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CHAPTER

1

PROBABILITY SPACES

1.1 Preliminary considerations

1. A probability space is a triplet (Ω,F ,P) that can be described informally as follows:

- Ω is the sample space. We can think of Ω as the set of all possible outcomes in “nature”
or in a “random experiment” that we want to model. In this context, “nature”
chooses exactly one point ω ∈ Ω, but we do not know which one, otherwise, we
would have no uncertainty and we would know exactly what is going to happen.

- F is a collection of event of interests. An event is a subset of Ω, so F is a set of
subsets of Ω. We can think of F as all the information that “nature” has or all the
information that is relevant to the modelling of a “random experiment”.

- P is a function that assigns a probability P(A) to each event A ∈ F . In particular,
given an event A ∈ F , P(A) is a number in the interval [0, 1] that represents our
belief on how likely the event A is to occur.

Mathematically, a probability space is a triplet (Ω,F ,P) such that

- Ω is a set,

- F is a σ-algebra on Ω (see Definition 1.5 below), and

- P is a probability measure on (Ω,F) (see Definition 1.20 below).
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2. Example. Consider tossing a coin that lands heads with probability p ∈ (0, 1) twice. In
this context, we can choose the sample space, which is the set of all possible outcomes,
to be the set Ω = {ω1, ω2, ω3, ω4}, where, e.g.,

ω1 identifies with observing heads first and then heads,

ω2 identifies with observing heads first and then tails,

ω3 identifies with observing tails first and then heads, and

ω4 identifies with observing tails first and then tails.

The family of all events of interest that can arise in this random experiment is the set

F =
{

Ω, ∅, {ω1}, {ω2}, {ω3}, {ω4}, {ω1, ω2}, {ω1, ω3}, {ω1, ω4},
{ω2, ω3}, {ω2, ω4}, {ω1, ω2, ω3}, {ω1, ω2, ω4}, {ω2, ω3, ω4}

}
.

In fact, the elements of this set have a simple description in everyday language. For
instance, {ω1, ω2} is the event that we observe heads in the first toss, {ω2} is the event
that the coin lands heads first and then tails, Ω is the event that we observe something,
and ∅ is the event that we observe nothing.

Based on everyday intuition, we can assign a probability P(A) to each event A ∈ F in a
consistent way, so that, e.g., P

(
{ω3, ω4}

)
= 1− p, while P

(
{ω1}

)
= p2.

3. Example. Consider drawing a number from the interval (0, 1) in a completely random
way. In this case, we can identify the sample space Ω with (0, 1), and every subset A
of Ω is an event: A identifies with the event that the number that we draw happens to
be in the set A. Given any a, b ∈ (0, 1) such that a < b, intuition suggests that the
probability of the event (a, b) is b− a, because the number that we draw is equally likely
to be anywhere in (0, 1). In light of this simple observation, any event (i.e., subset of Ω)
should have probability equal to its “length”.

The question that thus arises is: can we assign a length to every subset of (0, 1)? The
answer is no: it is not possible to assign a length to every subsets of (0, 1) in a consistent
way. As a result, we cannot assign a probability to every subset of Ω ≡ (0, 1). To develop
a meaningful theory, we therefore need to restrict our attention to those subsets of Ω that
do have a well-defined length.

This example illustrates why we need to consider families F of events of “interest” (in
the context of this example, such families should include only events that do have a well-
defined length). Is this a serious restriction? Not really: it turns out that we can always
choose an appropriate collection F of events of “interest” that contains every event of
practical interest.
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1.2 A subset of (0, 1)(0, 1)(0, 1) to which we can assign no length

4. Example. Suppose that we can assign a length to every subset of the real line, and
denote by L(A) the length of the set A ⊆ R, so that, e.g.,

L
(
(a, b)

)
= b− a, L

(
{a}
)

= 0 and L
(
(−∞, a)

)
= L

(
(a,∞)

)
=∞ (1.1)

for all real numbers a < b. Intuition suggests that the length function L should be
positive, i.e., L(A) ≥ 0 for all A ⊆ R, increasing in the sense that, given any sets
A,B ⊆ R,

