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1. Abstract
This study explores 25,000 posts taken from the right-wing and conservative social media site,
Parler, during the US Capitol Riots of January 6" 2021. Emerging from the theoretical tradition
of Dialogism, this research asks what semantic strategies of resistance are used to defend
against the disruption of the other? Parler is theorised as a ‘monological’ communicative
context, with an absent critical other. This research uses a triangulation of methods,
employing Natural Language Processing (NLP) alongside qualitative research. Firstly, a
dictionary analysis using moral words finds a dichotomization where the in-group is
characterised as on the side of God and American revolutionary history, whereas the other is
represented as evil and cheating. Secondly, an algorithmic form of computerised content
analysis, called topic modelling, is constructed to find the main topics of discourse. Finally, a
dialogical analysis of 10 topics is used to qualitatively understand the semantic barriers
(Gillespie, 2020a, 2020b) used to resist the perspective of others. These were predominantly
tactics of avoiding and delegitimising, including (but not limited to) deflecting, distracting,
stereotyping and stigmatising. It is argued that combining NLP with qualitative research is
fruitful for analysing semantic barriers in large data sets. It is recommended that future
research pay attention to the relationship between defensive strategies and the mechanisms

of social representations, as well as specific thinking styles.

2. Introduction

On January 6™ 2021, at a peak of significant tensions within US politics and culture, a mass of
right-wing Republicans stormed the Capitol Hill building in an attempted coup (Bauder, 2021),
to resist and reverse the 2020 election result. The rioting lead to numerous injuries and five
deaths (Evelyn, 2021). Simultaneously, users on the right-wing dominated, ‘free speech’ social
media site, Parler, were inciting violence and mobilising participation (Nicas & Alba, 2021).

Consequently, Parler has been described as a ‘preparatory medium’ (Munn, 2021), in the way



it was used to frame events, identify audiences, set agendas, and enforce the discourse

towards a certain goal (Baines et al., 2021).

Because of the evidently problematic nature of isolated, extreme right-wing discourse, it is
important to understand the social-psychological factors underneath the proliferation of such
views online. Therefore, following Societal Psychology (Himmelweit & Gaskell, 1990), this
research aims to play a small part in contributing to the knowledge of social change through

the examination of a real world context (Howarth et al., 2013).

To achieve this goal, this paper adopts the tradition of Dialogism, that claims interaction and
context are key to human communication and cognition (Linell, 2003), and focuses on the
internal conflict between self and other that makes the human mind a fundamentally social
entity (Markova, 2003). This conflict is seen to give way to the use of defensive mechanisms
to resist the disruptive perspective of the other. These mechanisms appear in individual’s use
of language, and are therefore known as semantic barriers (Gillespie, 2020a, 2020b). Because
social identities depend upon socially shared common knowledge (Markova, 2007), defensive
mechanisms themselves are tools shared among members of social groups (Gillespie, 2020a;

Gillespie & Zittoun, 2010), and therefore may be studied at the group level.

From this theoretical perspective, it is asked, how are self and other represented in opposition
to one another by Parler users? And what defensive tactics are used to dismiss the other? In
focusing on a unique case of a right-wing social milieu, and therefore a communicative context
lacking a critical other, this research seeks to expand the Dialogism tradition and add to the

literature on rhetorical strategies of defence.

3. Literature review

This section elaborates on the tradition of Dialogism in psychology and is explained as the

theoretical background to semantic barriers, then it is argued that Parler is ‘monological’.



Research questions are stated, and it is further argued that studying defensive strategies in
such a context explores a gap in the literature. Finally, a justification is given for the

combination of methods used.

3.1 Dialogism - a society of mind
Dialogism is a socio-psychological and epistemological framework that stresses interaction
and context to be fundamental to human communication and cognition (Linell, 2003). Mikhail
Bakhtin crystallised an existing Hegelian conception of mind that saw the self to be
determined by an internal clash of self and other by introducing a semantic focus, and
contending that the human experience is “living in a world of other’s words” (Bakhtin, 1986,
p.143). For Bakhtin, the mind is orientated to this world of words throughout life, and this
orientation defines the nature of consciousness itself (Bakhtin, 1986). The role of the self-
other relationship in cognition is mirrored in the work of Vygotsky. Here human development
is understood as a process of learning the words of others from the earliest stages of
cognition, where the words themselves are culturally dependant tools of mediation (L. S.
Vygotsky, 1978). Vygotsky succinctly asserts that, “the mechanism of knowing oneself (self-
awareness) and the mechanism for knowing others are one and the same” (Vygotsky, 1979,

p.29).

A necessary outcome of the fundamentally social nature of the human mind is
‘intersubjectivity’, that is, the variety of relations between perspectives (Gillespie & Cornish,
2010). Such a conception employs a notion of multiplicity within the mind, as it is perpetually
engaged with a variety of interlocuters (Glaveanu, 2019), and therefore ‘dialogical’ in the way
that all symbolic activity is founded on dialogue “between different minds expressing a
multitude of multivoiced meanings” (Markova, 2003, p.257). Because dialogism understands
there to be a necessary extension of the self outwards towards one’s socio-cultural

environment, the perspectives of others enter the mind and form positions in disagreement



with the ego (Hermans, 2001, 2007). This is conceptualised in lvana Markova’s ego/alter
distinction, where the alter — or other self — is co-dependent with the ego and manifested

dialogically to give way to the self (Markova, 2006; Markova, 2003).

Importantly, dialogical tensions within the individual can be multifaceted because of the many
I-positions a given individual can adopt (Hermans, 2007) and the many others that the self
may define itself in opposition to (Aveling et al., 2015). Both identities assigned to the self and
voices given to others can take perspectives attributed to social groups, communities and
institutions (Aveling et al., 2015). Ego/alter conflict, ‘alterity’ (Markova, 2003), can therefore
reflect social conflict. Fundamentally, it is the communicative intrusion of others into the self-
space and the positions the self takes in opposition to those others (Markova, 2003) that

defines the mind as a social entity, constituted by dialogical tension and conflict.

3.2 A note on social representations
Because of the stated relationship between dialogical tension and perspectives attributed to
generalised others, there is a clear link to social knowledge. Firstly, perspectives attributed to
others form an aspect of socially shared knowledge (Gillespie, 2008), and secondly, dialogical
tension contributes to the social construction of knowledge itself (Gillespie & Cornish, 2010).
As Markova states, knowledge is dynamic because of its social co-construction, and individuals
within a culture are themselves in a “constant process of becoming” (Markova, 2000, p.435).
It is worth acknowledging Social Representation Theory (SRT) (Moscovici, 1988, 2000) to bring
all this into a theoretical understanding of social knowledge. According to SRT, social
representations are a form of shared common knowledge that serve as structures of meaning-
making and frameworks for people to guide themselves in the world. They facilitate the
understanding of one’s social environment (Moscovici, 1981). An important sub type of social
representations are ‘alternative representations’ (Gillespie, 2008). These are representations

of the other’s ideas, and are ‘alter’ in the sense of being attributed to other people (Gillespie,



2008). While they allow for communication by giving a perspective to the other, they also
maintain distance by reducing the voice of the other to a stereotype. When a social
representation exists in ideological opposition to another, the alternative representation
exists to mischaracterise and straw-man the other’s views (Gillespie, 2008). This itself is a form

of defensive strategy designed to block the disruptive other.

3.3 Semantic barriers as strategies of resistance

First outlined by Moscovici (2008), and developed further by Gillespie (Gillespie, 2008, 2020b),
semantic barriers are tactics used to prevent dialogical engagement with the other and
alternative representations (Gillespie, 2008). They maintain a distance between the self and
the other, and “protect the self’s universe of meaning from being destabilized” (Gillespie,

2020b).

Semantic barriers occur as an outcome of semantic contact — that is, the “juxtaposition of the
views of self with the views of other within a self’s stream of thought, talk or text” (Gillespie,
2020, p.22). While the clashing of ideas through semantic contact is necessary for learning it
can also be fundamentally threatening and disruptive (Gillespie, 2020a, 2020b). Semantic
barriers from a layered defensive system, likened by Gillespie to the biological immune system
(Gillespie, 2020a). While there are many kinds of defensive tactics available to the semantic
immune system (see Gillespie, 2008, 2020a, 2020b; Sammut et al., 2014), they can be grouped

into three ordered layers of defence (Gillespie, 2020b).

The first is avoiding (Gillespie, 2020a, 2020b), where the self prevents engagement with the
other’s disruptive voice. Avoiding tactics are characterised by increasing the distance from the
other. A basic form of avoiding is simply excluding the other from debate, but avoiding may
also take the form of denying the other a voice by disagreeing without reason and proper
engagement, or distracting attention away by overemphasising positive qualities of the self

(Cramer, 2014) or raising issues to move the conversation elsewhere. Equally, avoiding may



involve deflecting responsibility to specified others, especially by placing blame on them

(Baumeister et al., 1998).

Next is delegitimizing. Here, the other’s voice is invalidated by targeting the source
themselves. Fundamentally, delegitimization is about reducing credibility, often by
stereotyping the other into existing representations of devalued groups (Kadianaki &
Andreouli, 2017). This may occur by claiming the out-group is ignorant (Sammut & Sartawi,
2012), or dehumanizing them (Haslam & Loughnan, 2014). Relatedly, stigmatizing involves
devaluing anyone who voices a disruptive meaning, often via ridicule (Houston & Kramarae,

1991). Distrusting, on the other hand, attributes ulterior motives to the other.

The final layer, limiting, is where the voice of the other is acknowledged, but the extent of the
impact is reduced, often through debate or actual interaction (Gillespie, 2020a). An important
limiting tactic is dichotomizing (Moscovici, 2008), such as creating an ‘us/them, trust/distrust’
binary (Avraamidou & Psaltis, 2019). Additionally, limiting can involve rationalising away the
disruptive meaning, and often takes the form of placing it in a broader context to reduce its

impact (Conlon & Murray, 1996).

Importantly, defensive mechanisms themselves are shared tools proliferated among
members of social groups (Gillespie, 2020a; Gillespie & Zittoun, 2010). Because the
construction of social identities depends on shared common knowledge (Markova, 2007), it
can be argued that these defensive mechanisms contribute to the ongoing social co-
construction of identity within the self-other-object triangle. Because of this, it is important

to note that semantic barriers relate to the social construction of identities.

3.4 Audience — Parler as monological

The other has a second role, beyond providing disruption; that is, as audience (Gillespie,

2020a). As a threat, the presence of an audience who can call out use of defensive tactics



(Gillespie, 2020a; Grenier et al., 2012) encourages the self to use stealth to avoid detection
(Gillespie, 2020a). But, in the case of isolated Parler users participating in a right-wing online
forum, who is the audience and who is the other? It is argued that the audience in this case is
not the ‘other’ in the sense of outgroups, because this homogenous group are talking among
themselves, within their group. The outgroup others - Democrats, BLM, Antifa etc. — named
here as ‘ideological others’, are not directly present and therefore not demanding subtlety

from those speaking.

A distinction can be made between two kinds of communicative contexts. There are those
that are open to dialogical interaction with the other, leading to positive creativity and
learning, and those that are more ‘monological’, in the sense that they aim more towards a
one way flow of information (Markova, 2008), which is uncritically challenged and encourages
so called ‘groupthink’ (de Saint Laurent et al., 2020; Janis, 1982). This latter form is strongly
reminiscent of Markova’s theorising of ‘propaganda’, that is “part of the ideological [...]
programmes of institutions or organizations” with the goal “to transform the heterogeneous

thoughts of individuals into those of a homogeneous collective mind” (Markova, 2008, p.41).

The institutional nature of propaganda-like communication is worth stressing here, as it is well
known that text and talk are situated in and partly determined by their institutional contexts
(Gillespie & Cornish, 2010; Markku Haakana et al., 2016; Heritage, 2005). Given that an
institution is an organisation or collective entity that that impresses regularities of certain
collective experiences upon its inhabitants (Elcheroth et al., 2011), it is sensible to construe
specific examples of mass and social media as institutions (Silverblatt, 2004; van Dijck & Poell,

2013), and the talk therein as institutionalised talk.

Two things relate this to Parler. Firstly, users flocked to the site out of a dissatisfaction with
content moderation and governance on mainstream sites and Parler’s comparatively minute

community guidelines (Otala et al., 2021). Secondly, because of the conservative pre-



occupation with free speech and because several major conservative figures endorsed the
platform (Baines et al., 2021), the userbase was populated by an overwhelming proportion of
conservative and right-wing users (Hitkul et al., 2021). In light of this and the above theoretical
outlay, it is contended that Parler is a ‘monological’ discursive institution lacking a critical
other. Arguably, these dynamics have contributed to the proliferation of unsubstantiated,

conspiracy-like discourse on Parler (Baines et al., 2021; Pieroni et al., 2021).

