
Mathematical Data Science for crystals

Vitaliy Kurlin’s group including
Phil Smith, Matt Bright, Dan Widdowson, ...

Materials Innovation Factory (MIF), Liverpool
Royal Acad. Engineering Ind. Fellow, CCDC



Objects: all periodic crystals
Solid crystalline materials (periodic crystals)
can have many types, all consist of elementary
blocks (motifs) of atoms, ions or molecules in a
unit cell periodically repeated in three directions.



Ambiguity of inputs (cell, motif)

Are the above lattices different or equivalent?

Even if we fix a cell, input ambiguity remains.



Past equivalences of crystals
What crystals are equivalent? An equivalence
has three axioms: A ∼ A, if A ∼ B then B ∼ A,
transitivity: if A ∼ B ∼ C then A ∼ C (needed for
a non-trivial splitting into well-defined classes).

By symmetry group: 230 classes are known,
insuffucient to classify 1M+ crystals in the CSD.

Many crystals are often called similar. When is
such a similarity an equivalence relation?

What if crystals have similar density or energy?



Similarity by perturbation
Nomenclature of inorganic structure types (ACA
1990) uses many parameters, but any similarity
threshold > 0 makes the classification trivial.

Assume A ∼ B if A can be perturbed to B by a
small d > 0. Then any A,B are joined by a chain
of small perturbations A ∼ A1 ∼ · · · ∼ An ∼ B,
so A,B are equivalent by the transitivity axiom.

We can compare any crystals, not only similar.



Crystals up to isometry
Crystal structures are determined in a rigid
form and should be studied up to rigid motion (a
composition of translations and rotations in 3D).

Isometries also include mirror reflections.

Hence a crystal is not a single set, but a class of
infinitely many periodic point sets equivalent to
each other up to isometry or rigid motion in 3D.



How can we distinguish crystals?
An invariant (number, vector, matrix,...) must
take the same value on all isometric crystals.

If a non-invariant takes two different values on
two crystals, then no conclusion can be made.

Question: how about
non-invariant big data?
Answer: use invariants.



Non-invariants cannot help science
Even if some descriptors or features distinguish
objects, it doesn’t make them reliable invariants.
The average colour (one of 2563 = 16,777,216)
of clothes can easily distinguish many people
but cannot be used for a reliable identification.

A scientifically justified invariant of humans is a
DNA code. Data Science for any other objects
looks for similar invariants that are complete for
an important equivalence relation in question.



Typical way to lose periodicity

Taking boxes or balls with a fixed cut-off radius
produces non-isometric finite sets with no
chance to reconstruct a given periodic set.



Discontinuity of past invariants
Even if a cell is reduced (Niggli’s cell), any such
reduction is discontinuous under perturbations.

A reduced cell can double under al-
most any perturbation. All discrete
invariants including symmetry groups
are discontinuous. How can we con-
tinuously quantify a crystal similarity?

Why is continuity important? All atoms vibrate,
real measurements are noisy, too many crystals.



Isometry classification problem
We need a complete and continuous isometry
invariant I : {periodic point sets} → {numbers}.

1) Invariance : if point sets S ∼ Q are isometric,
then I(S) = I(Q), so I should be well-defined on
isometry classes, independent of a unit cell.

2) Completeness : if I(S) = I(Q), then S,Q are
isometric, so I distinguishes all sets S 6∼ Q.

3) Continuity : the invariant I slightly changes
under perturbations to quantify a similarity.



More classification requirements
4) Computability : a polynomial time in a motif
size (the number m of atoms in a unit cell).

Current brute-force : blind sampling of an infinite
space produces 5679 predictions over 12 weeks
on a supercomputer, five crystals synthesised.

5) Inverse design : a complete invariant should
allow us to reconstruct a full 3D crystal so that
we can choose a new invariant value and then
discover a new crystal with desired properties.



