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___________________________
Randomized Control Trials (RCTs) and Data Privacy

e Randomized control trials
o Gold standard to estimate average causal effects of a
treatment /intervention (ATE).
e Carry an axiomatic assumption that individuals freely share their
response with the investigator.
e But, what if the response is sensitive in nature?
e E.g., voting behaviour, alcohol consumption, mental health related.
o Such responses should (ideally) be privatized.
e What if some responses (e.g., from online A/B tests) are protected
by law?
o GDPR (2016): EU law for online data privacy.
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Can we estimate causal effects in an experiment WHILE protecting
individual’s data privacy, specifically their response to treatment?
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|
Our Proposal

Robust, Private Randomized Control Trial (RP-RCT):

@ Guarantees individual’s data privacy through Differential Privacy
@ Allows for estimation of causal effects
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___________________________
Differential Privacy (DP) (Dwork et al. (2006))

Participant’s

Participant’s

True Response Some Algorithm Privatized Response
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(1) M(Y)=1 — Perfect privacy or “0—DP”
l
!
(2) M(Y)=Y mmmmp No privacy or oo - DP”
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Differential Privacy (DP) (Dwork et al. (2006))
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___________________________
Differential Privacy (DP) (Dwork et al. (2006))

“Privacy Loss”
* Apple: € = 2 (Health), 4 (Safari, Emoji), or 8 (QuickType)
= Uber, Google Chrome

Participant’s
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Example: Forced Randomized Response (FRR)
(Warner (1965))

Response Prompt: “Did you pay attention in lecture today?”

4 ™

FRR Algorithm, M(Y).
If spinner lands on :
1. ‘Red’ say ‘NO’,

2. ‘Green’ say ‘YES'

Bob’s True 3. ‘Blue’ answer honestly Bob’s Privatized

Response: Response:

Y="NO" Bob’s Spin: ¥ =ves”
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Example: Forced Randomized Response (FRR)
(Warner (1965))

Response Prompt: “Did you pay attention in lecture today?”

Bob’s True
Response:

Y = “NO”

/

FRR Algorithm, M{(Y).
If spinner lands on :
1. ‘Red’ say ‘NO’,
2. ‘Green’ say ‘YES’
3. ‘Blue’ answer honestly

\

/
N

Bob’s Spin:

%

Only Bob knows these.

Bob's Privatized
Response:

Y = “YEs”

Investigator knows only this.

Data privacy through plausible deniability
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Example: Forced Randomized Response (FRR)

(Warner (1965))

Response Prompt: “Did you pay attention in lecture today?”

Bob’s True
Response:

Y = “NO”

/

FRR Algorithm, M(Y).
If spinner lands on :
1. ‘Red’ say ‘NO’,
2. ‘Green’ say ‘YES'
3. ‘Blue’ answer honestly

Bob’s Spin: o

\

ayd
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€ is controlled by color
proportions on the spinner.
* Here, €=1.1

Bob’s Privatized
Response:

¥ = “ves”
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EVERYBODY LIES.

HoUSE
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Non-Adherence (i.e., Cheating) in FRR

Response Prompt: “Did you pay attention in lecture today?”

Bob’s True
Response:

Y = “NO”

/

FRR Algorithm, M (Y).
If spinner lands on :
1. ‘Red’ say ‘NO’,
2. ‘Green’ say ‘YES'
3. ‘Blue’ answer honestly

Bob’s Spin:

/

\
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Bob “cheats”!

Bob’s Privatized
Response:

7 = “NO”
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Detecting Proportion of Cheaters Via Sample Splitting
and Mixed FRR (Clark and Desharnais (1998))

‘N’ Participants

Subsample 1 Subsample 2

If no one cheats, we expect A% of "YES". If no one cheats, we expect B% of "YES".

o Expected difference in % of “YES”: A = A% — B%.
o If observed difference Ap # Ap, there are cheaters!
o Key point: Sample splitting + mixed FRRs (i.e., spinners)
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Our Proposal: Robust, Private RCT (RP-RCT)

Enroll individuals
Collect pre-treatment covariates, X

Random sample splitting, S

Privatize with FRR 1 Privatize with FRR 2
Random assignment of treatment, A Random assignment of treatment, A
Output to investigator: Output to investigator:
(¥,A,S, X). (Y, A5, X).
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Our Proposal: Robust, Private RCT (RP-RCT)

Enroll individuals

Collect pre-treatment covariates, X

Two additional steps
compared to an RCT.

