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Abstract

Evolutionary growth theory (i.e., Galor and Moav (2002) and Clark (2007)) posits that natural
selection set the stage for modern growth. I leverage micro-data from historical Germany to assess
the viability of the selection mechanisms. I estimate fertility differentials and the inter-generational
transmission of SES. High status couples, proxied by occupation, had 1-2 additional children, and
SES was strongly heritable. To explore whether these parameters induce selection, I simulate an
overlapping generation model of fertility choice and status transmission. The German parameters
do not enable Clark’s survival of the richest, whereas Galor and Moav's selection on quality can arise
if the returns to investing in child quality are sufficiently large. Monte Carlo simulations extend
the analysis beyond Germany. Survival of the richest requires exceptionally high coefficients of
transmission (=0.87), and selection on quality emerges whenever returns to quality investments
translate into higher fertility. Both depend on the strong heritability of the growth-complementary
traits.
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Introduction

Economists have long emphasized the relevance of reproductive inequality, namely fertility dif-
ferentials by socioeconomic status (SES) (Malthus 1803). If some segments of a population with
particular traits or preferences have higher net fertility, a greater share of the next generation will
exhibit these features. This is the fundamental building block of evolutionary growth theory (Galor
and Moav 2001). Here, reproductive inequality leads to the proliferation of the (potentially growth-
inducing) traits and preferences of the reproductively more successful classes. Evolutionary change
towards traits that are complementary with economic growth thus contributes (or even causes)
the transition to modern economic growth (Galor and Moav 2002; Clark 2007). These processes
of evolutionary change can occur via genetic and extragenetic transmission (Lala and Feldman
2024), with authors placing varying wights on these different pathways (Clark 2023). Although such
explanations are appealing in their theoretical clarity, their applicability to observed historical
processes is unclear (e.g. McCloskey 2008; Dribe and Scalone 2014; Cummins 2020).

Even if we assume that some classes had particularly growth-inducing traits —i.e. that these
traits are highly correlated with SES — questions remain. Reproductive inequality will only lead to
long-term selection if SES and the associated traits are strongly transmitted from one generation to
the next.! However, we are unsure about (1) the level of reproductive inequality and (2) the degree
of inter-generational transmission necessary for sustained selection on these traits. To test the
viability of evolutionary growth theory, I focus on the two most prominent theories; Galor and
Moav'’s (2002) selection on quality and Clark’s (2007) survival of the richest. In Galor and Moav
(2002) some share of the population have a heritable preference for quality that manifests in a
reproductive advantage via higher incomes. In Clark (2007) the rich have a growth-inducing je ne
sais quoi that is disseminated via their reproductive advantage. I delineate the parameter space for
these selection mechanisms, and discuss the general conditions for evolutionary growth.

To this end, I estimate reproductive inequality and inter-generational transmission for pre-
Industrial Germany. I then simulate an overlapping generation model of fertility choice and inter-
generational transmission to explore which parameter combinations can induce selection. To
estimate the parameters, I leverage individual-level life histories from the historical principalities of
Wittgenstein in western Germany (Mehldau 2011). This source is extensive in depth, temporal scope,
and generational linkage, containing demographic histories for around 150,000 individuals across
three centuries (1600-1900). The main threat to estimation is the migration-induced censoring of
life histories. This source contains the universe of ecclesiastically recorded demographic events
in contingent parishes across two sovereign principalities. Compared to other sources for pre-
Industrial demographic behavior in Europe, this minimizes censoring, making this a uniquely
suitable source. I proxy SES with individuals’ occupational status by using a large language model
to map occupational titles to measures of status.> More than 24% of men had their occupation

IMcCloskey (2008) raises a similar critique regarding survival of the richest. Clark (2008) responds to this critique and
uses back-of-the-envelope calculations to demonstrate that fertility differentials and the high heritability of status could
lead to survival of the richest. This paper formalizes these back-of-the-envelope calculations by calculating the magnitude
of and threshold conditions for selection.

2Using LLM methods, instead of hand-coding occupational titles, has the advantage of reducing researcher degrees of
freedom while also improving replicability.



recorded.® This compares favorably with frequently used sources for France or England (Wrigley et
al. 1997; Henry and Houdaille 1973).

Using these detailed life histories, I can show that high SES couples had between 1 and 2
additional surviving children. This differential is driven by gross fertility, with under-15 mortality
level across the SES distribution. I find little movement along the extensive margin of fertility;
childlessness and celibacy did not vary by SES. Based on a simple decomposition exercise, 83% of
the effect of SES on gross fertility is attributable to variation in mother’s age at marriage (starting),
with variation in the length of the average birth interval (spacing) accounting for the remainder.
Instead of interpreting this as evidence for deliberate fertility control, I argue that labor migration
among poorer husbands mechanically increased the average birth interval. Fertility differentials
of this magnitude create significant selection pressure on SES. The degree to which this pressure
affects the composition of society depends on the heritability of SES. To this end, I draw on work by
Stuhler (2012) to estimate the coefficient of transmission. I estimate multi-generational elasticities
of SES across one, two, and three generations. These elasticities are attenuated by measurement
error. A ratio estimator identifies the unattenuated coefficient of inter-generational transmission.
In the full sample the coefficient of transmission is equal to 0.63.

Aside from their relevance in describing the social and demographic patterns of pre-industrial
Germany, these results contribute to the broader debates about the origins of modern economic
growth. Iformulate a simple overlapping generation model of fertility choice and inter-generational
transmission of status. By simulating this model for the estimated parameters, I show that the
German demographic regime could not sustain survival of the richest. 1 find that the story for
selection on quality is more complex; if the income returns were greater than the fertility cost of in-
vesting in child quality, selection pressure on quality preferences emerges. I generalize these results
by simulating several 100,000 parameter combinations. The selection mechanism underpinning
survival of the richest is contingent on exceptionally high heritability of SES — across simulations,
the threshold coefficient of transmission that produces a 50% increase in mean endowment over 20
generations is 0.87. In terms of fertility differentials and status transmission, the parameter space
for selection on quality is larger. However, selection depends on more conditions. Chiefly, the
fertility returns to quality — via higher incomes — need to be large enough to offset the fertility cost
of investing in quality. If this condition is met, and preferences for quality are strongly heritable,
lineages with a quality preference out-reproduce the rest. More generally, I show that the conditions
for evolutionary growth are (1) a slight reproductive advantage for the trait, and (2) a high heritability
for the trait. Although the former conditions was likely met, the viability of the second is more
contentious.

Related Literature. This paper contributes to the debate on the viability of evolutionary growth
theory (Galor and Moav 2002; Clark 2007).* Instead of focusing on the transition to modern
growth, I focus on the underlying selection mechanisms. Although several papers estimate fertility
differentials or heritability in the context of evolutionary growth (e.g. Boberg-Fazlic et al. 2011; Clark

3All results are robust to excluding this unobserved category, to including it as unobserved, or to assigning individuals to
the lowest SES.

4Another strand of literature discusses the relevance of reproductive inequality in contemporary settings (de la Croix and
Doepke 2003; Doepke 2004; Vogl 2016).



and Cummins 2015; Clark and Cummins 2014; de la Croix et al. 2019), this literature stops short of
demonstrating whether these parameters are sufficient for selection to take place.’® I use Monte
Carlo simulations to identify the conditions for selection under Galor and Moav (2002) and Clark’s
(2007) theories. My results favor the mechanism underpinning selection on quality over survival
of the richest. Qualitatively, this work is most similar to contributions illustrating that medium
fertility families had an evolutionary advantage in the long-run (Galor and Klemp 2019; Hu 2025).
By testing the demographic feasibility of evolutionary growth theories, this paper contributes to
our understanding of the transition from economic stagnation to growth.’

This literature overlaps with work testing Malthusian theory.® Malthus makes formal predictions
about the relationships between wealth, fertility, and mortality (Malthus 1803). He predicts lower
gross fertility (preventive check) and higher childhood mortality (positive check) among poorer
couples (Malthus 1803). Several studies examine these associations at the individual-level. For
Europe, previous studies focus on England (Clark and Hamilton 2006; Boberg-Fazlic etal. 2011; Kelly
and O Grada 2014; Clark and Cummins 2015; Cummins et al. 2016; de la Croix et al. 2019) and France
(Weir 1995; Cummins 2020).° By exploring these associations in Germany, this paper expands
our knowledge of the demographic history of Europe. France and England are the vanguards of
demographic change and industrialization, respectively. Understanding how these associations
shaped the demographic regime in a case removed from these extremes is an important step
towards a more holistic understanding of demographic regimes of pre-industrial Europe. The
fertility differentials I estimate are comparable to the “super-fertility” of the rich in England, instead
of the moderate advantage the richest enjoyed in pre-revolutionary France (Cummins 2020, p. 15).

Lastly, my findings contribute to arich literature on social mobility. While several studies explore
historical social mobility (Crew 1973; Kaelble 1984; Van Leeuwen and Maas 1996), the German case
before 1900 is largely absent from the recent literature. Advancements in methodology and data
availability led to a proliferation of estimates of social mobility for Anglo-American countries (Miles
1999; Mitch 2005; Mazumder 2005; Long and Ferrie 2013; Clark and Cummins 2014; Braun and
Stuhler 2018; Clark, Cummins, and Curtis 2023; Zhu 2024; Pérez 2019; Ward 2023, e.g.). I contribute
the first estimate of inter-generational transmission from pre-Industrial Germany. I estimate that
the coefficient of transmission was 0.63 (1650-1850). Albeit high, implying limited mobility, the
estimate falls below the proposed universal coefficient of ~0.8 by Clark (2014) and is much closer
to estimates for early-20th-century Germany by Braun and Stuhler (2018).

5Klemp and Weisdorf (2019) test another tenet central to endogenous growth theory. They explore the relationship
between medium fecundity and human capital in pre-Industrial England.

6dela Croix et al. (2019) include back-of-the-envelope calculations to show that their estimates would lead to a significant
expansion of the middle-class. However, their calculations assume perfect inter-generational transmission.

“Another strand of literature uses genotyped DNA samples and GWAS poly-genic scores to identify evidence for genetic
selection (Piffer and Connor 2025). But questions regarding population stratification (Hellwege et al. 2017) (i.e., where
random variation in genotypes across environments drive spurious associations between genotype and environment-
dependent phenotype) and the portability problem (Matthews 2022), the limited out-of-sample applicability of poly-genic
scores) raises important concerns about the reliability of these findings.)

8Given the population level predictions of the Malthusian model and the scarcity of individual-level records, macro-level
inquiry - estimating the relationship between vital rates and real wages at a population level — prevails (Lee and Anderson
2002; Crafts and Mills 2009; Fernihough 2013; Pfister and Fertig 2020). Another strand of this literature uses historical event
analysis to evaluate the contemporaneous individual-level demographic response to economic pressure and the variation
of the latter across social groups (Bengtsson et al. 2004; Thiehoff 2015).

9Several papers tested the individual-level dynamics of the Malthusian model outside of Europe (Feng et al. 1995; Lee
and Feng 1999; Campbell and Lee 2002; Bandyopadhyay and Green 2013; Lee and Park 2019; Kumon and Saleh 2023; Hu
2023).



The paper progresses as follows. The next section introduces the data I assembled to estimate
German parameters. In section three, I estimate reproductive inequality and the underlying
mechanism. Section four presents estimates of inter-generational transmission of SES. Section five
describes the overlapping generation model and discusses the results of the simulation exercise.
Section six concludes.

2 Data and Background

Studying pre-industrial demographic behavior requires a set of sources distinct from those em-
ployed for later epochs. Census or population registry data of sufficient granularity are seldom
available prior to the mid-19th century (Campbell 2015). In this paper, I leverage the community
reconstitution for the historical principalities of Wittgenstein (Mehldau 2011). Community recon-
stitutions contain linked life histories for all members of a specific ‘community’.!° Life histories are
based on ecclesiastical records of baptism, marriages, and deaths. Due to the labor-intensive
process of linking demographic events, reconstitutions tend to focus on singular, or at most,
a collection of parishes and rarely capture urban populations (Blanc 2023). The Wittgenstein
reconstitution sets itself apart by containing the universe of ecclesiastically recorded demographic
events across two sovereign principalities. Additionally, compared to other genealogical sources,
the exceptional scientific rigor (citing the specific source for each demographic event) makes
this reconstitution particularly valuable. The dataset encompasses 150,000 individuals across
42,000 couples. The core of the study draws on the complete registers of 16 parishes (11 Reformed-
protestant, 1 Lutheran-protestant, 4 Roman-catholic) (Mehldau 2011).

