INSTITUT
POLYTECHNIQUE
DE PARIS

3iA Céte d'Azur

Institut interdisciplinaire
d'intelligence artificielle

Optimal transport for graph data

Barycenters and dictionary learning

R. Flamary - CMAP, Ecole Polytechnique, Institut Polytechnique de Paris

March 31 2022

London School of Economics

1/30



Collaborators

N. Courty A. Rakotomamonjy A. Habrard M. Perrot M. Ducoffe

)

M. Cuturi K. Lounici  A. Férrari C. Févotte V. Emiya V. Seguy

i

4

B. Damodaran T. Vayer K. Fatras I Redko

Y

H. Janati T. Séjourné H. Tran G. Gasso M. Cornli C. Vincent-Cuaz

2/30



Table of content

Optimal Transport and divergences between graphs
Discrete Optimal Transport (OT)
Gromov-Wasserstein divergence and applications on graphs

Fused Gromov-Wasserstein and applications on attributed graphs

Online Graph Dictionary Learning
Linear modeling and unmixing of graphs
Learning a dictionary of graphs

Numerical experiments

Semi-relaxed Gromov Wasserstein distance
Semi-relaxed GW problem and solver

Numerical experiments with srGW

3/30



Optimal Transport and divergences
between graphs



Optimal transport

U1
Y2

Y3

e Problem introduced by Gaspard Monge in his memoire [Monge, 1781].
e How to move mass while minimizing a cost (mass + cost)
e Monge formulation seeks for a mapping between two mass distribution.

Reformulated by Leonid Kantorovich (1912-1986), Economy nobelist in 1975

e Focus on where the mass goes, allow splitting [Kantorovich, 1942].

Applications originally for resource allocation problems
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Optimal transport between discrete distributions
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Kantorovitch formulation : OT Linear Program
When e = >0 aiéxf and gy = Y1 bidye

Wy (ps, pe) = min {(T’ Cpr= ZTi,jci,j}
i

Te(ps,pt)
where C is a cost matrix with ¢; ; = c(x{,x%) = ||x§ — x;\ip and the constraints are
T(ps, pt) = {T e (R)™*™|T1,, =a, T 1,, = b}
e Wy (s, pe) is called the Wasserstein distance (EMD for p = 1).
e Entropic regularization solved efficiently with Sinkhorn [Cuturi, 2013b].

e Classical OT needs distributions lying in the same space — Gromov—WassersteinS./m



Optimal transport between discrete distributions
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Kantorovitch formulation : OT Linear Program
When ps = 377 aidxs and e = 3507 bidye

Wh(ps, ppe) = min {(T7 C), = ZTZ"]'CLJ'}
¥

Te(ps,pt)
where C is a cost matrix with ¢; ; = c(x},x}) = [|x{ — x[|” and the constraints are
Uy, 1) = {T € (RY)™*™|T1,, =a, T 1,, = b}
o Wy (s, pe) is called the Wasserstein distance (EMD for p = 1).
e Entropic regularization solved efficiently with Sinkhorn [Cuturi, 2013b].

e Classical OT needs distributions lying in the same space — Gromov-Wasserstein.
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Gromov-Wasserstein divergence

Q.

ldx (z,2") — dy (y,y')

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

1

gw (/“ .Ut) = ( min Z |DZ & _D/'l‘pTi 'Tkl>5
pss TEM(pra ) Lot ) 3, g Lk,

with y1s = 37, aidxs and e =37, bj51§ and D, i, = ||x§ — %3, D}, = [|Ix5 — x|

e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.
e Invariant to isometry in either spaces (e.g. rotations and translation).

e Entropy regularize GW proposed in [Peyré et al., 2016]. 6/30



Gromov-Wasserstein between graphs

4 X,
X 4 Adjacency

Shortest path
matrix

matrix

Model the graph structure
e A graph G : node set {z;};c[n) (implicit) & edge set {(z:,x;)[x: — x;}.
e Encoded as a node relationship matrix D e.g. adjacency (task-driven choice).