3.5 Literature gap and research questions

A survey of the literature on semantic barriers from the Dialogism perspective finds the
majority of research to concern cases where a critical other is much more immediately present
than in this case, though Castro & Santos (2020) offer an interesting alternative. Examples of
this include literature on crossing cultural borders (Gillespie et al., 2012), employing vulgar
language in conversation (Sammut et al., 2014), analysing representations of intercultural
conflict in newspapers (Avraamidou & Psaltis, 2019) or intercultural conflict more broadly
(Kadianaki & Andreouli, 2017; Nicholson, 2016). Similar research tends to concern
comparative analysis of representations of certain concepts commonly held across different
groups, such as meat-eating among meat eaters and vegetarians (Panagiotou & Kadianaki,
2019), rather than focusing semantic barriers used by one group in a ‘monological’ space at a
particular time. Furthermore, by considering a drastically non-transformative example of
social communication, this research departs from literature concerned with dialogue in the
positive sense of social possibility (Glaveanu, 2020) and transformation (Cooper et al., 2013),

to examine how it operates in the reverse direction.

Finally, there is little research on social media emanating from the dialogical tradition, with
some notable exceptions focusing on the creative potential of the online space (de Saint

Laurent et al., 2020; Glaveanu & de Saint Laurent, 2021). However, by looking at this unique
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context, this research seeks to make a contribution to the literature around online ideological

discourse from within this tradition.

With these literature gaps in mind, and emerging from the preceding theoretical outlay, the

research questions ask:

In the context of ‘monological’ Parler discourse on January 6 2021,

RQ 1: What defensive strategies were used to dismiss the other?

Sub RQ: How were self and other represented in opposition to one another?

3.6 Methodological considerations

Because this research is interested in linguistic, textual expressions that emerge from the
online everyday construction of shared reality, this is befitting of a qualitative analysis (Flick
et al., 2004). However, this analysis deals with a sample (n=25,000) large enough to go beyond
what is possible for manual qualitative methods. As such, quantitative-in-nature, NLP
methods are used in combination with traditional qualitative research. NLP refers to a range
of computational methods used for analysing naturally occurring unstructured texts to
achieve human-like processing (Liddy, 2001), and is used here to find large scale, generalised
insights within the corpus to make way for qualitative work that provides ‘thick’ descriptions
(Flick et al., 2004). However, it is important to note that the NLP methods used here, although
guantitative based, result in qualitative findings, i.e. linguistic expressions of meaning. As
such, this research employs a triangulation of methods (Denzin, 2017; Flick, 2018a) as a way
of converging upon the same kind of phenomena (Flick, 2018b). The methods used are: an
NLP dictionary analysis, leading to a qualitative interpretation of moral expressions; an NLP
‘topic model’ to probabilistically derive topics of discussion, and a qualitative dialogical

analysis to examine defensive mechanisms in more detail.
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The majority of research from the dialogism tradition is purely qualitative (Gillespie & Cornish,
2014), because methods seeking to discover definitive findings and not the unfinished nature
of meaning are argued as inappropriate for this kind of research (Gillespie & Cornish, 2014;
Grossen, 2010; Jackson & Mazzei, 2011). However, because NLP here is designed to lead to
qualitative findings about meaning, this research aims to add to the methodological
framework of Dialogism, while gently trying to bridge the quantitative/qualitative divide
(McKim, 2017; Shah & Corley, 2006). With criticisms of big data research as less reliable and
providing more spurious results than qualitative counterparts (Crowston et al., 2012; Shahin,
2016), and criticisms of purely qualitative research as open to researcher bias and lacking
reproducibility (Mays & Pope, 1995), this combined methodology hopes to defend against
these issues, and increase the validity of the overall study (Hurmerinta-Peltomaki & Nummela,

2006).

NLP and qualitative methods have been used fruitfully together for social media analysis, for
example in examining expressions of grief (Patton et al., 2018), the use of memes (Glaveanu
& de Saint Laurent, 2021), malevolent creativity (de Saint Laurent et al., 2020), and
communication of health issues (Osadchiy et al., 2020). This paper hopes to complement NLP,

mixed-methods research.

Finally, returning to Markova, it is argued that the interactions between self and other form a
unique relation in each time and context. As such, dialogical research should be
conceptualised in terms of single case studies (Markova, 2017b). Although restricted in terms
of generalisability, it is argued that dialogical case studies, like this, can lead to ‘theoretical’
generalisability by looking for “complex and productive data that allow the examination of

relevant theories and concepts” (Markova, 2017a, p.42).
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4. Data and ethics

4.1 Data collection

A large number of files (n = 1,747,451 million) were downloaded from the Distributed Denial
of Secrets! website. The files contained posts and comments made on Parler during the
Capitol Riots, and which were later scraped by an anonymous member of the organisation. A
python script (appendix 11.1) was then used to randomly sample 100,000 files for initial
testing. Regular expressions (Friedl, 2006) in conjunction with Text Crawler software were
used to extract the relevant data to a CSV. This analysis is only concerned with the text portion
of each post/comment, as factors behind post rank and likes are unknown. From the outset
this gives equal weight and voice to each text. To preserve anonymity, usernames/handles
were not extracted, rather an integer ID column was later created to allow for identification.
Again, using regular expressions, html was erased and subsequent empty rows and duplicates
removed. After extensive testing of the NLP methods, the final sample size of 25,000 texts was
determined because of limitations on computer hardware (this is detailed below). Finally, the

data was imported into the statistical programming environment, R, for analysis.

4.2 Ethics

Ethics approval was obtained by the LSE Research and Ethics committee, and a Data
Management Plan was created (appendix 11.2). There are three main ethical issues: the data
source, consent, and confidentiality. Firstly, although DDOsecrets is a whistle-blower platform
like Wikileaks, this dataset was not hacked, but scraped while it was publicly accessible. This
is a common practice for academic social science research (see Aliapoulios et al., 2021 for a
large example). Relating to the second and third issue together, which are both standard
issues with social media research (Moreno et al., 2013), it is not possible to obtain informed

consent from the users or ‘participants’, specifically because this is a large, secondary data

! www.ddosecrets.com
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set. Because of this, anonymisation is key, and therefore usernames and identifiable
information are manually removed from outputs and code sheets. The justification for this
research is that it provides a unique opportunity to understand the mechanics of problematic,

right-wing discourse. R code is provided for the purposes of replicability.

5. Study 1 - Dictionary analysis

5.1 Methods

All NLP methods used were carried out using the software R and R Studio, and the statistical
programming language, also called R (lhaka & Gentleman, 1996). R is widely used in the social
sciences because of its flexibility and ease of use for custom functions (R. Kennedy &

Waggoner, 2021), and is well suited to NLP techniques (Silge & Robinson, 2017).

5.1.1 Pre-processing

Firstly, the collection of texts hereafter referred to as the ‘corpus’ is cleaned. This involves
several steps, including removing the most common English words (called stop-words),
removing punctuation, and lemmatizing words to reduce them to their root form, for
example, ‘walked’ and ‘walking” will become ‘walk’. Next, the corpus is transformed into a
document-term matrix (DTM), which is a way of mathematically representing the relationship
between the frequency of terms and the documents containing them. Consider a (fictional)

example:

D1: patriots for trump

D2: trump for president
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for | patriots | president | trump

D1 |1 1 0 1

D2 |1 0 1 1

Because this approach reduces sentences to their tokenized elements, and word order is not
preserved, this is known as the ‘bag-of-words’ approach (Radovanovic & Ivanovic, 2008).
Importantly, the DTM can be used to track words appearing more frequently alongside others,
and therefore calculate associations. With a corpus containing a large number of documents
and terms, such a matrix can be extremely large. Here the data was limited by the computer’s

RAM space, thus determining the sample size for this study (n = 25,000).

Finally, the matrix is converted to a ‘tidy text’ format (Silge & Robinson, 2017), where each
token is a row in a table (Wickham, 2014). This is allows for simple data manipulation and for

compatibility with several R packages.

5.1.2 Rationale

This method aims to answer the research questions by using a well-researched predefined
lexicon of moral words to understand, on a broad level across the corpus, how moral rhetoric
is used to represent self and other. Moral words are quantified, placed into context by
statistical association with other words, and then trends are qualitatively derived by looking

at individual texts.

Psychology has seen widespread use of lexicon based approaches, thanks to the development
of the Linguistic Inquiry and Word Count (LIWC) (Pennebaker et al.,, 2007). For example,
lexicons have been used in conjunction with LIWC to measure psychological change over time
by analysing diaries (Cohn et al., 2004), the association between personality types and word

use (Hirsh & Peterson, 2009), and the relationship between social-media discourse and policy
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adoption (Zhang & Counts, 2015). Lexicon approaches categorise lists of words and then
quantify them within the corpus or individual documents. A popular example is sentiment
analysis (Liu, 2012), where lexicons containing positive and negative categories are used to
score polarity. Such lexicons are rigorously researched, and often used in a specific context,
like the AFINN lexicon for social media (Nielsen, 2011) or the Bing lexicon for opinion in

relation to financial markets (Loughran & McDonald, 2020).

The Moral Foundations dictionary developed out of Haidt and Graham’s Moral Foundations
Theory (MFT) (Graham et al., 2013) that claims there are five moral foundations: Sanctity,
loyalty, authority, care and fairness. This research is not concerned with testing the details of
Moral Foundations Theory (MFT) per se, but it is worth noting two findings from MFT. Firstly,
moral rhetoric is used to bolster one’s position on a given issue by making noticeable moral
concerns (Sagi & Dehghani, 2014), meaning moral rhetoric can be expected in this corpus.
Secondly, compared to liberals, conservatives endorse the three binding foundations;
sanctity, loyalty and authority (Graham et al., 2009), meaning that we can also expect moral
rhetoric from these categories here. An interest in the categories will therefore be retained.
Notably, previous research has concerned moral rhetoric in ‘culture war’ issues (Koleva et al.,

2012).

This analysis uses the Moral Foundations Dictionary 2.0 (MFD2) (Frimer et al., 2019) (appendix
11.3), consisting of a larger amount of words (n=2103 vs n=295) and shown to have greater
construct validity than the original. Words are categorised by foundation and ‘vice’ or ‘virtue’
dimension. This lexicon has been adopted in a range of recent research (see for example,

Frimer, 2020; B. Kennedy et al., 2021; Roose et al., 2020).

5.1.3 Process

The dictionary is altered to remove common words which may skew the results, for example

‘president’ and ‘police’. Following tidy text mining principles (Silge & Robinson, 2017),
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frequencies of moral words are obtained by comparing them against the tidy table of
tokenized words from the corpus by using an ‘inner_join()’ function to keep only the words
present in the dictionary and then counting them. To bring these words into context, tm
package’s ‘findAssocs()’ function (Feinerer, 2013) is applied to the most frequent and relevant
moral words in the DTM. This calculates a Pearson’s correlation to find words in the corpus
most correlated with the given word. Relevant associated words are qualitatively determined
and investigated on the document level in terms of their moral category by using LIWC

software (Pennebaker et al., 2007) in combination with R.

LIWC simply works by calculating a percentage of words within a text belonging to a category.

However, the advice of Will et al (2011), the empirical logit is used for scaling vice/virtue:

l Virtue + 0.5
°9Vice+ 05

This is because considering proportional changes on a symmetrical scale (rather than absolute
guantities) better accounts for the way texts are naturally interpreted by readers (Will et al.,
2011). This adjustment is made in R to the LIWC output of texts containing the given words,
before it is sorted by foundation score and a sample of each (n = 200) is qualitatively examined
to understand how the words are used. Sorting by foundation score provides a good way of
organising texts where there may be a substantial number containing words under analysis.
Using the moral foundation categories aids in the final step of qualitatively drawing together
moral themes. This process is partially analogous to Thematic Analysis (Attride-Stirling, 2001)
insofar as statistically associated words form something akin to basic codes from which

themes are interpreted.
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5.2 Results

The total frequency of moral words was 23,350. The results show that the loyalty and sanctity
binding foundations are prominent (23.4% and 23.9% of total moral words respectively),
however care (21%) is used more than authority (16%) (a binding foundation). This is because
words in the care category are describing the most salient issue of ongoing violence at the
Capitol. The very popular in-group designator, ‘patriot’, accounts for the dominance of the

loyalty/virtue dimension (see appendices 11.6)

To derive general moral trends, only the most frequent words and correlations are analysed.
Moreover, not all moral words and correlated words were relevant. For example ‘arrest’ was
mostly correlated with words found in news articles about Hong Kong. The most relevant
terms are included in table 1. Four themes emerge: patriotism/war, treason/fraud, divinity

and violence.

