not explain 
away the industrial puzzle or regional pattern in heights in the United States. Komlos and 
A’Hearn (2016) also analyse the Union Army records and show that the Bodenhorn et al. 
selection mechanism was not at play in the data. Thus, although some datasets may be subject 
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to selection on unobservables, that does not mean that all inferences from the data are wrong, 
especially when trends and patterns are corroborated in other sources that have different 
selection mechanisms. 

Second, these tests will be less helpful when there is age heaping or other measurement 
error in ages in the data.2 Measurement error from age heaping could have two potentially 
contradictory effects. The measurement error in age could lead to attenuation bias in both the 
birth cohort and age dummy coefficients in the height regressions. This would therefore 
increase the probability of making type II errors, i.e. ruling out selection bias on unobservables 
when it was actually important. On the other hand, if people within a birth cohort with heaped 
ages were systematically of lower human capital and health ‘quality’ than those who 
remembered their accurate ages, this could create the illusion of selection on unobservables 
since people with rounded ages would be shorter than their non-rounded counterparts even 
within the same cohort. Thus, the effect of age heaping on the Bodenhorn et al. selection bias 
tests is ambiguous. In the end, it is possible that many sources of adult height would fail the 
strict selection bias tests that Bodenhorn et al. (2017) propose. However, historians do not have 
the luxury of returning to the past to collect random samples. Thus, we need to develop ways 
of working with data that may have some potential bias rather than simply scrapping datasets 
that fail the Bodenhorn et al. tests and rejecting all findings based on these datasets. 

The Bodenhorn et al. (2017) selection bias diagnostics are also unfortunately unable to 
assess selection on unobservables in sources of children’s growth. This is because we must 
always include age dummies in the regressions to capture height differences across ages. 
Finding a changing age pattern of growth across birth cohorts could reflect selection on 
unobservables similar to what Bodenhorn et al. (2017) suggest, but it could also simply be the 
result of the well-known change in the growth pattern mentioned above. Converting the 
children’s heights to height-for-age Z-scores of modern WHO standards would seem to be an 
easy way to eliminate the need to include age dummies in the height regression. However, the 
pubertal growth spurt occurred at later ages in historical populations than in modern, healthy 
populations. Thus, one tends to observe a decline in height-for-age around age 12 for boys and 
age 10 for girls as the modern children enter their pubertal growth spurt with recovery as the 
historical children enter their own growth spurt and the modern children grow at lower 
velocities. This difference in the growth pattern means that the WHO reference produces a 
distorted height-for-age profile for historical populations and would require age dummies 
anyway to account for this (Schneider 2016). Thus, we cannot rely on the diagnostic tests 
developed for adult height datasets to determine whether samples of children’s heights may be 
problematic. 

 

3. Discovering Selection Bias on Unobservables 

Because more precise statistical tests of selection on unobservables do not work with 
sources of children’s heights, we are left with fewer options in attempting to understand 
selection on unobservables in these samples. Fundamental for understanding selection bias is 
to take the time and effort to study the selection mechanisms into a sample very carefully. This 

                                                
2 Age heaping occurs when individuals round their age to the nearest number ending in 0 or 5 rather than reporting 
their true age. A substantial fraction of individuals in the past heaped their ages, and the extent of age heaping has 
been used as a proxy for the numeracy and level of human capital of populations in the past (A’Hearn et al. 2009; 
Hippe and Baten 2012). 
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section walks through a series of datasets attempting to understand whether and to what extent 
there is selection bias in each case. Each dataset presents a different method for assessing 
whether selection bias on unobservables distorts the age pattern of growth. Unfortunately, this 
does not make for a simple checklist of steps to conduct in order rule out bias. However, I hope 
that the examples provided will raise potential issues so that researchers are more aware of 
these in the future. I will first discuss examples of potential selection bias in school sources 
(which to an extent would also apply to prison samples) before moving on to military sources. 

3.1 School Sources 

As mentioned above, the most important source of selection bias in school sources is 
likely to be the selection into secondary school. Typically it is very difficult to assess the extent 
of selection bias present from this positive selection because we do not have population 
parameters with which to compare. However, in the case of Japan, the population parameters 
exist to make the comparison. In the early twentieth century, the Japanese government began 
recording the heights and weights of schoolchildren in all schools in the country and reporting 
national averages of heights and weights for boys and girls at one-year age intervals. These 
national-level period growth curves were reported annually from 1900 to the present and 
therefore serve as an incredibly detailed set of information on changes in the growth pattern 
over time (Ali et al. 2000; Mosk 1996). However, because the survey simply measured children 
in school over time, there is potential for the selection bias described above because the 
enrolment rate varied across ages. For children ages 6 to 11 in primary school, enrolment was 
universal capturing around 95 per cent of the population. However, enrolment fell dramatically 
after age 12 and was never above 10 per cent for secondary schools in the early twentieth 
century. The increase in secondary school enrolment from 10 per cent to near universal 
coverage across the twentieth century, then, could substantially distort the observed changes in 
the pattern of growth. 

