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Introduction

Robust statistics introduced in 1960s (Huber, Tukey, Hampel, et al.)

Goals:
1 Develop estimators T (·) that are reliable under deviations from model

assumptions
2 Quantify performance with respect to deviations

Local stability captured by influence function

IF (x ;T ,F ) = lim
ε→0

T ((1− ε)F + ε∆x)− T (F )

ε

Global stability captured by breakdown point

ε∗(T ;X1, . . . ,Xn) = min

{
m

n
: sup
Xm
‖T (Xm)− T (X )‖ =∞

}
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Regression M-estimators

Linear model:
yi = xTi β

∗ + εi , i = 1, . . . , n

Assume εi ⊥⊥ xi and E(εi ) = 0

Generalization of OLS suitable for heavy-tailed/contaminated errors:

β̂ ∈ arg min
β

{
1

n

n∑

i=1

`(xTi β − yi )

}
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Regression M-estimators

Bounded `′ limits influence of outliers:

IF ((x , y);T ,Fβ) = lim
ε→0

T ((1− ε)F + ε∆(x,y))− T (F )

ε
∝ `′(xTβ − y)x

Introduction
Robust regression

Implementation
Scottish hill races

Loss functions
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Huber regression with scale
calibration

Po-Ling Loh (University of Cambridge) A modern take on Huber regression 15 Nov 2021 5 / 36



High-dimensional linear regression

n ⇥ 1 n ⇥ p n ⇥ 1

p ⇥ 1
Linear model:

yi = xTi β
∗ + εi , i = 1, . . . , n

When p � n, assume sparsity: ‖β∗‖0 ≤ k
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High-dimensional M-estimators

Natural idea: For p > n, use regularized version:

β̂ ∈ arg min
β

{
1

n

n∑

i=1

`(xTi β − yi ) + λ‖β‖1

}

Complications:

Optimization for nonconvex `?

Statistical theory? Are certain losses provably better than others?
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Motivating calculation

Lasso analysis (e.g., van de Geer (2007), Bickel et al. (2008)):

β̂ ∈ arg min
β

{
1

n
‖y − Xβ‖2

2 + λ‖β‖1

︸ ︷︷ ︸
Ln(β)

}

Rearranging basic inequality Ln(β̂) ≤ Ln(β∗) and assuming

λ ≥ 2
∥∥∥XT ε

n

∥∥∥
∞

, obtain

‖β̂ − β∗‖2 ≤ cλ
√
k

Sub-Gaussian assumptions on xi ’s and εi ’s provide O
(√

k log p
n

)

bounds, minimax optimal
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Motivating calculation

Key observation: For general loss function, if λ ≥ 2
∥∥∥XT `′(ε)

n

∥∥∥
∞

,

obtain
‖β̂ − β∗‖2 ≤ cλ

√
k

`′(ε) sub-Gaussian whenever `′ bounded
=⇒ can achieve estimation error

‖β̂ − β∗‖2 ≤ c

√
k log p

n
,

without assuming εi is sub-Gaussian

Also require verifying RE/RSC condition, derived from local strong
convexity of ` near 0
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The problem of scale . . .

However, hidden condition that Var(εi ) < cγ2, where γ corresponds
to radius of robust loss function

For non-OLS regression, “optimal” loss function should depend on
scale of εi ’s

β̂ ∈ arg min
β

{
1

n

n∑

i=1

`(xTi β − yi )

}
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Some proposals

MM-estimator

β̂ ∈ arg min
β

{
1

n

n∑

i=1

`

(
yi − xTi β

σ̂0

)}
,

using robust estimate of scale σ̂0 based on preliminary estimate β̂0

How to obtain (β̂0, σ̂0)?
S-estimators/LMS:

β̂0 ∈ arg min
β
{σ̂(r(β))} ,

where σ̂(r) = r(n−bnδc)
Least trimmed squares:

β̂0 ∈ arg min
β





n−bnαc∑

i=1

(yi − xTi β)2
(i)




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Scale calibration (L. ’18)

Lepski’s method originally proposed for adaptive bandwidth
selection in nonparametric regression