A ⊆ B ⇒ L(A) ≤ L(B), (1.2)

and countably additive, so that, if (An) is a sequence of pairwise disjoint subsets of R,
i.e., Ai ∩ Aj = ∅ for all i 6= j, then

L

(
∞⋃
n=1

An

)
=
∞∑
n=1

L(An). (1.3)

Also, the length of a set should be translation invariant, so that

L(Aa) = L(A) for all A ⊆ R and a ∈ R, (1.4)

where Aa is the translation of A by a, which is defined by Aa = {a+ x | x ∈ A}.
Now, we consider the equivalence relation ∼ on the real line defined by

x ∼ y if x− y ∈ Q,

and split the interval (0, 1) in equivalence classes. In this context, the numbers x, y ∈ (0, 1)
belong to the same equivalence class if and only if x ∼ y, i.e., if and only if x − y ∈ Q,
while, if the numbers x, y ∈ (0, 1) belong to different equivalence classes, then x 6∼ y, i.e.,
x − y /∈ Q. Also, the equivalence classes are pairwise disjoint, so each number in (0, 1)
belongs to exactly one equivalence class.

By appealing to the axiom of choice, we next consider a set C that contains exactly one
representative from each equivalence class. Since C contains only one point from each
equivalence class, any distinct points x, y ∈ C belong to different equivalence classes, so
x 6∼ y. Furthermore, given any point z ∈ (0, 1), if x is the representative in C of the
equivalence class in which z belongs, then z ∼ x, so there exists q ∈ Q such that z = q+x.
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In view of these observations, it follows that, if we define

Cq = {q + x | x ∈ C} , for q ∈ (−1, 1) ∩Q,

then

Cq1 ∩ Cq2 = ∅ for all q1 6= q2, (1.5)

and

(0, 1) ⊆
⋃

q∈(−1,1)∩Q

Cq ⊆ (−1, 2). (1.6)

Now, we argue by contradiction to conclude that the set C has no length. If L(C) = 0,
then

1
(1.1)
= L

(
(0, 1)

) (1.2),(1.6)

≤ L

 ⋃
q∈(−1,1)∩Q

Cq

 (1.3),(1.5)
=

∑
q∈(−1,1)∩Q

L(Cq)
(1.4)
=

∑
q∈(−1,1)∩Q

L(C) = 0,

which is not possible. So, if L(C) exists, we must have L(C) > 0 because L is a positive
function. In this case, we can see that

3
(1.1)
= L

(
(−1, 2)

) (1.2),(1.6)

≥ L

 ⋃
q∈(−1,1)∩Q

Cq

 (1.3),(1.5)
=

∑
q∈(−1,1)∩Q

L(Cq)
(1.4)
=

∑
q∈(−1,1)∩Q

L(C) =∞,

which cannot be true. We conclude that L(C) does not exist.

1.3 σσσ-algebras

5. Definition. A σ-algebra on Ω is a collection F of subsets of Ω such that

(i) Ω ∈ F ,
(ii) A ∈ F ⇒ Ac ≡ Ω \ A ∈ F ,

(iii) A1, A2, . . . , An, . . . ∈ F ⇒
∞⋃
n=1

An ∈ F .

6. Example. The power set P(Ω) of any set Ω, namely, the collection of all subsets of Ω,
is a σ-algebra on Ω.
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7. Lemma. Given a set Ω and a σ-algebra F on Ω,

∅ ∈ F , (1.7)

and A1, A2, . . . , An, . . . ∈ F ⇒
∞⋂
n=1

An ∈ F . (1.8)

In particular, a σ-algebra is stable under countable set operations .

Proof. Since ∅ = Ωc, (1.7) follows immediately by properties (i) and (ii) of Definition 1.5.
To prove (1.8), we consider any sequence of events A1, A2, . . . , An, . . . ∈ F , and we observe
that

∞⋂
n=1

An =

(
∞⋃
n=1

Acn

)c

.

The event appearing on the right hand side of this expression belongs to F because

An ∈ F for all n ≥ 1 ⇒ Acn ∈ F for all n ≥ 1 (by property 5.(ii))

⇒
∞⋃
n=1

Acn ∈ F (by property 5.(iii))

⇒

(
∞⋃
n=1

Acn

)c

∈ F (by property 5.(ii))

and (1.8) follows.