There is some straightforward evidence that positive selection occurred since the 20-
year-old male heights in the school data are substantially higher than the average heights of 20-
year-old men conscripted into the military from the same birth cohort: the gap was 1.9 cm for 
soldiers and students measured in 1936 (see Figure 3). These military heights again covered 
approximately 95 per cent of the population. However, we can see this process more clearly by 
looking at children in primary and secondary schools separately. It is not possible to view 
children in the different schools in the national data, but from 1929 to 1939, the average heights 
and weights of boys and girls at each age are listed for primary and secondary schools 
separately at the prefecture level. Thus, it is possible to aggregate up the prefecture level results 
to the national level using population size as a weight. Figure 3 presents the results for boys 
measured at various ages in 1936. Clearly, children in secondary school were positively 
selected since they are taller at all observable ages than children in primary school. At the two 
ages where the largest number of children are in both schools (12 and 13) the gap in the mean 
heights is 3.55 cm or 0.48 standard deviations relative to the WHO reference. The growth 
profile of children in each school is also influenced by selection at different ages. The first very 
small group of boys to enter secondary school at age 11 were tall for their age even relative to 
boys who entered secondary school later. We also see that the children remaining in primary 
school at ages 14 and 15 became more and more negatively selected as the percentage of 
children in primary schools declined. 

Although there is strong evidence of selection bias in the Japanese data, the data 
highlights the fact that some signs of selection bias do not necessarily require that an entire 
dataset be discarded. The information on children’s heights in primary school before the age 
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of 14 is of reasonably high quality and could be used to analyse children’s heights. However, 
adjusting the secondary school data is much more difficult. The fact that the height gap is much 
larger at ages 12 and 13 than at age 20 suggests that the secondary children were not just taller 
children growing on the same growth curve as the average child. Instead, the elite secondary 
school group had an earlier pubertal growth spurt and likely grew at higher velocities across 
the growing years than the average group. This means that shifting the level of the secondary 
curve downward to match the heights of the general population at ages 12 or 13 or age 20 
would not account for differences in the tempo and velocity of growth between the two groups. 
Thus, until better methods are developed or other corroboratory data is found, it may not be 
possible to accurately adjust the secondary school growth profile. 

Figure 3: Evidence of positive selection of children into secondary school in Japan, 1936 

 
Notes: My thanks to Kota Ogasawara for his help in extracting this data from Japanese archival sources. 
Prefecture-level data were aggregated using prefecture population as a weight. 

Sources: see Schneider and Ogasawara (2017: Appendix B). 
 
Another important source of selection on unobservables for school and prison data is 

the institutional ecosystem in which a particular system exists. This may influence which 
children enter the sample overall, but it also may lead to changing bias over time as the 
institutional ecosystem changes. One example where the institutional ecosystem influenced the 
growth profile constructed for children comes from the Marcella Street Home, which was a 
residential school in late-nineteenth-century Boston. Generally, the Marcella Street Home 
served pauper children and children whose parents had neglected them and had been sent to 
the home by the courts. However, Schneider (2016: 292) found that between October 1895 and 
June 1896 a large number of boys and a smaller number of girls entered the home to serve 
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sentences for truancy. These children appear to have been sent to the Marcella Street Home 
because the city of Boston was attempting to move the location of the truant school. Until 1895, 
the Boston Truant School was co-located on Deer Island with the House of Industry, a jail for 
people convicted of minor crimes, and the House of Reformation, which was a juvenile jail. 
However, the city decided that the truant children should be located elsewhere to reduce the 
negative spillovers from the other institutions, and so they funded the building of a new school 
called the Parental School, which opened in late 1895 (Public Institutions Department 1895: 9-
19; Public Institutions Department 1897: 14, 18). However, the transfer was drawn out because 
of construction problems, and the Parental School was overcrowded from the moment it was 
founded (Public Institutions Department 1895: 16; Institutions Commissioner 1898: 18). Thus, 
it seems likely that the truant children sent to the Marcella Street Home were sent there because 
there was not space for them elsewhere in the system of public institutions. The truant children 
were substantially older than the typical child in the Marcella Street Home and also taller for 
their age (Schneider 2016: 337). Fortunately, there was an indication that these children were 
different in the records and the analysis controlled for the truants as a group. Otherwise this 
influx of a separate population of children could have substantially biased the analysis. 

The institutional ecosystem is also important for understanding the reliability of the 
Bowditch data collected in Boston public schools introduced above. One way to assess whether 
the children were more positively selected at later ages is to look at how the total enrolment in 
public schools changed across the school ages and compare this to Bowditch’s sample, which 
was largely drawn from public schools (Bowditch 1877: 7). Figure 4 shows the number of 
Boston children at each age in public primary, grammar and high schools in 1875. The number 
of children in public school peaked at age eight and declined sharply between ages 15 and 16 
when most children left grammar schools and far fewer entered high schools. In fact, there are 
more children in the Bowditch sample at ages 16, 17 and 18 than were in all public high schools 
in Boston, highlighting the fact that Bowditch relied quite heavily on private high schools at 
these later ages. The sharp drop in enrolment between ages 15 and 16 is doubly suspicious 
because this is the exact point at which the male velocity curve increases dramatically (Figure 
2B above). Thus, the positive selection may mislead researchers about the timing of the 
pubertal growth spurt. 

