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CRTs with interference and noncompliance

In many CRTs of infectious diseases, both interference and noncompliance are present (Miguel and Kremer

(2004), Cowling et al. (2009) (Hong Kong), Devoto et al. (2012), Duflo et al. (2015)).

Example: 2009 Hong Kong Influenza Study

� Goal: the effect of using face masks and hand sanitizer on the secondary attack rate of influenza.

� Households with one infected individual were recruited. Each household was randomly assigned to

receive, among other things, free face masks (i.e. treated) or none (i.e. control)

� Some individuals in treated households did not use face masks (i.e. noncompliance).

� Interference is present mainly among household members (i.e. partial interference) because using face

masks likely prevents spread of influenza to others.

Today’s Talk: Do individuals not using face masks and hand sanitizer (i.e. never-takers) benefit from peers’

using them (i.e. spillover effect among NTs)?
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Spillover Effect Among Never-Takers τNT

Graphical illustration of τNT: Consider a household having 5 members:

If Y x1y
� Y x0y, peers using face masks do not benefit a NT

If Y x1y
¡ Y x0y, peers using face masks do benefit a NT

ñ τNT ¡ 0

τNT is not point-identifiable (Kang and Keele, 2018) unless strong assumptions and/or particular

experimental designs are used (Jo and Stuart, 2009; Kilpatrick et al., 2020).

Our “Assumption-Lean” Approach: Make only “standard” assumptions in CRTs and obtain sharp bound

of network effects using machine learning (ML) and linear programming (LP).

Chan Park Analysis of CRTs for Network Effects (arXiv: 2012.13885) EuroCIM2021 2 / 8



Spillover Effect Among Never-Takers τNT

Graphical illustration of τNT: Consider a household having 5 members:

If Y x1y
� Y x0y, peers using face masks do not benefit a NT

If Y x1y
¡ Y x0y, peers using face masks do benefit a NT

ñ τNT ¡ 0

τNT is not point-identifiable (Kang and Keele, 2018) unless strong assumptions and/or particular

experimental designs are used (Jo and Stuart, 2009; Kilpatrick et al., 2020).

Our “Assumption-Lean” Approach: Make only “standard” assumptions in CRTs and obtain sharp bound

of network effects using machine learning (ML) and linear programming (LP).

Chan Park Analysis of CRTs for Network Effects (arXiv: 2012.13885) EuroCIM2021 2 / 8



Spillover Effect Among Never-Takers τNT

Graphical illustration of τNT: Consider a household having 5 members:

If Y x1y
� Y x0y, peers using face masks do not benefit a NT

If Y x1y
¡ Y x0y, peers using face masks do benefit a NT

ñ τNT ¡ 0

τNT is not point-identifiable (Kang and Keele, 2018) unless strong assumptions and/or particular

experimental designs are used (Jo and Stuart, 2009; Kilpatrick et al., 2020).

Our “Assumption-Lean” Approach: Make only “standard” assumptions in CRTs and obtain sharp bound

of network effects using machine learning (ML) and linear programming (LP).

Chan Park Analysis of CRTs for Network Effects (arXiv: 2012.13885) EuroCIM2021 2 / 8



Spillover Effect Among Never-Takers τNT

Graphical illustration of τNT: Consider a household having 5 members:

If Y x1y
� Y x0y, peers using face masks do not benefit a NT

If Y x1y
¡ Y x0y, peers using face masks do benefit a NT ñ τNT ¡ 0

τNT is not point-identifiable (Kang and Keele, 2018) unless strong assumptions and/or particular

experimental designs are used (Jo and Stuart, 2009; Kilpatrick et al., 2020).

Our “Assumption-Lean” Approach: Make only “standard” assumptions in CRTs and obtain sharp bound

of network effects using machine learning (ML) and linear programming (LP).

Chan Park Analysis of CRTs for Network Effects (arXiv: 2012.13885) EuroCIM2021 2 / 8



Spillover Effect Among Never-Takers τNT

Graphical illustration of τNT: Consider a household having 5 members:

If Y x1y
� Y x0y, peers using face masks do not benefit a NT

If Y x1y
¡ Y x0y, peers using face masks do benefit a NT ñ τNT ¡ 0

τNT is not point-identifiable (Kang and Keele, 2018) unless strong assumptions and/or particular

experimental designs are used (Jo and Stuart, 2009; Kilpatrick et al., 2020).