8. Lemma. Let {Fi, i ∈ I} be a family of σ-algebras on Ω indexed by a set I 6= ∅. The
collection

⋂
i∈I Fi is a σ-algebra on Ω.

Proof. We have to check the defining properties of a σ-algebra. To this end, we note
that the family of events

⋂
i∈I Fi satisfies property (iii) of Definition 1.5 because

A1, A2, . . . ,An, . . . ∈
⋂
i∈I

Fi

⇒ A1, A2, . . . , An, . . . ∈ Fi for all i ∈ I

⇒
∞⋃
n=1

An ∈ Fi for all i ∈ I (because each Fi is a σ-algebra)

⇒
∞⋃
n=1

An ∈
⋂
i∈I

Fi.

Similarly, we can verify properties (i) and (ii) of Definition 1.5.
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9. Given two σ-algebras F and G, the collection of events F∪G is not necessarily a σ-algebra.
To see this, it suffices to consider an example such as the following.

Example. Suppose that Ω = {1, 2, 3, 4}, and let

F =
{

Ω, ∅, {1, 2}, {3, 4}
}
,

G =
{

Ω, ∅, {1}, {2, 3, 4}
}
.

Then

F ∪ G =
{

Ω, ∅, {1, 2}, {3, 4}, {1}, {2, 3, 4}
}

is not a σ-algebra. To see this, consider the events {3, 4} and {1}, which both belong to
F ∪ G, and observe that

{3, 4} ∪ {1} = {1, 3, 4} /∈ F ∪ G.

10. Definition. Given a collection C of subsets of Ω, the σ-algebra σ(C) on Ω generated by
C is the smallest σ-algebra on Ω containing C. It is the intersection of all σ-algebras on
Ω which have C as a subclass.

11. Observe that, if C is a family of sets and H is a σ-algebra, then

C ⊆ H ⇒ σ(C) ⊆ σ(H) = H,

because, by definition, σ(C) is the intersection of all σ-algebras containing C. In other
words, σ(C) is a subset of any σ-algebra containing C.

12. Example. Given a set A ⊆ Ω, the smallest σ-algebra containing A is {Ω, ∅, A,Ac}.

13. Example. Suppose that Ω = {1, 2, 3, 4}, and let

C =
{
{1}, {1, 3, 4}

}
.

Then

σ(C) =
{

Ω, ∅, {1}, {1, 3, 4}, {2, 3, 4}, {2}, {1, 2}, {3, 4}
}
.

14. Example. Suppose that Ω = R, and let

C =
{

(−2, 6), [0,
√

3)
}
.

In this case,

σ(C) =
{
R, ∅, A,B,C,A ∪B,A ∪ C,B ∪ C

}
.

where

A = (−∞,−2] ∪ [6,∞), B = (−2, 0) ∪ [
√

3, 6) and C = [0,
√

3).
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15. Definition. The Borel σ-algebra B(R) on R is the σ-algebra on R generated by the
family of all open intervals (a, b), i.e.,

B(R) = σ
(
{(a, b) | a, b ∈ R, a < b}

)
.

More generally, consider any topological space S. The Borel σ-algebra B(S) on S is the
σ-algebra on S generated by the family of all open sets, i.e.,

B(S) = σ
(
{A ⊂ S | A is open}

)
.

The Borel σ-algebra is very important: it contains every subset of R that is of practical
interest!

16. Example. B(R) = σ(C), where

C =
{

(−∞, a] | a ∈ R
}
.

Proof. In view of the Definition 1.15 of the Borel σ-algebra on R and the observation in
Paragraph 1.11 above, we can prove this claim as follows.

(i) B(R) ⊆ σ(C) will follow if we show that (a, b) ∈ σ(C) for all real numbers a < b.

This is true because

(a, b) = (a,∞) ∩ (−∞, b)

= (−∞, a]c ∩
∞⋃
n=1

(−∞, b− 1
n
] .

(ii) B(R) ⊇ σ(C) will follow if we show that (−∞, a] ∈ B(R) for every real number a.