Staying with the Bowditch data, it is often possible to discover signs of selection on 
unobservables by looking carefully at the age pattern of growth across the observable 
categories. For instance, boys whose parents were born in America of the professional and 
mercantile classes were consistently taller than boys of the skilled and unskilled working 
classes before the age of 14 (Figure 5A). However, from age 16 onward, the unskilled working-
class children were either taller than or equal in height-for-age Z-scores to the mercantile and 
professional classes. This same pattern is present though less clear for girls whose parents were 
born in America (Figure 5B). While this is not incontrovertible proof of selection on 
unobservables, it is highly suspicious given the nature of the selection process discussed above. 
This potential for unobserved selection bias also makes it difficult to determine whether there 
is catch-up growth between mid-childhood and adulthood. For both boys and girls the average 
height-for-age Z-score is higher in adulthood than in childhood before the pubertal growth 
spurt (age 10 and lower). This could reflect catch-up growth as children in the past had a longer 
growing period than children in modern populations. However, it could also merely reflect the 
selection bias on unobservables in the sample where the population of children remaining in 
school at high ages was positively selected on health. This example suggests that cliometricians 
should look at the age pattern of growth across observable categories either as raw averages or 
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by introducing interactions into regression models to check for any suspicious patterns that 
might not be readily visible in the data. 

Figure 4: Number of children in public schools in Boston and in the Bowditch sample, 1875 

 
Notes: The sum of primary and grammar school enrolment at age 9 listed in the 1875 Annual Report of the School 
Committee was larger than the number of nine-year-olds reported in the 1875 census. Thus, the committee seems 
to have double counted nine-year-olds in both primary and grammar schools. To adjust for this, the enrolment 
rate at age 8 was used to predict the total number of children enrolled at age 9, and the children were assigned to 
primary or grammar school proportionately to the figures reported by the committee. This obviously introduces 
some error, but does not affect the overall trends discussed. 

Sources: School Committee (1876: 112-20, 123, 131, 139); The Census of Massachusetts 1875 (1876: 223); 
Bowditch (1877: 41, 45). 

 
Overall, the evidence presented here for Japan and Boston suggests that there was 

positive selection on unobservables into secondary school and even into remaining in primary 
school rather than the opposite effect as might be predicted by Bleakley et al. (2013). Thus, 
cliometricians and human biologists need to be very careful in using the findings of the 
nineteenth-century anthropometricians based on school datasets to make claims about the 
growth pattern of children. The positive selection into secondary school gives the appearance 
of a more accentuated pubertal growth spurt in these datasets and may distort the age at peak 
growth velocity during puberty.  
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Figure 5: Mean height-for-age Z-scores of children from four occupational groups in the 
Bowditch data from Boston, 1875 

 
Notes: The WHO 2007 growth reference was used to calculate height-for-age Z-scores. 

Sources: Bowditch (1879: 38-43).  

 
 

3.2 Military Sources 

When looking at military sources, other sources of selection on unobservables may be 
more important. As described in general terms above, minimum age requirements may lead 
individuals to systematically misreport their age in order to enlist at earlier ages than allowed. 
This type of selection was present in the Australian Imperial Force (AIF) during World War I. 
Beginning in June 1915, the AIF had strict age restrictions for enlistment. They did not allow 
soldiers under the age of 18 to enlist and soldiers enlisting under the age of 21 needed 
permission from their parents. Thus, there were incentives for those under the age of 18 to 
pretend to be older. These men would likely be taller than the average 17-year-old so that they 
could pass as 18 more easily but shorter than the average 18-year old. The same may be true 
of those under 21. This selection bias, combined with systematic measurement error created by 
misreporting of ages, would lead to an underestimate of the average height of 18-year-olds, 
accentuating the growth still occurring after that age. 
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Inwood and Maxwell-Stewart addressed this by linking the AIF enlistees for Tasmania 
to their birth records where precise birth date information was available.3 Thus, it is possible 
to see which soldiers were lying about their age and what the overall impact of their deception 
would be on the age pattern of height for the soldiers. Across all ages, the reported age and true 
age were identical for 75.0 per cent of enlistees. There was also considerable random noise in 
the reporting of age with 17.8 per cent of recruits having a random error, i.e. a difference in 
reported and true age that was not consistent with the soldier lying about his age to avoid the 
age requirements. 7.2 per cent of the sample did systematically misrepresent their age so that 
they could join the force before reaching the required age. This 7.2 per cent may seem too low 
to influence the results, but the percentage of people systematically lying about their age at 
certain critical ages was much higher: 35.7 per cent of 18-year-olds and 18.8 per cent of 21-
year-olds. Thus, the results could be altered dramatically at those two ages with important 
effects on inferences for the growth pattern. 