Patriotism and war

Within loyalty-virtue, we can see the overwhelming use of the term ‘patriot’. Plotting the
correlations shows the word to be associated with other pro-conservative terms, particularly
‘maga’ and ‘draintheswamp’ (a term used by Trump in a speech), but also with a notable
outgroup, ‘antifa’. Referring to patriotism of course portrays the ingroup as ‘true’ Americans
and so, given this word is reserved for the ingroup, patriot becomes a strong I-position.

Consider typical usage:

- Patriots now occupy the Senate Chamber, have invaded pelosi’s office...
- WE ARE PATRIOTS WE ARE AWAKE WE ARE COMING
Meanwhile, ‘War’ is another popular word within this dimension, and is overwhelmingly used

in the context of ‘civil war’. This can be used to describe the enormity of the polarisation and
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situation, but is clearly used as a call to arms and to enhance ingroup cohesion by making a
comparison to the historical American Civil War:
- This is a Civil War of free Americans vs Communist Demtards or is the beginning

of the revolution of America...

While also making threats to ideological outgroups:

- Civil war is coming and leftists only have themselves to blame...

- The left is pure evil We’re reaching the point of civil war [...]

When ‘antifa’ appears alongside ‘patriot’, it is almost exclusively in terms of shifting blame for
the violence and destruction which is evidently disconcerting for many. In terms of
representing self and other, there is the implication of self-as-not violent, and an alternative
representation of other as violent and wanting to frame ‘patriots’. This is perhaps better
placed under the violence trend, but is useful here because there is an idea that true patriots

would not riot at the Capitol (the home of American history).

Christian divinity

Because words within the sanctity-vice dimension are largely curse words occurring around
each other (as reflected in the later topic model), this analysis focuses on sanctity-virtue,
which is largely made up of Christian rhetoric. Plotting correlations with the most popular
word ‘God’ is not so helpful, as different aspects of religious language are related to each
other, for example ‘God’, ‘Bless’ and ‘Jesus’. Though ‘evil’ is a word of interest suggesting the
setting up of a self-other opposition.

Examination of the individual texts containing ‘God’ is more insightful, and shows a clear
theme where God is aligned with the in-group. This is frequently seen with the term ‘bless’,
used in conjunction with the group generically, but is present throughout:

- GOD BLESS THE FREEDOM FIGHTERS IN WASHINGTON DC |[...]
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- God bless America so long as the dew shall fall upon the earth so shall America be
free
In conjunction with this, there is a representation of a divine element to the ongoing events

and an eventual positive (for them) outcome:

- Believing that God will show up in a mighty way with a VICTORY Glory to God |[...]

As expected, when ‘evil’ appears alongside ‘God’ it is in the scope of this ongoing battle for
America:

- God help us defeat evil
It is somewhat vaguely attributed to others, in the sense that there is a general evil other,
which can be assumed from the context are the ideological outgroups taken together and
categorised as ‘the left’:

- We must not give in to evil demonic satanism that the left promotes|...]

But occasionally Democrats in particular:

- Go Figure it’s all Democrats such Evil People Their Day Will Come]...]

Election fraud

Naturally given the context, much moral rhetoric belonging to fairness-vice dimension,
particularly “fraud’, ‘steal’ and ‘cheat’ which are all related to the belief that the presidential
election result was unfairly won by the democrats. A clear other-as-fraudulent emerges
here, with an alternative representation of wanting to steal power:
- [..] Today’s focus is on taking back our country and not allowing Democrats to
cheat our President out of office [...]
The accusations of ‘treason’, from authority-vice, also relate to the Democrats having

‘stolen’ the election, and invokes the sense of other-as-anti American once again:
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War was declared on us when the election was stolen. That is treason and we

fight fire with fire
Patriot Maga 0.14
Antifa 0.12
draintheswamp 0.11
War Civil 0.44
Declare 0.11
God Bless 0.41
Jesus 0.18
Evil 0.18
Faith 0.18
pray 0.18
Fraud Voter 0.26
Election 0.25
Georgia 0.25
Steal Stop 0.31
Election 0.22
Democrat 0.09
Cheat DeKalb 0.12
Democrat 0.11
Lie 0.10
Dominion 0.09
Treason Participant 0.25
Tribunal 0.24
Commit 0.22
Fight Freedom 0.15
War 0.11
Country 0.11
Back 0.10
Battle 0.08
Violence Condone 0.16
Advocate 0.14
Incite 0.14
Antifa 0.14
Kill Unarmed 0.28
Shoot 0.22
Veteran 0.16
Woman 0.16
Murder Unarmed 0.12
Veteran 0.12

Table 1 — Selected correlations with moral words

All corrs p<2.2e-16
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Violence
The most popular word in the care-vice dimension, ‘fight’, is most commonly used to
describe the ongoing events as a fight against the Democrats and the left, and as a way of
urging action:
- [...]We have to fight to restore election integrity in our nation
It is also used in a virtuous sense as being associated with ‘freedom’, and therefore
construing the ingroup as ‘freedom-fighters’:
- Stay strong Patriot we are fighting for our freedom|...]
Examining the term ‘violence’ shows a conflict which we have seen earlier — rather than
accepting the violence of the conservative rioters, antifa are said to be the real perpetrators,
having disguised themselves as ‘patriots’, whereas so called true patriots are apparently
non-violent:
- Violence is not the signature of Patriots, check out instructions given to
Antifal...]
When the violence is accepted as from the ingroup, representations of previous violence
from antifa is used as a justification:
- Ifyou are angry at the people who stormed the Capitol but did not get angry at
months of violence from Antifa and others then you are a hypocrite.
The main issue emerging from terms ‘kill’ and ‘murder’ relate to the death of a rioter, Ashli
Babbitt, shot by police. Consistently, her military career is acknowledged to represent her in-
group belongingness:
“Her name was Ashli Babbit, she was a 14 year veteran [...] she was a great
Patriot to all who knew her”
At the same time the police themselves become a violent other from the representation of

the incident as a murder:
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- Heard that one unarmed lady was shot and murdered and another old man

beaten to death by DC COPS/...]

In summary, within the broad discourse of rhetoric pertaining to violence, we can see the
self as represented as a freedom-fighter, but a hesitation to attribute actual violence and
destruction to the self. Rather the other is framed as violent and the police become a violent
other.
5.3 Discussion

Using moral rhetoric to draw out trends has been fruitful for understanding the construction
of self and other on a broad level across the corpus. Parler users attempt to maximize the
distance between themselves and the outgroup. Employing patriotism sets up a dichotomizing
rigid binary (Gillespie, 2020a) whereby the self is construed as ‘truly' American and the other
is dismissed as an enemy of the nation. This essentialised notion of Americanism (Yzerbyt &
Rogier, 2001) is bolstered by invoking the collective memory of the revolutionary historical
past to justify the ongoing events (de Saint-Laurent & Obradovié¢, 2019). Christianity is further
used to dismiss the ideological other and their perspective as evil in by utilising ‘radical-evil’
rhetoric (Aune, 2003) while elevating the self and their perspective to a level beyond that of
mere humanity. Further, the disruption of ‘patriots’ seeing violence at the Capitol is deflected
onto Antifa, a radical other, scapegoating them as infiltrators (Baumeister et al., 1998). Parler
uses are here avoiding the disruption of the other (Gillespie, 2008, 2020a). However,

delegitimizing is seen in the representation of the political other as cheats.

6. Study 2 —Topic Modelling

6.1 Methods

Using a thematic analysis to produce the general themes of discussion (outside of necessarily

predefined concepts like the previous study) is a standard approach to qualitative data
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analysis (Braun & Clarke, 2006). However, working with a large corpus makes manually
identifying topics challenging and even impossible. In response, this paper uses another NLP
technique, Topic Modelling; an unsupervised computational method of deriving latent themes

from unstructured textual data (Uys et al., 2008).

The variety of topic modelling used here is Latent Dirichlet Allocation (LDA) (Blei et al., 2003);
a probabilistic procedure for assigning k number of topics to every document and generating
a probability score for each topic-document relation. Topics themselves are represented by
lists of words, ranked by their probability of belonging to a given topic. In essence, an LDA
topic model calculates estimates for the probabilities of a word belonging to a topic, and a
topic belonging to a document, P(w|t) and P(t|d) respectively (Mimno & McCallum, 2007; Uys
et al., 2008). LDA is preferred to the rival method, Latent Semantic Indexing, because it is truly
generative in its ability to index unseen documents while also assigning more than a single
topic to any given document (Uys et al.,, 2008). LDA topic modelling is one of the most
important methods for analysing large corpora, used widely across fields including the social
sciences (Li & Lei, 2021). Nevertheless, semantic coherence is never guaranteed, and careful

gualitative attention must be paid to interpreting topic outputs (Brookes & McEnery, 2019).

This study will provide topics from which it is possible to see where self/other conflicts are
most salient. While this sheds partial light on both research questions, it is mainly intended as

a tool to lead on to Study 3.

6.1.1 Process
The same pre-processing steps take place as those carried out in Study 1, with some extra
cleaning. A DTM is created, but this time words are removed that fall below a minimum
frequency. As words in natural languages are understood to be distributed according to Zipf's
law, where the frequency of a word is inversely proportional to its rank in a frequency table

(Zipf, 1949), removing stop-words and infrequently appearing terms eliminates the both tails
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of the distribution; frequently
occurring non-important
words on the one side and 075
infrequently occurring non-
important words occurring
on the other. This retains only
the most important words for

analysis. Empty rows

maximize

resulting from trimming are e = T

number of topics

. ) Figure 1 Optimal k
removed, leaving a sample size of 24,010.

Next, statistical methods are used to find an optimal k number of topics. Firstly, using the
Idatuning package, topic models are run in a sequence, k=10:220, yielding a score for each
model based on a Markov chain Monte Carlo (MCMC) algorithm for statistical inference
(Griffiths & Steyvers, 2004). This algorithm estimates the posterior probability for a model
while integrating over all the combinations of assigning words to topics generated through
Gibbs sampling. The goal of this process of testing over different k numbers is to find the
highest posterior probability. To aid in interpretation, the sequence was carried out a second

time, plotting the log-likelihood for each model as a way of measuring the goodness of fit.

After arriving at the optimal k, the final topic model is run using R’s topicmodels package,
before the model’s outputs, matrices for P(w|t) and P(t|d), are coerced into tidy data
formats (Silge & Robinson, 2017, ch.6). This enables examination of each topic’s most
probable (and therefore defining) terms, and the extraction of texts belonging to a given topic.

Both are used for topic interpretation. Code is provided in appendix 11.4.
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6.2 Results

The process of determining the optimal K, derived from Griffiths & Steyvers (2004), yielded a

result of between 70 and 90, with both Ks scoring equally high. The subsequent distribution

of log-likelihood scores for each model in the sequence yielded 70 as the most likely k number

based on the data. Thus K = 70 for this study.

Due to scope, it will not be possible to enumerate all 70 topics and terms here (see appendix

11.8). Nevertheless, the goal is to uncover latent themes relating to language involving the

self and other. With this in mind, topics have been selected for further elaboration where the

most relevant terms (self/others and terms of conflict) appear among the top most probable

terms for each topic, and the topic appears coherent. Many topics are irrelevant to the

research, while other less probable topics are difficult to interpret. 10 topics have been

selected:
Topic 44 |Topic 34 |Topic 63 Topic 69 |Topic 24 |Topic 18 |Topic 38 Topic17 (Topic4 Topic 23
trump antifa  |republican |pence antifa  |biden law world china know
supporter |blm democrat |president|guy president |constitution |[child country life
antifa burn party mike flag joe criminal control |america lose
blame riot gop traitor  |little family enemy justice communist|matter
maga city rino trump  [false trump  |protect expose |corrupt way
dress destroy |conservative |vice bus harris order sick sell black
disguise |terrorist |liberal betray |break |que rule evil politician |much
blend attack |democratic |coward |photo |kamala |defend bring save even |
idiot police |jones flynn grind hunter |constitutional |pedophile [socialist doesnt
lose loot support general |[stage bidens |foreign anti little folk

Table 2: Topics

The gamma matrix from the topic model output provides P(w|t) for each document and

allows them to be filtered by their probability of belonging to a topic. A brief description of

each topic will now follow (in order of topic probability).

Topic 44 - Interpretation of violence in terms of Antifa infiltration. Specific mention

of clothing indicating Antifa members within the rioters.

Main other: Antifa

26




Disruption: Violence at Capitol
Topic 34 - Representation of Antifa and BLM as lawless terrorists. Dissatisfaction at
lack of police action.

Main other: Antifa, BLM

Disruption: Violence
Topic 63 — Mention of Republican and Democrat parties, with a strong emphasis on
dissatisfaction with the Republican party, and an interest in Vernon Jones.