This follows from the observation that

(−∞, a] =
∞⋃
m=1

(a−m, a]

=
∞⋃
m=1

∞⋂
n=1

(a−m, a+ 1
n
) .
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1.4 (Probability) measures

17. Definition. A pair (Ω,F), where Ω is a set and F is a σ-algebra on Ω, is called measurable
space.

18. Definition. Let (S,S) be a measurable space, so that S is a σ-algebra on the set S. A
measure defined on (S,S) is a function µ : S → [0,∞] that is countably additive, i.e., it
is such that

(i) µ(∅) = 0, and

(ii) if A1, A2, . . . , An, . . . ∈ S is any sequence of pairwise disjoint sets

(i.e., Ai ∩ Aj = ∅ for all i 6= j), then

µ

(
∞⋃
n=1

An

)
=
∞∑
n=1

µ(An).

The triplet (S,S, µ) is then called a measure space.

19. Definition. Given a measure space (S,S, µ), we say that

µ is a probability measure if µ(S) = 1,

µ is a finite measure if µ(S) <∞, and

µ is a σ-finite measure if there is a sequence A1, A2, . . . , An, . . . ∈ S such that

µ(An) <∞ for all n ≥ 1 and
∞⋃
n=1

An = S.

In this course, we will consider only σ-finite measures.

20. Due to its particular interest, we repeat the definition of a probability measure:

Definition. A probability measure defined on a measurable space (Ω,F) is a function
P : F → [0, 1] such that

(i) P(∅) = 0, P(Ω) = 1, and

(ii) if A1, A2, . . . , An, . . . ∈ F is any sequence of pairwise disjoint events

(i.e., Ai ∩ Aj = ∅ for all i 6= j), then

P

(
∞⋃
n=1

An

)
=
∞∑
n=1

P(An).
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21. Lemma. Let (Ω,F ,P) be a probability space. Given any A,B ∈ F ,

if A ⊆ B, then P(A) ≤ P(B), (1.9)

P(Ac) = 1− P(A), (1.10)

P(A ∪B) = P(A) + P(B)− P(A ∩B), (1.11)

P

(
n⋃
i=1

Ai

)
≤

n∑
i=1

P(Ai). (1.12)

Proof. Given any events A ⊆ B,

P(B) = P(A ∪ (B \ A))

= P(A) + P(B \ A)

≥ P(A),

and (1.9) follows. Also, (1.10) follows immediately from the calculations

P(A) + P(Ac) = P(A ∪ Ac)
= P(Ω)

= 1.

Given any events A and B, if we define

K = A ∩Bc, L = A ∩B, M = Ac ∩B,

then K, L, M are pairwise disjoint,

A = K ∪ L and B = L ∪M.

As a consequence,

P(A ∪B) = P(K ∪ L ∪M)

= P(K) + P(L) + P(M)

= P(K) + P(L) + P(M) + P(L)− P(L)

= P(K ∪ L) + P(M ∪ L)− P(L)

= P(A) + P(B)− P(A ∩B),

which proves (1.11). In view of (1.11) and the positivity of probabilities,

P(A ∪B) ≤ P(A) + P(B).

Using this inequality and a straightforward induction argument, we obtain (1.12).
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22. Lemma (“Continuity” of a measure). Let (S,S, µ) be a measure space. Given an
increasing sequence A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · · of events in S, we can define the limit of
the sequence by

lim
n→∞

An =
∞⋃
n=1

An.

In this context,

µ
(

lim
n→∞

An

)
= lim

n→∞
µ(An). (1.13)

Similarly, if A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · is a decreasing sequence of events in S, the limit
of the sequence is defined by

lim
n→∞

An =
∞⋂
n=1

An.

In this case, if µ(A1) <∞, then

µ
(

lim
n→∞

An

)
= lim

n→∞
µ(An). (1.14)

Proof. Given an increasing sequence A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · · of events in S, let
B1 = A1, and define recursively Bn = An \ An−1, for n ≥ 2. By construction, the events
B1, B2, . . . , Bn, . . . are pairwise disjoint,

An =
n⋃
k=1

Bk and
∞⋃
n=1

An =
∞⋃
k=1

Bk.