Can be used to select σ in location/scale problem:

β̂σ ∈ arg min
β

{
1

n

n∑

i=1

`

(
yi − xTi β

σ

)
+ λσ‖β‖1

}
,

where ` is Huber loss with parameter 1
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Lepski’s method

Preceding theory implies

‖β̂σ − β∗‖2 ≤ Cσ

√
k log p

n
,

w.h.p., assuming σ ≥
√

Var(εi ) := σ∗

Basic idea of Lepski’s method: Compute β̂σ on gridding {σ1, . . . , σM}
of interval [σmin, σmax] 3 σ∗

For each σj , check if ‖β̂σj − β̂σ`‖2 ≤ 2Cσ`

√
k log p

n for all ` > j , and

let σ̂ be argmin in this set
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Statistical guarantee

Theorem (L. ’18)

With high probability, output of Lepski’s method satisfies

‖β̂σ̂ − β∗‖2 ≤ C ′σ∗
√

k log p

n
,

Method does not require prior knowledge of scale σ∗

Constant C ′ still depends on properties of design matrix (RE
constant)

Choice of λ depends only on
√

log p
n and universal constants
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Contributions

New theory for robust high-dimensional M-estimators implies

O
(√

k log p
n

)
error rates when ‖`′‖∞ ≤ C based on local RSC

Lepski’s method proposed to avoid joint scale parameter estimation
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Huber regression with covariate
filtering

Joint work with Ankit Pensia (UW-Madison) and Varun Jog (Cambridge)
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Adversarial contamination

Instead of drawing i.i.d. data from an ε-contaminated mixture, draw
i.i.d. data points {zi}ni=1 and arbitrarily contaminate ε-fraction
→ observations {xi}ni=1

Seminal papers by Diakonikolas et al. and Lai et al. on mean
estimation for adversarially contaminated data (2016) for
contaminated Gaussian data with Õ(ε) error

In our model, assume both covariates and responses may be
ε-contaminated
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Filtering algorithm

Algorithm of Diakonikolas et al. iteratively computes weights of
(remaining) data points according to projection onto top eigenvector
of sample covariance matrix

Use weights to probabilistically remove data points at each iteration

Po-Ling Loh (University of Cambridge) A modern take on Huber regression 15 Nov 2021 18 / 36



Filtering algorithm

Algorithm of Diakonikolas et al. iteratively computes weights of
(remaining) data points according to projection onto top eigenvector
of sample covariance matrix

Use weights to probabilistically remove data points at each iteration

Po-Ling Loh (University of Cambridge) A modern take on Huber regression 15 Nov 2021 18 / 36



Filtering algorithm

Success of algorithm is based on stability condition

Definition

Observations {xi}ni=1 satisfy (ε, δ)-stability w.r.t. (µ, σ) if

∥∥∥∥∥
1

|S ′|
∑

i∈S ′

xi − µ
∥∥∥∥∥

2

≤ σδ, and

∥∥∥∥∥
1

|S ′|
∑

i∈S ′

(xi − µ)(xi − µ)T − σ2I

∥∥∥∥∥
2

≤ σ2δ2

ε
,

whenever |S ′| ≥ (1− ε)n

Filtering algorithm identifies large stable set, w.h.p., when data are
ε-corrupted and/or heavy-tailed
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Linear model assumptions

Linear model:
yi = xTi β

∗ + zi , i = 1, . . . , n

Distributional assumptions:

Covariates: E(xi ) = 0, E(xix
T
i ) = I , and

E[(vT xi )
4]1/4 ≤ CE[(vT xi )

2]1/2 for all ‖v‖2 = 1
Noise: zi ⊥⊥ xi and E(zi ) = 0 (moment assumptions specified later)

Low-dimensional setting, n ≥ p

After seeing i.i.d. samples {(xi , yi )}ni=1, adversary can contaminate εn
data points to obtain {(x̃i , ỹi )}ni=1
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Huber regression

Huber loss:

`γ(x) =

{
x2

2 , |x | ≤ γ,
γ|x | − γ2

2 , |x | > γ

Huber estimator: β̂Hub ∈ arg minβ
{∑n

i=1 `γ(yi − xTi β)
}

Existing analysis for sub-Gaussian/uncontaminated covariates:

Sun et al. (2020) derived theory for β̂Hub for fixed design, heavy-tailed
errors
Sasai and Fujisawa (2020) derived theory for β̂Hub under adversarially
contaminated responses

Our idea: Apply filtering algorithm with parameter ε′ on xi ’s, then
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Filtered Huber regression

Theorem

Suppose E[z2
i ] = σ2, and suppose n = Ω(p log p + log(1/τ)). Then the

filtered Huber regression algorithm with ε′ = Θ(ε) and γ = Ω(σ) satisfies

‖β̂ − β∗‖2 - γ

(√
p log p

n
+

√
log(1/τ)

n
+ ε3/4

)
,

with probability at least 1− τ .

Assuming kth-moment condition on covariates, can improve rate to
O(ε1−1/k)

Rate-optimal for linear regression under adversarial contamination

Huber parameter can again be calibrated using Lepski-type procedure
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Proof idea

Filtered covariates satisfy weak stability, w.h.p.:

L ≤ λmin

(
1

n

∑

i∈S
x̃i x̃

T
i

)
≤ λmax

(
1

n

∑

i∈S
x̃i x̃

T
i

)
≤ U,

whenever |S | ≥ (1− ε)n

Also need to establish deviation bound on gradient of loss:

‖∇Lγ(β∗)‖2 - γ

(√
p log p

n
+ ε1−1/k +

√
log(1/τ)

n

)

and local strong convexity of Lγ around β∗
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Related work

Relatively little work for adversarial contamination in both covariates
and responses

General framework for robust ERM by Diakonikolas et al. (2019) and
Prasad et al. (2020) does not achieve optimal rates for linear regression
Diakonikolas et al. (2019) analyzed contaminated model for Gaussian
setting
Recent works by Zhu et al. (2020), Bakshi and Prasad (2020),
Cherapanamjeri et al. (2020), Depersin (2020) analyzed slightly
different assumptions on covariate/noise distributions, but algorithms
are somewhat different and sometimes rather complicated (e.g.,
sum-of-squares procedure)

Note: Several connections between optimal estimators for
heavy-tailed/adversarially contaminated data have appeared in past
few years
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LTS regression

Least trimmed squares (LTS):

β̂LTS ∈ arg min
β

{
n−m∑

i=1

(yi − xTi β)2
(i)

}

Bhatia et al. (2015) established error bound for LTS with adversarially
contaminated responses, when covariates satisfy subset strong
convexity/smoothness (SSC/S) condition:

λm ≤ min
|S |=m

λmin

(∑

i∈S
xix

T
i

)
≤ max
|S |=m

λmax

(∑

i∈S
xix

T
i

)
≤ Λm,

with Λ2m
λn

< 1
4 and Λn = O(λn)

Condition holds w.h.p. for i.i.d. Gaussian covariates
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Alternating minimization algorithm

Recast LTS problem as

min
β∈Rp ,‖b‖0≤m

‖Xβ − (y − b)‖2
2

Alternately minimize over β and b:

βj = (XTX )−1XT (y − bj−1),

bj = HTm(y − Xβj)

May converge to local optimum, but proved statistical error bound on
output
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Filtered LTS

Theorem

Suppose E[z2
i ] = σ2 and E[zk

′
i ]1/k

′ ≤ C for k ′ ≥ 2, and suppose
n = Ω(p log p + log(1/τ)). Then the filtered LTS regression algorithm
with m = Θ(p log p + εn + log(1/τ)) and ε′ = Θ(mn ) satisfies

‖β̂ − β∗‖2 - σ

(
p log p

n
+

log(1/τ)

n
+ ε

)1/2−1/k ′

,

with probability at least 1− τ .

