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Randomized Control Trials (RCTs) and Data Privacy

Randomized control trials
Gold standard to estimate average causal effects of a
treatment/intervention (ATE).
Carry an axiomatic assumption that individuals freely share their
response with the investigator.

But, what if the response is sensitive in nature?
E.g., voting behaviour, alcohol consumption, mental health related.
Such responses should (ideally) be privatized.

What if some responses (e.g., from online A/B tests) are protected
by law?

GDPR (2016): EU law for online data privacy.
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Can we estimate causal effects in an experiment WHILE protecting
individual’s data privacy, specifically their response to treatment?
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Our Proposal

Robust, Private Randomized Control Trial (RP-RCT):
1 Guarantees individual’s data privacy through Differential Privacy
2 Allows for estimation of causal effects
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Differential Privacy (DP) (Dwork et al. (2006))
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Differential Privacy (DP) (Dwork et al. (2006))
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Differential Privacy (DP) (Dwork et al. (2006))
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Example: Forced Randomized Response (FRR)
(Warner (1965))
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Example: Forced Randomized Response (FRR)
(Warner (1965))
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Non-Adherence (i.e., Cheating) in FRR
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Detecting Proportion of Cheaters Via Sample Splitting
and Mixed FRR (Clark and Desharnais (1998))

Expected difference in % of “YES”: ∆E = A%−B%.
If observed difference ∆O 6= ∆E , there are cheaters!
Key point: Sample splitting + mixed FRRs (i.e., spinners)
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Our Proposal: Robust, Private RCT (RP-RCT)
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Properties of RP-RCT

Theorem: Identification of ATE
Let λ be the proportion of non-cheaters in the study. Under RP-RCT
and 0 < Pr(λ) ≤ 1, we can identify ATE among non-cheaters, i.e.,

E[Yi(1)− Yi(0) | Non-Cheaters] = E[Ỹi | Ai = 1]− E[Ỹi | Ai = 0]
λ× rε

,

where, λ can be estimated from privatized data and rε is the amount of
privatization used.

All honest: RP-RCT identifies population ATE.
All cheaters: RP-RCT cannot identify ATE.
Similar to LATE (Angrist, Imbens, and Rubin (1996)), we cannot identify
who is a non-cheater from the data.
Covariate-adjusted, doubly-robust estimation is possible.
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Properties of RP-RCT

Theorem: Differentially Privacy of RP-RCT.
For any treatment arm, the response Ỹi from RP-RCT is ε−differentially
private.

ε depends on two FRRs (i.e., spinners) in each subsample.
ε, the acceptable privacy level, is chosen by investigator.
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Efficiency – Privacy Tradeoff for RP-RCT (vs RCT)
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Efficiency – Privacy Tradeoff for RP-RCT (vs RCT)
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Future Work

Extend RP-RCT to

Accommodate continuous but bounded responses to treatment
Accommodate non-compliance
Observational studies where treatment is also private
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Thank you!
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Current State of Data Privacy in RCTs
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Efficiency – Privacy Tradeoff for RP-RCT
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