In order to test the effect of this selection bias/measurement error, I conduct two sets of 
truncated maximum likelihood regressions with the dependent variable (height) truncated at 
the minimum height requirement, which was 64 inches for the AIF between June 1915 and 
April 1917 (Whitwell et al. 1997: 415). The regressions include dummy variables controlling 
for the soldier’s father’s occupation in twelve HISCLASS categories, the soldier’s birth place 
within Tasmania and the unique month that the soldier enlisted allowing for unobserved 
changes in recruitment patterns. The variables of interest, however, are the dummies related to 
age. The first regression specification includes dummies for reported age whereas the second 
reports dummies for the soldiers’ true age. The reference categories for the dummy variables 
were held constant so that the age pattern of height would be consistent across the two 
estimations. Finally, because there was considerable random error in the reporting of ages (17.8 
per cent of the sample), I did not want this random error to cloud the influence of the systematic 
selection and error created by people trying to cheat the system. Therefore, in the regressions 
I only included the 75.0 per cent of soldiers whose age was accurately reported along with the 
7.2 per cent who systematically lied about their age. Thus, the differences in height between 
the reported and true ages reflect solely the influence of the systematic error. 

Figure 6 presents the results graphically with the predicted height of soldiers from the 
regressions shown by reported age and true age. Clearly, once the 16- and 17-year-olds 
pretending to be 18 are given the correct age in the sample, the predicted height of 18-year-
olds increases dramatically by 0.69 cm. 16- and 17-year-olds are much shorter than their 18-
year-old counterparts, but their predicted heights were still far above the minimum height 
requirement of 162.56 cm, so it is plausible that they could pass as 18. The effect of men 
pretending to be 21 in order to enlist without the permission of their parents is ambiguous. This 
may be because the majority of these men were 20 years old, and there were relatively small 
differences in height between 20- and 21-year-olds. However, overall the selection bias from 
people pretending to be 18 drastically changes the way one would interpret the growth pattern. 
Based on the reported data, one would argue that there was still substantial growth of greater 
than one centimetre (1.22 cm to be precise) between ages 18 and 19. After the correction, we 
see that this growth after age 18 is much smaller (0.55 cm) than we might have otherwise 
thought. In addition, the height of 18-year-olds is no longer statistically different than the height 
of 21-year-olds. This suggests that growth was slowing at earlier ages with final adult height 
reached between ages 18 and 19. The estimates for height at ages 16 and 17 may also be 
overestimates since presumably taller and more developed 16- and 17-year-olds could more 
                                                
3 Many thanks to Hamish Maxwell-Stewart for providing the data and the idea to look at this particular selection 
mechanism. 
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easily pass for being 18. Thus, this case highlights that whenever there are age thresholds that 
could encourage individuals to misrepresent their age, it is possible to get biased estimates of 
the growth pattern.4 

Figure 6: Predicted heights of soldiers enlisting in the Australian Imperial Force (AIF) by 
reported age and true age along with the number of men misreporting their age above the given 
threshold at each age. 

 
Notes: The predicted heights in the regression are predicted from truncated maximum likelihood regressions 
controlling for father’s HISCLASS, birth location and enlistment month. The omitted category for the regression 
which applies to the height profile drawn relates to soldiers whose fathers were unskilled labourers, who were 
born in Hobart and who enlisted in August 1915. ** denotes a point estimate that is statistically significant from 
age 21 at the 1 per cent level. See text for more detail. 

Sources: Hamish Maxwell-Stewart, personal communication. 

 
Another potential source of selection on unobservables in military data highlighted by 

Bodenhorn et al. (2017: 191-93) stems from the fact that recruits say at age 18 are removed 
from the population at risk of recruitment for a given cohort at age 19 or later ages since soldiers 
could only enlist once. The removal of ‘high quality’ recruits at younger ages could produce 
real bias in the age pattern of growth. It is extremely difficult to show this pattern with real 
data, so I will present simulation evidence to show how this effect works. For the sake of 
argument, assume that men become eligible to enlist in the army at age 17 and there is one 
standard and binding minimum height requirement across all ages. The minimum height 
requirement is at the 65th percentile of height of 17-year-olds in the population and drops 10 

                                                
4 Horrell and Oxley (2016: Appendix A-C) include an extensive discussion of age thresholds and their influence 
on the growth pattern of factory children in the 1830s. They do not believe that the Horner (1837) data is biased. 



 15 

percentiles for each year the cohort ages as it grows so that the minimum height requirement 
is at the 25th percentile of height for 21-year-olds in the population. We assume that the 
experiment is taking place during a major war where 7.5 per cent of men in a given cohort 
enlist at each age from 17 to 21. Thus, 37.5 per cent of the total cohort population enlists, which 
is somewhat less than the 46 per cent of males age 15-49 who enlisted in the army during the 
first world war in England and Wales (Bailey et al. 2016: 43). Enlistment is determined 
randomly from men with heights above the minimum height requirement. Once the men have 
enlisted, they are no longer at risk for enlisting at subsequent ages and are removed from the 
population distribution at risk for enlistment at the next age. With this information, we can run 
a simple simulation to see the influence of men enlisting at earlier ages on the growth pattern. 

Figures 7A-7E show the standardised height distribution of the population with a mean 
of zero and standard deviation of one at each age, the dashed grey curve. The vertical grey line 
is the minimum height requirement. The black distribution is the height distribution of the men 
enlisting at each age. Figure 7A shows that when the first members of the cohort enlist at age 
17, the height distribution of recruits looks very similar to a truncated version of the population 
distribution. However, as more and more men are removed from the population at risk as the 
cohort ages, the distribution of recruits shifts to the left of the population distribution and no 
longer matches the right tail of the population distribution. Although the population mean 
height is zero across all ages, Figure 7F plots the mean standardised height for the population 
 
Figure 7: Influence of recruits being removed from the population at risk of being recruited at 
subsequent ages 

 
Notes: Vertical grey lines show the minimum height requirement. 