As a consequence,

µ
(

lim
n→∞

An

)
= µ

(
∞⋃
n=1

An

)

= µ

(
∞⋃
k=1

Bk

)

=
∞∑
k=1

µ(Bk)

= lim
n→∞

n∑
k=1

µ(Bk)

= lim
n→∞

µ

(
n⋃
k=1

Bk

)
= lim

n→∞
µ(An).
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Consider any decreasing sequence A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · of events in S such that
µ(A1) <∞. Since ∅ ⊆ A1 \ A2 ⊆ · · · ⊆ A1 \ An ⊆ · · · ,

µ

(
∞⋃
n=1

A1 \ An

)
= lim

n→∞
µ(A1 \ An).

Noting that

∞⋃
n=1

A1 \ An = A1 \
∞⋂
n=1

An,

we can see that this implies that

µ(A1)− µ

(
∞⋂
n=1

An

)
= lim

n→∞

[
µ(A1)− µ(An)

]
,

which establishes (1.14).

23. In the previous result, the validity of (1.14) relies heavily on the assumption µ(A1) <∞
(in fact, on the assumption that µ(Ak) <∞, for some k ≥ 1). To appreciate this claim,
we consider the following example.

Example. Suppose that S = R, S = B(R) and µ = L, where L is the Lebesgue measure
that maps each set C ∈ B(R) to its length L(C). If we define An = [n,∞), for n ≥ 1,
then we can see that

µ
(

lim
n→∞

An

)
= L

(
∞⋂
n=1

[n,∞)

)
= L(∅) = 0 <∞ = lim

n→∞
L
(
[n,∞)

)
= lim

n→∞
µ(An).

1.5 Exercises

1. Suppose that Ω = R. Which of the following families of sets are σ-algebras on Ω?

(i) F =
{

Ω, ∅, (−∞, a], (b,∞) | a, b ∈ R
}

;

(ii) F =
{
A ⊆ R | either A or Ac is countable

}
;

(iii) F =
{
R, ∅, (−∞, 5], (5,∞), (−∞, 3), [3,∞), [3, 5], (−∞, 3) ∪ (5,∞)

}
.

2. Find the σ-algebra on Ω generated by C if

(i) Ω = R and C =
{

(−20,
√

2), (−15,∞)
}

;

(ii) Ω = R and C =
{

(1, 2], {2}
}

;

(iii) Ω = {1, 2, 3, 4} and C =
{
∅, {2, 3}

}
;

(iv) Ω = {1, 2, 3, 4} and C =
{
{3}, {2, 3, 4}

}
.
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3. Consider a measurable space (Ω,F) and any set Ω′ ⊆ Ω. Prove that the family of sets

H =
{
A ∩ Ω′ | A ∈ F

}
is a σ-algebra on Ω′.

4. Let (Ω,F ,P) be a probability space. Given any A,B ∈ F , derive an expression for
each of the probabilities

P(A \B), P
(
(A ∪B)c

)
and P

(
(A ∪B) \ (A ∩B)

)
in terms of P(A), P(B) and P(A ∩B).

5. (First Borel-Cantelli lemma.) Consider a probability space (Ω,F ,P) and a sequence
of events A1, A2, . . . , An, . . . ∈ F such that

∞∑
n=1

P(An) <∞. (1.15)

Prove that

P

(
∞⋂
n=1

∞⋃
m=n

Am

)
= 0. (1.16)

Note: The event
⋂∞
n=1

⋃∞
m=nAm is also called “An infinitely often (i.o.)” and is

denoted by “lim supn→∞An”.

Hint : Observe that the sequence of events Bn :=
⋃∞
m=nAm is decreasing, and use

the “continuity” of a probability measure.
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CHAPTER

2

RANDOM VARIABLES AND
DISTRIBUTION FUNCTIONS

2.1 Random variables

1. Consider the random choice of a person from among N people. Assuming that all people
in the group are equally likely to be chosen,

Ω = {ω1, . . . , ωN} , F = P(Ω) and P
(
{ωi}

)
=

1

N
, for i = 1, . . . , N,

where ωi is the i-th representative of the group and P(Ω) is the power set of Ω (i.e., the
set of all subsets of Ω), provide an appropriate probability space.