OT context: Graph as a distribution

e G modeled as a discrete distribution
p=>,hids;, summarized by (D, h).
@xi e D : node relationship matrix.

e h : vector of probability masses specifying
-0.0 hi p= 3 hide, node relative importance (uniform by default).
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Applications of GW [Solomon et al., 2016]

Shape matching between 3D and 2D surfaces

Source Targets

Multidimensional scaling (MDS) of shape collection

A
e -

OO
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Attributed graphs as distributions

a;

x; ;.: } HaA = Z,L hi(saz-

h g? } px = 27 hiém

e Joint distribution y in the feature/structure space.

e Nodes are weighted by their mass h;.
e Structure encoded by x; (no common metric between two different graphs).
e Features values a; can be compared through the common metric.

e |Importance of the joint modeling:

(va,04)
) (y1:b1)

(22, a0) (x3,a3) (y2,02) (v3,03) 9/30



Fused Gromov-Wasserstein distance

X

Fused Gromov Wasserstein distance [Vayer et al., 2020]

Hs = Z::l hibe;.a; and pe = 2;1:1 gj(syj:bj

1
P

/ _ . / P
FGWopq,a(D, D', pis, pe) = (Teé?b?m) Z (1=a)C} ;+a|D; =D, |") ' Ti Tk,l)

0,5,k,0
With Dz’,k = HTL — ka and D;-J = Hyl — ylH and C/,',j = ||az — b]H
e Parameters ¢ > 1, Vp > 1.

e « € [0,1] is a trade off parameter between structure and features. 10/30



FGW barycenter

Euclidean barycenter FGW barycenter
A (D2, p2)
Ty T3 (Dhﬂl) (D3»,U/S)
min Y, Az — i 2 pcmin Y NFOND:D. )
xr )

FGW barycenter p =1,¢ =2
e Estimate FGW barycenter using Frechet means (similar to [Peyré et al., 2016]).
e Barycenter optimization solved via block coordinate descent (on T, D, {a;};).
e Can chose to fix the structure (D) or the features {a;}; in the barycenter.
e a;;, and D updates are weighted averages using T.
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples

Barycenter of noisy graphs
e We select a clean graph, change the number of nodes and add label noise and
random connections.

e We compute the barycenter on n = 15 and n = 7 nodes.

e Barycenter graph is obtained through thresholding of the D matrix.
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FGW barycenter on labeled graphs

2 oER Y A B
Lo i hd
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FGW for graphs based clustering

Centroids

Training dataset examples

cluster 1

cluster 2

cluster 3

cluster 4

e Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10
graphs x 4 types of communities)

e k-means clustering using the F'GW barycenter
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FGW baryenter for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and community clustering
min  FGW(D, Do, u, po)

sH

e Approximate the graph (Do, 110) with a small number of nodes.

Can be seen as a FGW (compressed) barycenter for one graph.

e OT matrix give the clustering affectation.

Works for signle and multiple modes in the clusters.
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GW and FGW for graph modeling

€y i >

|dx (x,2") = dy (y,9)

Gromov-Wasserstein distance [Memoli, 2011]
e Divergence between distributions across metric spaces.

e Can be used to measure similarity between graphs seen as distribution their
pairwise node relationship.

Fused Gromov-Wasserstein distance [Vayer et al., 2018]

e Model labeled structured data as joint structure/labels distributions.
e New versatile method for comparing structured data based on Optimal Transport

e New notion of barycenter of structured data such as graphs or time series

1. How to use GW/FGW to model data variability in a dataset of graphs?

2. How to handle the sensitivity to the weights (when no weights are provided) ?
15/30



Online Graph Dictionary Learning




Datasets of graphs

Dataset Dataset 2

P

SBM with balanced communities {1,2,3}.  Two communities of variable proportions.

e We have access to large datasets of graphs with variable number of nodes.
e How to model the variability of those graphs?

A natural formulation is to use factorization.

e We propose to use a linear model for representing te graph associated to and
estimation of the linear basis : Dictionary learning.
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Linear model
-
Adjacency W, +w. W —
matrices 2 o -~

S >

—
Graph atoms

Corresponding
graphs

Linear modeling of graphs

D~ Z ws D (1)
s€(S]

e Approximate a given graph structure D as a non-negative weighted sum of

template graphs D;.
e W € Xg are the weights in the simplex.
e {D.} is the dictionary of templates that all have the same order (nb. of nodes).
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Gromov-Wasserstein Linear unmixing

o _' 5
. o 5o
Displacement e
o © argmin d( w, 3

W1,W,,W;3
1 ~ - —

Probability N !