Our “Assumption-Lean” Approach: Make only “standard” assumptions in CRTs and obtain sharp bound

of network effects using machine learning (ML) and linear programming (LP).

Chan Park Analysis of CRTs for Network Effects (arXiv: 2012.13885) EuroCIM2021 2 / 8



Spillover Effect Among Never-Takers τNT

Graphical illustration of τNT: Consider a household having 5 members:

If Y x1y
� Y x0y, peers using face masks do not benefit a NT

If Y x1y
¡ Y x0y, peers using face masks do benefit a NT ñ τNT ¡ 0

τNT is not point-identifiable (Kang and Keele, 2018) unless strong assumptions and/or particular

experimental designs are used (Jo and Stuart, 2009; Kilpatrick et al., 2020).

Our “Assumption-Lean” Approach: Make only “standard” assumptions in CRTs and obtain sharp bound

of network effects using machine learning (ML) and linear programming (LP).

Chan Park Analysis of CRTs for Network Effects (arXiv: 2012.13885) EuroCIM2021 2 / 8



Our Procedure

Step 1: Construct (potentially imperfect) classifier for each compliance type (e.g. NT/AT/CO) using

machine learning (ML).

� Classifiers are based on constrained empirical risk minimization.

� Any classifiers works (even random classifiers), but good classifiers shorten bounds.

Step 2: Use classifiers from Step 1 + Assumptions from CRT’s design to construct bounds for τNT.

� The bounds are based on using linear programming (LP).

� The restrictions in LP are from
�
� Population quantities � Classifier-based quantities

�
� ¤ Mis-classification rate.

� Our approach is similar (in spirit) to Balke and Pearl (1997)’s LP bounds in IV settings, but our approach (i)

targets subgroup network effects and (ii) uses covariates adjusted via ML to further sharpen bounds.
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Key Properties of Our Method

Property 1: Regardless of quality of classifiers, our bounds will always cover τNT.

Property 2: Given classifiers, our bounds are sharp

(i.e. the narrowest possible given these particular classifiers).

Property 3: If the classifier has a lower mis-classification rate, our bounds are narrower.

If the classifier has zero mis-classification rate (i.e. perfect classifier),

our bounds shrink to a point τNT.

Property 4: Under some mild conditions on classifiers (e.g. smoothness of loss function),

our bounds can be consistently estimated.

For inference, we use resampling approaches of Efron and Tibshirani (1993) and Romano and Shaikh

(2010), modified for cluster-level resampling.
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Application: Hong Kong Study

We construct classifiers by using 13 pre-treatment covariates (e.g. age, gender, household size, vaccination

history).

We compare classifier-based bounds to non-ML bounds based on Grilli and Mealli (2008) and Long and

Hudgens (2013) adapted to network settings (see paper for details).

Estimand Statistics
ML (classifier-based) Bound

Non-ML Bound Intersection Bound
Linear Penalized Logistic

τNT

Bound r0.000, 0.173s r0.000, 0.173s r0.054, 0.254s r0.054, 0.173s

95% CI r0.000, 0.374s r0.000, 0.375s r0.000, 0.395s r0.000, 0.374s

τCO

Bound r0.000, 0.146s r0.000, 0.146s r0.000, 0.186s r0.000, 0.146s

95% CI r0.000, 0.299s r0.000, 0.288s r0.000, 0.297s r0.000, 0.288s

Classifier-based bounds of τNT and τCO are 13.5% and 21.5% narrower than non-ML bounds.

In paper, we show how to further sharpen bounds by combining ML-based and non-ML based bounds by

intersection.

There is no significant network effect at α � 0.05 level.
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Classifier-based bounds of τNT and τCO are 13.5% and 21.5% narrower than non-ML bounds.

In paper, we show how to further sharpen bounds by combining ML-based and non-ML based bounds by

intersection.

There is no significant network effect at α � 0.05 level.
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Conclusion and Key Takeaways

In CRTs with interference and noncompliance, network effects may exist and are generally not

point-identified.

We obtain sharp bounds of network effects using machine learning (ML) and linear programming (LP).

� The classifiers do not have to be perfect, but more accurate classifiers lead to shorter bounds.

� Given classifiers, our bounds are the sharpest possible.

Our ML-based approach to obtaining sharp bounds for treatment effects may be applicable to other IV

settings.

Thank you! Check the paper (arXiv: 2012.13885) for details.
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