Main other: Democrats, some Republicans

Disruption: unfavourable election result
Topic 69 - Anger at Mike Pence’s ‘betrayal’ of the Republican Party, having aided the
Democrat’s ‘theft’ of the election. References to betrayal of a General Flynn in 2017.

Main other: Mike Pence

Disruption: Election result, failure of Republican officials
Topic 24 - Related to Topic 34, contains accusations of antifa committing a ‘false flag’
attack to frame conservatives.

Main other: Antifa

Disruption: Violence
Topic 18 — Allegations of plagiarism from Harris and Biden having crime links.

Main other: Biden, Harris

Disruption: Election result
Topic 38 — Dissatisfaction at political elites expressed in demanded action against the
‘fraudulent’ election, especially by invoking the constitution.

Main other: Senior Republicans

Disruption: Failure to denounce votes
Topic 17 —Highly negative stigmatising terms used to dismiss Democrats and the left.

Conspiracy type beliefs.
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Main other: The left, Democrats

Disruption: Election result
Topic 4 — Representation of socialism as corrupt. Claims of Chinese intervention,
alleging Democrats to be ‘owned’ by the Chinese.

Main other: Democrats, Chinese

Disruption: Election result
Topic 23 — More difficult to interpret, this topic is included for the mention of Black
Lives Matter, who are also treated as scapegoats for the violence. Comparisons are
made to previous BLM action.

Main other: BLM

Disruption: Violence

6.3 Discussion

Topic modelling has uncovered several key themes involving the other from which documents
can be analysed for semantic barriers. This complements the broader overview of moral
representations of self and other offered in Study 1 by offering more detailed and nuanced
themes. While some of those earlier moral ideas are (unsurprisingly) reflected in terms like
‘corruption’ and ‘evil’, this method has generated nuance by supplying more others, such as
the ‘Chinese’ and Black Lives Matter, as well as specific issues of concern for these Parler users.
This study has therefore provided great potential for the use of defensive mechanisms to block
the other. This is to be elaborated upon in the final study that completes the triangulation of

methods in this paper.
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7. Dialogical analysis

7.1 Methods

Dialogical analysis is a qualitative method for analysing the relations of perspectives in talk
and text (Aveling et al., 2015; Gillespie & Cornish, 2010), where the key intersubjective aspects
for analysis are the voices of self, the voices of inner others, and the relations between them
(Aveling et al., 2015). Because the relations between self and other existing in the mind result
in semantic contact, a dialogical analysis is the recommended method for researching

semantic barriers and defensive mechanisms (Gillespie, 2020b).

The prescribed method involves three steps: Identifying I-positions, identifying perspectives
attributed to the other, and identifying the reactions to the other’s perspectives, including
“framing of words and beliefs” belonging to the other (Gillespie, 2020b, p.22). Semantic
contact has been studied mainly with long-form kinds of data, such diaries (Zittoun & Gillespie,
2020), interview transcripts (Aveling & Gillespie, 2008) and biographical texts (Gillespie, 2005).
This data is challenging because it is notably short-form. Therefore, in similarity to twitter,
Parler may not be suited to ordinary styles of discourse (Elliott-Maksymowicz et al., 2021).
Additionally, individual texts under analysis are taken as separate entities related to one
another indirectly through context and topic, rather than directly through chains of
communication (for example, one text responding to another). In practice, this means that it

is difficult to find neatly packaged self and inner-other voices in auto-dialogue.

These limitations can be met in part by remembering this is a group level analysis, and by
asking ‘Sensitising questions’ to guide interpretation; especially ‘what is the context?’ ‘What
prompted the utterance?’ And, ‘what alternative is being argued against?’ (Gillespie &
Cornish, 2014). While broader discourse within each topic provides context, positions taken,

and sources of disruption are often implied. The method of dialogical analysis is somewhat
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adapted to meet these demands here. For a sample of the 100 most probable texts per topic,
the I-position was determined, followed by the inner other and corresponding perspective
where possible, and then, guided by the literature (Gillespie, 2020a, 2020b), the defensive
mechanism was coded (see appendix 11.10). The data was prepared by inner-joining the
corpora of topics to the original (uncleaned) data frame by document ID to retain punctuation.
This analysis aims at answering the research question What defensive strategies were used to

dismiss the other?

7.2 Results

Results are broken down by layer; avoiding, delegitimizing and limiting.

Avoiding Tactics

Avoiding tactics are the most dominant defensive category. Firstly, perhaps in a sense obvious,
it is important to consider excluding as a primary tactic at work, simply because the echo-
chamber of discourse is set up as a home for right-wing voices. This manipulation of the public
sphere (Jovchelovitch, 1995) is clear from the social context, but evidenced empirically within
the data by the sheer lack of dissenting voices. In moving away from ideological others, Parler
users have therefore opted to avoid sources of disrupted meanings (Hart et al., 2009). This

sets the scene for some extreme defensive representations of the other to come.

Distracting is strongly present in topics 18, 23, 24 and 34. In these topics the disruptive
meaning is avoided in place of emphasising negative aspects of the other. Consider topic 18,
concerning allegations of plagiarism from Harris and Biden’s apparent links to crime. Given
the contextual disruptive meaning from the Democrat election win, this is an effort to shift
focus to something that is not necessarily relevant in the grand scheme of things (Harris

plagiarising a biographical story) or towards unsubstantiated claims (Biden crime links):

- Fraud beyond belief Kamala Harris now ripping off Martin Luther King stories]...]
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Moreover, given years of corruption allegations made against the Republican party these
allegations amount to ‘whataboutery’, in the way an issue that has previously been brought

against the self is brought against the other to imply double standards (Headley, 2015).

Whataboutery is evidenced further in the topics pertaining to violence, where it is claimed
that neither the media nor the Democrats satisfactorily responded to alleged violence from
BLM and Antifa in 2020. Here the disruptive meaning is not the broader political issue, but the
challenge of seeing members of one’s own group committing questionable violence, and

seeing them called out for it:

- Fuck these reports on Fox today, why didn't they talk so much shit about black
lives matter or antifa
- When Antifa and BLM were burning and looting [Biden] couldn’t even ask for

peace. See the difference.

In refusing to acknowledge the disruptive meaning and turning to issues of the other, these
allegations serve as distracting ‘red herrings’ (McKee & Diethelm, 2010). In fact, red herrings

are present throughout and also serve a stigmatising role; | will return to this.

Relatedly, Deflecting is also present in topics concerned with violence, especially where
conspiratorial claims are made about infiltration and ‘false-flag’ attacks (topic 44). Again, in
refusing to acknowledge the destruction carried out by members of one’s own group, blame
is passed on to the other (Joffe, 1999) as a way of denying responsibility (Alicke & Sedikides,

2009).

- Why, why, why, are people assuming this was Trump supporters and not antifa

and BLM dressed as Trump supporters?

These particular claims are buttressed within the grand narrative of powerful others

nefariously out to harm the conservative cause by alleging the police to be helping Antifa:
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- Antifa was escorted in by corrupt police false flag

An extreme form of deflection is the claims of certain others, figures or groups, being child-
abusers or paedophiles. Further discussion of this will follow as other semantic barriers are
involved, but consider how a distinctive, horn-wearing rioter who was originally a poster-boy

for the rally is then othered as a paedophile after violence erupts:

- Buffalo horns guy at Capitol Building Break-in is Antifa—NOT a patriot. Note the

Boy-lover pedophile symbol tattooed on his chest in the 4th photo.

Delegitimising Tactics

Staying with the previous example, we can move on to ‘Delegitimising tactics’, the second
defensive layer that focuses on the source of the disruption (Gillespie, 2020a). Two
delegitimising mechanisms work closely together in this analysis, stereotyping and
stigmatising. Assigning the horned protestor to the group ‘paedophile’ is a semantic act
carried out in a broader context where paedophiles/child-abusers are a ‘known’ (albeit vague)
group operating in society. Indeed, topic 17 concerns much talk of child-abusers operating at

large and within the Democrats:

- Adam Schiff’s secret and pedophile crimes are being exposed. Innocent Anthony

Bourdain paid the ultimate price bc Schiff found out he was a witness.

Because of the obvious stigmatic nature of these claims there is a dual purpose to these
utterances. Firstly, stereotyping into the ‘known’ child-abuser group invites simple dismissal
of the other’s perspective because that group is as already socially represented as possessing
nefarious, untrustworthy ideas. At the same time, stigmatising enforces the rejection of

perspective through claims of depravity and evil-mindedness, in a similar way to
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dehumanisation (Hodson et al., 2014). A disruptive threat of a Democrat challenge to a

conservative worldview can be dismissed in this right-wing echo chamber like so:

- Joe Biden is a sick perverted pedophile and a traitor who should be arrested

prosecuted and executed

Stereotyping occurs even more prominently with regard to the framing of Democrats as
socialist and Marxist, while also sometimes as being under control of another supposedly
known group, the ‘CCP’. This is largely the subject matter of topic 4. The meta-perspective
given to this somewhat invented radical leftist enemy is that they want to destroy American

(Christian) life:

- The Marxist socialist Dems say no to celebrating Thanksgiving [...] The Marxist

socialist Dems will say No to Christmas

This clearly straw-mans the other (Gillespie, 2008), and means that the Democrat group
identity, is stigmatised in the sense of being anti-American, such that a disruptive left-wing
other can be quickly stereotyped as belonging to that radical group. Likewise, China and the
threat of Communism, is used to further delegitimise the left. This stereotyping works by
transferring the meaning (Gillespie, 2020a; Moscovici, 2008) of Democrat liberal politics to

that of Communism:

- The Socialist Democrats will control the House & Senate [...] if we don’t act upon
stopping them they will sell us out to Communist China they will control what we

do and what we say

Anti-American stigmatisation of members of the ingroup who engage with the other are
present in topic 63, where resentment is expressed towards ‘failing’ Republican officials who
are frequently labelled as RINOs — “Republicans in Name Only”. Engaging with the other in

this sense means failing to denounce apparent ‘vote-rigging’ by the Democrats.
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- ..Tomorrow, we will see which Republicans stand for America, and which
Republicans stand with Democrats. We will make sure those RINOs never win an

election again.

The same ingroup stigmatizing is true when Republican, Mike Pence, refuses to engage further

with selective vote recounting (topic 69):

- Vice President Pence will NOT support GOP congressional effort to contest

electoral votes #MikePence is GUILTY of #TREASON!

Finally, there is the delegitimising tactic of Distrust. With discourse concerning corrupt
Chinese influences and radical socialism/Marxism in relation to the Democrats, as well as elite
child-abuse rings, nefarious police activities, traitorous ‘RINOs’, and biased media, there is a
prevailing theme of distrust towards those in power, where ulterior motives are attributed to
these sources of disruptive meanings (Gillespie, 2020a). This is most evident regarding the

apparently fraudulent election, where democracy itself is questioned:

- [...] The traitorous swamp dwellers and those that support them will never let free
elections to take place again. The only way out of socialism is to fight your way

out/...]

A specific issue of distrust regards the (debunked) claim that Dominion vote counting

machines mis-counted Republican votes:

- Counties that used Dominion and Hart InterCivic ballot counting devices and
software consistently gave a 5% vote advantage to candidate Joe Biden over

President Trump.

As mentioned, this all falls within a broader context of distrust, where extreme radical leftism,

and often outright Chinese communism, is taken to lay behind Democrat party politics,
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influencing politicians to gain control and threatening the fabric of American life with their

ideology.

Limiting Tactics

Limiting tactics are less common, though dominant strategy, reinforcing the findings in Study
1, is dichotomizing, in order to create rigid binaries to dismiss the other (Gillespie, 2020a). We
have seen this with extreme representations of other as anti-American, or deprived and evil.
Topic 38, concerning the political elites’ failure to stop supposed corruption, contains
dichotomising defensive tactics to dismiss the disruption of the Democrat win by making
claims about fraud and framing the situation as constitutional vs unconstitutional. For

example:

- Everyone...GOP, RINOS, DEMOCRATS [...] has been given a chance [...] to pick their
lane on whether they support the Constitution or whether they are a sellout to the

Deep State.

As we know, this is an aspect of the major dichotomizing theme of we-as-patriots/true-
Americans vs other-as-anti-American, and is characterised by extreme black and white

thinking (Mathis, 2006).

Finally, rationalising dismisses the meaning of the other by playing down its impact (Gillespie,
2020a). As this can be achieve by attempting to ‘put something in context’ (Conlon & Murray,
1996), it seems clear that the attempt to deflect the meaning of riotous behaviour at the
Capitol by contextualising against claims of previous left-wing violence, is a form of

rationalising.