- simplex Graph atoms Graph sample
constraint ' 3

Sparse linear unmixing with Gromov-Wasserstein [Vincent-Cuaz et al., 2021]

min QW§ Z wsDs , D (2)

weXg ]

e Estimate the linear (vector) representation on the simplex w minimizing the GW
distance w.r.t. the target graph D (non-negative unmixing).

e w is a vector embedding of the graph D in the dictionary.
18/30



Gromov-Wasserstein Linear unmixing
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Sparse linear unmixing with Gromov-Wasserstein [Vincent-Cuaz et al., 2021]

min QW§ Z wsDs , D (2)

weXg ]

e Estimate the linear (vector) representation on the simplex w minimizing the GW
distance w.r.t. the target graph D (non-negative unmixing).

e w is a vector embedding of the graph D in the dictionary.
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Gromov-Wasserstein Linear unmixing

Displacement

et - LN
W1, W5,Ws :
P;?rt;]ap)?lelsy ) Graph atoms Graph sample

constraint

Sparse linear unmixing with Gromov-Wasserstein [Vincent-Cuaz et al., 2021]

. 2 -
min - GW;3 Z[;]wSDS,D (2)

e Estimate the linear (vector) representation on the simplex w minimizing the GW
distance w.r.t. the target graph D (non-negative unmixing).

e w is a vector embedding of the graph D in the dictionary.
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Graph Dictionary Learning

GDL optimization problem

K
min > gw; [ DY, " wD, | - AW (3)
{Wﬁ")}ke[m k=1 s€[S]
{Ds}seis)

e On a dataset of K undirected graphs {D"*) € Sy ) (R) e[k

e We want to estimate simultaneously the unmixing w®) of each graphs and the
optimal dictionary {D,}s¢[s].-

e Very similar to classical DL (Non-negative Matrix Factorization) approach but

with GW as a data fitting term.

e We propose to solve it an adaptation of the online algorithm [Mairal et al., 2009]

Stochastic/Online update [Vincent-Cuaz et al., 2021]
1: Sample a minibatch of graphs B := {D®"},cp .
2: Compute {(w(k>,T<k))}ke[B] from solving B independent unmixings.
3: Compute the gradient ﬁfs on the minibatch with fixed {(w™®, T™)}, ¢ 5.
4. Projected gradient step , Vs € [S], Ds < Projs, @) (Ds — 7]0655)
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Experiments - Unsupervised representation learning

e Stochastic block model with {1,2,3} blocks
Datase Learned atoms

7 Atom 1 (matrix) Atom 2 (matrix) Atom 3 (matrix)

10
0.75
0.8
0.50)
0.6
0.25)
04 | |

Atom 1 (graph) Atom 2 (graph) Atom 3 (graph)

Y I

¢’

Embedding space

GDL unmixing w® with A =0 Examples GDL unmixing w® with A = 0.001

GW graph/Mahalanobis (corr=0.96)

Class 1
Class 2
Class 3

IS

w

~

Mahalanobis in the embedding

o =
L)
io
J
°

0.0 0.2 0.4 0.6 0.8
GW between graphs
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Experiments - Online Learning

e Streaming graphs: Stochastic update for each new incoming graph
e Dataset : TRIANGLES
- 30.000+ labeled graphs

- 10 classes

e Simulated stream: data A (4 classes) — data B (3 classes) — data C (3 classes)

FGW loss on streaming TRIANGLES graphs 10 Avg. FGW error on Datasets A/B/C
Stream C N |StreamA ‘ |Stream B‘ ‘Stream C‘
084 ~ A
“» = T~ ~-
8 100 —— Loss g 0.6
> —— Avg. loss = e
9 —— Events © 0.44 —— DataA ——
jrd -=]
—— Data B
0.24 —— DataC
— Events
1071 + T T T T T 0.0 T T T
5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Iterations Iterations
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Semi-relaxed Gromov Wasserstein
distance