There are many quantities that can be associated with this probability space. For exam-
ple, each individual ω ∈ Ω is associated with their height X(ω), their weight Y (ω) or their
blood type Z(ω). Each of these quantities is a random variable. The random variables
X and Y take values in the set of positive real numbers, while the random variable Z
takes values in the set of all possible blood types.

Since mathematical modelling involves mathematical objects, we concentrate our atten-
tion on random variables that take values in a space of mathematical objects such as,
e.g., the real numbers R or the Euclidean space Rn.

15



After the random choice has been made, the value of every random variable is known. On
the other hand, before the random choice happens, every random variable is a function
on Ω with values in the appropriate space: each individual ω ∈ Ω is associated with a
height X(ω), a weight Y (ω) and a blood type Z(ω).

2. Generalising the example above, a real-valued “random variable” X defined on a proba-
bility space (Ω,F ,P) is a function mapping Ω into R. Accordingly, each sample ω ∈ Ω
is associated with a unique X(ω) ∈ R.

We view random variables as functions on the sample space Ω rather than identify them
with their eventually observed value because probability theory is concerned with
the future.

3. The distribution of a “random variable” X is of fundamental importance. In particular,
we are naturally interested in knowing the probability of X taking values in a given set
A. For instance, we are interested in knowing the probability of the events

{X ∈ A} =
{
ω ∈ Ω | X(ω) ∈ A

}
, for A ∈ B(R),

or

{X ≤ a} =
{
X ∈ (−∞, a]

}
=
{
ω ∈ Ω | X(ω) ∈ (−∞, a]

}
, for a ∈ R.

Since P(C) is well-defined only for events C ∈ F , these probabilities will be well-defined
only if the relevant events are in F , which gives rise to the requirement (2.1) of the
following definition.

4. Definition. A real-valued random variable X is any function X : Ω→ R such that

{X ∈ A} =
{
ω ∈ Ω | X(ω) ∈ A

}
∈ F for every set A ∈ B(R), (2.1)

where B(R) is the Borel σ-algebra on R.

5. Definition. Given a measurable space (S,S), an (S,S)-valued random variable X defined
on a measurable space (Ω,F) is a function mapping Ω into S such that

{X ∈ A} =
{
ω ∈ Ω | X(ω) ∈ A

}
∈ F for every set A ∈ S. (2.2)
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6. Lemma. Consider two measurable spaces (Ω,F) and (S,S), and a family of sets C such
that σ(C) = S. If a function X : Ω→ S satisfies

{X ∈ A} =
{
ω ∈ Ω | X(ω) ∈ A

}
∈ F for all A ∈ C, (2.3)

then X is an (S,S)-valued random variable.

Proof. We will prove that X is an (S,S)-valued random variable if we show that

{X ∈ A} ∈ F for all A ∈ S,

or equivalently, if we show that{
A ∈ S | {X ∈ A} ∈ F

}
= S. (2.4)

To this end, we define

H =
{
A ∈ S | {X ∈ A} ∈ F

}
,

and we note that

C ⊆ H ⊆ S, (2.5)

where the first inclusion follows thanks to (2.3).

Furthermore, we note that H is a σ-algebra on S, because:

(i) S ∈ H because {X ∈ S} = Ω ∈ F .

(ii) Given an event A ∈ H,

{X ∈ S \ A} = Ω \ {X ∈ A} ∈ F ,

so, S \ A ∈ H.

(iii) Given a sequence of events A1, A2, . . . , An, . . . ∈ H,{
X ∈

∞⋃
n=1

An

}
=
∞⋃
n=1

{X ∈ An} ∈ F ,

so,
⋃∞
n=1 An ∈ H.

Now, in view of the assumption that σ(C) = S, (2.5), and the fact thatH, S are σ-algebras
on S, we can see that

S = σ(C) ⊆ σ(H) = H ⊆ S,

which proves that H = S, and establishes (2.4).
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7. Lemma. Suppose that X and Y are real-valued random variables defined on a mea-
surable space (Ω,F), and let λ be a real number. Then, X + Y , XY and λX are all
real-valued random variables.