Suboptimal error rate can be improved via postprocessing step (later)
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LAD regression

Least absolute deviation (LAD):

β̂LAD ∈ arg min
β

{
n∑

i=1

|yi − xTi β|
}

Karmalkar and Price (2019) established error bound for LAD when
covariates satisfy `1-stability:

1

n

∑

i∈S
|xTi v | ≥ M, and

1

n

∑

i /∈S

|xTi v | ≤ m,

for all |S | ≥ (1− ε)n and unit vectors v

Responses may be adversarially contaminated, but again, covariates
are i.i.d. Gaussian

Focus of that paper was `1-penalized LAD

Po-Ling Loh (University of Cambridge) A modern take on Huber regression 15 Nov 2021 28 / 36



LAD regression

Least absolute deviation (LAD):

β̂LAD ∈ arg min
β

{
n∑

i=1

|yi − xTi β|
}

Karmalkar and Price (2019) established error bound for LAD when
covariates satisfy `1-stability:

1

n

∑

i∈S
|xTi v | ≥ M, and

1

n

∑

i /∈S

|xTi v | ≤ m,

for all |S | ≥ (1− ε)n and unit vectors v

Responses may be adversarially contaminated, but again, covariates
are i.i.d. Gaussian

Focus of that paper was `1-penalized LAD

Po-Ling Loh (University of Cambridge) A modern take on Huber regression 15 Nov 2021 28 / 36



LAD regression

Least absolute deviation (LAD):

β̂LAD ∈ arg min
β

{
n∑

i=1

|yi − xTi β|
}

Karmalkar and Price (2019) established error bound for LAD when
covariates satisfy `1-stability:

1

n

∑

i∈S
|xTi v | ≥ M, and

1

n

∑

i /∈S

|xTi v | ≤ m,

for all |S | ≥ (1− ε)n and unit vectors v

Responses may be adversarially contaminated, but again, covariates
are i.i.d. Gaussian

Focus of that paper was `1-penalized LAD

Po-Ling Loh (University of Cambridge) A modern take on Huber regression 15 Nov 2021 28 / 36



Filtered LAD

Theorem

Suppose E|zi | = κ and n = Ω(p log p + log(1/τ)). Then the filtered LAD
regression algorithm with ε′ = Θ(1) satisfies

‖β̂ − β∗‖2 - κ,

with probability at least 1− τ .

Suboptimal error rate can also be improved via postprocessing

Benefits of LAD estimator: no tuning parameter, only requires
bounded first moment of error distribution (and does not even require
zi ⊥⊥ xi or E(zi ) = 0)
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Postprocessing

Suppose E[z2
i ] = σ2 and initial estimator β̂1 satisfies

‖β̂1 − β∗‖2 = O(σ)

Apply filtering (mean estimation) to vectors
{
β̂1 + (yi − xTi β̂1)xi

}n

i=1

Output β̂ has near-optimal error rates:

‖β̂ − β∗‖2 - σ

(√
p log(pn)

n
+

√
log(1/τ)

n
+
√
ε

)
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Simulations: Huber + heavy-tailed data
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Huber Reg. without filter
Huber Reg. with filter
Ordinary Least Squares

xi ’s and zi ’s sampled from Pareto distribution, f (u) ∝
(

1
|u|+1

)1+α

n = 200, p = 40, Huber parameter γ = 0.5
Filter removes 10 points
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Simulations: LTS + heavy-tailed data
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LTS: m= 10, with filter
LTS: m= 20, without filter
LTS: m= 20, with filter
Ordinary Least Squares

LTS parameter m ∈ {10, 20}
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Simulations: Adversarially contaminated, heavy-tailed data
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LTS without filter
LTS with filter

20 points set to deterministic (large) outlying values

Filter removes 30 points

Huber parameter γ = 0.5, LTS parameter m = 30
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Contributions

Showed that various classical robust regression estimators (Huber,
LTS, LAD) can be made robust to heavy tails and adversarial
contamination by simple covariate filtering step

Filtered Huber regression leads to near-optimal rates in ε, p, τ, n

Filtered LTS and LAD can be made near-optimal after additional
postprocessing step
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Open questions

Extension of filtering method to high-dimensional linear regression

Unknown covariance Σx , relaxing independence assumption xi ⊥⊥ zi
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