Nodes weights are important

Uniform weights grap partitioning with GW

GW(C, h, I3, h) =0.235 GW(C, h, 14, h)=0.274
(ami=0.66) (ami=0.54)

All mass needs to be transported: sub-structures are lost
GW(C, h,C,h)=0.219

Relax the weights (half of them)!
22/30



Semi-relaxed Gromov-Wasserstein divergence

GW(C, h,C,h)=0.219 srGW(C, h, C) = 0.05 srGW(C, h,C) =0.113

Semi-relaxed GW divergence [Vincent-Cuaz et al., 2022]:

ssGW3(D, h, D) := min GW3(D,h, D, h)
hesx
e Match G and G while reweighing nodes of G so that the formed graph (D, h) is
at minimal GW distance from G.

e Equivalent problem easier to solve:

N— ijkl

stGW3(D,h, D) = min > (Ciy — C)*TiTy  with T e RN

e second marginal of T is h (can be recovered a posteriori). 230



Solving for srGW

e Vanilla srGW: solved using Conditional gradient with optimal step size

Algorithm 1 srGW - CG iteration Algorithm 2 GW - CG iteration
11 GW « gradient w.r.t T. O(N*N + NN%) 1: G « gradient w.r.t T.

—2

20 X « minxi,,-n(X,GY) OWN)+ GPU||0(N—W+NN ) 20 XO « W (h, R)

3. T « exact-line search. O(NN + NN°) 3. T « exact-line search.

e Entropic regularized srGW, [Cuturi, 2013a, Peyré et al., 2016]:

e Dense T™* and h informally taking uncertainty into account.
e Solved with mirror descent much more efficient than GW.
e One Bregman projection (softmax) instead of solving a Sinkhorn at each iteration.

e Sparsity promoting regularization srGW:

e compress the localization over a few nodes of D using group-lasso on h.
e Solve wih Majorization Minimization [Courty et al., 2014].

24/30



srGW for graph partitioning

GW(C, h, 13, h) =0.235 GW(C, h, 15, h)=0.274 srGW(C, h, 13) = 0.087 srGW(C, h, 1;) = 0.087
(ami=0.66) (ami=0.54) (ami=1.0) (ami=1.0)

e h efficiently estimates cluster proportions.

e Recover the true number of clusters (3).
e Benchmark on real datasets:

e srGW / GW using Adjacency & Heat kernels on Laplacian

[Chowdhury and Needham, 2021].
e srGW outperforms unsupervised graph partitioning SOTA on 4 datasets out of 6.
e Entropic regularization useful for sparse real-world graphs.

25/30



srGW Dictionary Learning

Learn Optimal target structure
mﬁin % Z stGW (D, hi,ﬁ)
i<I
e For graphs {(D;, h;)}i<;, learn a target structure D minimizing on average all
srGW divergences.
e {(D;, h;)} embedded as {h;} = {T} "1} where T <+ scGW(D;, h;, D).

e Embedded graphs {(D, h;)} leverage information from every subgraphs of the
atom D.

e Online stochastic solver scaling to large datasets [Mairal et al., 2009].

Unmixing time on the dictionary

NO ATTRIBUTE
e Average timings in ms. IMDB-B IMDB-M
. ORNCNNONNCS!
e srGW 100 — 1000 times faster srtGW (ours) | 1.51 | 2.62 | 0.83 | 1.50
than competitors. srGW, 1.95 | 6.11 | 1.06 | 5.53
GWF- 219 | 651 103 | 373
e Can be executed on GPU. GDL 108 | 236 | 438 | 152
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srGW Dictionary Learning on IMDB-B

Data sample C;, h; Data sample (colored by T) Projected €, h* Dictionary €
°
o
o
o —R—¢
(o} °
[+
o @
&) °
Data sample (colored by T) Projected €, h* Dictionary €
-~ °
.9‘* ‘?. [ ] ' L
] °
O—n—, O 0o
o
[} o
o o
e