Sources: author’s calculations; see text for details. 



 16 

above the minimum height requirement at each age (dashed grey line). This mean could be 
corrected to the population mean using truncated maximum likelihood regressions. The mean 
standardised heights of recruits are given as the black line. Both lines fall across ages as the 
cohort grows and the minimum height requirement becomes less binding. The two means are 
the same at age 17 when the first draw occurs, but by age 21, they are 0.24 standard deviations 
apart which is a substantial difference. Thus, the fact that army recruits are removed from the 
population at risk at later ages could lead to downward bias in the heights of recruits as the 
cohort ages, underestimating the growth occurring at later ages. 

This simulation shows the potential for bias, but it is extremely difficult to adjust for 
this in real data for a number of reasons. First, the percentage of a cohort that enlisted would 
not be uniform across ages and would often be lower than 7.5 per cent at each age. If this cohort 
enlistment rate were very low, then the biases would be much smaller. However, if say 20 per 
cent of the cohort was recruited at age 18, this would mean the bias would be even more 
pronounced at ages 19 and onward. Second, minimum height requirements were very rarely as 
binding as the simulation assumes with many people below the minimum height being allowed 
into the military. Minimum height requirements were also substantially relaxed during the first 
world war, which had the high enlistment rates that could produce bias (Bailey et al. 2016: 41; 
Whitwell et al. 1997: 415). Third, in some cases a large number of men were rejected for 
service, so there was selection out of the cohort for rejected service as well which would push 
the mean standardised height upward closer to those for the population. The biggest problem 
of testing this with real data, though, is that we do not have the population height distribution, 
so it is extremely difficult to truly understand whether the minimum height requirements were 
binding enough to produce the stark results from the simulation. Even if the minimum height 
requirements were not binding, this same bias could exist if selection into enlisting favoured 
those in the upper part of the height distribution. Thus, this source of selection bias is one that 
researchers working with military data should consider seriously. 

 

4. Other Biases and Measurement Error 

In addition to the issues related to selection bias above, it is also worth noting a few 
sources of measurement error that can both hide unobserved selection bias and create bias in 
the growth pattern in their own right. This section discusses bias introduced by period versus 
cohort growth curves, truncated samples of children’s growth and measurement error in ages. 

The first measurement related issue relates to the bias associated with mixing many 
birth cohorts in the typical period (cross-sectional) growth curve used to study children’s 
growth in the past. To illustrate this point, it is easiest to use a real-world example, so here I 
use the national records of children’s growth in Japan mentioned above for the period before 
World War II. The records report the average heights of boys and girls at ages 6 to 20 in every 
year from 1900 to 1939. This data can be represented in a lexis diagram to better capture its 
period-cohort nature. The grey box in Figure 8 shows the age and date range of data that is 
available. The accented black lines represent different growth curves that could be taken from 
the data. The vertical lines represent the typical period or cross-sectional growth curves 
available for historical periods. They reflect children at different ages measured in the same 
year, in this case 1922 or 1936. The diagonal lines reflect a birth cohort moving through the 
various ages. The black accented diagonal line marks the 1916 cohort growth curve, which is 
different than the period growth curve because it follows the same children, those born in 1916, 
across their childhood and adolescence.  
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Figure 8: Lexis diagram showing the difference between period and cohort growth curves 

 
 

The lexis diagram should immediately highlight one of the main problems with period 
growth curves: they include children from a very large number of cohorts who may have faced 
very different conditions in early life. The oldest children in the 1922 period growth curve were 
born in 1902 whereas the youngest were born in 1916. In a period where heights were 
increasing over time, this also leads to distortion in period growth curve. It will tend to flatten 
the height profile since the oldest children are relatively shorter for their age than the youngest 
children. Figure 9A shows the male period growth curves for 1922 and 1936 and the 
corresponding male cohort growth curve for 1916 as shown in the lexis diagram above (Figure 
8). The same figure could be produced for girls, but the patterns are very similar and it is easier 
to gauge the magnitude of the selection bias for boys since boys can be compared with male 
conscripts in the army. The period profiles are clearly flatter relative to the cohort profile. All 
of the growth curves have heights at age 20 above the level for army conscripts measured in 
1936 from the 1916 birth cohort, showing the positive selection of children remaining in school 
as described above.  

The period distortion becomes clearer when looking at Figure 9B. Here the heights have 
been expressed as Z-scores of the WHO modern growth reference including the heights of 
conscripts at age 20 in 1936. Looking at the two period growth curves, there is some evidence 
of positive selection of students into secondary school because the height-for-age Z-scores of 
children are lower in primary school than at the end of secondary school. However, the full 
extent of the selection effect is attenuated by the mixing of birth cohorts since heights were 
increasing during this period. Looking at the 1916 cohort growth curve, we can see that the 
height-for-age Z-scores of children in primary school (up to age 13) are very similar to the 
height-for-age Z-score of military conscripts at age 20 for the same birth cohort. However, 
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beginning around the time that most children left primary school, the height-for-age Z-scores 
of the 1916 cohort increase dramatically. The effect of children leaving school at these ages 
also accentuates the pubertal growth spurt more fully than would be the case in the absence of 
the selection bias. In the end, the actual level of selection bias is far greater in the cohort growth 
curve (0.5 standard deviations of the WHO reference) than in either of the period growth 
curves. This is especially problematic for historical research because historians often rely on 
period growth curves, which may hide the kind of selection bias observed in the Japanese and 
Boston data in this paper. 

