Quantitative Methods Reading Group

Fortnightly group for PhD students

The Quantitative Methods Reading Group is a fortnightly gathering of PhD students which was set up in 2017/18.

At each session, one of the attendees will lead the discussion of an article which they found influential for their field or respective PhD topic. These articles can be reviews of existing methods, a newly developed statistical analysis, or a substantive paper using advanced methodology.

For PhD students in later stages of their PhD, this is an excellent opportunity to present their own work, provided that it fits the criteria outlined above. Nevertheless, the presenter does not need to be an expert of the particular field/method, novel and sometimes puzzling applications and approaches can be also proposed for discussion. The topic and discipline of the articles will vary each week, articles can touch upon quantitative applications regarding Big Data, text analysis, causal inference, structural equation modelling, longitudinal analysis etc. 

Fortnightly meetings take place at Columbia House in Seminar room 8.13 (COL8.13) on Tuesdays between 12:30 - 13:30. Complimentary sandwiches are provided for each event. If this piqued your interest please get in touch with Tom Paskhalis ( who will put you on the Reading Group’s mailing list.

2018/19 reading list

Summer Term

30th April
Cranmer, S. J., Leifeld, P., McClurg, S. D., & Rolfe, M. (2017). Navigating the Range of Statistical Tools for Inferential Network Analysis. American Journal of Political Science, 61(1), 237–251.

Lent Term

26th March
Wiklund, J., & Shepherd, D. A. (2011). Where to from here? EO-as-experimentation, failure, and distribution of outcomes. Entrepreneurship: Theory and Practice, 35(5), 925–946.

12th March
Kim, Y., & Muthén, B. O. (2009). Two-Part Factor Mixture Modeling: Application to an Aggressive Behavior Measurement Instrument. Structural Equation Modeling: A Multidisciplinary Journal, 16(4), 602–624.

26th February
Voelkle, M. C., Gische, C., Driver, C. C., & Lindenberger, U. (2019). The Role of Time in the Quest for Understanding Psychological Mechanisms. Multivariate Behavioral Research.

29th January
Rozenas, A. (2017). Detecting Election Fraud from Irregularities in Vote-Share Distributions. Political Analysis, 25(1), 41–56;

15th January

Berk, R., Heidari, H., Jabbari, S., Kearns, M., & Roth, A. (2018). Fairness in Criminal Justice Risk Assessments: The State of the Art. Sociological Methods and Research, OnlineFirst, 1–42.

Michaelmas Term

11th December
Lazer, D., & Radford, J. (2017). Data Ex Machina: Introduction to Big Data. Annual Review Of Sociology, 43(1), 19–39.

27th November
Callaway, B., & Sant’Anna, P. H. C. (2018). Difference-in-Differences With Multiple Time Periods and an Application on the Minimum Wage and Employment. Arxiv.

13th November
Bianconcini, S., & Bollen, K. A. (2018). The Latent Variable-Autoregressive Latent Trajectory Model: A General Framework for Longitudinal Data Analysis. Structural Equation Modeling, 25(5), 791–808.

30th October
Berry, C.R. & Fowler A. (2018). Leadership or Luck? Randomization Inference for Leader Effects. Working paper.

16th October 
Buchanan, A. L., Hudgens, M. G., Cole, S. R., Mollan, K. R., Sax, P. E., Daar, E. S., … Mugavero, M. J. (2018). Generalizing evidence from randomized trials using inverse probability of sampling weights. Journal of the Royal Statistical Society. Series A: Statistics in Society, Early View.

2nd October
Marquardt, K. L., & Pemstein, D. (2018). IRT Models for Expert-Coded Panel Data. Political Analysis, FirstView.


2017/8 reading list

An, W., Winship, C. (2017). Causal Inference in Panel Data With Application to Estimating Race-of-Interviewer Effects in the General Social Survey. Sociological Methods & Research, 46(1), 68-102.

Bell, A. & Jones, K. (2015). Explaining Fixed Effects: Random Effects Modeling of Time-Series Cross-Sectional and Panel Data. Political Science Research and Methods, 3, 133-153.

Kim, I. S., Londregan, J., & Ratkovic, M. (2018). Estimating Spatial Preferences from Votes and Text. Political Analysis, 26(2), 210–229.

King, G., Lam, P., & Roberts, M. E. (2017). Computer-Assisted Keyword and Document Set Discovery from Unstructured Text. American Journal of Political Science, 61, 1–18.

Klasnja, M., Titunik, R. (2017). The Incumbency Curse: Weak Parties, Term Limits, and Unfulfilled Accountability. American Political Science Review, 111(1), 129-148.

Na, C., Loughran, T.A. & Paternoster, R. (2015). On the Importance of Treatment Effect Heterogeneity in Experimentally-Evaluated Criminal Justice Interventions. Journal of Quantitative Criminology, 31, 289-310.

Nosek, B.A. et al. (2015). Promoting an open research culture. Science, 348(6242):1422-1425. 

Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., Rand, D. G. (2014). Structural Topic Models for Open-Ended Survey Responses. American Journal of Political Science, 58(4), 1064–1082.

Rosenfeld, B., Imai, K., & Shapiro, J. N. (2016). An empirical validation study of popular survey methodologies for sensitive questions. American Journal of Political Science, 60(3), 783-802.

Wang, X. & Wang, Y. (2018). "'Say Goodbye to the Good Old Days': Anti-corruption, Uncertainty and Firm Behaviors in China". Working paper.

Watanabe, K. (2017). Measuring news bias: Russia’s official news agency ITAR-TASS’ coverage of the Ukraine crisis. European Journal of Communication, 32, 224-241.

Zubizarreta, J.R., Keele, L. (2017). Optimal Multilevel Matching in Clustered Observational Studies: A Case Study of the Effectiveness of Private Schools Under a Large-Scale Voucher System, Journal of the American Statistical Association, 112:518, 547-560.