IMDB-B unmixings on srGW dictionaries

method
20 [ srtGW
e Different local patterns depending on the g =1 s,
dictionary size N, g
5
s
S 10
e.g. clusters, hubs, subclusters etc. 3
5
A
0
10 20 30 40 50

graph atom size 27 / 30



Completion of graphs

fully observed graph partially observed graph MUTAG test dataset proportion 10.0%
95.5 — — SIFGW
~— SIFGW,

950 \/*— SIFGW - ent

—— SIFGW, —ent

—— GDL

—— GDL)

10 15 20 25 30
imputed nodes (%)

1) Learn a srGW dictionary D on fully observed graphs

2) For a partially observed graph D,;s, complete its full structure D solving for:

min  stGW (ﬁ,h,ﬁ) , where D= | Dobs : ,

D'L'mp

imp

3) Recover Adjacency matrix of D by thresholding if you learned on adjacency

matrices.
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Conclusion

Examples GDL unmixing w' with A =0.001

Gromov-Wasserstein family for graph modeling
e Graphs modelled as distributions, GV can measure their similarity.
e Extensions of GW for labeled graphs and Fréchet means can be computed.
e Nonlinear and linear dictionaries of graphs using GW provide a good modeling.

e Relaxing the marginal constraints can sometimes better model the graphs.

Open questions and future works
e Stability of the GW plan to perturbations of D (related to the GDL upper bound).
o Use G as a "kernel” for structured prediction ([Brogat-Motte et al., 2022]).
e Using GW/FGW/srGW in Graph Neural Networks (pooling, representations).
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Thank you

Python code available on GitHub:

0 e © o oe

.—. .—. .-. )

oe  — oe o

oe oe oe %
0%

https://github.com/Python0T/POT
e OT LP solver, Sinkhorn (stabilized, e—scaling, GPU)

e Domain adaptation with OT.

%%0@ 90

e Barycenters, Wasserstein unmixing.

e Gromov Wasserstein.

NN
et gaeo&rﬁm\ax
B0 enge gL GG

e Solvers for Numpy/Pytorch/Jax/tensorflow/Cupy / / W
/i ‘\ \
Tutorial on OT for ML: Vi AL
http://tinyurl.com/otml-isbi WV #° I"“‘ﬁ e o Q‘ %

® v\
Papers available on my website: o == % Ogoo 3.‘%3

https://remi.flamary.com/ !

30/30


https://github.com/PythonOT/POT
http://tinyurl.com/otml-isbi
https://remi.flamary.com/

Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2

° t XS
.:‘." '{o

@ Source s
g ® Target u;
% o
[

Entropic regularization [Cuturi, 2013b]

Regularization with the negative entropy —H (T).

e Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].
e Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

e Loss and OT matrix are differentiable and have better statistical properties
[Genevay et al., 2018].
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
° t X
°
oq °
® o €.

@ Source s

° @ Target
% 9
®3
(]
° ‘S\
o ©

Entropic regularization [Cuturi, 2013b]

Wl = o i, (T O+ 3T lon T

Regularization with the negative entropy —H (T).

e Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].

Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

e Loss and OT matrix are differentiable and have better statistical properties
[Genevay et al., 2018].
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FGW Properties

1

’ _ . q P ja\Pp P
FGW,p.q.a(D, D", s, pir) = (Teggﬁ?wi;, ((1—(1)Ciyj+(¥|Dz,k‘ D; | ) T, Tk,l)

Metric properties [Vayer et al., 2020]

e FGW defines a metric over structured data with measure and features
preserving isometries as invariants.

e FGW is a metric for ¢ = 1 a semi metric for ¢ > 1, Vp > 1.
e The distance is nul iff :

e There exists a Monge map T'#us = fut.
e Structures are equivalent through this Monge map (isometry).
e Features are equal through this Monge map.