Random sample splitting, S

Privatize with FRR 1

‘ Random assignment of treatment, A ‘

Privatize with FRR 2

H

‘ Random assignment of treatment, A ‘

Output to investigator:
(¥, A5, X).
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Output to investigator:
¥, A, S X).
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Our Proposal: Robust, Private RCT (RP-RCT)

Enroll individuals

Collect pre-treatment covariates, X To measure “cheating”.

Random sample splitting, S

Privatize with FRR 1

\T

‘ Random assignment of treatment, A ‘

Privatize with FRR 2

H

L‘

‘ Random assignment of treatment, A ‘

Output to investigator:
¥, A5 X).
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Output to investigator:
(¥, A S X).
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Our Proposal: Robust, Private RCT (RP-RCT)

Enroll individuals

Collect pre-treatment covariates, X

To enforce differential

privacy.

Q.

To enforce differential

Random sample splitting, S

Privatize with FRR 1

\T

privacy.
o

Privatize with FRR 2

‘ Random assignment of treatment, A ‘

\_l

H

‘ Random assignment of treatment, A ‘

Output to investigator:
(¥, A, S, X).
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Output to investigator:
(¥, A5, X).
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|
Properties of RP-RCT

Theorem: Identification of ATE

Let A be the proportion of non-cheaters in the study. Under RP-RCT
and 0 < Pr(X) <1, we can identify ATE among non-cheaters, i.e.,

ElY; | A =1] - E[Y; | 4; =0
A X Te

E[Y;(1) — Yi(0) | Non-Cheaters] =

)

where, A can be estimated from privatized data and r. is the amount of
privatization used.

v

@ All honest: RP-RCT identifies population ATE.

@ All cheaters: RP-RCT cannot identify ATE.

o Similar to LATE (Angrist, Imbens, and Rubin (1996)), we cannot identify
who is a non-cheater from the data.

@ Covariate-adjusted, doubly-robust estimation is possible.
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Properties of RP-RCT

Theorem: Differentially Privacy of RP-RCT.

For any treatment arm, the response Y; from RP-RCT is e—differentially
private.

e ¢ depends on two FRRs (i.e., spinners) in each subsample.
@ ¢, the acceptable privacy level, is chosen by investigator.
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-
Efficiency — Privacy Tradeoff for RP-RCT (vs RCT)

Relative Efficiency of Estimators for the ATE Between RP-RCT and RCT.
(No Cheating Case)

1.00

0.75

RP-RCT is less efficient.
Relative Efficiency
g

0.25

0.00

0 1 2 3 4 5
Privacy Loss, ¢

—

RP-RCT is more private.
RCTs Under Privacy
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Efficiency — Privacy Tradeoff for RP-RCT (vs RCT)

Relative Efficiency of Estimators for the ATE Between RP-RCT and RCT.
(No Cheating Case)
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RP-RCT is more private.
RCTs Under Privacy

21



N
Future Work

Extend RP-RCT to

@ Accommodate continuous but bounded responses to treatment
e Accommodate non-compliance
@ Observational studies where treatment is also private
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Thank you!

RCTs Under Privacy

23



Current State of Data Privacy in RCTs

Maximize Data
Privacy

Lock up
Data: share

only summary
stats

e-diversity
Machanavajjhala
etal. (2006)

Share aggregated or
anonymized data

K-anonymity
Samarati (2001)
Sweeney (2002)

Problem 1: Some existing
methods aren't private

*  Netflix users identified from
IMDB data (2008).
Sweeney identified 87% of US
population from “anonymized”
data (2000).

7

Run RCT &
share all data for
uture replication

Maximize Scientific Value

(i.e., Estimation, Hypothesis testing, Replication.)
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Current State of Data Privacy in RCTs

Maximize Data
Privacy

Lock up
Data: share
only summary
stats

e-diversity
Machanavajjhala
etal. (2006)

Share aggregated or
anonymized data

K-anonymity
Samarati (2001)
Sweeney (2002)

Problem 2: Precise tradeoff is
unclear

(Statistical Efficiency vs. Privacy Loss)

Run RCT &
share all data for
uture replication

la, H Ka

Maximize Scientific Value
(i.e., Estimation, Hypothesis testing, Replication.)
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Current State of Data Privacy in RCTs

Maximize Data
Privacy

Lock up
Data: share
only summary
stats

Our approac

“__(RP-RCT

Share aggregated or
anonymized data

g-diversity
Machanavajjhala
etal. (2006)

K-anonymity
Samarati (2001)
Sweeney (2002)

Run RCT &
share all data for
uture replication

Maximize Scientific Value
(i.e., Estimation, Hypothesis testing, Replication.)
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Efficiency — Privacy Tradeoff for RP-RCT

Relative Efficiency of Estimators for the ATE Between RP-RCT and RCT.
(No Cheating Case)
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RP-RCT is more private.
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