Metric axioms and metric problem
A metric d ≥ 0 on isometry classes of crystals:

(1) d(S,Q) = 0 if and only if S,Q are isometric;

(2) symmetry: d(S,Q) = d(Q,S);

(3) 4 inequality: d(S,T ) ≤ d(S,Q) + d(Q,T ).

The first metric axiom fails for any non-complete
invariant I: if I(S) = I(Q) for non-isometric S,Q,
then any distance d between I(S), I(Q) is 0.

The metric problem solves the classification:
S,Q are isometric if and only if d(S,Q) = 0.



Mercury’s RMSD implementation
Given two crystals, Mercury tries to match a
number of molecules (15 by default) in both
crystals by finding a best rigid motion, outputs
the Root Mean Square Deviation RMSD

=

√
1
n

n∑
i=1
||pi − qi ||2 between n matched atoms.

RMSD fails the triangle inequality and is a
bounded version of the bottleneck distance
dB(S,Q) = inf

f :S→Q
sup
p∈S
||f (p)− p||, which can be

+∞, e.g. S = Z, Q = (1 + ε)Z for any ε > 0.



New isometry invariants of crystals
Density functions, Proceedings SoCG 2021
+ continuous, + complete for generic crystals,
- slower (cubic time, hours on 5679 crystals)

Isosets, DGMM 2021, arxiv:2103.02749
+ continuous, + complete for all crystals,
- slower (cubic time), + allow inverse design.

Distance-based invariants, MATCH, to appear
+ simple, + continuous, + fast (near linear time,
seconds on 5679 crystals), arxiv:2108.04798,
+ generically complete, + allow inverse design.



Distance-based invariants

For a finite or periodic set S ⊂ Rn, let dij be the
distance from a point pi in a motif, i = 1, . . . ,m,
to its j-th nearest neighbour in S. For any k ≥ 1,
Average Minimum Distance AMDk = 1

m

∑m
i=1 dik .



Finite sets up to isometry
Pozdnyakov et al. Incompleteness of atomic
structure representations, Phys. Rev. Let. 2020

reviewed many isometry invariants, also for finite
sets and suggested several pairs of sets that
are not distinguished by inter-point distances.

For a set S of m points and k ≥ 1, dk(p) is the
distance from p to its k -th nearest neighbor in S.
The rows of the m × k matrix D(S; k) are lists
d1(p) ≤ · · · ≤ dk(p), ordered lexicographically.



Pointwise Distance Distributions

To get PDD(S; k), collapse identical rows and
assign weights. The trapezium and kite differ:
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Hard-to-distinguish sets in R3

The 6-point sets T± with free parameters:
RC1 = GC2, RC2 = GC3, RC3 = GC1.



Higher-order PDD(h) invariants
Matrices PDD(h)(S; k) for h ≥ 2 include ordered
distances from h-point subsets of S to k nearest
neighbours, distinguish all known non-isometric
sets, continuous in the Earth Mover’s Distance.

Generic periodic sets can be reconstructed
from PDD(S; k) and lattice invariants for big k .

Based on k -nearest neighbours, PDD(h)(S; k) is
found in time O(h2kmh log(hm) log2 k) with some
constants depending on S, arxiv:2108.04798.



A tree of 12576 crystalline drugs



Crystal Isometry Principle
Map: {all crystals} → {periodic point sets}
taking only atomic centres should be injective.

400M+ pairwise compar-
isons of all 660K+ peri-
odic crystals in the CSD
detected 5 pairs with
identical geometry, dif-
ferent chemistry, physi-
cally impossible: 5 jour-
nals are investigating.



145K+ orthorhombic lattices



Summary: maths for crystals
Equivalence of crystals: isometry, rigid motion.

Past descriptors: not invariants, discontinuous.

Isometry invariants PDD (Pointwise Distance
Distributions) are complete in general position,
simpler and faster than persistence that is a
weaker isometry invariant of finite sets in TDA.

Crystal Isometry Principle (CRISP) justifies
that all crystals live in one continuous space
parameterised by complete invariants.