Bounds and convergence to finite samples [Vayer et al., 2020]
o FGW(us, jit) is lower bounded by (1 — a)W(ua, up)? and aGW (ux, py )?
e Convergence of finite samples when X' = ) with d = Dim(X) + Dim(Q2) :

E[FGW (i, ptn)] = O (n_é)
32/30



Solving the Gromov Wasserstein optimization problem

Optimization problem

GWP (s, =  min Dy — D5 y|PTy The
= i, 5 PP

t t

with s =37, aidx; and pe =37, b;0,0 and Dy = [Ix7 — x|, Djy =[x — x|

e Quadratic Program (Wasserstein is a linear program).
e Nonconvex, NP-hard, related to Quadratic Assignment Problem (QAP).

e Large problem and non convexity forbid standard QP solvers.

Optimization algorithms
e Local solution with conditional gradient algorithm
(Frank-Wolfe) [Frank and Wolfe, 1956].

e Each FW iteration requires solving an OT problems.

e Gromov in 1D has a close form (solved in discrete with
a sort) [Vayer et al., 2019].

e With entropic regularization, one can use mirror descent
[Peyré et al., 2016] or fast low rank approximations

[Scetbon et al., 2021].
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Entropic Gromov-Wasserstein

Optimization Problem

GV (s, ) = min > |Dig = Dy y"Toy Tia+ €y TijlogTiy  (4)
TEM(psse) ;= i.j

with ps = 37, aidxs and py = 37, bj5m§ and D, = ||x — x; ||, Dj,; = [|x5 — x{||

J

e Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic G\ [Peyré et al., 2016]
e Problem (4) can be solved using a KL mirror descent.

e This is equivalent to solving at each iteration ¢

T(H_l) = ’1:'[‘1161% <T, G(f)>F +e€ Z Tiﬁj lOg Ti’]’
2,7

Where Gitj) =2, 1Dk — D;A”T,itl) is the gradient of the GW loss at previous
point T,
e Problem above solved using a Sinkhorn-Knopp algorithm of entropic OT.

e Very fast approximation exist for low rank distances [Scetbon et al., 2021].
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Solving the unmixing problem

Optimization problem

. 2 - 2
min - GW;3 > w.Ds, D | - \wl|3
s€[S]
e Non-convex Quadratic Program w.r.t. T and w.
e GW for fixed w already have an existing Frank-Wolfe solver.

e We proposed a Block Coordinate Descent algorithm

BCD Algorithm for sparse GW unmixing [Tseng, 2001]
1. repeat
2. Compute OT matrix T' of GW3(D, ", w,D;), with FW [Vayer et al., 2018].
3:  Compute the optimal w given T with Frank-Wolfe algorithm.
4. until convergence

e Since the problem is quadratic optimal steps can be obtained for both FW.

e BCD convergence in practice in a few tens of iterations.
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Approximating GW in the linear embedding

GW Upper bond [Vincent-Cuaz et al., 2021]
Let two graphs of order N in the linear embedding <2:s wgl)ﬁs> and (ZS wg)ﬁ) ,
the GW divergence can be upper bounded by

owe [ Y wDy, > w?PDs | < W - w?|um (5)
s€[S] s€[S]

with M a PSD matrix of components M), = (DrD,, ﬁth>F, Dy, = diag(h).
Discussion

e The upper bound is the value of GW for a transport 7' = diag(h) assuming that
the nodes are already aligned.

e The bound is exact when the weights w® and w® are close.
e Solving GW with FW si O(N?®log(N)) at each iterations.

e Computing the Mahalanobis upper bound is O(S?) : very fast alterative to GW
for nearest neighbors retrieval.
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GDL Extensions

GDL on labeled graphs

e For datasets with labeled graphs, on can learn simultaneously a dictionary of the
structure {D.};c(s] and a dictionary on the labels/features {F.}¢[g).-

e Data fitting is Fused Gromov-Wasserstein distance FGW, same stochastic
algorithmm.

Dictionary on weights

K
win S 0w (DY, wl DL A®, v ) - Mw® [ — ulv
{(wﬁ),vi(k))}k k=1 s s
{(Ds,hs)}s

e We model the graphs as a linear model on the structure and the node weights

(D™ R®) <Z w®D,, 3 v,i.’“’hs>

e This allows for sparse weights h so embedded graphs with different order.
e We provide in [Vincent-Cuaz et al., 2021] subgradients of GW w.r.t. the mass h.
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Experiments - Unsupervised representation learning

Graph from dataset Model unif. h (GW=0.09) Model est. h (GW=0.08)

Comparison of fixed and learned weights dictionaries
e Graph taken from the IMBD dataset.
e Show original graph and representation after projection on the embedding.
e Uniform weight h has a hard time representing a central node.