7.3 Discussion
Semantic barriers employed by these Parler users are mainly at the levels of avoiding and

delegitimising. Avoiding was predominantly characterised by distraction and deflection when
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the conservative (law-abiding) I-position was disrupted by claims of violence at the Capitol.
Delegitimising involved stereotyping, stigmatising and distrust, when the I-position was
threatened by the general disruption of a liberal, Democrat challenge to the worldview. These
tactics were often applied to the Democrats and political elites more generally, as well as
specific individuals. Where limiting was found, Dichotomizing was the dominant tactic used to

make simple us/them distinctions.

Importantly, these tactics work together and may not necessarily be easily broken down. For
example, stereotyping, stigmatizing and distrusting can work together across a representation
of a distrusing manipulative other, such as the CCP or child-abusing elites. This in turn creates
an extreme dichotomized representation which allows for easy labelling of disruptive others.
While the relatively short form of communication in this context, like twitter, may hinder
debate, it has also been shown that much can be meant by a single utterance in online
discourse (Elliott-Maksymowicz et al., 2021). Therefore, this analysis suggests that an aspect
of the institutionalised talk (Gillespie & Cornish, 2010; Heritage, 2005) of Parler involves
maximising the dismissal of the other by uttering single statements that block the other in

many ways at once.

8. General discussion
This research aimed to understand the tactics employed by conservative and right-wing Parler
users for the representation of identities, and the resistance to a disruptive other in right-wing
online discourse at a time of political upheaval. Using a dictionary analysis comprising of moral
terms uncovered dichotomising representations of self as on the side of God, revolutionary
history and America; set against an evil, cheating other. An important inner conflict over
violence was found and explored in more detail amongst other themes emerging from Study
2’s topic model. This study also found several disruptive others beyond the contextual

disruption of the Democrat election win, thus painting a complex picture of the
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representations at work. A dialogical analysis of 10 topics found that the defensive
mechanisms used were predominantly concerned with avoiding and delegitimising the source

of disruptive meaning.

It was notable that semantic barriers are used together in different ways within
representations to resist a disruptive other. For this reason, although the three layers of
defence and the ‘semantic immune system’ (Gillespie, 2020a) is a theoretically valuable
concept that underpinned this research, there may be other ways in which these defensive
tactics may relate to one another, and can be categorised. For example, although
dichotomizing is a limiting tactic (and therefore part of the final layer), it also clearly underpins
representations of identity, which may result in subsequent tactics like stereotyping,
stigmatising and rationalizing. Future research in tandem with SRT could elaborate on the

relationships between semantic barriers and the mechanisms of shared knowledge.

There is something important to be said about denialism here. Denialism is understood to
concern numerous intricate rationalisations (McKee & Diethelm, 2010). Because semantic
barriers exist together as part of the institutional milieu of shared representations
(Jovchelovitch, 2019), we can see that the tactics used by Parler may well fall within the “web
of rationalisations” that constitutes denialism (Gillespie, 2020a). Thinking styles associated
with individuals who endorse right-wing beliefs, such as Need for Cognitive Closure
(Chirumbolo et al., 2004; Leone & Chirumbolo, 2008) and Need to Evaluate (Bizer et al., 2004;
Jost et al., 2009), may play a role in this, and future research ought to explore the relationship
between thinking styles and adoption of denialistic rhetorical strategies. Additionally, to what
extent denialism and the use of extreme moral rhetoric and defensive mechanisms is owed to
the monological, echo-chamber-like structure of Parler’s discursive context is hard to answer
from a single case study. However, analysis found that engagement with the (inner) others

was wholly negative, dismissive and often extreme, and there were few limiting tactics. This
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supports the theoretical position that subtlety (Gillespie, 2020b), reasonableness and
rationality (Carpendale & Miiller, 2014; Habermas, 1981) are understood to be demanded by
a critical audience. There is evidence to suggest that the lack of critical audience in this case
allowed for increasingly unsubstantiated and unreasonable representations to circulate.
Because of the significant social consequences to such beliefs, it is worthwhile for research

grounded in Dialogism to pay attention to ‘monological’ discursive scenarios.

9. Conclusion and limitations

This paper has shown that a triangulation of mixed methods, involving NLP and qualitative
techniques, can be fruitful for studying dialogical defensive mechanisms as they appear in
natural language. One potential issue, however, is that the data generated from algorithmic
techniques like topic modelling may still be problematically large and occasionally difficult to
interpret. This was seen to some extent with the topic model that generated 70 topics, where
some were difficult to interpret - although, this was partly made up for by selecting only the

most pertinent to the research question.

The original (secondary) dataset did not possess detailed meta data regarding the time the
post was written, and the methods used in this study did not track posts across individual
users. It would be worthwhile for similar research to bring these kinds of data together to
examine the rhetorical strategies and representations of users for the earlier suggestion of

amalgamating semantic barriers and the mechanisms of social representations.

This paper has sought to contribute to the theoretical literature on Dialogism, semantic
contact and defensive tactics by examining the representation of identity and semantic
barriers in a unique, monological communicative context. At the least, it highlights the

importance of serious content guidelines and moderation for online discourse.
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11. Appendices
11.1 - Random sampling python script

import argparse
import os
import random
import shutil
import time

def parse_args():
parser = argparse.ArgumentParser(description="Copy a sample of N size number of files from SOURCE_DIR to
DEST_DIR.")
parser.add_argument("source",
types=str,
help="The source directory")
parser.add_argument("dest",
types=str,
help="The destination directory")
parser.add_argument("--sample_size",
default=1000,
type=int,
help="The number of files to sample and move (default: 1000)")
parser.add_argument("--dry_run",
action='store_true',
help="Print the files to transfer, but don't move them (default: False)")

return parser.parse_args()
def copy_file(source, dest, dry_run=False):
print(f"Copying file {source} -> {dest}")

if dry_run:
return

shutil.copy(source, dest)

HHHHHHAH AR R

# Main
HHS
if _name__=='__main__"

# Parse the comamnd line arguments
args = parse_args()

# List the source directory

list_start_time = time.time()

directory_listing = os.listdir(args.source)

print(directory_listing)

list_elapsed_time = time.time() - list_start_time

print(f"Found {len(directory_listing)} files in {args.source}, (Took {list_elapsed_time}s)")

# Check the sample size and the actual number of files are compatible
sample_size = args.sample_size
if len(directory_listing) < args.sample_size:

sample_size = len(directory_listing)
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# Create a sample from the file list

sample_start_time = time.time()

sample = random.sample(directory_listing, sample_size)
sample_elapsed_time = time.time() - sample_start_time
print(f"Sampled {sample_size} files, (Took {sample_elapsed_time}s)")

if args.dry_run:
print("######H#H#H DRY RUN MODE #i##Ht#t")

# Loop over the sample files and copy them from soruce to dest directories
copy_start_time = time.time()
for source_file in sample:

copy_file(f"{os.path.join(args.source, source_file)}", args.dest, args.dry_run)
copy_elapsed_time = time.time() - copy_start_time

print(f"Copied {sample_size} files, (Took {copy_elapsed_time}s)")

11.2 - Data management plan

Department:
Department of Psychological and Behavioural Sciences

Supervisor name:
Celestin Okoroji

Project Details

Dissertation/ project title:
Resistance at the precipice of change: A case study of defensive mechanisms in right-wing online
discourse

Please summarise your research question in no more than three sentences:
Among members contributing to discourse within the right-wing social media site Parler,
how was the perspective of others dismissed?

Data Collection

Will you be using any secondary data for this project? Please outline what kind

of secondary data you will be using below:

Yes. Data was scraped from Parler during the the Capitol protests and made publicly
available on ddosecrets.com.

Will you require access to any secure datasets i.e. datasets to which LSE
Library does not have a subscription, which will need to be requested directly
from the supplier:

No

Will you require access to any internal LSE datasets for this project?
No

What research methods will you use for data collection (You can select as many

as apply)
Social media content analysis

Please can you describe how you plan on conducting data collection using
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these methods:

Data collection involves firstly retrieving the files online from the website. Because this
dataset will be an unsorted dump of a large number of files the main effort of data
collection will involve making the data usable. This means using a program or set of
scripts to convert the files into an appropriate file type before removing unusable files
and duplicates. Then, only the relevant information will need to be extracted from the
whole batch. It is unlikely that the entire set will be able to be used for the initial
guantitative analysis because of the computer processing requirements, therefore
another script or program will be used to randomly sort and extract a random sample. For
the qualitative analysis a subset of this sample will be extracted for manual coding.

Research Ethics
Please explain how you will collect informed consent:
As this is secondary data from social media, there is no informed consent.

Once you have collected proof of consent, you will need to store it safely.
Please can you explain below how you plan to do this:
There is no informed consent to store in this case, it is secondary social media, scraped data.

Have you submitted a research ethics review for this project?
Yes

If you are collecting primary data from research participants, you are required

to anonymise the dataset so that individuals are not identifiable. How do you

plan to do this?

This is not primary data but anonymisation will still take place. Usernames will be
replaces with a label or number and any identifiable data which could occur within the
posts themselves will be scraped.

Are there any circumstances where you will not anonymise research
participants?
Yes

Please can you explain below when you will not anonymise research

participants:

If I am referring to a post made by an account belonging to a major public figure which is
important for the analysis, it may be helpful to name the figure to give context. For
example, if it were Ted Cruz.

Data Protection

Do you believe your research will require you to fill in a data protection impact
assessment?

No

Data Storage & Security

Are you the lone researcher on this project or do you have collaborators?
| am the lone researcher

Will you require any additional research tools to complete your project?
Yes

Please can you supply details/ links to any additional research tools you’ll be

using below:
Statistical Analysis and text mining, for tidying data and conducting quantitative analysis:
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https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/

https://www.python.org/

Sorting through many text files to help order and extract relevant parts of the data:
https://www.digitalvolcano.co.uk/textcrawler.html

Possibly (Other text analysis tools for sentiment and dictionary type analyses):
https://www.tlab.it

liwcsoftware.onfastspring.com

Qualitative Coding:
https://www.gsrinternational.com/nvivo-qualitative-data-analysis-software/home

What hardware will you require to complete this project (you can select more
than one option):
Personal laptop/ desktop PC

Do all personal devices used on this project meet the LSE's minimum standards
for device level security?
Yes

Are all personal devices used on this project secured with passwords that meet
the standard of the LSE password policy?
Yes

Where will you store your dissertation/ research project while you are working
on it:

LSE OneDrive

Other

You selected 'Other.' Please can you explain below where you will store your
dissertation/ research project while you are working on it:
On my pc.

Where will you store any primary data you collect during the research process:
Other

You selected 'Other.' Please explain below where you will store any primary

data you collect:
PC and Onedrive
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11.4 - R code

1 # Dictionary Analysis

2

3 ## Set wd

4

5 setwd("D:/Postgrad/R and data analysis work/Dissertation_working_dir")
6

7 ## Packages

8

9 library(tm)

10 library(quanteda)

11 library(textstem) # for lemmatising

12 library(qdap)

13 library(textclean)

14 library(dplyr)

15 library(ggplot2)

16 library(tidytext)

17 library(forcats)

18 library(magrittr)

19 library(radarchart)

20

21 ## Data

22

23 library(readr)

24

25 text_data <- read_csv("Clean_50863UTF.csv")

26

27 View(text_data)

28

29 str(text_data)

30

31

32 #ittext_data_small <- read_csv("Clean_10000.csv")
33

34 text_data_small <- text_data[1:25000, ]

35

36 # HitH#
37

38 ## Text preprocessing

39

40

41 text_data_small <- as.data.frame(text_data_small)
42

43 colnames(text_data_small) <- ¢("doc_id", "text")
44

45 text_data_small <- text_data_small[complete.cases(text_data_small), ]
46

47

48

49 # load stopwords

50 english_stopwords <- quanteda::stopwords()

51

52 # create corpus object

53 corpus <- Corpus(DataframeSource(text_data_small))
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54

55 # Before example

56 content(corpus[[9]])

57

58

59 # Preprocessing chain

60

61 clean_corpus <- tm_map(corpus, content_transformer(tolower)) # makes all lowercase

62

63 clean_corpus <- tm_map(clean_corpus, removeWords, c(english_stopwords, "echo")) #
removes a list of stopwords

64

65 ## clean_corpus <- tm_map(clean_corpus, content_transformer(replace_contraction))

66

67 clean_corpus <- tm_map(clean_corpus, removePunctuation, preserve_intra_word_dashes
TRUE) # removes punctuation

68

69 clean_corpus <- tm_map(clean_corpus, removeNumbers) # remove numbers

70

71 clean_corpus <- tm_map(clean_corpus, lemmatize_strings, language = "en") # we're