Figure 9: Differences between cohort and period growth curves 

 
Notes: My thanks to Kota Ogasawara for his help in extracting this data from Japanese archival sources. The 
WHO 2007 growth reference was used to calculate height-for-age Z-scores. 

Sources: see Schneider and Ogasawara (2017: Appendix B). 
 
Another frequent issue with data on children’s growth is that some institutions that 

captured children’s heights also had minimum height requirements like those discussed for the 
AIF above. Minimum height requirements were common for training programs for the navy 
and merchant marine. For instance, in their study of the Marine Society from the mid-
eighteenth to mid-nineteenth centuries, Floud et al. (1990: 164-5) found that the society 
changed its minimum height requirement 13 times. The Marine Society set a minimum height 
requirement irrespective to age, but the opposite was the case for the training ship Exmouth, 
which varied its minimum height requirements by the age of the children entering. It even 
produced minimum height requirements by half age from ages 13 to 16 (Thirty-Fifth Annual 
Report 1911: 5). However, in both the Marine Society and the training ship Exmouth, the 
minimum height requirements were not strictly enforced. 
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To deal with these minimum height requirements, Floud et al. (1990: 164-5) used the 
quantile bend estimator (QBE) developed by Wachter and Trussell (1982) to adjust for the left-
tail truncation. The QBE assumes that the data should be normally distributed and compares 
the shape of the sample distribution with a normal distribution in a quantile-quantile plot, 
finding the point at which the sample diverges from the normal distribution and the sample 
becomes incomplete. The QBE method works better than the truncated maximum likelihood 
estimator when the truncation point is undefined or not strictly enforced, but it does not easily 
allow for multivariate analysis, which might be necessary if controlling for observables were 
important (A’Hearn et al. 2009: 2). Another crucial problem with the QBE estimator is that we 
would not actually expect heights to be normally distributed at each age across adolescence 
because of individual-level variation in developmental tempo. At ages 13 and 14, children 
developing more quickly would experience the pubertal growth spurt and fill out the right tail 
of the distribution. At the mid-point of the pubertal growth spurt, the distribution should look 
more or less normal again. Then, toward the end of the pubertal growth spurt, the distribution 
should look left skewed as the late developers now stretch the left tail of the distribution. This 
natural pattern of changing skewness is still present among healthy modern children but was 
exaggerated in the past because of the greater dispersion in the age at peak velocity during the 
pubertal growth spurt (A’Hearn et al. 2009: 2; Gao and Schneider 2018).The fact that we would 
not expect the distributions to be normal also affects the truncated maximum likelihood 
estimation technique which relies on a normal distribution even though it does a much better 
job of producing smooth trends and plausible height levels in the Marine Society data (Komlos 
2004: 168). 

We can see an example of how problematic the normality assumption is by examining 
data from the training ship Exmouth. The data include all boys enrolled on the training ship 
between 1903 and 1915 when the minimum height requirements described in detail in 1910 
were in place (Twenty-Ninth Annual Report 1905: 5; Thirty-Fifth Annual Report 1911: 5). 
Birthdates and admission dates were available for all boys so we can be reasonably certain that 
their ages are precisely measured. Figure 10 presents the standardized height distributions with 
the mean height at zero and a one standard deviation change in the distribution being equal to 
a one unit increase of the horizontal axis (Z-scores). These are compared with gray dashed 
normal distributions, and the minimum height requirements are marked by the black dashed 
vertical lines. Clearly, the minimum height requirements were not binding since at some ages 
the mean height was actually below the minimum height requirement. We can see some 
evidence of truncation at ages 11 and 12 before the pubertal growth spurt has begun, but at 
ages 13 to 14, how is it possible to distinguish between the truncation effect and the expected 
right skew as the earliest developers experience their growth spurt? Some left skew is 
noticeable by age 15.5 despite the truncation. Clearly, any estimation strategy that imposes 
normality on these distributions, such as the QBE or the truncated maximum likelihood 
estimator, will have difficulty in matching the untruncated distribution. A’Hearn et al. (2009) 
develop a semiparametric approach that does not require the distributions to be normal, which 
might be of greater use when dealing with truncated distributions of children’s heights, if it 
could be adapted to account for the truncation points and expected shifting skewness of the 
distribution. 
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Figure 10: Standardised height distributions of boys on the training ship Exmouth compared 
with a normal distribution and the minimum height requirement. 

 
Notes: The y-axis shows the kernel density and the x-axis shows the standardised height. The dashed vertical line 
is the minimum height requirement. Data relate to boys admitted to the ship between 1903 and 1915 when the 
minimum height requirements were clear and consistent. 