Estimated weights b recover a central node.

e In addition some nodes are discarded with 0 weight (graphs can change order).
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Experiments - Unsupervised representation learning

w=[0.0,1.0] w=[0.2,0.8] w=[0.4,0.6] w=[0.6,0.4] w=[0.8,0.2] w=[1.0,0.0]

,.14 %\Vﬁ%&

Atom 1 Atom 2
Interpolation

Learned Dictionary: Interpolation ~ 1D Manifold

Dataset

e Stochastic block model with 2 blocks
and varying proportions of block size.

e GDL with 2 atoms can recover the
extreme points.

e Linear interpolation recover a
continuous variation of proportion.
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Experiments - Clustering benchmark

Table 1. Clustering: Rand Index computed for benchmarked approaches on real datasets.

no attribute discrete attributes real attributes
models IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN
GDL(ours) | 51.64(0.59) | 55.41(0.20) | 70.89(0.11) | 51.90(0.54) | 66.42(1.96) | 59.48(0.68) | 66.97(0.93) | 60.49(0.71)
GWF-r 51.24(0.02) | 55.54(0.03) - - 52.42(2.48) 56.84(0.41) | 72.13(0.19) | 59.96(0.09)

GWF-f | 5047(034) | 54.01(0.37) - - 51.65(296) | 52.86(0.53) | 71.64(0.31) | 58.89(0.39)
GW-k 50.32(0.02) | 53.65(0.07) | 57.56(1.50) | 50.44(0.35) | 56.72(0.50) | 52.48(0.12) | 66.33(1.42) | 50.08(0.01)
sC 50.1100.10) | 544009.45) | 50.82(2.71) | 50.45(0.31) | 42.73(7.06) | 4132(6.07) | 70.74(10.60) | 49.92(1.23)

Clustering Experiments on real datasets

e Different data fitting losses:

e Graphs without node attributes : Gromov-Wasserstein.
e Graphs with node attributes (discrete and real): Fused Gromov-Wasserstein.

e We learn a dictionary on the dataset and perform K-means in the embedding
using the Mahalanobis distance approximation.

e Compared to GW Factorization (GWF) [Xu, 2020] and spectral clustering.

e Similar performance for supervised classification (using GW in a kernel).
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Clustering of datasets of graphs

Table 1: Embedding computation times (in ms) averaged over whole datasets on learned
dictionaries. (—) (resp. (+)) denotes the fastest (resp. slowest)

NO ATTRIBUTE DISCRETE ATTRIBUTES REAL ATTRIBUTES
IMDB-B_ | IMDB-M MUTAG PTC-MR BZR cox2 ENZYMES | PROTEIN
OO EHO GO GO [®H]E @O ]E] 6]
SrGW (ours) | 151 | 2.62 | 0.83 | 1.50 | 0.86 | 1.83 | 0.40 | 1.01 | 0.43 | 0.79 | 0.51 | 0.90 | 0.62 | 0.95 | 0.46 | 0.60

srGW, 1.95 | 6.11 | 1.06 | 553 | 3.68 | 598 | 1.65 | 3.38 | 0.89 | 2.88 | 0.97 | 460 | 1.35 | 473 | 1.57 | 2.96
GWEF-f 219 | 651 | 103 | 373 | 236 | 495 | 191 | 477 | 181 | 916 | 129 | 641 93 627 78 322
GDL 108 | 236 | 43.8 | 152 | 102 | 514 | 100 | 509 | 73.2 | 532 | 48.7 | 347 38 301 29 151

e srGW unmixings clustered using Kmeans algorithm: perform consistently better
than SOTA OT based clustering methods over 8 datasets (including graph with
features).

e Unmixing runtimes: 100 to 1000 times faster than fastest competitor GDL.

e Denoising beneficial to supervised classification: embedded graphs by srGW
enhances and speeds up supervised classification performances while endowing a
SVM with a GW kernel.
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