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Experiments, Observational Studies, and Matching

Experiments → similar treatment/control groups → causal inference

In observational studies, treatment groups are typically not similar.
→ Biased estimators, sensitivity to model specification.

Matching: Match treated subjects to “similar” control subjects.
▸ Pair subjects by propensity score, Mahalanobis distance, etc.
▸ Block subjects by coarsened covariates
▸ Optimize group-level covariate balance

• Matching → similar treatment/control groups → causal inference

• Common to assume matched datasets ≈ randomized experiments

But what kind of experimental design are we approximating, if any?

• Completely randomized? Blocked? Something else?
→ The choice has important implications for inference.
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Matching and Covariate Balance Assessments

Matching is only useful if it produces similar treatment/control
groups (i.e., covariate balance).

Covariate balance assessments always conducted after matching.
(e.g., standardized ∣x̄T − x̄C ∣ ≤ 0.1?)

Is there 
covariate 
balance?

Analyze 
matched data as 

if from an 
experiment

Match subjects

NO

YES

Covariate balance assessments rely on rules-of-thumb.
They do not formally test if an experiment has been approximated.

Key point of this talk: Provide a valid randomization test to assess if
a matched dataset approximates a particular experimental design.

As an example, let’s consider an application.
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Application in Political Science

Keele et al. (2017): Does having at least one African American
candidate in Louisiana mayoral elections affect black voter turnout?

Data: 1,006 elections (356 treatment, 650 control) from 1988-2011.

Treatment: At least one electoral candidate was African American.

Outcome: Black voter turnout (measured in percentage points).

“treatment” cities were quite different from “control” cities.

Keele et al. (2017) matched 197 pairs of treatment/control elections
such that ∣x̄T − x̄C ∣ ≤ 0.1 for all covariates.
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Used this as
justification to
analyze the matched
data as a paired
experiment.
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What designs can we consider for this matched dataset?

We have 197 matched pairs such that ∣x̄T − x̄C ∣ ≤ 0.1 for all covariates.

Should we view this dataset as approximating an experiment?

Three experimental designs we will consider:
1 Complete Randomization: Permutations of treatment.
2 Paired Randomization: Permutations of treatment within pairs.
3 Constraind Paired Randomization: Permutations of treatment

within pairs, such that ∣x̄T − x̄C ∣ ≤ 0.1.

We’ll present a test for these designs.

Lets us pinpoint which design—if any—is most appropriate.
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Test for Random Assignment in Matched Data

Assume a matched dataset with N subjects, covariate matrix XN×K ,
and binary treatment WN×1.
Here is the test for Complete Randomization:

1 Choose a test statistic B(W,X)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

covariate balance

. We’ll use the Mahalanobis distance:

B(W,X) ≡ (x̄T − x̄C)
T
[cov(x̄T − x̄C)]

−1
(x̄T − x̄C)

2 Generate hypothetical randomizations w(1), . . . ,w(M)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

permutations

3 Compute B(w(1),X), . . . ,B(w(M),X)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

randomization distribution of covariate balance

4 Compare randomization distribution to observed balance.

If observed balance is very different from randomization distribution,
evidence against Complete Randomization.

For other designs, just change Step 2 accordingly.
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Randomization appears
to be the most plausible.

Justifies using a CI under
this design, which is
narrower than under
Paired Randomization or
Complete
Randomization.
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Conclusion

Matching is a popular way to alleviate covariate imbalances.
Balance checks are a part of every matching procedure.

Our work provides a valid, exact test for the hypothesis that matched
data approximates a particular experimental design.

▸ Doesn’t rely on rules-of-thumb that may not be appropriate for a
particular dataset.

▸ Allows for any experimental design.
▸ Can graphically put several designs on the same univariate scale.

• Tests and graphics implemented in R package randChecks.
▸ Can be used to formally assess balance for any binary indicator.
▸ For example, balance checks also come up in instrumental variables and

regression discontinuity designs.

• Paper in Observational Studies (2021)
▸ Our test has more power correctly rejecting experimental designs than
t-tests and KS tests.
Well-designed matched datasets can be analyzed as well-designed
experiments, resulting in narrower CIs closer to the nominal level.
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