Notably, the approach of the Wittgenstein reconstitution is micro-historical. Instead of looking
at a broad sample of remote parishes, I observe one cluster of neighboring parishes. This is
advantageous since much early-modern migration occurred over short distances (e.g., neighboring
parish); hence, in my sample, fewer life histories are censored by migration (Clark 1979; Patten
1976). Moreover, Wittgenstein constitutes a valuable case study of rural German demographic
behavior. Before the Reichsdeputationshauptschluss of 1803, the territory was split between the two
principalities of Sayn-Wittgenstein-Hohenstein in the south and Sayn-Wittgenstein-Berleburg in
the north (Kobler 2007).!! Protestantism was adopted early; most of the population was Reformed
Protestant, with a sizable Lutheran minority and smaller Roman Catholic and Jewish ones. Given its
mountainous geography, extensive forests, and low agricultural suitability, Wittgenstein was char-
acterized by fragmented farming instead of larger estates. Compounded by a partible inheritance
structure, this meant that most inhabitants practiced some degree of subsistence agriculture. In the
later part of our study period, the first-order geography, which had initially retarded Wittgensteins
development, favored the development of proto-forestry and metallurgy industries. Wittgenstein’s
main export was charcoal, primarily to its more industrialized neighbors. In addition to artisans,
a small textile cottage industry constituted an additional source of employment (Klein 1936;

1Community reconstitutions are the non-academic analog to family reconstitutions, often compiled by hobby genealo-
gists (Knodel and Shorter 1976).

1A substantial step in the secularization and mediatization of the late Holy Roman Empire initiated to compensate
German principalities for the loss of territory left of the Rhine to Napoleonic France.
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Figure 1: Wittgenstein: Socioeconomic observables compared to west Prussian average.
Source: Galloway Prussia Database, iPEHD Prussia Database, Princes and Townspeople: A Collection of Historical Statistics
on German Territories and Cities (Markets). Map created using ArcGIS.

Fremdling 1986).

Still, although it was located on the border of the economically dynamic Rhineland, its infrastruc-
tural backwardness and geographical remoteness partially isolated Wittgenstein from modernizing
tendencies (Klein 1936). Figure 1 compares Wittgenstein with other western Prussian counties
at the end of the 19th century across several socio-economic observables. With the exception of
geographic variables (temperature and altitude), most others are within one standard deviation of
the mean county. The picture of late 19th-century Wittgenstein that emerges is one of a somewhat
economically backward region, with a young and relatively more educated population. Although
it would be misguided to claim that these principalities are wholly representative of German
demographic behavior, these traits of Wittgenstein — subsistence agriculture and the development
of proto-industry — make it a pertinent case for understanding demographic behavior and change
in rural Germany.

Exclusion conditions. Since community reconstitutions often link records from outside the core
area of the study, they are at risk of over-sampling genealogies of particular interest to contributors
or greater ease of access. The Wittgenstein one-place study contains complete reconstitutions for
the 16 parishes of Wittgenstein and partial reconstitutions from other parishes (mostly neighboring
Siegen). Although the reconstitution contains records from as early as 1525, observations from
before 1600 are excluded. An 1876 law transferring the responsibility for recording demographic
events from ecclesiastic to secular institutions marks the end of parish registers as a complete
source. To ensure that I observe full fertility histories, only marriages prior to 1850 are included
when I estimate fertility differentials. When estimating inter-generational transmission, the sample
is restricted to son’s that married before 1876. Throughout, to ensure estimates are not biased by



Table 1: Summary Statistics

Panel A: Demographic Variables

Mean Std.dev Min. Max. N Level

Gross Fertility 5.18 3.00 0 17 10323 Couple
Net Fertility 3.58 2.33 0 12 10323  Couple
P(Childless) 0.06 0.23 0 1 10323  Couple
Marriage Age: Mother 24.98 5.88 11 72 10323  Couple
Marriage Age: Father 28.66 6.16 10 75 10323  Couple
Age atlast birth: Mother 37.50 6.24 15 55 9731  Couple
Birth-interval (avg. months) 35.33 15.36 0 388 8978 Couple
HISCAMP 59.71 14.31 41 99 5325  Couple
P(AgeDeath <5) 0.25 0.43 0 1 54018 Birth

P(AgeDeath < 15) 0.30 0.46 0 1 54018 Birth

HISCAM' 60.50 13.80 41 99 27700 Birth

Panel B: Intergenerational Transmission

Variable Generation Mean Std. dev N
G3 (son) 4.04 0.18 5143

In(HISCAM) G2 (father) 4.07 0.20 5143
G1 (grandfather) 4.10 0.21 3274

Notes: Panel A presents summary statistics for the most all relevant variables used in the estimation of reproductive
inequality. Variables are observed either at the level of the couple or the level of the birth. At the birth level HISCAM is the
occupational status of the father, and at the couple level it is the occupational status of the husband. Further variation
in sample size is the result of inclusion restrictions discussed in section 2. Panel B presents summary statistics for the
estimation of intergenerational transmission of status. The variable of interest is log occupational status with each row
corresponding to a generation in the linked sample.

the effect of remarriage, only bachelor-spinster marriages are included.

When estimating reproductive inequality, I include only couples whose marriages were recorded
in the core parishes, constituting the full reconstitution at the heart of the source. Individuals are
not observed across their full lifetime but instead only enter observation at discrete instances when
specific demographic events occur. Since migration is an unobserved event, I need to account
for the migration-induced censoring of life histories (Campbell 2015). To this end, only non- and
in-migrants prior to marriage are included.'” These restrictions result in a sample of 10,323 couples
and 54,018 births (see Panel A, Table 1).

For inter-generational transmission, I impose less severe inclusion restrictions. To estimate
status elasticities, I need to observe occupation for two subsequent generations (GX & G[X-1]).
Fathers (sons) who are linked to sons (fathers) outside the core parishes do not bias the estimates.
Delger and Kok (1998) outlines how marriage registers — observing both father and son’s status at the
instant of the son’s marriage — underestimate mobility due to the difference in career progression.
My sample is limited to fathers (G2) that I observe at marriage (either in or outside of Wittgenstein)
and their legitimate children (G3), mitigating this source of bias. Since my sample is fully hand-
linked, I avoid concerns regarding false-positives from automated record linkage (Bailey et al. 2020;

12T also run regressions based on a sample that is only restricted by mothers death, allowing for the out-migration of
fathers. This has a negligible effect on results; hence, only the stricter restriction is reported throughout. For a full discussion
of how migration can color my results, see Appendix B.



Table 2: Status Classes

Classification Rule: Capital Summary Statistics
Class Human Economic/Land Social \ N Couples NBirths E(HISCAM)
Lower 1 0 1 429 1883 47.22
Lower-middle 2 1 2 1020 5009 52.50
Upper-middle 3 2 3 3342 17441 60.50
Upper 4 3/4 4 770 4231 71.83

Notes: The table summarizes class definitions based on the classification of occupations by a LLM according to three
forms of capital and reports associated sample sizes and expected HISCAM (occupational status). In classification:
0-None, 1-Low, 2-Modest, 3-High, 4-Very High.

Anbinder et al. 2021). Still, identifying the coefficient of transmission in a latent variable model
requires linked data across three generations. Leveraging the linkage depth of the reconstitution, I
link backwards along the paternal line to find grandfathers (G1). The estimation sample contains
5,143 sonfather (G3-G2) and 3,274 songrandfather (G3-G1) links (see Panel B, Table 1).

2.1 Occupational Status

At the level of couples, SES is approximated by husband’s occupational status.'® In other regressions
i/h/f )

status is measured by own, husband’s, or father’s status (Status,

To reduce researcher degrees of freedom and improve replicability, occupational descriptions
are mapped to occupational status using natural-language methods. After minimal preprocessing,
occupational descriptions are parsed by a large language model (LLM) (c1laude-3-haiku-20240307),
yielding 2,568 unique occupational titles. A separate model (claude-sonnet-4-20250514) is used
to (1) translate occupational titles and (2) assign them to discrete status classes.'* The LLM makes
assignments based on the (1) human capital, (2) economic capital or land, and (3) social capital
requirements of different occupations. Table 2 summarizes the classification rules and reports
summary statistics for the classes.'®

In addition to discrete status classes, occupational titles are also mapped to a continuous
measure (0-100) of occupational status (HISCAM). To this end, I employ a fine-tuned version of the
OccCANINE classifier model by Dahl and Vedel (2024) to code all translated occupational titles into
HISCO, a standard historical occupational classification scheme that maps onto HISCAM scores.
HISCAM is based on the observed stratification of social interactions in historical societies; as such,
it is distinct from class schemes that assign occupations to social groups based on the post-factum
conceptualization of status (Lambert et al. 2013).'® For a subset of individuals, I observe multiple
occupations. Whether due to occupational mobility, differing occupational names, or because

131n the patriarchal context of rural pre-industrial Germany, male income was the main determinant of household income.

141 also run a classification prompt that assigns each occupation to one of ten discrete occupational categories. The
two approaches yield similar results and the same overall fertility gradient. However, to aid interpretability, and because a
ranking across a larger number of categories is more contentious, I prefer and report estimates using the four status classes.
My results also replicate when using the seven occupation categories proposed by Clark and Hamilton (2006). See Table A2.

15Table A3 reports the ten most common occupations per class.

16Throughout, I use the universal HISCAM scale, since the German-specific scale relies on a small sample.



people pursue multiple occupations. When using HISCAM, I average across these observations
to reduce measurement error in occupational status. When using the discrete categories, I use a
random draw of available occupations.'”

I validate the LLM mapping by comparing it to a hand-mapping of occupations. In the absence
of a ground-truth mapping, this is the second-best approach to validation. Inter-rater agreement
measures between the mappings indicate substantial agreement (Cohens x=0.62) and correla-
tions between different status measures are high across the board (see Table A1). Additionally, I
demonstrate that results are robust to using the hand-mapping.

3 Reproductive Inequality

This section estimates the degree of reproductive inequality — the fertility differential between the
highest and lowest SES couples. After estimating the degree of reproductive inequality, I discuss
the mechanisms underpinning class differences and account for measurement error using a partial
identification strategy.

3.1 Estimation

Reproductive inequality is defined as the differential in net fertility between couples of high and
low SES. Net fertility is a composite of how many children were born (Malthusian preventive check)
and how many died before reaching reproductive age (positive check). To understand how these
three demographic outcomes — gross fertility, under-15 mortality, and net fertility — vary in SES, I
estimate the following econometric model.

Yi=ap+7n+8-STATUS, +¢€i1p M

whereY; is the outcome of interest. : indexes the couple or, when estimating mortality, the individual
birth. The model includes parish «, and decade 7, fixed effects to account for local reporting
practices and temporal differences. The exposure variable ST ATU S, is a measure of SES; discrete
status categories > | ST AT; or a continuous logged measure In(HISCAM,). All baseline regressions
are estimated using OLS, and standard errors are clustered at the parish level.'®

Gross fertility is the number of children ever born to a couple. Childhood mortality is estimated
at the individual level, where Y; is an indicator variable equal to one if the age at death is younger
than 15.'9 Estimation at the individual-level ensures that mortality differentials are isolated from

17Results are robust to using their highest or lowest status occupation. See Table A2.

18The results are robust to estimation using negative binomial (for fertility) and logistic (for under-15 mortality) models;
See Table A4. I cluster at the parish level since demographic events and occupations are recorded at the level of the parish,
and unobserved parish-specific factors can create within-parish correlation. To further account for this I show that my
results are robust to clustering at the approximate level of the priest (Parish x Decade) in Table A5.

19T account for the under-reporting of infant deaths by using a repeat-naming approach (Houdaille 1976; Cummins 2020).
In pre-modern Europe, when a child died, the subsequent child was often given the same forename. Therefore, where a
child has a subsequent sibling of the same name and is not linked to a burial record, it is assumed to have died as an infant.



Table 3: Reproductive Inequality

Gross Fertility 1(AgeDeath < 15) Net Fertility
ey ) 3) 4) ) (6)
In(HISCAM) 1.335*** -0.039* 1.140***
(0.215) (0.021) (0.182)
Lower-middle Class 0.518*" 0.009 0.325***
(0.197) (0.017) (0.104)
Upper-middle Class 0.900"** 0.007 0.594***
(0.129) (0.015) (0.077)
Upper Class 1.165™** 0.000 0.823***
(0.204) (0.014) (0.168)
Mean DV 5.144 5.136 0.298 0.298 3.594 3.587
Observations 5325 5561 27700 28874 5325 5561
Parishes (clusters) 16 16 16 16 16 16
R? 0.035 0.036 0.008 0.007 0.034 0.033

Robust clustered standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Notes: This table reports OLS estimates for the association between SES and demographic outcomes. In columns (1), (3),
and (5) the exposure variable is In(HISCAM) - logged continuous occupational status — and in all other columns SES is
operationalised as discrete status categories, with "lower class" being the reference category. The outcome variable in
columns (1) and (2) is gross fertility measured at the couple level. Columns (3) and (4) are estimated at the birth level and
the outcome variable is a indicator variable equal to one if the child died prior to turning 15. Here status is measured
using father’s status. Columns (5) and (6) present estimates for net fertility, gross fertility minus adjusted under-15
mortality, and are estimated at the couple level. All regressions include parish and marriage/birth decade fixed effects.

fertility effects.?’ This approach assumes that I observe child-deaths prior to 15 even where I do
not observe the full life history, since children were likely to live with their parents up to 15. Last,
net fertility is gross fertility minus adjusted under-15 mortality at the couple level.

Table 3 reports the results. Columns (1) and (2) demonstrate a pronounced and significant
positive association between SES and gross fertility. The coefficient for In(HISCAM) implies that
doubling HISCAM from the lower-bound of the status distribution (40) to the top decile (80) would
increase gross fertility by 1.335 x In(80/40) = 0.925. Column (2) reveals an even more pronounced
fertility differential; couples of the highest status class had 1.165 additional children compared
to those of the lowest class. HISCAM and the status classes capture distinct dimensions of SES.
Thereafter, this small difference (21.6%) in the estimates of the fertility differential is unsurprising.
The relationship between SES and fertility is non-linear across the 4 status categories. The predicted
fertility for the lower-middle class is x1.12 higher than that of the lower class, but the advantage
of the upper class over the upper-middle class shrinks to x1.05. The log-linear specification in
column (1) accounts for this non-linearity: the effect of SES on fertility levels off at higher SES. This
concavity is consistent with biological constraints on fertility. Assuming couples begin childbearing
at age 25, continue until age 45, and maintain an average birth interval of 3 years, the maximum
expected fertility is 6.7 births.?! As couples approach this limit, the marginal effect of SES becomes

I compare siblings based on the string distance (jaro-winkler) between names. This approach enables me to also catch
cases where parents reused names for the other gender, e.g., Peter (male) and Petra (female).

20Since the proportion of children dying is a function of both childhood mortality and gross marital fertility, estimation at
the couple level introduces bias if a status gradient in fertility is present. Even if the probability of a child dying is equivalent
across status groups, variation in the denominator could introduce spuriously significant associations between status and
mortality.

21Calculated as (StoppingAge-StartingAge)/SpacingTime.
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mechanically constrained. Moreover, in a classic model of fertility choice where preferences are
defined across consumption and children, higher-SES (income) couples may have a preference for
consumption, reducing the marginal effect of SES (income) on fertility.

The association between under-15 mortality and SES is estimated using a linear probability
model. The coefficients correspond approximately to changes in the probability of death for all
births. All estimates in (4) are statistically insignificant. The only significant coefficient — at the
10% level — found in column (3) is economically small. Children born to couples of the lowest
SES have a probability of 0.31, as opposed to a probability of 0.29 for the highest status decile.
These results imply that under-15 mortality did not vary across SES in a meaningful way. This
finding is consistent with evidence from France and England (Boberg-Fazlic et al. 2011; Clark and
Cummins 2015; Cummins 2020). Given the dominance of infectious diseases as causes of under-15
mortality, the absence of an association is unsurprising. The better living standards of higher SES
couples did little to curb high childhood mortality from infectious diseases. SES and income only
became relevant in periods of sustained resource shortages when children of wealthier couples
were less exposed to malnutrition. Kelly and O Grada (2014) finds that in late-medieval England, a
SES-gradient in mortality only emerged in periods of sustained famine. In a similar vein, Malthus
himself noted that the status-gradient in mortality acted only as a “last most dreadful resource of
nature” during periods of pronounced resource scarcity (Malthus 1803).

Given the absence of an association between under-15 mortality and SES, the gradient in net
fertility closely mirrors that in gross fertility. Based on the coefficient in column (4), couples in the
top decile had 1.140 x 1n(80/40) = 0.790 additional surviving children. According to the discrete
categories, the highest-SES class had 0.823 additional surviving children.

3.2 Mechanism

Extensive Margin. Baudin et al. (2015) decomposes group level fertility into an intensive and
extensive margin. The intensive margin corresponds to the number of surviving children per
reproductive unit (couple). The extensive margin is determined by the share of all potential
reproductive units that do not have children, namely couples that remain childless and individuals
who remain celibate. de la Croix et al. (2019) demonstrates that the extensive margin affected
reproductive inequality in England; here, when accounting for celibacy and childlessness, the
middle-class had the highest fertility. To explore whether this is the case in Germany, I regress
indicator variables for childlessness and celibacy on In(HISCAM) in a linear probability model.
I find that the extensive margin of fertility did not vary in SES. Instead, reproductive inequality
operated fully through the intensive margin.??

Intensive Margin. The intensive margin of gross fertility is a function of when reproductive
behavior begins (starting), when reproductive behavior ceases (stopping), and how frequently
births occur within this period (spacing). To understand the relevance of these factors in my sample,
I regress mother’s age at marriage, age at last birth, and birth intervals on husband’s occupational

22For a fuller discussion, see Appendix C.
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Table 4: Reproductive Inequality: Measurement Error in SES

Net Fertility
OLS 2SLS
1) 2) 3) 4)
Instrument: In(HISCAM,) In(HISCAMg.1)
In(HISCAM) 1.010***
(0.177)
In(HISCAMayg) 1.140%**
(0.182)
In(HISCAM) 2.788 2.961**"
(1.710) (0.641)
Mean DV 3.594 3.594 3.678 3.649
Kleinbergen-Paap F stat 18.194 78.462
Observations 5325 5325 1643 2323
Parishes (clusters) 16 16 14 15

Robust clustered standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Notes: This table reports OLS and 2SLS estimates for the association between SES and net
fertility. The unit of observation is the couple. Columns (1) and (2) are estimated using OLS and
use as exposure a random draw of In(HISCAM) or the average In(HISCAM) respectively. These
regressions include both couples with one In(HISCAM) and those with multiple. Column (3)
and (4) are estimated using 2SLS. In column (3) arandom draw of In(HISCAM) is instrumented
with a second draw among the subpopulation with multiple observed occupations (31%). In
column (4) In(HISCAM) is instrumented with In(HISCAM,, _1 ) of the prior generation among
the subset of couples that can be linked backwards (44%). All regressions include parish and
marriage/birth decade fixed effects.

status. I discover that both starting and spacing vary in SES. In couples of the top SES decile,
women married 3.30 years earlier and had 2.02 months shorter birth intervals. A decomposition
exercise reveals that starting was more important, accounting for 83% of the total effect of SES on
gross fertility.® Historical evidence suggests that differences in birth intervals were not driven by
deliberate spacing but were instead the mechanical consequence of local labor markets. Lower
SES men often traveled to neighboring principalities to seek out work (Klein 1936). These periods
of absence mechanically increase birth intervals for low SES couples, offering a viable explanation
for the association between spacing and SES. In aggregate, this suggests that the age at marriage
was the main driver of fertility differentials, with a limited role for mechanical spacing.

3.3 Measurement Error

One concern when interpreting the magnitude of these differentials is that measurement error
in SES — due to data error and status deviations — attenuates my estimates. Although this issue is
much acknowledged in the social mobility literature (e.g. Solon 1992; Ward 2023; Zhu 2024), prior
studies of historical reproductive inequality do not deal with it directly. Occupational status is
a noisy snapshot of latent SES; OccStatus, = SES; + w;. If this noise takes the form of classical
measurement error — i.e., u; has mean zero and is uncorrelated with SES - the coefficients 3o s for
reproductive inequality are attenuated (Solon 1992).

23For a fuller discussion, see Appendix D.
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Figure 2: Partial Identification of the Fertility Differential
Notes: This figure depicts the relationship between the unbiased estimate of the fertility differential 5 and potential violations
of the inclusion restriction described by the direct effect of the prior generations SES on fertility v. The true coefficient is
bounded from above by the potentially inflated 87y and from below by the attenuated So1.s-

Two approaches to correct for attenuation bias are (1) averaging across multiple observations
of SES per unit, or (2) using a repeated measure of SES as an instrument. The former reduces
attenuation, while the latter can fully account for it. However, the repeated measures approach
does not work well with reconstitution data; not only is the population with multiple recorded
occupations strongly selected, but if multiple are recorded, they are most often not independent
measures of the same SES, but instead snapshots at different parts of the status-lifecycle (e.g.,
marriage and death). Thus, instead of recovering 5, the instrumental variable approach estimates a
local effect among a selected complier population. In this setting, compliers are couples with
very low life-cycle mobility, i.e., the poorest and richest couples who stay poor or rich.?* To
account for this, I implement an strategy and instrument occupational status OccStatus; ; with
the occupational status of the prior generation OccStatus; ,—1. Father’s SES is a strong predictor of
one’s own SES and thus a relevant instrument.

Table 4 reports estimates obtained using all three strategies. In column (1), the HISCAM is based
on a random draw of occupations, where multiple are observed. Column (2) corresponds to the
baseline estimate and averages SES across multiple observations. Consistent with measurement
error in SES, the point estimate increases by 12.9%. Columns (3) uses a second observed occupation
as an instrument; the F statistic is low (for a repeat measurement approach), and the point estimate
isinsignificant. Column (4) reports the estimate from instrumenting with the occupational status of
the prior generation. The estimates in column (4) are inflated if the exclusion restriction is violated.
If Father’s have a direct effect v on the fertility of their offspring, the exclusion restriction is violated,
and Sy is biased by /7, where 7 is the first stage coefficient from regressing In(HISCAM; ;)
on In(HISCAM,; ,). If the SES of the prior generation affects fertility directly, 37 can be used to
bound $ from above in a partial identification approach. Since measurement error biases So s
downwards, we know that o5 < 8 < Brv. Figure 2 models this relationship. By considering a
realistic range of direct grandfather effects, we can make a best-guess about the true value of . For
example, if we assume a direct grandfather effect of v = 0.20 (namely, irrespective of fathers SES,
high SES grandparents have 0.20 extra grandchildren), couples of the highest SES decile have a

24Additionally, if SES is measured at different ages, the associated measurement error is likely age-dependent and non-
classical.
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reproductive advantage of 2.122 x 1n(80/40) = 1.47.

3.4 Summary

This section presents estimates for reproductive inequality in Germany. When not accounting for
measurement error in occupational status, the fertility differential between the lowest and highest
status couples was In(80/40) x 1.01 = 0.70. Once I account for measurement error, the estimated
differential is In(80/40) x 2.96 = 2.05. Relaxing the exclusion restriction and allowing for a direct
parental-effect on fertility suggests a differential of In(80/40) x 2.12 = 1.47. Net fertility differentials
are the result of differences in gross fertility; mortality, celibacy, and childlessness do not vary in
SES. Mother’s age at marriage accounts for the majority of the differential in gross fertility.