Proof. In view of Lemma 2.6 and the fact that the family of sets

C1 =
{

(a,∞) | a ∈ R
}

generates the Borel σ-algebra, i.e., σ(C1) = B(R), we will prove that the sum X + Y of
two random variables X and Y is also a random variable if we show that{

X + Y > a
}

=
{
ω ∈ Ω | X(ω) + Y (ω) > a

}
∈ F for all a ∈ R. (2.6)

To this end, we note that, given any ω ∈ Ω and any a ∈ R, X(ω) > a− Y (ω) if and only
if we can find a rational number q such that X(ω) > q > a− Y (ω). Therefore,{
ω ∈ Ω | X(ω) + Y (ω) > a

}
=
⋃
q∈Q

{
ω ∈ Ω | X(ω) > q > a− Y (ω)

}
=
⋃
q∈Q

({
ω ∈ Ω | X(ω) > q

}
∩
{
ω ∈ Ω | Y (ω) > a− q

})
.

However, the expression on the right hand side of this expression is a countable union of
events in F (because X and Y are random variables), and (2.6) follows.

Now, we use Lemma 2.6 and the fact that the family of sets

C2 =
{

(−∞, a] | a ∈ R
}

generates the Borel σ-algebra B(R) to show that, given a constant λ ∈ R and a random
variable X, the function λX mapping Ω into R is a random variable by proving that

{λX ≤ a} =
{
ω ∈ Ω | λX(ω) ≤ a

}
∈ F for all a ∈ R. (2.7)

Indeed, given any a ∈ R,

{
ω ∈ Ω | λX(ω) ≤ a

}
=


{
ω ∈ Ω | X(ω) ≤ a/λ

}
, if λ > 0,

∅, if λ = 0 and a < 0,

Ω, if λ = 0 and a ≥ 0,{
ω ∈ Ω | X(ω) ≥ a/λ

}
, if λ < 0.

All of the events on the right hand side of this expression belong to F (because X is a
random variable), and (2.7) follows.
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Similarly, if X is a random variable, then, given any a ∈ R,

{X2 ≤ a} =
{
ω ∈ Ω | X2(ω) ≤ a

}
=

{
∅, if a < 0,{
ω ∈ Ω | X(ω) ∈ [−

√
a,
√
a]
}
, if a ≥ 0.

Since either of the two events appearing on the right hand side of this expression belong
to F (because X is a random variable), it follows that X2 is a random variable.

Using what we have proved up to now, we can see that, given any random variables X
and Y , the product XY is also a random variable because the identity

XY =
1

2
(X + Y )2 − 1

2
X2 − 1

2
Y 2

expresses XY as a sum of random variables.

8. Lemma. Suppose that X1, X2, . . . , Xn, . . . is a sequence of real-valued random variables
defined on a measurable space (Ω,F). The functions

inf
n≥1

Xn, sup
n≥1

Xn, lim inf
n→∞

Xn and lim sup
n→∞

Xn

mapping Ω into [−∞,∞], defined by(
inf
n≥1

Xn

)
(ω) = inf

n≥1
Xn(ω),

(
sup
n≥1

Xn

)
(ω) = sup

n≥1
Xn(ω),(

lim inf
n→∞

Xn

)
(ω) = lim inf

n→∞
Xn(ω) and

(
lim sup
n→∞

Xn

)
(ω) = lim sup

n→∞
Xn(ω),

respectively, are
(
[−∞,∞],B([−∞,∞])

)
-valued random variables, where B

(
[−∞,∞]

)
is

the Borel σ-algebra on [−∞,∞], so that

B
(
[−∞,∞]

)
= σ

({
[−∞, a] | a ∈ [−∞,∞]

})
⊇ B(R). (2.8)

Furthermore, {
ω ∈ Ω | lim

n→∞
Xn(ω) exists in R

}
∈ F . (2.9)

Proof. In view of Lemma 2.6 and (2.8), we can see that the inclusion{
sup
n≥1

Xn ≤ a

}
=

{
ω ