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Motivation & research goals

Motivation

The Rubin Causal Model (RCM) allows to define the causal effect of a
treatment as a contrast of potential outcomes and develop methods for its
estimation under a previously discussed set of assumptions

In time series settings, identification and estimation of causal effects using
potential outcomes have been formalized in the context of randomized
experiments (Bojinov and Shephard; 2019; Rambachan and Shephard; 2019;
Bojinov et al.; 2020)

Methods exploiting logitudinal information abound in the literature, the most
popular being DiD (e.g., Card and Krueger (1993); Meyer et al. (1995)) and
synthetic controls (e.g,Abadie et al. (2010, 2015))

They usually require some control observations and often rely on functional
form assumptions for the trend (such as the parellel trend assumption for
DiD)

In the econometrics literature, intervention analysis (Box and Tiao; 1975,
1976) employs ARIMA models to assess the impact of shocks on time series,
but fails to define the causal estimands and to discuss the assumptions
enabling the attribution of the effect to the intervention
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Motivation & research goals

Research goals

Closing the gap between causal inference under the RCM and intervention
analysis, in this paper we propose a novel approach, C-ARIMA, to estimate the
causal effect of an intervention in observational time series settings under
the RCM.

The C-ARIMA approach has two pillars of equal importance:

1 A causal framework under the RCM, comprising: the assumptions allowing
the postulation of potential outcomes and related causal contrasts (causal
estimands); the assumptions for the identification and estimation of these
causal estimands

2 An inferential methodology based on ARIMA models that involves
predicting the outcome in the absence of intervention and contrasting it with
the observed outcome

C-ARIMA shares many features with “CausalImpact” (Brodersen et al.; 2015),
but it is based on ARIMA models and thus it can be used as an alternative by
those that are not familiar to (or are not willing to adopt) Bayesian inference.
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Causal framework

Assumptions

Let Wi,t ∈ {0, 1} be a random variable describing the treatment assignment of unit
i ∈ {1, . . . ,N} at time t ∈ {1, . . . ,T}, where 1 denotes that a “treatment” (or
“intervention”) has taken place and 0 denotes control. We maintain the following
assumptions:

(A1: Single persistent intervention)

∃t∗ ∈ {1, . . . ,T} s.t wi,t = 0 ∀t ≤ t∗ and ∀t > t∗,wi,t ∈ {(1, . . . , 1), (0, . . . , 0)}

(A2: Temporal no-interference)

For all i ∈ {1, . . . ,N}, Yi,t(w1:N,t∗+1:T ) = Yi,t(wi,t∗+1:T )
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Causal framework

Assumptions

(A3: Covariates-treatment independence)

Xi,t(wi,t∗+1:T ) = Xi,t(w′i,t∗+1:T ).

(A4: Non-anticipating individualistic treatment)

Pr(W1:N,t∗+1 = w1:N,t∗+1 |W1:N,1:t∗ ,Y1:N,1:T (w1:N,1:T ),X1:N,1:T ) =

=
N∏
i=1

Pr(Wi,t∗+1 = wi,t∗+1 |Yi,1:t∗(wi,1:t∗),Xi,1:t∗).

Above assumptions are essential to define, estimate and attribute the causal effect to the
intervention. Moreover, they allow us to ease notation: under Assumption 1, for all
t > t∗ we can write wi,t = wi and if Assumption 2 holds we can also drop the i
subscript. From now on, we can use Yt(w) to denote the potential outcome of a generic
unit at time t > t∗.
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Causal framework

Causal estimands

Definition

For the two treatment paths w,w′, the point causal effect at time t > t∗ is,

τt(w; w′) = Yt(w)− Yt(w′). (1)

The cumulative causal effect at time t > t∗ is

∆t(w; w′) =
t∑

s=t∗+1

τs(w; w′). (2)

The temporal average causal effect at time t > t∗
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C-ARIMA

C-ARIMA

let us assume {Yt(w)} evolving as

Yt(w) =
θq(L)

φp(L)
εt + τt1{w=1} (3)

where,

φp(L) and θq(L) are lag polynomials having roots all outside the unit circle

given this representation, the point causal effect at time t > t∗ is
τt ≡ Yt(w = 1)− Yt(w = 0)

τt = 0 ∀t ≤ t∗ and 1{w=1} is an indicator function which is one if w = 1

εt is white noise with mean 0 and variance σ2
ε

ΘQ(Ls), ΦP(Ls) are the lag polynomials of the seasonal part of the model
having roots all outside the unit circle

(1− Ls)D and (1− L)d are the differencing operators to ensure stationarity
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C-ARIMA

After some manipulation, Equation (3) becomes

St = zt + τt

where, St = T (Yt)− T (Xt)
′β and T (·) is the transformation of Yt needed to

achieve stationarity, i.e. T (Yt) = (1− Ls)D(1− L)dYt ; zt includes the stationary
part of the model, namely,

zt =
ΘQ(Ls)θq(L)

ΦP(Ls)φp(L)
εt

Denoting with H0 the situation where the intervention has no effect, namely,
τt = 0 for all t > t∗, the k-step ahead forecast of St under H0, conditionally on
the information up to time t∗ is

Ŝt∗+k = E [St∗+k |It∗ ,H0] = ẑt∗+k|t∗
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C-ARIMA

Inference

(Causal effect estimators)

For any integer k, let St∗+k(w) be the observed potential outcome time series and let
Ŝt∗+k(w′) be the corresponding estimate of the missing potential outcomes under model
(3). Then, estimators of the point, cumulative and temporal average effects are,
respectively,

τ̂t∗+k(w; w′) = St∗+k(w)− Ŝt∗+k(w′)

∆̂t∗+k(w; w′) =
k∑

h=1

τ̂t∗+h(w; w′)

ˆ̄τt∗+k(w; w′) =
1

k

k∑
h=1

τ̂t∗+h(w; w′) =
∆̂t∗+k(w; w′)

k
.
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C-ARIMA

Inference

Theorem

Let {Yt} follow the regression model with ARIMA errors defined in Equation (3). Under
the null hypothesis that the intervention has no effect, H0 : τt(w; w′) = 0 for all t > t∗,
the estimators of the point, cumulative and temporal average effects are distributed as
follows,

τ̂t∗+k(w; w′)|H0 ∼ N

[
0, σ2

ε

k−1∑
i=0

ψ2
i

]
(4)

∆̂t∗+k(w; w′)|H0 ∼ N

0, σ2
ε

k∑
h=1

(
k−h∑
i=0

ψi

)2
 (5)

ˆ̄τt∗+k(w; w′)|H0 ∼ N

0,
1

k2
σ2
ε

k∑
h=1

(
k−h∑
i=0

ψi

)2
 (6)

where, the ψi ’s are the coefficients of a moving average of order k − 1 whose values are
functions of the ARMA parameters in Equation (3).
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C-ARIMA

Summarizing, to estimate the effect of an intervention with C-ARIMA we need to
follow these steps:

1 estimate the ARIMA model only in the pre-intervention period, so as to learn
the dynamics of the dependent variable and the links with the covariates
without being influenced by the treatment

2 based on the process learned in the pre-intervention period, perform a
prediction step and obtain an estimate of the counterfactual outcome during
the post-intervention period

3 by comparing the observations with the corresponding forecasts at any time
point after the intervention, evaluate the resulting differences, which
represent the estimated point causal effects
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C-ARIMA

Comparison with REG-ARIMA

Fitting a linear regression with ARIMA errors (REG-ARIMA) is another widely
used approach to estimate the effect of an interventions on time series. In its
simplest formulation, such a model can be written as,

Yt = c + Dtβ0 + zt

zt =
θq(L)

φp(L)
εt

where,

zt is a stationary ARMA(p, q)

Dt is a dummy variable taking value 1 after the intervention and 0 otherwise
and β0 is its regression coefficient, which gives the size of the “effect”
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C-ARIMA

Comparison with REG-ARIMA

REG-ARIMA is a standard intervention analysis approach that is used when the
intervention is supposed to have produced a level shift on the outcome.

Two main differences between C-ARIMA and REG-ARIMA:

without a critical discussion of the assumptions, the effect grasped by β0

can not be attributed to the intervention

REG-ARIMA is fitted on the entire time series and thus it may require the
estimation of many models to learn the structure of the effect; C-ARIMA can
estimate any form of effect (level shift, slope change and irregular
time-varying effects) in only one step, since it assumes no structure on τt .

Fiammetta Menchetti† , Fabrizio Cipollini, Fabrizia Mealli 13 / 19



Empirical application

Empirical application

On October 4th, 2018, the Florence branch of a supermarket chain store
permanently lowered the price of 707 store brands in several product
categories

Among the 284 items in the “cookies” category, 11 store brands were
selected for a permanent price reduction ranging from −5.7% to −23.2%; for
each of them, the supermarket chain identified 11 direct competitors.

Figure: Store brands (first row) and direct competitor brands (second row).

Fiammetta Menchetti† , Fabrizio Cipollini, Fabrizia Mealli 14 / 19



Empirical application

Empirical application

On October 4th, 2018, the Florence branch of a supermarket chain store
permanently lowered the price of 707 store brands in several product
categories

Among the 284 items in the “cookies” category, 11 store brands were
selected for a permanent price reduction ranging from −5.7% to −23.2%; for
each of them, the supermarket chain identified 11 direct competitors.

Figure: Store brands (first row) and direct competitor brands (second row).

Fiammetta Menchetti† , Fabrizio Cipollini, Fabrizia Mealli 14 / 19



Empirical application

Empirical application

On October 4th, 2018, the Florence branch of a supermarket chain store
permanently lowered the price of 707 store brands in several product
categories

Among the 284 items in the “cookies” category, 11 store brands were
selected for a permanent price reduction ranging from −5.7% to −23.2%; for
each of them, the supermarket chain identified 11 direct competitors.

Figure: Store brands (first row) and direct competitor brands (second row).

Fiammetta Menchetti† , Fabrizio Cipollini, Fabrizia Mealli 14 / 19



Empirical application

Empirical application

We performed separate analyses on the two subgroups of store brands and
competitor brands under two different definitions of intervention: permanent
price discount (store brands) and relative price increase (competitors)

We considered each product to be treated and under Assumption 2 we
estimated 11 models for the store brands and 10 models for the competitor
brands

Analysis period: September 1, 2017, until April 30, 2019

Dependent variable: Daily sales counts (log scale)

Covariates: i) Day-of-the-week dummies; ii) holiday dummies; iii) unit price
(actual price for the competitor brands and, to respect Assumption 3, the
price prior to the intervention for the store brands)
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Results

Empirical application results

Figure: Causal effect estimates of the permanent price reduction on sales of store-brand cookies at three
different time horizons. In this table, ˆ̄τt is the estimated temporal average effect, while β̂0 is the coefficient
estimate of the intervention dummy of REG-ARIMA.
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Results

Discussion and further developments

We proposed a novel approach, C-ARIMA, to estimate the effect of
interventions in a time series setting under the RCM

We believe that C-ARIMA can successfully be used as the frequentist
alternative to CausalImpact to estimate the effect of interventions on a single
time series and on multiple non-interfering series, meanwhile providing several
improvements over the standard intervention analysis approach

However, when used in our empirical context, this approach suffers from
some limitations as we are not able to control for possible interactions
beyond those stemming from price. Considering a setting where each
store-competitor pair is modeled jointly might overcome this limitation, as
discussed in (Menchetti and Bojinov; 2020).
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