Fertility differentials are relevant to evolutionary growth theory because they predict the compo-
sition of subsequent reproductive generations. Suppose a population of two equally sized groups
and the lower-bound fertility differential. One group has a reproductive advantage of 3.70 over
3.00. Let us assume that people mate only in their own group (perfect assortative mating) and that
group status is transmitted perfectly. Within three generations, the group with the reproductive
advantage outnumbers the other group by a factor of 1.87. By ten generations (approx. 250 years),
this rises to 8.14, with the reproductively successful group constituting 89.1% of the population.
Perfect heritability is a strong assumption, but it serves to illustrate the relevance of reproductive
inequality. The next section will probe this assumptions.

4 Transmission of SES

In a perfectly mobile society, where parental status has no bearing on the status of children, the
selection pressure of reproductive inequality is muted. On the other hand, if, as in the prior example,
status is strongly heritable, fertility differentials can change the composition of a population within
just a few generations. This section estimates how strongly SES is transmitted across generations to
better understand how SES transmission and fertility differentials might interact to induce selection.
To estimate the degree of inter-generational transmission, I draw on work by Stuhler (2012) that
describes a latent variable model of multi-generational transmission.

4.1 Latent Variable Model

Empirical studies typically estimate inter-generational elasticities 5_; by regressinglog parental SES
(yi,4—1) on log offspring SES (y; 4). The estimated coefficient captures how strongly SES advantages
are passed from parent to offspring. However, interpreting this elasticity as a measure of heritability
and extrapolating persistence to multiple generations requires strong assumptions about the SES
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generating process (Stuhler 2012; Braun and Stuhler 2018; Ward et al. 2025).%° inter-generational
elasticities only have a structural interpretation if there is no noise in the status inheritance process;
i.e., status is determined only by parental SES. This is an exceedingly strong assumption; parents
shape childhood outcomes via the direct inheritance of traits and preferences; they invest in child
quality, SES is shaped by random market forces and choices, and prior generations could have a
direct effect on outcomes. We can account for these sources of noise and recover the structural
inter-generational transmission of SES in a simple latent variable model (Stuhler 2012).

Model. Assume children inherit some latent variable x; , from their parents. This latent variable
captures direct mechanisms from the parents (e.g., genetic, parental investment, and upbringing)
as well as environmental factors (e.g., social/professional network) that are shaped by the parents.
For now, we assume that these different facets are inherited as one package according to an inter-
generational transmission coefficient \. Life-time SES (y; ;) in turn depends on latent ability (z; ;)
according to a returns to ability coefficient p.

Yig = PTig + Uiyg )

Ti,g = )\xiA,gfl + Vg 3)

Let the errors be uncorrelated and independent. v; , measures endowment luck, while u; ;isa
permanent error component that measures market luck and other random deviations from poten-
tial SES that arise due to random chance (e.g., injury or war) or individual choice (e.g., the offspring
of rich magnates choosing to pursue pottery). Additionally, as we recall from subsection 3.3, we do
not observe permanent income/status y; , directly. Instead, we observe some noisy snapshots g; ,
such as occupational status, where e, ; is a transitory error component (Ward et al. 2025). Observed
SES is then equal to:

Yig = Yig T €ig

Yig = PTig+ Uig+ €ig

4

Multi-generational Inheritance. This modelimplies a structural interpretation of multi-generational
elasticities. The slope coefficient from regressing the observed status of a prior generation g; g,
on the observed status of the current generation g; 4 is;

_ Cov(¥i,g: Ui,g—m)

fo1= = Q)
' Var(yi,gfm)
If we plug Equation 4 into Equation 5 and generalize to m generations, we obtain:
20.2
5—m — P 0y )\m (6)

proi+ o5+ ol
25persistence is usually extrapolated to multiple generations by exponentiating the elasticity; i.e., if the inter-generational
elasticity 3_1 = 0.60, then the multi-generational elasticity across three generationsis 3_3 = 3 | = 0.21.
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If the variances of underlying ability, the transitory error term, and the permanent error terms
are stationary, we can write $_,, as the product of an attenuation factor ¢ and A™. Under these
additional stationarity assumptions, we can recover the true coefficient of inter-generational
transmission via the ratio estimator:

6—m+1
A= 7
. ()

Assortative Mating. So far, the model assumes a simplified one parent setting where « is only
inherited from one parent. Braun and Stuhler (2018) shows that the ratio method still recovers a
meaningful inheritance parameter \ if offspring inherit « independently from both parents. Here A
is areduced form estimate of two components: the average coefficient of transmission across the
paternal and maternal lines and the degree of assortative mating. Thus, A increases in assortative
mating. In the absence of perfect assortative mating, A will understate average heritability A because
offspring will inherit different = from either parent. I abstract from incorporating mating patterns.
Instead, I interpret A as a reduced form combination of average inter-generational transmission
and assortative mating (Stuhler 2012). However, since assortative mating was high in historical
populations (e.g. Clark and Cummins 2022), A will mostly capture inter-generational transmission.

4.2 Estimation

Identifying Assumptions. Prior to estimating the coefficient of heritability ), it is worth making
explicit the identifying assumptions. First, we assume that the attenuation factor  is constant across
generations. If the data quality changes from one generation to the next, or if permanent deviations
from potential status become more likely for certain generations, X is biased. While it is unlikely
that 6 changed systematically from one generation to the next, it is important to acknowledge
this caveat to the findings. This is particularly relevant when X is estimated by sub-period; here,
generations more closely resemble cohorts that are more prone to systematic differences in 6 —i.e.,
because novel opportunities brought about by industrialization alter p.

Second, the model assumes that status inheritance only spans one generation. Although
grandparent effects have received growing attention (Mare 2011; Ferrie et al. 2021), others argue
that they are statistical artifacts of the latent variable model (Braun and Stuhler 2018; Ward et
al. 2025). The common approaches for identifying grandparent effects are to test for excess
persistence, i.e., 5_ > 32, or to specify multi-generational AR(2) regressions that test whether
Ui,g—2 1s significant conditional on §; ,—;. In the presence of measurement error, both approaches
identify spurious grandfather effects (Ward et al. 2025).%¢ Ergo, if the latent variable model holds,
correcting for measurement error should increase _; while decreasing the relative magnitude of
multi-generational effects. I estimate multi-generational transmission in Appendix E; the pattern
across coefficients suggests that grandfather effects are driven by measurement error. Thus, [ am
confident in making the identifying assumption of no grandfather effects.

26The first approach overstates the grandparent effect by construction because f_2 = 0X2 > B2, =02X2 if 6 < 1.
The second approach suffers a similar fate; coefficients are spuriously large and significant due to spill-over bias from the
signal for the parental latent variable (Modalsli and Vosters 2024).
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Coefficient of Transmission. Thelatent factor model in subsection 4.1 implies that we can identify
A—the true coefficient of transmission, free from both permanent and transitory measurement error
— by using the ratio estimator in Equation 7. Table 5 reports estimates of ) for different subsamples.
The first two columns report the number of multi-generational links that are used to estimate the
elasticities across one §_; and two /_» generations. The coefficients are estimated according to
Equation Al and reported in the two subsequent columns. The final column contains estimates for
the coefficient of transmission A. The first row reports results for the full sample, with all possible
links. In subsequent rows, the sample is restricted to observations where I observe both the father’s
(G2) and grandfather’s (G3) SES. I also split the sample based on the birth year of the youngest
generation (G1). Rows three and four report the results for the pre- and post-1800 samples.

Table 5: Estimates of Intergenerational Transmission

D v 3 4 ®) (6)

N:G3-G4  N:G2-G4 B4 B_o h) SEQ)
Full 5146 3274 0.304 0.192 0.631*** (0.067)
Restricted 3274 3274 0.324 0.192 0.593*** (0.069)
Early (pre-1800) 1677 1677 0.339 0.208 0.614*** (0.071)
Late (post-1800) 1597 1597 0.290 0.159 0.549*** (0.121)

Clustered bootstrapped standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Notes: This table reports estimates of A = 32/3; for different samples. N:G3-G4 and N:G2-G4 denote the number of
father-son and grandfather-son links used to estimate 5_; and 3_» respectively. The unit of observation is a paternal
lineage. Standard errors are bootstrapped using 1000 clustered re-samplings. The first row uses all available links, the
second restricts to observations with both G3-G4 and G2-G4 links. The last two rows split the sample based on the
birth-year of the youngest generation (G4).

Across the board, the estimated coefficient of transmission is significantly larger than the inter-
generational elasticities. Although this supports the contention that social mobility was lower than
conventional estimation strategies imply, these estimates do not support Clark’s hypothesis that the
degree of persistence is constant across time and space at around 0.75-0.80 (Clark 2014). Not only
is the coefficient for Germany lower than that for England, but it is also not stable over time when
splitting the sample in two. As discussed, this time variation could be the product of differences in
the attenuation factor across cohorts. In this scenario, we are not estimating the true coefficient
of transmission but rather a product of the ratio between cohort specific attenuation factors and
the coefficient. However, as argued by Braun and Stuhler (2018), changes in § would have to be
substantive and idiosyncratic to alter A by as much as observed. Nonetheless, I cannot rule out that
time-variation in \ is driven by cohort-specific variation in 6. Since generations in the full-sample
do not correspond to cohorts, the headline sample is less prone to this type of bias.

The coefficient of transmission for pre-Industrial Germany is strikingly similar to estimates for
20th century Germany by Braun and Stuhler (2018). In Figure 3, I plot the estimates from (Braun
and Stuhler 2018) alongside estimates based on 100-year rolling windows from my sample. In the
Wittgenstein sample, social mobility increased gradually across the 18th century before a more
marked increase in the first half of the 19th century. The Braun and Stuhler (2018) estimates pick
up a century later, with social mobility at a comparable level to that of the early 19th century. Given
different types of sources — genealogical data versus survey data — the similarity of the estimates is
all the more remarkable. Social mobility may have oscillated in the intervening century, as it did in
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Figure 3: Trend in the Coefficient of inter-generational Transmission
Notes: This figure plots estimates of X based on a rolling 100 year window from my sample alongside estimates from the 20th
century from Braun and Stuhler (2018).

the 18th century, but the set of estimates suggests a stable range of 0.55-0.65 across three centuries.
Understanding what drives the fluctuations in social mobility observed in Figure 3 is an interesting
avenue for future research.

4.3 Summary

This section presents the first estimates for the coefficient of transmission for pre-Industrial
Germany. At a coefficient of 0.63, latent status was strongly heritable. The difference between
simple inter-generational correlations (5_; = 0.304) and the estimated coefficient of transmission
(A = 0.631) is marked. The former implies that SES regresses to the mean in three generations —
“from shirtsleeves to shirtsleeves in three generations.” (Becker and Tomes 1986, p. 28) — while
according to \ it takes close to ten generations. Although slower regression to the mean supports the
selection mechanisms at the heart of evolutionary growth theories, we do not know if 10 generations
is slow enough.

5 Selection and Growth

This section explicitly relates the parameters for reproductive inequality and inter-generational
transmission to evolutionary growth theories. I focus on two eminent theories; the survival of the
richest thesis (Clark 2007) and selection on quality (Galor and Moav 2002). After discussing these
theories, I specify an overlapping generation model that I use to estimate the necessary conditions
for the selection dynamics described by Clark (2007) and Galor and Moav (2002).
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5.1 Evolutionary Growth Theory

In endogenous growth theories, “economic growth is an endogenous outcome of an economic
system, not the result of forces that impinge from outside” (Romer 1994, p. 3). One family of
theories, evolutionary growth, emphasizes the role of natural selection on traits complementary to
the growth process. Galor and Moav postulate that:

“The evolutionary pressure during the Malthusian era gradually increased the rep-
resentation of individuals whose characteristics were complementary to the growth
process, triggering a positive feedback between technological progress and education that
ultimately brought about the Industrial Revolution and the take-off from Malthusian
epoch to sustained economic growth.” (Galor and Moav 2002, p. 1135)

Similarly, Clark and Hamilton (2006) find that in England “the rich seem to have been out-reproducing
the poor” (28). Since the rich had more children, who were on average moving down the social
hierarchy, the growth inducing je ne sais quoi of the rich spread to the rest of society.

“Thrift, prudence, negotiation and hard work were imbuing themselves into communities
that had been spendthrift, violent, impulsive and leisure loving.” (Clark 2007, p. 180)

Both theories build on natural selection, albeit through somewhat different mechanisms. Galor
and Moav’s (2002) selection on quality models the canonical quantity-quality trade-off. Individuals
can be of two types; quality individuals will allocate more resources to the quality (human capital
or “endowment”) of their offspring, while quantity individuals will have more offspring, allocating
fewer resources per child. Although quantity individuals have an immediate reproductive advan-
tage, in the long-run, quality lineages enjoy greater reproductive success due to higher incomes.
High quality individuals (born to parents with a quality bias) generate higher income and have
more resources for a larger number of offspring of higher quality (Galor and Moav 2002, p. 1140).

In survival of the richest (Clark 2007), there is no selection on a specific trait, but instead on
wealth and all (potential) positive traits it is associated with. Here, given the positive association
between SES and fertility, high SES individuals have greater reproductive success, out-producing
their poorer compatriots and disseminating their traits down the socioeconomic ladder. Instead
of the share of quality individuals increasing, here we expect the share of individuals with a high
endowment to increase.

The key difference between the two formulations is that Clark (2007) describes selection across
the socio-economic distribution, while Galor and Moav (2002) necessitates selection on a specific
trait within any strata of the socio-economic distribution. Itis unclear how these selection processes
would behave at different levels of inter-generational transmission and reproductive inequality.
Instead of probing the second stage — the link between natural selection and technological and/or
cultural change - I investigate whether the selection mechanism is supported by demographic
realities.
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5.2 Model and Simulation

Model Setup. To formalize a simulation exercise, I specify a parsimonious overlapping generation
model of inter-generational transmission and fertility choice in a static agricultural economy. Each
generation, indexed by ¢, is alive for two periods. In period ¢t — 1 (childhood), individuals of genera-
tion ¢ are born and inherit some endowment E} , , according to the coefficient of transmission
and the random component e (i.e., socioeconomic luck):

Eti,t—l =a+ )\EZ—1¢—1 +e )]

Parents choose a binary investment in child quality i{ € {0, 1}. If they invest, augmented child
endowmentis vE;, ,, where~ € [0,1] is an economy-wide scalar that describes the endowment-
returns to investment in quality. This specification differs from Galor and Moav (2002), where
endowment depends solely on parental investment and technological conditions. Here, I retain
inter-generational transmission to focus on its effect on demographic dynamics.

Individuals born in the period ¢ — 1 enter the period ¢ (adulthood). To keep the model tractable,
I assume perfect assortative mating and abstract from describing a matching process.?” During
adulthood, individuals earn an income 7 , that is drawn from a constant income distribution based
on their rank (r{ ;) in the population distribution of endowments. Income is assigned based on rank
to account for stagnant average incomes (Malthusian economy), along-side a changing endowment
distribution. ¢;(-) describes this generation dependent rank to income mapping.

I = @u(riy) 9)

During adulthood, individuals select their target fertility and whether to invest in the endowment
of their children. Individuals have a utility function,

upy = Ulce,ne, Iyi1) (10)

that increases in current consumption (¢;), the number of children (n;), and the future income
of their children (/;11). I assume that consumption is constant across the population at some
subsistence level ¢;. To introduce two distinct types of individuals — in accordance to the quality-
quantity trade-off in Galor and Moav (2002) — I assume that there exists a unique value of the
preference parameter for child income (¢;) such that;

il =1 if ¢; > ¢ else 0 (11)
and couples either invest in the quality (“endowment”) of their children, or do not.

The allocation of income to child quality and quantity is constrained by the budget constraint.

I, —e>n@p" +ilp9) (12)

27Since non-assortative mating reduces heritability it would reduce the parameter space for evolutionary growth theory.
As such the conditions I delineate are necessarily lower-bounds for the true conditions.
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where p” denotes the cost of raising any child, and p? denotes the additional cost of investing in
child quality. Investment decisions are made for all children equally. Target fertility depends on
whether individuals have a quality preference (i.e., i} = 1) — all other individuals will only allocate
income to the quantity of children. Thus, target fertility is given by:

L.,—a

nit = 13
t,t p"—|—igpq ( )

Simulation. This model can describe the selection processes at the heart of both models. In
survival of the richest, the joint pressures of fertility differentials by income and inter-generational
transmission of endowments lead to selection on higher endowment. Here, quality-quantity
considerations have no bearing on the evolution of the economy. In selection on quality, this
trade-off is central to the selection mechanism. Although individuals with a quality preference
have a reproductive advantage in the short-run, the endowment (and thus income) advantage
of lineages with a quality preference can result in their out-breeding the rest. I test both theories
using simulations of the overlapping generation model. The simulation tests whether selection
occurs given different parameter combinations. The only difference when testing the two theories
is that the share of individuals with a quality preference (share®) in generation 0 is set to zero when
testing survival of the richest and > 0 when testing SoQ.

Toinitialize the simulation, I create a population of size N, with endowment drawn from a normal
distribution; E; o ~ N(100,40%). Next, some share of the population is imbued with the quality
preference i? = 1. The quality preference increases endowment by a factor of 1 + . Endowment
determines income based on a rank-mapping to a log-normal distribution with a mean of 60
and a standard deviation of 15 in levels.?® Perfect assortative mating is assumed. Since imperfect
assortative mating reduces the inter-generational transmission of status, and it is unlikely that
mating was perfectly assortative, this assumption increases the parameter space for evolutionary
growth theory.

a+b(lig—1TIs0) + e if I<Iy
ExpectedFert;y = (1 —ilk)-<a + b(I; —Iso) + e if Io<I< Iy (14)
a+b(1907150) + e if IZIQO

Expected fertility follows a piecewise function that is parametrized to produce a specific fertility
differential (B) between couples of the 10th (7;¢) and 90th (Iyy) percentiles of the income distri-
bution and mean fertility (a) close to replacement (Equation 14).? Having a quality preference
reduces expected fertility at any income by k - 100%. k is the fertility cost of investing in child
quality.*° To explore how selection behaves under varying degrees of randomness, a noise term

28The interpretation of the simulation results is not sensitive to initialization with alternative distributions.

29The slope (b) is a function of I1¢, Igg, k and will produce B at the population level.

30Formally, k! — 1 is the proportion of the basic cost per child that parents with a quality preference pay on top to invest
in quality, i.e., if k = 0.5 parents are paying 100% of a markup for child quality.

21



140
m— Mean E;

Mean Endowment (E;)
[ [ j— =
(o) [(e] o [ N w
o o o o o o
1 1 1 1 1

o
H

8 12 16 20
Generation

Figure 4: Survival of the Richest in Germany.
Notes: The figure plots the evolution over 20 generations of mean endowment across 50 iterations of the simulated OGM. Light

grey lines correspond to individual simulations and the darker line corresponds to the average evolution across iterations.
Parameters: B = 1.47, H = 0.63,l = ¢ = 0.5.

that is scaled by a chance parameter ¢ € {0, 1}, such thate ~ N(0, (c-a)?), is introduced.®' Realized
fertility is modeled as a Poisson draw, with the rate parameter determined by expected fertility.

Eir=expla + H-E;1—1 + v) (15)

All offspring inherit endowment directly from their fathers according to the Equation 15. Again,
to explore behavior under differing degrees of randomness, a noise term is introduced. This term is
scaled by a luck parameter ¢ € {0, 1} such thatv ~ N (0, (I - 0)?), where o = 40 is the initial standard
deviation of the endowment distribution. For children of quality preference parents, endowment
increases by a factor of 1 + . v are the endowment (income) returns to investing in child quality.
After they pass endowment onto the next generation ¢ + 1, the current adult generation dies, and
the offspring generation progresses to adulthood. This process repeats across a set number of
generations. Thus, we can observe how selection pressures shape societal composition, both in
terms of mean endowment and, when evaluating selection on quality, the share of the population
with a quality preference.

5.3 Survival of the Richest

Germany. I first simulate the survival of the richest scenario using the parameters I estimated
for Germany. The share with a quality preference (shareQ) is set to zero, and both noise scalars
are 0.5. The fertility differential is 1.47, and the coefficient of transmission is 0.631. The outcome
of interest is the generational mean endowment. If survival of the richest is taking place, then
mean endowment will increase generation on generation. Figure 4 plots the evolution of mean

31Figure Al plots expected fertility for individuals with and without a quality preference at B = 2.0, k = 0.2, and
share® = 0.2.
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Figure 5: Parameter Space: Survival of the Richest
Notes: This figure plots the simulation outputs for 20 generations of the overlapping generation models across different
parameter combinations. Each cell is based on the average outcome across 5 iterations of each combination. The colour of
the cell correspond to the increase in mean endowment from generation 0 to generation 20.

endowment over 20 generations (approx. 500 years) across 50 iterations of the simulation. Although
there is a slight increase in mean endowment, the selection pressures are insufficient for sustained
drift. Even at a high coefficient of heritability — 0.63 — regression to the mean overpowers the
selection pressure of the fertility differential. Here, higher reproductive success among the richest
families does not lead to survival of the richest.

Parameter Space. To extrapolate beyond the German case, I simulate the overlapping generation
model for different parameter combinations. The main parameters of interest are the fertility
differential B and the coefficient of transmission H. I simulate combinations of H and B across
different levels of noise. Socioeconomic luck / scales noise in the endowment process; if i = 0
endowment is entirely deterministic, at/ = 1 the standard deviation of the noise term v is equal to
the standard deviation of the initial endowment distribution. Fertility chance ¢ scales noise in the
fertility process. Since realized fertility is based on a Poisson draw, it is never fully deterministic;
lower values of ¢ correspond to less noise in expected fertility, while at ¢ = 1 the noise term e has a
standard deviation a. Each unique parameter combination is simulated across 20 generations and
5 iterations.

Figure 5 plots average outcomes for different values of B and H. Each cell summarizes the result
of all simulations for that parameter combination, with the color corresponding to the average
percentage change in mean endowment from generation 0 to generation 20. Le., if we look at the
German parameter combination, across all levels of noise and all iterations, the average increase
in mean endowment was 5-6%. If we instead look at a set of parameters for England (B=1.33,
H=0.8 (Clark and Cummins 2014; Clark and Cummins 2015)), we find that mean endowment
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Figure 6: Threshold Condition for Survival of the Richest

Notes: This figure reports threshold values of H that produce a 50% increase in mean endowment across 20 generations. These
figures are based on the simulations presented in Figure 6.

increased by around 20% on average.>> While the German parameters do not enable survival of the
richest, the English parameters induce some selection. Although Germany and England exhibit
similar fertility differentials, the estimated coefficient of transmission for England is significantly
higher, and regression to the mean is slower. Across the board, large and sustained increases in
mean endowment occur if and only if this coefficient is large. If H is too low, regression to the
mean overpowers the selection pressure of the fertility differentials. Concurrently, at larger fertility
differentials, lower coefficients of heritability suffice to produce sustained drift in mean endowment.
Determining whether the degree of selection in England is sufficient for the changes Clark (2007)
described is up for debate and constitutes an interesting avenue for future research. Additionally,
choosing a different set of parameters, such as the estimates for H presented by Zhu (2024), does
not support the same level of selection.

The relevance of noise in the fertility and status inheritance process is summarized in Figure A2.
The amount of noise in the fertility process (¢) has no bearing on selection. Differences in the
expected realized fertility at the group level (i.e., low or high endowment) suffice to induce selection
regardless. Noise in the endowment process (/) increases the parameter space for survival of
the richest considerably. Here, more noise interrupts regression to the mean, with the fertility
differential amplifying positive shocks to endowment. The noise term is normally distributed and
has a mean of zero. However, at the individual-level, the fertility differential increases fertility
for individuals who experience a positive random endowment component (v), while it decreases
fertility for those with a negative one. Thereafter, while neutral within any given generation, more
noise increases selection on high endowment across generations. As a result, lower coefficients of
transmission can sustain selection.

Across all parameter combinations, the average coefficient of heritability that produces growth

32B is based on the difference between the bottom and top wealth decile, as reported for England in Cummins (2020, Fig.
4.3).
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in mean endowment greater than 2.5% per generation over 20 generations is 0.86.%* This threshold
value of H is decreasing in the fertility difference and noise in the endowment process (see Figure 6).
Notably, the parameter space corresponds closely to the large coefficients of heritability estimated
for England by Clark and Cummins (2014) and postulated as universal in Clark (2014). Overall,
although not supported by the German parameters, the selection underpinnings of survival of the
richest are feasible if the coefficient of transmission is exceptionally high.

5.4 Selection on Quality

Returns to and Cost of Quality. Investigating selection on quality requires additional parameters —
namely, the endowment (income) return « and the fertility cost k of child quality. These parameters
describe the quantity-quality trade-off. The presence of this trade-off in historical settings and
associated fertility control within-marriage is contested (e.g. Cinnirella et al. 2017; Clark and
Cummins 2019). While I do not estimate the quality-quantity trade-off directly, the results in
Appendix D suggest a limited role for fertility control within marriage, implying that k was likely
small. A broad literature is concerned with the income returns to investment in quality (education),
34, Although estimates of returns to education are not without controversy (Clark and Nielsen 2024),
studies suggest that the returns to investing in child quality in the pre-Industrial period (i.e., via
apprenticeship) were considerable (Wallis 2025). Anecdotally, it is difficult to justify why practices
such as apprenticeship persisted for centuries if they did not produce some income returns. Hence,
for pre-Industrial Germany, where I observe limited evidence for fertility control in marriage and
investing in apprenticeships was a common practice (Klein 1936), I assume that income returns -y
are greater than the fertility cost k. Still, since I am unable to estimate these parameters directly, I
report results across different parameter combinations of v and k.

Germany. Ifselection on quality is taking place, both the mean endowment and the share of the
population with the quality preference (share®) will increase. Figure 7 plots both outcomes across
20 generations and 50 iterations of the simulation for the parameters estimated in the German
sample. When the returns in income to having a quality preference — i.e., parental investment
in child quality — are larger than the fertility penalty couples incur due to the cost of “quality”
children, the parameters for Germany support selection on quality. Like (Galor and Moav 2002),
the model assumes that the preference for quality is perfectly heritable. Relaxing this assumption
will produce different outcomes (see Figure 9). Nonetheless, based on the model assumptions,
these findings suggest that the German demographic regime could have sustained the selection
process underpinning Galor and Moav’s (2002) selection on quality, while — at the estimated level
of inter-generational transmission and reproductive inequality — the simulation does not produce
Clark’s (2007) survival of the richest.

33This threshold was chosen based on the articulation of the selection mechanism in Clark (2008, p. 189).

34e.g., Angrist and Krueger (1991), Duflo (2001), Oreopoulos (2006), McCrary and Royer (2011), Feigenbaum and Tan
(2020), and Clark and Cummins (2020)

35T initiate the simulation with a quality share of 20%. While thresholds may vary, the pattern of results is consistent for
other initial states (unreported).
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Figure 7: Selection on Quality in Germany

Notes: The figure plots the evolution over 20 generations of mean endowment (top panels) and quality share (bottom panels)
across 50 iterations of the simulated OGM. Light grey lines correspond to individual simulations and the darker line corresponds
to the average evolution across iterations. Parameters: B = 1.47, H = 0.63,l = ¢ = 0.5.

Parameter Space. Selection on quality depends on a larger group of parameters. Figure 8 plots
average outcomes — the increase in the share with a quality preference (left) and mean endowment
(right) — over different values of luck [, chance ¢, income returns +, and fertility cost k for each
combination of B and H. Across all plots, the introduction of the quality preference increased
the parameter space for substantial increases in mean endowment, as well as the magnitude of
this increase. While survival of the richest depends on the coefficient of transmission (H), the
viability of selection on quality depends on the fertility differential (B). Fertility differentials need
to be sufficiently large such that the income returns that accrue to quality lineages materialize in a
reproductive advantage.*® The degree to which the increase in mean endowment in the right panel
varies in the coefficient of transmission (H) is driven by survival of the richest dynamics instead of
selection on quality.

Figure A3 unpacks these by the amount of noise in the fertility and endowment transmission
process. Similar to survival of the richest, the amount of noise in the fertility process has no bearing
on selection. Contrary to survival of the richest, where more noise in the endowment transmission
process expanded the parameter space for selection, more noise contracts the parameter space
for selection on quality. Less noise is associated with a larger parameter space along B and H for
increases in share? and mean endowment. Although greater noise increases drift in mean ability,
it weakens selection on quality since more noise in endowment counteracts the emergence of
a bimodal distribution of endowment by preference for quality (see Figure A4). However, even
when there is a lot of noise in the endowment process, the parameter space for selection on quality

36Notably, there is a U-shaped relationship between the fertility differential and the increase in the share with a quality
preference. This is because quality preferences are initially equally distributed across the population. If the fertility
differential is very large, it becomes more difficult for low-endowment quality lineages to out-reproduce high-endowment
non-quality lineages.
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Figure 8: Parameter Space: Selection on Quality
Notes: This figure plots the simulation outputs for 20 generations of the overlapping generation models across different
parameter combinations. Each cell is based on the average outcome across 5 iterations of each combination. The color of
the cell correspond to the increase in mean endowment (left panel) or the increase in the population share with a quality
preference (right panel) from generation 0 to generation 20.

remains larger than for survival of the richest.

Whether quality lineages enjoy a reproductive advantage depends on the returns (v) to and cost
(k) of quality. Figure A5 holds luck and chance constant at 0.5 while letting v and & vary. To induce
selection on quality, the fertility returns to quality — which are a function of the income returns
and the fertility differential — need to be greater than the fertility cost. This is one of two central
conditions for selection on quality. The left panel of Figure 9 plots this threshold conditions. The
color of each cell corresponds to the lowest magnitude of the income returns (y € (0,0.5)) that
enables a 50% increase in the population share with a quality preference (i.e., 20 — 30%). In gray
cells, no iteration of the simulation produced sufficient selection on quality. At a given fertility cost,
selection becomes possible if the fertility differential is larger (increases along the y-axis) or if the
income returns increase (darker cell color).

The second condition concerns the heritability of the quality preference. As discussed, prior
simulations assume that the preference for quality is perfectly heritable. Weakening this assumption
reveals a similar pattern to Figure 5; whereas survival of the richest depends on the heritability of
the endowments, selection on quality depends on the heritability of the quality preference. The
right panel of Figure 9 plots this threshold condition under a constant coefficient of transmission.
If the coefficient of heritability is too low, selection on quality cannot take place. Prior to this, a
lower-bound selection on quality is possible if the fertility differential is larger, or if the income
returns to quality are bigger. Overall, although the parameter space along H and B is larger for
selection on quality, the mechanism depends on a larger set of conditions. Selection on quality is
possible if; (C1) the fertility returns — the fertility differential and the income returns to quality — are
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Figure 9: Conditions for Selection on Quality

Notes: This figure plots threshold conditions that produce a 50% increase in the quality share (share®®) over 20 generations.
Each plot corresponds to one condition. The color of the cells corresponds to the lowest income returns to quality (v) that
precipitate a 50% increase. The parameter combinations in grey cells never produce a 50% increase at v < 0.5. The left
plot illustrates condition 1; the fertility returns to quality (fertility differential on the y-axis, and the income returns as the
color) that enable selection on quality at a given different fertility costs to quality (k, x-axis). These values are based on
simulations with H = 0.6, H® = 1,¢ =1 = 0.5. The right plot illustrates condition 2; the fertility differential and income
returns necessary to induce selection at a given heritability of the quality preference (H?, x-axis). These values are based
on simulations with H = 0.6, k = 0.10,c = { = 0.5.

larger than the fertility cost of investing in quality, and if (C2) the preference for investing in quality
is strongly heritable.

5.5 Summary

Monte-carlo simulations of a simple overlapping generation model help explore the parameter
space that induces the selection mechanisms described by Clark (2007) and Galor and Moav (2002).
Based on my estimates, survival of the richest was not viable under the German demographicregime,
while selection on quality could occur if the returns to investing in quality (i.e., via apprenticeship)
were greater than the associated fertility cost. Anecdotal evidence and the absence of significant
deliberate fertility control within marriage serve to support these assumptions.

Based on several 100,000 iterations of the simulation across different parameters, I am able to
describe some general conditions for the selection mechanisms. The main condition for Clark’s
(2007) is an exceptionally high coefficient of transmission. Latent socioeconomic status needs
to be heritable according to a coefficient of more than 0.8. This condition concurs with Clark’s
(2014) estimates of social mobility. The parameter space — along B and H is significantly larger
for selection under Galor and Moav (2002). However, this is partially because other conditions
are more important. Selection is possible if the combination of the fertility differential and the
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income returns to quality imbues quality lineages with a reproductive advantage that is greater
than the fertility cost of investing in child quality. This condition was likely met in early-modern
Europe where (1) fertility differentials were large, (2) returns to quality are sizable, and (3) there is
limited fertility control within marriage. The second condition is that the preference for quality is
heritable. The degree to which educational attainment and economic preferences, more generally,
are heritable is subject to debate (e.g. Kettlewell et al. 2025; Silventoinen et al. 2020). Still, what
we know about inter-generational correlations of educational attainment (e.g. Feigenbaum 2018)
suggests that this condition may have been met. Educational attainment is colored by genetic and
extragenetic factors that are inherited from prior generations.

Overall, in both theories, the inter-generational transmission of the growth-inducing trait(s) is a
central condition. This was likely a weaker condition when thinking about investment in education
instead of a catch-all set of positive traits associated with wealth, that needed to persist even when
the descendants were no longer wealthy (Bowles 2007). The viability of transmission and the nature
of selection, i.e., within any SES group (for quality) or across the entire distribution (for the richest),
determine the viability of evolutionary growth theories.

Conclusion

This paper is the first to estimate reproductive inequality and the inter-generational transmission
of SES for pre-industrial Germany. I find that high SES couples had between 1 and 2 additional
surviving children. This gradient is driven by differences in gross fertility and specifically variation
in the age at marriage for women. Whether these fertility differentials create selection pressure
depends on the inter-generational transmission of SES. I use a ratio estimator (Stuhler 2012)
to identify the unattenuated coefficient of inter-generational transmission. In the full sample,
the coefficient of transmission is equal to 0.63. This is the first estimate of inter-generational
transmission for pre-industrial Germany (1675-1850). While substantively higher than implied by
simple inter-generational correlations, the coefficient is much smaller than 0.80 as proposed by
Clark (2014). Notably, estimates for Germany from the 20th century - also around 0.60 - lead to the
same conclusion (Braun and Stuhler 2018).

I simulate overlapping generation models to test whether the German demographic regime
could have sustained the selection processes underpinning evolutionary growth theories. I show
that the German demographic regime could not sustain survival of the richest. 1 find that the
story for selection on quality is more complex; if the income returns were greater than the fertility
cost of investing in child quality, selection pressure on quality preferences emerges. I generalize
these results across different parameter combinations. The selection mechanism underpinning
survival of the richest is contingent on exceptionally high heritability of SES. Across simulations,
the threshold coefficient of transmission that produces a 50% increase in mean endowment over 20
generations is 0.87. In terms of fertility differentials and status transmission, the parameter space
for selection on quality is larger. However, selection depends on a greater number of conditions.
Chiefly, the income returns to quality and the fertility differential need to be large enough to offset
the fertility cost of investing in quality. If this condition is met and preferences for quality are
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strongly heritable, lineages with a quality preference enjoy a reproductive advantage.

This is the first paper to simulate threshold conditions for the selection processes underpinning
evolutionary growth theories. In doing so, it demonstrates that a natural selection story of modern
economic growth is contingent on strong conditions. Even the coefficient of transmission of 0.70
Clark and Cummins (2014) estimate for England falls below the average threshold of 0.87. Similarly,
selection on quality in Galor and Moav’s (2002) depends on high returns to investing in child quality.
Although the conditions for selection on quality are less strong, more applied historical work is
needed to probe their validity.

Both theories rely on the heritability of certain expressed traits — endowments in the case of
Clark (2007) and the preference for quality in Galor and Moav (2002). It is unlikely that social
preferences and attitudes were ever as heritable as, for example, height. Further, heritability never
exists in isolation; instead, it is shaped by environmental factors, and the same holds for social
preferences and attitudes (Feldman et al. 2000). The heritability of height falls during periods of
nutritional stress that produce stunting (Silventoinen 2003).>” Behavioral traits and their inter-
generational transmission are overdetermined in a complex system of genetic, extragenetic, and
epigenetic processes, most of which depend on and interact with the environment (Lala and
Feldman 2024). This raises the question of how much of the observed inter-generational persistence
is the consequence of direct genetic transmission, how much is the product of being born into
the same environment as one’s parents, and how this squares with the natural selection story
of economic growth. When evolutionary growth theory accounts for the multiple pathways of
transmission, and acknowledges the co-evolution of genes, culture, and environment, it offers
an appealing explanation for growth (i.e. Galor 2022). Mechanisms of genetic transmission are
similar across populations, while extragenetic transmission varies significantly across different
cultural and institutional environments. Societies that fostered the inter-generational transmission
of human capital (i.e., a preference for quality) — via extragenetic pathways — likely enjoyed a growth
advantage. Further causal empirical work is needed to identify this link between selection and
growth outcomes.

37Across the social sciences, a substantial body of literature stresses the relevance of environmental factors (e.g. Cole
2019; Chetty et al. 2016).
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A Additional Tables and Figures

Table Al: Correlation Matrix: LLM-Based vs. Hand-Coded Status Measure

LLM-based Hand-coded
Social Class Classes (C&H, 2007) HISCAM Classes (C&H, 2007) HISCAM
Social Class 1.0000
Classes (C&H, 2007) 0.7018 1.0000
HISCAM 0.6017 0.8486 1.0000
Classes (C&H, 2007) 0.7276 0.8344 0.6476 1.0000
HISCAM 0.6692 0.7177 0.7461 0.8288 1.0000
Table A2: Robustness to other SES Measures
Gross Fertility
(1) (2) 3) 4) (5)
Observation: low high average
Classification: LLM LLM manual LLM manual
In(HISCAM) 1.031*** 1.317*** 1.839%**
(0.194) (0.192) (0.228)
Rank 2 (Smallholders) 0.183 0.406™*
(0.174) (0.144)
Rank 3 (Workers) 0.341** 0.574***
(0.144) (0.131)
Rank 4 (Craftsmen) 0.288 0.598"**
(0.213) (0.157)
Rank 5 (Traders/Clerks) 0.918"** 0.436
(0.269) (0.573)
Rank 6 (Professionals/Academics) 1.033*** 0.969***
(0.170) (0.129)
Rank 7 (Gentry/Officers) -0.053 1.074***
(0.311) (0.279)
Mean DV 5.143 5.143 5.131 5.139 5.139
Observations 5294 5294 5348 5068 5109
Parishes (clusters) 16 16 16 16 16
R? 0.032 0.037 0.036 0.041 0.035

Clustered standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A3: Top 5 Occupations by Social Class

Social Class Occupation (German) Occupation (English) Frequency
Lower Viehhirt Cattle herder 10
Schweinehirt Swineherd 13
Nachtwichter Night watchman 14
Knecht Farmhand / servant 28
Tagelohner Day laborer 241
Lower-Middle Hirt Herdsman 44
Leinweber Linen weaver 98
Soldat Soldier 100
Schifer Shepherd 160
Kohler Charcoal burner 163
Upper-Middle Schmied Blacksmith 116
Schuhmachermeister Master shoemaker 132
Schneidermeister Master tailor 146
Schuhmacher Shoemaker / cobbler 225
Kirchenaeltester Church elder 340
Upper Schulmeister Schoolmaster 35
Schultheiss Mayor / reeve 43
Zimmermeister Master carpenter 45
Gerichtsschoffe Judge / juror 47
Lehrer Teacher 64
Table A4: Alternative Estimators
Gross Fertility Mortality Net Fertlity
(D (2) (3)
PPML Logit PPML
In(HISCAM) 0.246*** -0.188* 0.300***
(0.040) (0.102) (0.048)
Observations 5325 27700 5325
Parishes (clusters) 16 16 16

Clustered standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
Notes: All models include parish and marriage-decade fixed effects. Standard errors are clustered at the parish level.
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Table A5: Reproductive Inequality with Clustered Errors at the Priest Level.

Gross Fertility 1(AgeDeath < 15) Net Fertility
(D (2) 3) 4) 5) (6)
In(HISCAM) 1.335%** -0.039** 1.140***
(0.210) (0.016) (0.164)
Lower-middle) 0.518*** 0.009 0.325**
(0.177) (0.018) (0.133)
Upper-middle 0.900"** 0.007 0.594***
(0.168) (0.015) (0.117)
Upper 1.165"* 0.000 0.823***
(0.199) (0.017) (0.153)
Mean DV 5.144 5.136 0.298 0.298 3.594 3.587
Observations 5325 5561 27700 28874 5325 5561
Parishes 16 16 16 16 16 16
Priests (Parish x Decade) 275 275 275 275 275 275
R? 0.035 0.036 0.008 0.007 0.034 0.033

Robust clustered standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Notes: This table reports OLS estimates for the association between SES and demographic outcomes. In columns (1), (3),
and (5) the exposure variable is In(HISCAM) - logged continuous occupational status — and in all other columns SES is
operationalised as discrete status categories, with "lower class" being the reference category. The outcome variable in
columns (1) and (2) is gross fertility measured at the couple level. Columns (3) and (4) are estimated at the birth level and
the outcome variable is a indicator variable equal to one if the child died prior to turning 15. Here status is measured
using father’s status. Columns (5) and (6) present estimates for net fertility, gross fertility minus adjusted under-15
mortality, and are estimated at the couple level. All regressions include parish and marriage/birth decade fixed effects.

0.030

r 0.025

- 0.020

r 0.015

- 0.010

Expected Fertility
AJIsusp swoduj

r 0.005

0.000

0 T T T T T T T
0 20 40 60 80 100 120 140 160

Income
m— Quantity (i =0) === Quality (i?=1) Income density

Figure Al: Simulated Fertility

38



Fertility Differential (B)

Socioeconomic luck (/) |

=0.33 [ =0.66 Il =1.00 |

2.5 I

2.0 4
1.5 A
1.0 A
0.5 4
0.0 ~

2.5
2.0 A1
1.5 A
1.0 A
0.5 A1
0.0 A

99°0

2.5
2.0 A
1.5 A
1.0 A
0.5 4
0.0 ~

00'T

-0.5

T T T T 1 T T T T 1 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Coefficient of Transmission (H)

Mean Endowment

Percentage Change (deciles)

Figure A2: Survival of the Richest and Noise

39

(2) @dueyd Ayjiie4




Fertility Differential (B)

Socioeconomic luck (/)

=0.33 Il =0.66 Il =1.00

| €€°0

I 99°0

(2) @dueyd A9

| 1 00'T

I €€°0

| 990

(2) @dueyd Ayji3ie4

00’1

. 0.0 0.2 0.4 06 0.8 1.0 0.2 0.4 06 0.8 1.0 0.2 0.4 06 0.8 1.0

Coefficient of Transmission (H)

Share Quality Preference
[

TN S % e Wy @ < 2 2 3 5 %
AN 7 R )\\) SO U SN N % 0,
> % N, S

Mean Endowment

W R, &, b % % % %9 Yo v 3
N ® \)\) S N X e\) \é@ \ \,39 \5:9 \ \,00 (N 6

Percentage Change (deciles)

Figure A3: Selection on Quality and Noise
40




/1=0.2
— /=08
Generation 0

S

0 50 100 150 200 250 300 350 400
Endowment (Generation 20)

Figure A4: Noise and the emergence of a bimodal endowment distribution

41



Fertility Differential (B)

N
[
!
|

-0.5 —

(Income) returns (y)
=0.10 [ =0.20 [ =0.30

000

0T'0

020

00’0

0T'0

0z'o

0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Coefficient of Transmission (H)

Share Quality Preference
[

NEENEEER e\%’ D, ey % NN
9 \90, \76\ o o, >
2 ENEE NN
Mean Endowment

NN 3 2 So % Y 6,
< e, R £ ES 2, <. 2 N % 9
V% R W % Y% % Yy g N

Percentage Change (deciles)

Figure A5: Selection on Quality and quantity-quality tradeoff.
42

(1) 3502 (Ayj1ad)

() 3502 (Ayj1pa4)




B Migration

Migration induced censoring of life histories constitutes another source of bias. As discussed
in section 2, only non-migrants and in-migrants prior to marriage are included in the sample.
This restriction can become problematic through two related, albeit distinct routes. First, if the
demographic behavior of the uncensored subset of the population is not representative of the
general population, the results are subject to selection bias. Second, if migration is a function of
both the exposure and outcome e.g., if celibacy and low status are associated with greater rates of
emigration this introduces collider bias since the inclusion restrictions condition the sample on
migration.®

To circumvent the imperceptibility of out-migrant outcomes, de la Croix et al. (2019) suggest
looking at the differences between in-migrants and non-migrants. This test is contingent on the
assumption that the unobserved out-migrants (who immigrate to a similar nearby parish) are the
same group as the observed in-migrants (who emigrated from such a parish). In the Wittgenstein
reconstitution, where short-distance migrants are observed as non-migrants, this appears unlikely.
However, a comparison between the two groups still yields some insights. Estimating the primary
specification for in- and non-migrants reveals that the status gradient does vary strongly (see
Table A6). The results are insignificant among in-migrants. One potential explanation is that in-
migrants — particularly in this sample where migration occurs over longer distances — are more
socially mobile and therefore less affected by property relations that shape age at marriage among
non migrants. I interpret all results with the caveat that they apply to non-migrants or those who
only migrated between neighboring parishes.

Table A6: Migration Status

Non-Migrants In-Migrants (Both/Either)

1) (2)

In(HISCAM) 1.275%** 0.730

(0.224) (0.711)

Mean DV 5.289 4.416
Observations 4443 880
Parishes (clusters) 16 14

R? 0.043 0.044

Clustered standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Notes: All regressions include parish and marriage-decade fixed effects. Standard errors are
clustered at the parish level. For non-migrants the birth of both spouses is observed in the core
parishes, for in-migrants the birth of at least on spouse is not observed.

To evaluate whether collider bias affects my results, I would need to test whether migration is a
function of SES and demographic outcomes. Although demographic outcomes are unobservable
for out-migrants, I can compare SES across in-, none-, and out-migrants after marriage. The
average status for out-migrants is lower than that of in- and non-migrants. I run individual level
linear probability models to estimate the effect of a fathers occupational status on the choice to

38For a fuller discussion of collider bias, see Schneider (2020).
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emigrate.* I find that the children of high-SES parents were less likely to emigrate (see Table A7).
This relationship between SES and migration would bias the results if migration decisions are also
affected by the demographic outcome in question. Turning to the aforementioned example of
celibacy, if rates of out-migration are greater among celibate women —i.e., to migrate to an urban
center with a larger marriage market — the results reported in Table A8 likely underestimate rates of
celibacy among women with lower SES since these are a priori more likely to be part of the excluded
group. For such an association to drive results, the demographic outcomes would have to be a
central driver of the migration decisions. Since it is impossible to verify whether the outcome affects
migration, all results presented in section 3 are interpreted under the identifying assumption of no
such association. This assumption is more likely to hold for some results than for others. While
celibacy may be associated with greater rates of out-migration, the same does not necessarily apply
to fertility or childlessness.

Table A7: Migration Decision

1{Migrated}
(1
In(HISCAM) -0.048**
(0.018)
Mean DV 0.382
Observations 27,394
Parishes (clusters) 16
R? 0.184

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
Notes: Unit of analysis are all births. Dependent variable equals one if the
child migrated. Migration is assumed if no demographic events after birth
are observed. All regressions include parish and marriage-decade fixed
effects. Standard errors are clustered at the parish level.

C Extensive Margin of Fertility

Baudin et al. (2015) decompose group level fertility into an intensive and extensive margin. The
intensive margin corresponds to the number of surviving children per reproductive unit (couple).
The extensive margin is determined by the share of all potential reproductive units that do not have
children, namely couples that remain childless and individuals that remain celibate.

To study childlessness, I regress a binary indicator for childlessness 1{Childless; } on In(HISCAM)
in a linear probability model; the coefficient is insignificant and economically small (Column (1),
Table A8). The probability of remaining childless, conditional on marriage, is 0.045 irrespective
of SES. Remaining childless was likely driven by biological chance and infertility instead of socio-
economic factors. To study celibacy, I look at the life histories of all surviving children born in
Wittgenstein. To ensure that celibacy is not biased upwards for more geographically mobile groups,
only individuals whose burial is recorded in Wittgenstein are included. I regress an indicator

391 operationalize emigration as an indicator variable equal to one if there is no death record, or the death record is not
from a core parish of the reconstitution.
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Table A8: Mechanism I: Extensive Margin of Fertility

1{Childless} 1{Celibate}
1) 2) 3
Male Female
In(HISCAM) 0.004 -0.013 -0.013
(0.016) (0.041) (0.026)
Mean DV 0.045 0.259 0.171
Observations 2805 4687 5013
Parishes (clusters) 16 14 15
R? 0.027 0.140 0.080

Robust clustered standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01.

Notes: This table reports OLS estimates for the association between SES and the extensive margin of fertility. The exposure
variable is In(HISCAM) - logged continuous occupational status. In column (1) I investigate childlessness, and the outcome
variable is a indicator variable equal to one if a couple remained childless. Here I use the status of the husbands father
as exposure. The sample is restricted to complete marriages — where both spouses survive to 50 — and did not migrate. In
columns (2) and (3) I investigate celibacy separately for men and women at the level of all births (with observed burial). The
outcome is a indicator variable equal to one if no marriage is observed. Fathers status is used as the exposure. All regressions
include parish and marriage/birth decade fixed effects.

variable equal to one if I do not observe a marriage 1{NoMarriage,} on father’s In(HISCAM).*°
For both men and women, there is no evidence of a SES gradient in celibacy (Column (2) & (3),
Table A8). The average rate of celibacy for men is significantly higher than for women (0.259 vs
0.171). This could be a manifestation of the dynamics described by Guinnane and Ogilvie (2013),
whereby certain groups of men were excluded from the marriage market, although these groups do
not overlap with my measure of SES. Alternatively, these rates could reflect differing propensities
to out-migrate. While celibate men stayed in the parental household, women who did not succeed
in the local marriage market were sent abroad to seek out better prospects.*!

In Wittgenstein, the extensive margin of fertility did not vary with SES. Instead, reproductive
inequality was manifest only along the intensive margin. As evident in Table 3, all the action
came from gross fertility, with the probability of under-15 mortality constant in status. To better
understand the relationship between SES and gross fertility, I now turn to its inner workings.

D Intensive Margin of Fertility

The intensive margin of gross fertility is a function of when reproductive behavior begins (starting),
when reproductive behavior ceases (stopping), and how frequently births occur within this period
(spacing). I assume that reproductive behavior begins upon marriage and operationalize starting
at the mother’s age at marriage. Stopping is simply measured by the mothers age at last birth.
Measuring deliberate spacing is complicated since it is subject to a plethora of non-volitional factors

40Qccupation was normally recorded at marriage or at offsprings baptisms. Ergo, celibate men were much less likely to
have recorded occupations. The sample of men who have a recorded occupation regardless is thus highly selected on more
notable occupations (that were recorded at death).

41Since I can only identify celibacy for individuals who did not migrate, I cannot test this empirically. Across the entire
sample, men were significantly more likely to out-migrate. However, it is difficult to pinpoint how this interacted with
marriage markets.
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Table A9: Mechanism II: Starting, Spacing, and Stopping

Age at Marriage Age at Last Birth Birth Interval
1) 2) 3
In(HISCAM) -4,754*** 0.058 -2.914**
(0.351) (0.340) (0.821)
Mean DV 25.646 39.088 32.840
Observations 5325 3194 22375
Parishes (clusters) 16 16 16
R? 0.055 0.027 0.012

Robust clustered standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Notes: Table reports OLS estimates of the association between socioeconomic status (SES) and components of the
intensive margin of fertility: starting, spacing, and stopping. Columns (1) and (2) use couples as the unit of analysis.
Column (1) models mothers age at marriage. Column (2) models mothers age at last birth, restricting the sample to
complete marriages where both spouses survived to age 50. Column (3) uses births as the unit of analysis and includes all
births at parity greater than one. The dependent variable is the interval (in months) to the prior birth. Parity is controlled
for, as intervals tend to lengthen with parity. The exposure variable is the husbands status measured by In(HISCAM). All
regressions include parish and marriage-decade fixed effects.

(e.g., infant feeding practices) (Knodel 1987). However, since I am interested in the mechanical
mediators of gross fertility, | measure spacing irrespective of whether it is the product of deliberate
fertility control using birth intervals.

Table A9 reports the results of this exercise. The coefficient in column (1) reveals a strong and
significant negative association between In(HISCAM) and Mother’s age at marriage. In couples of
the top SES decile, women married 4.754 x In(80/40) = 3.295 years earlier.*” Turning to column
(2), there is no association between age at last birth and SES. Irrespective of SES, reproductive
behavior ceased around 39 years of age for women. This pattern for starting and stopping replicates
for men, albeit in aless pronounced manner. For spacing, the coefficient for In(HISCAM) in column
(3) is statistically significant at the 95 % level. High-SES couples have 2.914 x 1n(80/40) = 2.020
months shorter birth intervals on average.

Table A10: Starting and Stopping for Men

Age at Marriage Age at Last Birth
(1) 2)

In(HISCAM) -2.687*" 2.111%

(0.646) (0.690)
Mean DV 29.144 42.561
Observations 5325 3194
Parishes (clusters) 16 16
R? 0.025 0.044

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
Notes: All regressions include parish and marriage-decade fixed effects. Standard errors are clustered at the parish level.

4These class differences in female age at marriage concur with earlier findings for Germany based on the parish of Belm
(Schlumbohm 1992). However, while Schlumbohn looks only at differences between land-rich and landless peasants, the
detailed occupational data of the Wittgenstein reconstitution enables evaluation of the relationship between status and
demographic outcomes in a more granular manner.
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These results clash with Knodels (1987) finding that deliberate spacing cannot be identified
in pre-industrial Germany. However, non-deliberate birth spacing can emerge mechanically in
historical populations. Variation in non-volitional factors affecting birth intervals —i.e., different
breastfeeding practices or nutritional effects during periods of economic stress (Jaadla et al. 2020;
Thiehoff 2015) — could explain the significant coefficient in column (3). Dribe and Scalone (2010)
use the same data as Knodel (1987) to argue for the presence of deliberate fertility adjustments via
spacing during such periods of economic stress. They cite the rapid response to price shocks as
evidence that this adjustment was the product of deliberate spacing instead of hardship induced
sub-fecundity. Since they find that lower SES couples responded to these price shocks more
strongly, this offers another explanation for the association between SES and spacing. Nonetheless,
mechanical explanations, such as the peculiarities of local labor markets, offer a stronger candidate
explanation. Lower SES men often traveled to neighboring principalities to seek out work, taking
leave for several months on end (Klein 1936). These periods of absence mechanically increase
birth intervals for low SES couples, offering an appealing explanation for the association between
spacing and SES. Such labor migration was common across Germany and would increase in times
of economic hardship as work became scarcer. As such, the variation in spacing may be attributable
to the specific economic conditions of the area.

To check whether starting and spacing account for the entirety of the association between SES
and gross fertility, I include them as controls when regressing In(HISCAM) on gross fertility. The
coefficient for In(HISCAM) is insignificant and close to zero. This implies that there is no direct
effect of SES on gross fertility. Instead, SES is only associated with gross fertility via starting and
spacing. To further understand the relative contributions of the two mechanisms, I conduct a
simple decomposition exercise. I regress mother’s age at marriage on gross fertility to obtain Ss;.¢,
and the average birth interval on gross fertility to obtain Ssp.... The product of the coefficient in
Table A11 column (2) and S+ captures the indirect effect of SES on fertility via starting d4¢4,:. The
product of the coefficient in column (3) and f;,4.. describes the indirect effect via spacing dspqce-
The total effect of SES on gross fertility 6 = 0541t + Ospace S 1.243 = 1.036 4 0.207. The share of the
total effect mediated by starting is 1.036,/1.243 = 0.83.

Table A11: Mechanism and Decomposition

Gross Fertility Age at Birth Interval
Marriage
1) ) 3) 4) ()

Age at Marriage -0.203"** -0.218"**

(0.004) (0.003)
Average Birth Interval -0.0477** -0.051***

(0.003) (0.004)
In(HISCAM) 0.034 -4.754*** -4.061"**

(0.176) (0.351) (0.862)
Mean DV 5.821 5.175 5.867 25.646 35.537
Observations 4640 10323 8978 5325 4640
Parishes (clusters) 16 16 16 16 16
R? 0.295 0.209 0.127 0.055 0.033

Clustered standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
Notes: All regressions include parish and marriage-decade fixed effects. Standard errors are clustered at the parish level.
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The dominance of age at marriage over other mechanisms is consistent with evidence from other
European contexts (Wrigley et al. 1997; Clark and Cummins 2015; Cummins 2020). One explanation
for the strong association between age at marriage and SES is the start-up costs of marriage and
childrearing. Neo-locality - the practice of forming an independent household instead of staying in
the parental household — common to western Europe, significantly increased the cost of marriage.
As such, lower-SES men had to earn and save for longer before marrying (Tilly and Tilly 1971).

E Multi-generational Transmission

I estimate elasticities of status across one (G4 — G3), two (G4 — G2) and three (G4 — G1) generations.

In(HISCAM; 1) = o + By, In(HISCAM:, G4 — m) + 7.4 + €5.64 (A1)

Additionally, I estimate an AR(3) model that regresses the SES of three prior generations on G4.
In the absence of measurement error, this model estimates the effect of fathers (G2) conditional
on direct grandfather (G3) and great-grandfather (G4) effects. Throughout, SES is measured using
HISCAM. In the baseline specification, when individuals have multiple status observations, I
use a random draw. In later specifications, to test the identifying assumption and account for
measurement error, SES is averaged across available occupations. To account for time-variation in
average SES, half-century fixed-effects m; ¢4 are included. All standard errors are clustered at the
parish level.

Columns (1), (3), and (5) of Table A12 report baseline estimates for multi-generational elasticities.
Across the board, the multi-generational effect is larger than the predicted effect based on an AR(1)
transmission mechanism. Concordantly, the AR(3) model in column (7) implies that the grandfather
effects persist — both in statistical and economic significance — when we condition on the direct
father effect. However, as discussed in subsection 4.1, assigning a structural interpretation to
these associations is rife with problems. As such, these coefficients do not necessarily imply a
direct grandfather effect (Ward et al. 2025). Comparing estimates to ones that partially correct
for measurement error — see columns (2), (4), (6), and (8) — suggests spurious multi-generational
effects. Although using average SES is only a partial remedy, it suffices to increase the magnitude of
B_1 by 22 %, while reducing excess persistence by 73 pp for the grandfather (5_»), and 147 pp for
the great-grandfather effect (5_3). Similarly, in the AR(3) model, the measurement error correction
reduces the relative magnitude of the grandfather by 17 pp. In the absence of multiple independent
SES measurements per observation, I am unable to fully account for measurement error. Thus, it
is impossible to conclude whether the significant grandfather effects are statistical artifacts. Still,
given this pattern and existing evidence on multi-generational mobility, it appears likely that the
remaining effect is driven by measurement error. All subsequent analyzes are conducted under the
identifying assumption of no structural grandfather effect.
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