Sources: Boys’ Record Books, (1876-1915) Training Ship Exmouth, MS MAB/2512, London Metropolitan 
Archives (LMA), London. Minimum height requirements from Thirty-Fifth Annual Report of the training ship 
Exmouth 1910 (1911) MAB/2554, LMA, London: 5. 

 
A final source of bias is the misreporting of ages. We have seen above that age 

thresholds can produce substantial bias in the height profile, but any misreporting of ages could 
affect the height profile if it were prevalent enough. Even random error in ages can significantly 
affect the growth profile of children. Thus, historical data must be consistently accurate in 
reporting ages for the data to be of value when looking at long run changes in the growth 
pattern. 

Measurement error in reported age is important because the link between height and 
age has long been known. In fact, some of the first systematic and large samples of height data 
collected for British children were collected in an effort to enforce age restrictions on child 
labour introduced by the Factory Act of 1833. Factory inspectors tasked with enforcing the law 
needed a way of verifying the ages of children so that factory and mill owners could be held 
accountable for their labour practices. Therefore, several surgeons began measuring height and 
tooth eruption as a way of predicting a child’s age (Horrell and Oxley 2016: 52-3; Kirby 2013: 
99-110). Horrell and Oxley (2016: Appendixes A-C) discuss how the legislation may have 
created age thresholds in the data but generally find that these were not too problematic. 
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However, height and age continued to be powerfully linked in the minds of doctors and medical 
officers of the period and could introduce bias into growth profiles measured in this data. 

The training ship Exmouth, again, provides useful evidence to test these problems with 
real data. For the first few years after the Exmouth opened (1877-1881), the officers recorded 
up to two ages for each boy. They always included the age reported by the boy, but for a 
subsample of boys, the officers also provided their own estimation of the boy’s age which they 
called the ‘supposed age’. The officers provided estimated ages for 26.7 per cent of boys 
entering the Exmouth during those years almost always giving the boys a lower estimated age 
than their reported age.5 Thus, the officers clearly thought that some children were far too short 
to be the age that they reported. However, what is interesting is that the officers did not base 
their estimations on a simple height threshold. Figure 11A shows the distribution of height-for-
age Z-scores of boys whose age was accepted by the medical officer as reliable versus those 
who were given an estimated age. While the boys who were given an estimated age were 
shorter than their counterparts whose age was accepted, the distribution of height-for-age for 
boys given an estimated age was quite wide extending beyond the mean height-for-age Z-score 
of boys whose age was accepted. Thus, it is not clear how the officers decided who was 
misreporting (or misinformed about) their age. 

The pattern of estimated ages also does not suggest that children were lying in order to 
enrol on the ship at earlier ages. Although the admission criteria on the Exmouth are far from 
clear in these early days, the ship’s administrators took children with reported ages under 12 
and the percentage who were given an estimated age increased with the age reported (Figure 
11B). Thus, it does not seem that children were misrepresenting their ages to enrol on the ship 
at earlier ages than regulations allowed. There were no minimum height requirements in place 
during this period, so that could not have influenced decisions about age reporting. The only 
criteria might be related to the time spent on the ship before being sent to the navy or merchant 
marine. Boys entering the ship at later ages spent substantially fewer months on the Exmouth, 
and so would be able to join a merchant ship or the navy more quickly than children entering 
at younger ages. However, when we compare the time children with reliable ages spent on the 
ship with those where an estimated age was given (Figure 11C), we see that the ship required 
the children with estimated ages to remain on the ship for much longer. Thus, there were few 
benefits for the children from misreporting their ages. 

However, this does raise real issues about what a researcher should do with this data. 
Should the reported ages or the estimated ages be used when comparing these children over 
time or to other children? Figure 11D shows two growth curves: one based on the reported ages 
given to all children and another that corrects the reported age to the estimated age for children 
with an estimated age. Clearly, the average heights of the children increased substantially when 
conducting this age correction. The average height-for-age Z-score increases from -3.14 to -
2.89. So which age measure is correct? On what basis would a researcher make that decision? 

This issue also raises questions about how the institution’s record keeping practice 
changed over time. The captain-superintendent of the Exmouth first recommended that the ship 
introduce minimum height requirements in the annual report of 1880 in part because of the 
supposed error in the reported ages on the ship (Fifth Annual Report 1881: 24-25). If we look 
at the height distribution of boys reported at age 12 during the period where estimated ages 
were listed (1877-81) and the period shortly thereafter (1882-86), the height distribution in the 
                                                
5 The officers gave a higher estimated age than reported age in only 0.6 per cent of cases where an estimated age 
was given. 
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later period shifts substantially to the right (Figure 11E). This could have been driven in part 
by the introduction of minimum height requirements, which would have encouraged all 
involved to report ages correctly. However, these minimum height requirements were not 
remotely followed during the later period. Figure 11E shows that the minimum height 
requirement (vertical line) was substantially above the mean and median of the height 
distribution (1882-86). Thus, it is unclear whether the reported ages became more accurate 
after 1881 or the person measuring the children’s height simply started listing their estimated 
age as their reported age in the records. This problem becomes less of an issue when birth dates 
are recorded for the Exmouth later in the nineteenth century, but it does raise serious questions 
about how to interpret changes in mean height and the height distribution between the two 
periods. 