72

141 count(moral_foundation) %>%

142 arrange(desc(n)) %>%

143 mutate(moral_foundation2 = fct_reorder(moral_foundation, n)) 144

145

146 # ggplot(clean_corpus_dtm_tidy_mfd_plot2, aes(x = moral_foundation2, y = n, fill =

moral_foundation)) +
147 # geom_col() 148

149

150 ggplot(clean_corpus_dtm_tidy_mfd_plot2, aes(x = reorder(moral_foundation, -n), y =n
, fill = moral_foundation)) +

151 geom_col() +

152 labs(

153 title = "Moral Foundation Word Counts",

154 x = "Moral foundation", y = "n") +

155 theme(legend.position = "none") 156

157 clean_corpus_dtm_tidy_mfd_radar <- clean_corpus_dtm_tidy_mfd %>%
158 count(moral_foundation) 159

160 # Review scores

161 clean_corpus_dtm_tidy_mfd_radar 162

163 # JavaScript radar chart
164 chartJSRadar(clean_corpus_dtm_tidy_mfd_radar) 165

166

167 # Now do it grouped 168

169 mfd_2_grouped <- read_csv("mfd_2.0_grouped.csv")

170 mfd_2_grouped_adjusted <- mfd_2_grouped[-c(1207, 1150, 1198, 1174),] 171
172 clean_corpus_dtm_tidy_mfd_grouped <- inner_join(clean_corpus_dtm_tidy,
mfd_2_grouped_adjusted, by = c("term" = "word"))

173

174 # Get counts by foundation

175 clean_corpus_dtm_tidy_mfd_grouped %>%

176 count(moral_foundation) %>%

177 arrange(desc(n)) 178

179 # Plot 180

181 clean_corpus_dtm_tidy_mfd_grouped_plot <- clean_corpus_dtm_tidy_mfd_grouped %>%
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182
183
184
185
186
187
188

count(term, moral_foundation) %>% # change to term
group_by(moral_foundation) %>%

top_n(10, n) %>%

ungroup() %>%

mutate(word2 = fct_reorder(term, n))

ggplot(clean_corpus_dtm_tidy_mfd_grouped_plot, aes(x = word2, y = n, fill =
moral_foundation)) +

189 geom_col(show.legend = FALSE) +

190 facet_wrap(~ moral_foundation, scales = "free") +

191 coord_flip() +

192 labs(

193 title = "Moral foundation word counts (grouped) ",

194 x ="Words"

195 )

196

197

198 # Rather than breaking down by individual words, let's get an overall picture

199 clean_corpus_dtm_tidy_mfd_grouped_plot2 <- clean_corpus_dtm_tidy_mfd_grouped %>%
200 count(moral_foundation) %>%

201 arrange(desc(n)) %>%

202 mutate(moral_foundation2 = fct_reorder(moral_foundation, n))

203

204

205

206 # ggplot(clean_corpus_dtm_tidy_mfd_plot2, aes(x = moral_foundation2, y = n, fill moral_foundation))
+

# geom_col() =

207

208

209 ggplot(clean_corpus_dtm_tidy_mfd_grouped_plot2, aes(x = reorder(moral_foundation, -n)
, 'y = n, fill = moral_foundation)) +

210 geom_col() +

211 labs(

212 title = "Moral foundation word Counts (grouped)",

213 x = "Moral foundation", y = "n") +

214 theme(legend.position = "none") 215

216 clean_corpus_dtm_tidy_mfd_grouped_radar <- clean_corpus_dtm_tidy_mfd_grouped %>%
217 count(moral_foundation) 218

219 # Review scores

220 clean_corpus_dtm_tidy_mfd_grouped_radar 221

222 # JavaScript radar chart

223 chartJSRadar(clean_corpus_dtm_tidy_mfd_grouped_radar) 224

225

226 ## Creating totals from LIWC output 227

228 LIWC <- read_csv("LIWC_results.csv") 229

230 LIWC <- LIWC %>% mutate(care.TOTAL = care.virtue + care.vice)

231 LIWC <- LIWC %>% mutate(fairness.TOTAL = fairness.virtue + fairness.vice)

232 LIWC <- LIWC %>% mutate(loyalty. TOTAL = loyalty.virtue + loyalty.vice)

233 LIWC <- LIWC %>% mutate(authority. TOTAL = authority.virtue + authority.vice)

234 LIWC <- LIWC %>% mutate(sanctity. TOTAL = sanctity.virtue + sanctity.vice) 235

236 str(LIWC) 237

238 LIWC <- LIWC[, (1, 2,3, 4,5, 14,6, 7,15,8,9, 16, 10, 11, 17, 12, 13, 18)]

239 LIWC <- LIWC %>% mutate(overall. TOTAL = care.TOTAL + fairness.TOTAL +loyalty. TOTAL +

authority. TOTAL + sanctity. TOTAL)
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240 LIWC<-LIWC[, ¢(1, 2, 3,5,4,6,8,7,9, 11, 10, 12, 14, 13, 15, 17, 16, 18, 19)]
241

242 # Using a log ratio 243

244 LIWC_log_test <- LIWC 245

246 LIWC_log_test <- LIWC %>% mutate(care.log = log(care.virtue + 0.5) - log(care.vice +
0.5))

247 LIWC_log_test <- LIWC_log_test %>% mutate(fairness.log = log(fairness.virtue + 0.5) -
log(fairness.vice + 0.5))

248 LIWC_log_test <- LIWC_log_test %>% mutate(loyalty.log = log(loyalty.virtue + 0.5) -
log(loyalty.vice + 0.5))

249 LIWC_log_test <- LIWC_log_test %>% mutate(authority.log = log(authority.virtue + 0.5)
- log(authority.vice + 0.5))

250 LIWC_log_test <- LIWC_log_test %>% mutate(sanctity.log = log(sanctity.virtue + 0.5) -
log(sanctity.vice + 0.5))

251

252 LIWC_log_test <- LIWC_log_test[, c(1, 2, 3,4, 5, 6, 20, 7, 8, 9, 21, 10, 11, 12, 22

, 13,14, 15, 23, 16, 17, 18, 24, 19)]

253

254 #0g(1.69) + 0.5

255 #log(0) + 0.5

256 #3.16/2.50

257

258 LIWC_output <- LIWC_log_test 259

260 write.csv(LIWC_output, "LIWC_output_with_log.csv") 261

262

263 # Finding associations HiHi# 264
265

266 fraud_assoc <- findAssocs(DTM, "fraud", 0.08)

267 fraud_assoc_df <- list_vect2df(fraud_assoc, col2 = "word", col3 = "score")
268 fraud_plot <- ggplot(fraud_assoc_df, aes(score, word)) +

269 geom_point(size =3) +

270 labs(title = "fraud word association correlations") +

271 theme_light() 272

273

274 steal_assoc <- findAssocs(DTM, "steal", 0.07)

275 steal_assoc_df <- list_vect2df(steal_assoc, col2 = "word", col3 = "score")
276 steal_plot <- ggplot(steal_assoc_df, aes(score, word)) +

277 geom_point(size = 3) +

278 labs(title = "steal word correlations") +

279 theme_light()

280

281

282 shoot_assoc <- findAssocs(DTM, "shoot", 0.07)

283 shoot_assoc_df <- list_vect2df(shoot_assoc, col2 = "word", col3 = "score")
284 shoot_plot <- top_n(shoot_assoc_df, n=10, score) %>%

285 ggplot(., aes(score, word)) +

286 geom_point(size =3) +

287 labs(title = "shoot word correlations") +

288 theme_light()

289

290

291

292 fight_assoc <- findAssocs(DTM, "fight", 0.07)

293 fight_assoc_df <- list_vect2df(fight_assoc, col2 = "word", col3 = "score")

294 fight_assoc_df <- fight_assoc_df[-c(9),]
295 fight_plot <- top_n(fight_assoc_df, n=10, score) %>%
296 ggplot(., aes(score, word)) +
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298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

347
348
349
350
351
352
353

geom_point(size =3) +
labs(title = "Fight word correlations") +
theme_light()

arrest_assoc <- findAssocs(DTM, "arrest", 0.07)

arrest_assoc_df <- list_vect2df(arrest_assoc, col2 = "word", col3 = "score")
arrest_assoc_df <- arrest_assoc_df[-c(4),]

arrest_plot <- top_n(arrest_assoc_df, n=20, score) %>%

ggplot(., aes(score, word)) +

geom_point(size =3) +

labs(title = "Arrest word correlations") +

theme_light()

war_assoc <- findAssocs(DTM, "war", 0.07)

war_assoc_df <- list_vect2df(war_assoc, col2 = "word", col3 = "score")
war_plot <- top_n(war_assoc_df, n=20, score) %>%

ggplot(., aes(score, word)) +

geom_point(size = 3) +

labs(title = "War word correlations") +

theme_light()

violence_assoc <- findAssocs(DTM, "violence", 0.07)

violence_assoc_df <- list_vect2df(violence_assoc, col2 = "word", col3 = "score")
violence_plot <- top_n(violence_assoc_df, n=10, score) %>%

ggplot(., aes(score, word)) +

geom_point(size = 3) +

labs(title = "Violence word correlations") +

theme_light()

cheat_assoc <- findAssocs(DTM, "cheat", 0.07)

cheat_assoc_df <- list_vect2df(cheat_assoc, col2 = "word", col3 = "score")
cheat_plot <- top_n(cheat_assoc_df, n=14, score) %>%

ggplot(., aes(score, word)) +

geom_point(size = 3) +

labs(title = "Cheat word correlations") +

theme_light()

protest_assoc <- findAssocs(DTM, "protest", 0.07)

protest_assoc_df <- list_vect2df(protest_assoc, col2 = "word", col3 = "score")
protest_plot <- top_n(protest_assoc_df, n=10, score) %>%

ggplot(., aes(score, word)) +

geom_point(size =3) +

labs(title = "Protest word correlations") +

theme_light()

kill_assoc <- findAssocs(DTM, "kill", 0.09)

kill_assoc_df <- list_vect2df(kill_assoc, col2 = "word", col3 = "score")
kill_plot <- top_n(kill_assoc_df, n=10, score) %>%

ggplot(., aes(score, word)) +

geom_point(size =3) +

labs(title = "Kill word correlations") +
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354 theme_light() 355

356

357 destroy_assoc <- findAssocs(DTM, "destroy", 0.07)

358 destroy_assoc_df <- list_vect2df(destroy_assoc, col2 = "word", col3 = "score"
359 destroy_plot <- top_n(destroy_assoc_df, n=10, score) %>%

360 ggplot(., aes(score, word)) +

361 geom_point(size = 3) +

362 labs(title = "Destroy word correlations") +

363 theme_light() 364

365

366 treason_assoc <- findAssocs(DTM, "treason", 0.07)

367 treason_assoc_df <- list_vect2df(treason_assoc, col2 = "word", col3 = "score")
368 treason_plot <- top_n(treason_assoc_df, n=10, score) %>%

369 ggplot(., aes(score, word)) +

370 geom_point(size = 3) +

371 labs(title = "Treason word correlations") +

372 theme_light() 373

374

375

376

377 good_assoc <- findAssocs(DTM, "good", 0.07)

378 good_assoc_df <- list_vect2df(good_assoc, col2 = "word", col3 = "score")
379 good_plot <- top_n(good_assoc_df, n=10, score) %>%

380 ggplot(., aes(score, word)) +

381 geom_point(size = 3) +

382 labs(title = "Good word correlations") +

383 theme_light() 384

385

386 supporter_assoc <- findAssocs(DTM, "supporter", 0.07)

387 supporter_assoc_df <- list_vect2df(supporter_assoc, col2 = "word", col3 = "score")
388 supporter_plot <- top_n(supporter_assoc_df, n=10, score) %>%

389 ggplot(., aes(score, word)) +

390 geom_point(size =3) +

391 labs(title = "Supporter word correlations") +

392 theme_light() 393

394

395 god_assoc <- findAssocs(DTM, "god", 0.07)

396 god_assoc_df <- list_vect2df(god_assoc, col2 = "word", col3 = "score")
397 god_plot <- top_n(god_assoc_df, n=10, score) %>%

398 ggplot(., aes(score, word)) +

399 geom_point(size =3) +

400 labs(title = "God word correlations") +

401 theme_light() 402

403

404 win_assoc <- findAssocs(DTM, "win", 0.02)

405 win_assoc_df <- list_vect2df(win_assoc, col2 = "word", col3 = "score")
406 win_assoc_df <- win_assoc_df[-c(36),]

407 win_plot <- top_n(win_assoc_df, n=10, score) %>%

408 ggplot(., aes(score, word)) +

409 geom_point(size =3) +

410 labs(title = "Win word correlations") +

411 theme_light() 412

413

414 love_assoc <- findAssocs(DTM, "love", 0.06)

415 love_assoc_df <- list_vect2df(love_assoc, col2 = "word", col3 = "score")
416 love_plot <- top_n(love_assoc_df, n=10, score) %>%

417 ggplot(., aes(score, word)) +

418 geom_point(size =3) +
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419 labs(title = "Love word correlations") +

420 theme_light() 421

422

423 freedom_assoc <- findAssocs(DTM, "freedom", 0.14)

424 freedom_assoc_df <- list_vect2df(freedom_assoc, col2 = "word", col3 = "score")
425 freedom_plot <- top_n(freedom_assoc_df, n=10, score) %>%

426 ggplot(., aes(score, word)) +

427 geom_point(size =3) +

428 labs(title = "Freedom word correlations") +

429 theme_light() 430

431

432 great_assoc <- findAssocs(DTM, "great", 0.06)

433 great_assoc_df <- list_vect2df(great_assoc, col2 = "word", col3 = "score")
434 great_plot <- top_n(great_assoc_df, n=10, score) %>%

435 ggplot(., aes(score, word)) +

436 geom_point(size = 3) +

437 labs(title = "Great word correlations") +

438 theme_light() 439

440

441 pray_assoc <- findAssocs(DTM, "pray", 0.10)

442 pray_assoc_df <- list_vect2df(pray_assoc, col2 = "word", col3 = "score")
443 pray_plot <- top_n(pray_assoc_df, n=10, score) %>%

444 ggplot(., aes(score, word)) +

445 geom_point(size = 3) +

446 labs(title = "Pray word correlations") +

447 theme_light()

448

449 traitor_assoc <- findAssocs(DTM, "traitor", 0.08)

450 traitor_assoc_df <- list_vect2df(traitor_assoc, col2 = "word", col3 = "score")
451 traitor_plot <- ggplot(traitor_assoc_df, aes(score, word)) +

452 geom_point(size =3) +

453 labs(title = "traitor word association correlations") +

454 theme_light() 455
456 traitor_plot 457

458

459 corrupt_assoc <- findAssocs(DTM, "corrupt", 0.06)

460 corrupt_assoc_df <- list_vect2df(corrupt_assoc, col2 = "word", col3 = "score")
461 corrupt_plot <- ggplot(corrupt_assoc_df, aes(score, word)) +

462 geom_point(size =3) +

463 labs(title = "corrupt word association correlations") +

464 theme_light() 465
466 corrupt_plot 467

468

469 patriot_assoc <- findAssocs(DTM, "patriot", 0.10)

470 patriot_assoc_df <- list_vect2df(patriot_assoc, col2 = "word", col3 = "score")
471 patriot_plot <- ggplot(patriot_assoc_df, aes(score, word)) +

472 geom_point(size =3) +

473 labs(title = "patriot word association correlations") +

474 theme_light() 475

476 patriot_plot 477

478

479 right_assoc <- findAssocs(DTM, "right", 0.08)

480 right_assoc_df <- list_vect2df(right_assoc, col2 = "word", col3 = "score")
481 right_plot <- ggplot(right_assoc_df, aes(score, word)) +

482 geom_point(size =3) +

483 labs(title = "right word association correlations") +

484 theme_light() 485
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right_plot 487

peaceful_assoc <- findAssocs(DTM, "peaceful”, 0.08)

peaceful_assoc_df <- list_vect2df(peaceful_assoc, col2 = "word", col3 = "score")
peaceful_plot <- ggplot(peaceful_assoc_df, aes(score, word)) +
geom_point(size =3) +

labs(title = "peaceful word association correlations") +
theme_light() 495
peaceful_plot 497

protect_assoc <- findAssocs(DTM, "protect", 0.08)

protect_assoc_df <- list_vect2df(protect_assoc, col2 = "word", col3 = "score")
protect_plot <- ggplot(protect_assoc_df, aes(score, word)) +
geom_point(size = 3) +

labs(title = "protect word association correlations") +

theme_light() 505

protect_plot 507

peace_assoc <- findAssocs(DTM, "peace", 0.07)

peace_assoc_df <- list_vect2df(peace_assoc, col2 = "word", col3 = "score")
peace_plot <- ggplot(peace_assoc_df, aes(score, word)) +
geom_point(size = 3) +

labs(title = "peace word association correlations") +

theme_light() 516

peace_plot 518

trust_assoc <- findAssocs(DTM, "trust", 0.09)

trust_assoc_df <- list_vect2df(trust_assoc, col2 = "word", col3 = "score")
trust_plot <- ggplot(trust_assoc_df, aes(score, word)) +
geom_point(size = 3) +

labs(title = "trust word association correlations") +

theme_light() 527

trust_plot 529

# LIWC sub setting of analysis for prototypical word usage H#itHH 532
## Import data 534

LIWC_log_for_analysis <- read_csv("LIWC_output_with_log.csv")
View(LIWC_log_for_analysis) 537

# First subset for 'patriot'. 540
# First specify the string for detection and the location (i.e. the data frame and column), define it

contains_patriot <- str_detect(LIWC_log_for_analysisStext, fixed("patriot", ignore_case=TRUE))

# Now use the defined object to subset from the data frame
patriot_sub <- LIWC_log_for_analysis[contains_patriot, ]

# Sort by log loyalty virtue
patriot_sub <- patriot_sub[order(patriot_subS$loyalty.log, decreasing = TRUE),]

# write.csv(patriot_sub, "patriot_loyalty.csv") 551

# Subset for 'war' 556
# First specify the string for detection and the location (i.e. the data frame and column), define it
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560
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562

563
564
565
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604
605

contains_war <- str_detect(LIWC_log_for_analysisStext, fixed("war", ignore_case=TRUE)) 559
# Now use the defined object to subset from the data frame
war_sub <- LIWC_log_for_analysis[contains_war, ]

# Sort by log loyalty virtue
war_sub <- war_sub[order(war_subSloyalty.log, decreasing = TRUE),]

# write.csv(war_sub, "war_loyalty.csv") 567

# Subset for 'God' 572

# First specify the string for detection and the location (i.e. the data frame and column), define it
contains_god <- str_detect(LIWC_log_for_analysisStext, fixed("god", ignore_case=TRUE)) 575

# Now use the defined object to subset from the data frame

god_sub <- LIWC_log_for_analysis[contains_god, ]

# Sort by log sanctity virtue
god_sub <- god_sub[order(god_subS$sanctity.log, decreasing = TRUE),]

write.csv(god_sub, "god_sanctity.csv") 583
# Subset for 'cheat' 587
# First specify the string for detection and the location (i.e. the data frame and column), define it

contains_cheat <- str_detect(LIWC_log_for_analysisStext, fixed("cheat", ignore_case= TRUE))

# Now use the defined object to subset from the data frame
cheat_sub <- LIWC_log_for_analysis[contains_cheat, ]

# Sort by log sanctity virtue
cheat_sub <- cheat_sub[order(cheat_subS$fairness.log, decreasing = TRUE),]

write.csv(cheat_sub, "cheat_fairness.csv") 598
# Subset for 'treason' 601
# First specify the string for detection and the location (i.e. the data frame and column), define it

contains_treason <- str_detect(LIWC_log_for_analysisStext, fixed("treason", ignore_case=TRUE))

# Now use the defined object to subset from the data frame 606 treason_sub <-

LIWC_log_for_analysis[contains_treason, ] 607

608
609
610
611
612
613
614
616
617
618
619

# Sort by log
treason_sub <- treason_sub[order(treason_subS$authority.log, decreasing = TRUE),]

write.csv(treason_sub, "treasont_authority.csv")
# Subset for 'fight' 615
# First specify the string for detection and the location (i.e. the data frame and column), define it

contains_fight <- str_detect(LIWC_log_for_analysisStext, fixed("fight", ignore_case= TRUE))

# Now use the defined object to subset from the data frame 620 fight_sub <-

LIWC_log_for_analysis[contains_fight, ]

621
622
623
624

# Sort by log
fight_sub <- fight_sub[order(fight_subS$care.log, decreasing = TRUE),]

66



625
626
627
628

629
631
632
633

write.csv(fight_sub, "fight_care.csv")

# Subset for 'violence' 630
# First specify the string for detection and the location (i.e. the data frame and column), define it
contains_violence <- str_detect(LIWC_log_for_analysisStext, fixed("violence", ighore_case=TRUE))

634 # Now use the defined object to subset from the data frame 635 violence_sub <-
LIWC_log_for_analysis[contains_violence, ] 636

637
638
639
640
641
642
643
644
646
647
648
649

# Sort by log
violence_sub <- fviolence_sub[order(violence_subScare.log, decreasing = TRUE),]

write.csv(violence_sub, "violence_care.csv")

# Subset for 'kill' 645
# First specify the string for detection and the location (i.e. the data frame and column), define it
contains_kill <- str_detect(LIWC_log_for_analysisStext, fixed("kill", ignore_case= TRUE))

# Now use the defined object to subset from the data frame 650 kill_sub <-

LIWC_log_for_analysis[contains_kill, ]

651
652
653
654
655
656
657
658
660
661

=TRUE))

662
663

# Sort by log
kill_sub <- kill_sub[order(kill_subScare.log, decreasing = TRUE),]

write.csv(kill_sub, "kill_care.csv")

# Subset for 'murder' 659
# First specify the string for detection and the location (i.e. the data frame and column), define it
contains_murder <- str_detect(LIWC_log_for_analysisStext, fixed("murder", ignore_case

# Now use the defined object to subset from the data frame 664 murder_sub <-

LIWC_log_for_analysis[contains_murder, ]

665
666
667
668
669
670

# Sort by log
murder_sub <- murder_sub[order(murder_subScare.log, decreasing = TRUE),]

write.csv(murder_sub, "murder_care.csv")

# Topic model script

library(tm)
library(topicmodels)
library(ldatuning)
library(Rmpfr)
library(reshape2)
library(ggplot2)
library(pals)
library(quanteda)
library(textstem)
library(qdap)
library(readr)
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library(ggpubr)

library(broom)

library(tidytext)

library(dplyr)

## Set wd

setwd("D:/Postgrad/R and data analysis work/Dissertation_working_dir")
## Data

text_data <- read_csv("Clean_50863UTF.csv")

# View(text_data)

# str(text_data)

text_data_small <- text_data[1:25000, ]
text_data_small <- as.data.frame(text_data_small)
colnames(text_data_small) <- c("doc_id", "text")

text_data_small <- text_data_small[complete.cases(text_data_small), ]

# Apply cleaning to the dataframe (as some of these functions do not work on the corpus)
text_data_smallStext <- gsub("[I[1#5%()*,.;<=>@""_|?'“~.{}],@" , text_data_smallStext)
# text_data_small <- text_data_small[!(text_data_smallStext==""), ]
text_data_smallStext <- replace_contraction(text_data_smallStext)

# load stopwords

english_stopwords <- quanteda::stopwords()

# create corpus object
corpus <- Corpus(DataframeSource(text_data_small))

content(corpus([[9]])

# HitHH#

# Pre-processing

clean_corpus <- tm_map(corpus, content_transformer(tolower))

clean_corpus <- tm_map(clean_corpus, removeWords, c(english_stopwords, "echo"))
clean_corpus <- tm_map(clean_corpus, removePunctuation, preserve_intra_word_dashes = TRUE)

clean_corpus <- tm_map(clean_corpus, removeNumbers)
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clean_corpus <- tm_map(clean_corpus, lemmatize_strings, language = "en")
clean_corpus <- tm_map(clean_corpus, stripWhitespace)

clean_corpus <- tm_map(clean_corpus, content_transformer(gsub), pattern = "penny", replacement = "pence",
fixed=TRUE) # Fixes Pence/penny issue

# Test
content(clean_corpus[[9]])
content(clean_corpus[[16]])

# HHH#E

# Create DTM

# Set a minimum frequency
minimumFrequency <- 10

DTM <- DocumentTermMatrix(clean_corpus, control = list(bounds = list(global = c(minimumFrequency, Inf))))

# Select a smaller DTM deleting documents with no contributing terms (some rows are empty after cleaning)

sel_idx <- slam::row_sums(DTM) > 0
DTM <- DTM[sel_idx, ]
text_data_small <- text_data_small[sel_idx, ]

## |dentify optimum number of topics (k)

# Using the Idatuning package

# Create a sequence
topic_search <- ¢(10, 30, 50, 70, 90, 110, 140, 180, 220)

# Run models across sequence

system.time(find_topics3 <- FindTopicsNumber(DTM, topics = topic_search, method = "Gibbs", control =
list(seed=1234, keep=50)))

FindTopicsNumber_plot(find_topics3)

# Plot log-likelihood as a back-up
List_LDA <- lapply(
X =2:100,
FUN = function(x) topicmodels::LDA(DTM, k = x)
)
v_loglik2 <- sapply(