Figure 11: Figures highlighting the effects of misreported ages on the training ship Exmouth, 1877-81 

 
Notes: All data is for 1877-81 unless otherwise noted. In panels A and C, reliable age refers to children whose reported age was 
considered reliable by Exmouth officers. Estimated age given refers to children whose age was not considered reliable and were 
given an estimated age. Panel D shows the height profile for Exmouth boys by their reported age and by their corrected age which 
assumes that all of the estimated ages given by the Exmouth officers were correct. Panel E compares the height distribution of 12-
year-olds in the early period when estimated ages were given (1877-81) with the heights of 12-year-olds just after that period (1882-
86). The vertical line marks the minimum height requirement suggested by the captain-superintendent in 1880, which apparently 
was not enforced. 

Sources: Boys’ Record Books, (1876-1915) Training Ship Exmouth, MS MAB/2512, LMA, London.; Fifth Annual Report of the 
training ship Exmouth 1880 (1981) MAB/2524, LMA, London: 24-25. 
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Although this case was specific to the Exmouth, this example of potentially misreported 
ages suggests how important it is to take the time to understand historical height datasets very 
carefully. It is often possible to detect how the records are subtly changing over time, but this 
is not possible if all datasets are transcribed by research assistants with little input from the 
principal investigator. Measurement error in ages may not be detectable at all in some cases, 
highlighting the importance of triangulating key results with multiple datasets. 

In sum, there are a number of potential sources of bias and measurement error not 
directly related to selection on unobservables that could still influence the growth pattern and 
diminish a researcher’s ability to detect selection bias. Researchers need to consider the 
potential biases introduced by using period growth curves, truncated samples and samples with 
measurement error in ages and weigh the strengths of the dataset relative to the potential biases. 
Unfortunately, this will mean that some datasets are very difficult to work with and may need 
to be abandoned. 

 

5. Conclusion 

This paper has shown how sample selection bias and other sources of measurement 
error and bias could substantially distort inferences about the growth pattern of children in 
historical sources. The most important sources of bias raised here are the positive selection of 
children at later ages into remaining in secondary school, individuals lying about their age 
around age thresholds, the institutional ecosystem that determines the institutions children end 
up in and soldiers enlisting at younger ages falling out of the population at risk for enlistment 
at subsequent ages. Measurement error can also bias the growth pattern, so researchers need to 
understand the biases that arise from period versus cohort growth curves, truncation created by 
minimum height requirements and systematic measurement error in ages. 

 However, the selection biases discussed in this paper do not require substantial changes 
to the current state of the field for two reasons. First, the changing growth pattern of children 
is relatively understudied compared with trends in adult stature, so there are fewer studies that 
could have run afoul. Second, anthropometric historians tend to be fairly careful in their 
research, so many of the potential issues with existing datasets have already been discussed at 
length (Horrell and Oxley 2016; Schneider 2016). Instead, I hope that this paper can serve as a 
guide for those approaching the topic in the future, which should help prevent larger critiques 
from accumulating as in the industrialisation puzzle. 

Having said this, there are three ways in which this paper should lead to revisions or at 
least inquisitive scepticism toward the existing literature. First, the data that Roberts (1874) 
and Bowditch (1877, 1879) along with the other anthropometricians at the end of the nineteenth 
century used to establish a strong pubertal growth spurt are often flawed. Because they drew 
mostly from public schools, it is very difficult to rule out the positive selection discussed at 
length in this paper. This does not mean that the pubertal growth spurt did not exist in this 
earlier period, but we must be incredibly cautious about how we interpret their data. As Tanner 
(1981: 177-78) noted of Roberts’s work, his sample up to age 15 was based on school children, 
but from 16 to 25 it was based on boys accepted to the army or navy. Tanner argues that taking 
the modal height for these groups rather than the mean or median would deal with this bias, 
but that is optimistic. When looking at the growth velocity curve, it is precisely between ages 
15 and 16 that the velocity peaks to produce a typical pubertal growth spurt. Thus, further 
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analysis using longitudinal microdata is necessary to truly understand the growth pattern of 
children in the nineteenth century (Gao and Schneider, 2017). 

In addition, studies of the change in the growth pattern of Japanese children using the 
height data collected by the Ministry of Education over the twentieth century suffer from 
serious bias as discussed above (Ali et al. 2000; Mosk 1996). Because the percentage of the 
population attending secondary school rose from less than 10 per cent to near universal rates, 
the amount of positive selection into secondary school has changed dramatically over time. 
Most studies using this data have not taken this into account, though those looking at the post-
war period (Bassino and Kato 2010) or using the National Nutritional Surveys (Cole and Mori, 
2017) may not suffer to the same extent. Finally, papers that have used truncated maximum 
likelihood or quantile bend estimation to deal with minimum height requirements for boys 
during the adolescent years are very likely to produce biased results since we would not expect 
boys’ heights to be normally distributed at these ages (Floud et al. 1990: 164-5; Komlos 2004: 
168). Thus, it seems at the moment that anthropometric historians are ill-equipped to deal with 
truncated samples of adolescent heights. We will need new statistical techniques to overcome 
these challenges. 
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