X = List_LDA2,
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FUN = topicmodels::logLik
)

plot(topic_search, v_loglik2, type = "0", main = "Log likelhood of LDA models")

# HHH#E

## Running the model

# State k
k <-70

# compute the LDA model, inference via 1000 iterations of Gibbs sampling
topicModel <- LDA(DTM, k, method="Gibbs", control = list(seed=1234, keep=50, verbose = 25))

# HiH#

## Examining topics

# Get topics by term
topics_beta <- tidy(topicModel, matrix = "beta")

# write.csv(topics_beta, "topics_beta_terms.csv")

top_topics <- topics_beta %>% # We're looking at the top 20 terms per topic
group_by(topic) %>%
slice_max(beta, n = 20) %>%
ungroup() %>%
arrange(topic, -beta)

# Visualisation

# Plotting probability one at a time

top_topics %>%
filter(topic == 24) %>%
mutate(term = reorder_within(term, beta, topic)) %>%
ggplot(aes(beta, term, fill = factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
scale_y_reordered()

# Creating individual plots that can be merged into one layout using ggbupr

topic_1_plot <- top_topics %>%
filter(topic == 1) %>%
mutate(term = reorder_within(term, beta, topic)) %>%
ggplot(aes(beta, term, fill = factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
scale_y_reordered()

topic_3_plot <- top_topics %>%

filter(topic == 3) %>%
mutate(term = reorder_within(term, beta, topic)) %>%
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ggplot(aes(beta, term, fill = factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
scale_y_reordered()
topic_5_plot <- top_topics %>%
filter(topic == 5) %>%
mutate(term = reorder_within(term, beta, topic)) %>%
ggplot(aes(beta, term, fill = factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
scale_y_reordered()
# Put them all together
ggarrange(topic_1_plot, topic_3_plot, topic_5_plot + rremove("x.text"),
|abe|S = C(IIAII, lIBIlI IICII),
ncol = 2, nrow = 2)
# Inspect results)
tmResult <- posterior(topicModel)
attributes(tmResult)
beta <- tmResultSterms # get beta from results
dim(beta) # K distributions over nTerms(DTM) terms
top_10_terms <- terms(topicModel, 10)
top_20_terms <- terms(topicModel, 20)

top_30_terms <- terms(topicModel, 30)

theta <- tmResultStopics

top5termsPerTopic <- terms(topicModel, 5)

topicNames <- apply(top5termsPerTopic, 2, paste, collapse="")

# visualise topic distribution for stated docs
# getting the example IDs

examplelds <- ¢(9, 1137, 14152)
N <- length(examplelds)

# get topic proportions form example documents
topicProportionExamples <- theta[examplelds,]
colnames(topicProportionExamples) <- topicNames

vizDataFrame <- melt(cbind(data.frame(topicProportionExamples), document = factor(1:N)), variable.name =
"topic", id.vars = "document")
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# visualise the three documents' distribution across topics
ggplot(data = vizDataFrame, aes(topic, value, fill = document), ylab = "proportion") +
geom_bar(stat="identity") +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
coord_flip() +
facet_wrap(~ document, ncol = N)
# Show likelihood of which topic is most likely based on the data
# re-rank top topic terms for topic names
topicNames <- apply(lda::top.topic.words(beta, 5, by.score = T), 2, paste, collapse =" ")
# What are the most probable topics in the entire collection?
topicProportions <- colSums(theta) / nDocs(DTM) # mean probablities over all paragraphs
names(topicProportions) <- topicNames # assign the topic names we created before
sort(topicProportions, decreasing = TRUE) # show summed proportions in decreased order

soP <- sort(topicProportions, decreasing = TRUE)

paste(round(soP, 5), ":", names(soP))

topic_probabilities <- paste(round(soP, 5), ":", names(soP))

View(topic_probabilities)
topic_probabilities_df <- as.data.frame(topic_probabilities)

# Filter documents into topics

# Tidy the gamma matrix and transform into a df
document_topic2 <- as.data.frame(tidy(topicModel, matrix = "gamma"))

# Make the document column an integer
document_topic2Sdocument <- as.integer(document_topic2$document)

View(document_topic2)

# Join the df to the original df
df_join2 <-inner_join(text_data_small, document_topic2, by = c("doc_id" = "document"))

# Filter out a specific topic
df_join_topic7_v2 <-filter(df_join2, topic == 7)

View(df_join_topic7_v2) # Every document in the corpus is here, with its probability of belonging to topic 7

# Filter out the top 300

sorted300 <- df_join2 %>%
group_by(topic) %>%
slice_max(gamma, n = 300) %>%
ungroup() %>%
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arrange(topic, -gamma)
# Testing that the filtering has worked.
Topic37 <- df_join2 %>% filter(topic == 37)

test_37 <- sorted300 %>% group_by(topic) %>% arrange(topic, -gamma)

# Repeat above for each topic to be extracted
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11.6 - Moral foundation plots

Overall MF use

 m—

authori
G000 ty

sanctity care
loyalty fairness
 m—
authorita/.vice
500
sanctity.virtue 4500 authority.virtue
4000
3500
3000
2500
. . 2000 .
sanctity.vice care.vice
loyalty.virtue care.virtue
loyalty.vice fairness.vice

fairness.virtue
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Moral Foundation Word Counts
care.vice care.virtue

authority.vice authority.virtue
[ treason - | | arrest- NN fight- tove - [
or order= violence - [N neip- |
refuse- [N control- I win- [ share - [N
insurrection - [N o] = destroy- [N protect - NN
ilegal - [N T:::::_ [ die - chita- [
chaos - I Al attack - [N care - I
% presidential -
rioter - - father - murder - - safe- -
overthrow - governor- violent - motner- [l
sedition - - respect- threat - - feed- .
unlawful - . authority - - threaten - - safety- l
. ' ' ' \ ' i ' ' . i ' ' i
0 50 100 150 200 250 0 100 200 300 0 200 400 0
fairess.vice fairmness virtue alty virtue
ju
fraudulent - fair-
w
T venay- 23] integrity- [ -
< crook - . honest- . rebellion - I
tert- [l tribunal - [l treacherous - | okt
tiar- [l tawyer- [l backstabber- | s ol
racist- . justify - I treachery- | wife- I
cheater- I equal - I backstabbing - | fellow - I
0 200 400 600 0 100 200 300 400 0 200 400 600 0 500 1000 1500
sanctity.vice sanctity.virtue
- H
shit- [ >
el - [ bless - [N
corrupt - jesus- [l
corruption - [N aith - [
damn - - blood - -
disgust- - lord - -
scum- prayer-
virus - [l soul- [l
pandemic- . christian - .
0 200 400 600 0 200 400 600
n

Red box indicates chosen for futher analysis. Not all words relevant.
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11. 7 - Correlations Table (extract)

Key word associations

Patriot Maga 0.14
Antifa 0.12
draintheswamp 0.11
War Civil 0.44
Declare 0.11
God Bless 0.41
Jesus 0.18
Evil 0.18
Faith 0.18
pray 0.18
Fraud Voter 0.26
Election 0.25
Georgia 0.25
Steal Stop 0.31
Election 0.22
Democrat 0.09
Cheat DeKalb 0.12
Democrat 0.11
Lie 0.10
Dominion 0.09
Treason Participant 0.25
Tribunal 0.24
Commit 0.22
Fight War 0.11
Country 0.11
Back 0.10
Battle 0.08
Violence Condone 0.16
Advocate 0.14
Incite 0.14
Antifa 0.14
Kill Unarmed 0.28
Shoot 0.22
Veteran 0.16
Woman 0.16
Murder Unarmed 0.12
Veteran 0.12
Arrest Enrique 0.16
Tarrio 0.14
Traitor Romney 0.18
Grill 0.18
Law Enforcement 0.32
martial 0.22
Riot Loot 0.21
Protest 0.11
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11.8 — Topic list
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11.9 — Supplementary topic plots

Example of probability of topic distribution across three documents
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Example of top terms probabilities within topics
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5x from each topic

11.10 - Dialogical analysis examples codes excerpt
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Example from Topic 4:

Text:

Is this a Civil War of free Americans vs Communist Demtards, or is the beginning of the

Revolution of America throwing off the bonds of our Chinese Communist Party oppressors?

I-position: ‘Free American’, implied conservative
Other/perspective: Democrats, want to bring socialism
Disruption: Contextual election result

Tactic: Stereotype, distrust (Communist, Chinese control)

Example from Topic 17:

Text:
Dirty Impeachable Joe, Has Got To Go!!! Let the "TRUTH" and "HISTORY" of a crime family
flow!!IThe majority of Americans are saying NO, NO, NO!!lEven around the world, the people
are letting out their thoughts about Joe Biden as U.S. President be known. Children and
women worldwide are cringing at the thought of touchy, feely Joe in a position of power and
trust. A man who can't keep his hands out of the personal space of women and children
should "NOT" be the POTUS!!IThe cake depicts the "TRUTH" about Joe Biden.The Villa Villa
Cafe and Bar in Hong Kong published a photo of a custom cake it baked for a customer this
week depicting American presidential candidate Joe Biden sniffing the hair of a distressed
cartoon...#BreitbartNews #HongKong #JoeBiden #pedophiles #incest #NXIVM #ChildAbuse

#CrimesAgainstChildren #CrimesAgainstHumanity #China #Ukraine #PuertoRico?

I-position: Implied conservative, knower of truth
Other/perspective: Joe Biden, implied Democrats
Disruption: Contextual election result

Tactic: Stereotype, stigmatise (Child abuse, crime links)

Example from Topic 18:
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Text:
Kamala Harris plagiarized Martin Luther King Jr. in her recent interview The mainstream

media won’t hold her accountable Could you imagine if a Republican did this?

I-position: Implied conservative

Other/perspective: Democrats, Kamala Harris, wants to cheat to win
Disruption: Contextual election result

Tactic: Distract (Plagiarism issue)

Example from Topic 23:

Text:

Black lives matter and Antifa were bused into DC. They broke windows and one is sitting
inside . A message says mingle with the protesters and get inside the WH.

I-position: Implied conservative
Other/perspective: BLM, want to frame ‘patriots’
Disruption: Violence

Tactic: Distract, deflect/blame

Example from Topic 24:

Text:
Proof. These police working to stage “false flag” with Antifa acting like they are Trump

supporters breaking in White House.

I-position: Implied conservative
Other/perspective: Police, working with Antifa
Disruption: Violence, police response to protests

Tactic: Deflect
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Example from Topic 34:

Text:

When Democrats Revolt; they burn down Small Businesses & shoot people in cold blood for
MONTHS at a time. When Republicans Revolt; We just Storm the Capitol. Barely any damage
& No Destruction.

I-position: Implied conservative
Other/perspective: Democrats (also BLM, Antifa), violent disruptive
Disruption: Violence

Tactic: Distract, whatabouting (contextualising self’s actions)

Example from Topic 38:

Text:
It’s sad but understandable to see the violence in DC today. We have lost confidence in our
election and elected officials. To me there is a very simple fix. VOTER ID!!!With out
confidence that the voters and votes are legitimate this will not end. We need national
election laws for national elections. | understand that the states have their own laws
regarding the election process but they MUST uphold their own laws and not ignore their
own constitution. | pray that the rational leaders will come together and try to solve the

problem. God Bless ????

I-position: Implied conservative, religious
Other/perspective: Democrats, elected officials — Dems want to manipulate to win
Disruption: Election result

Tactic: Distract, Distrusting, denying

Example from Topic 44:

Text:
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Police Pepper Spray Trump Supporters After They Refuse To Arrest BLM Supporter Who
Assaulted WomanThe DC PD is now the uniformed BLM /ANTIFA Uniformed Auxiliary.

I-position: Implied conservative

Other/perspective: Police, BLM/Antifa — Looking to frame Trump supporters
Disruption: Violence, police response

Tactic: Stereotyping police into known group, deflecting

Example from Topic 63:

Text:
I am behind the President 100%.1 will support Eric Trump in his effort to purge the Republican

Party of RINOs, weak Republicans and those who have betrayed us.

I-position: Implied conservative

Other/perspective: RINO (Republican in name only), afraid to call out vote fraud
Disruption: Election, lack of Republican action

Tactic: Stigmatizing, stereotyping, dichotomizing (us/them)

Example from Topic 68:

Text:
MOTHER FUCKER TRAITOR Mike Pence you “don’t believe” you have the authority to reject

votes? Tell that to Thomas Jefferson when he did it while he was V.P. You are a traitor.

I-position: Implied conservative
Other/perspective: Mike Pence, afraid to challenge votes

Disruption: Election result

Tactic: Stigmatizing, dichotomizing (us/them — true American patriots)

90



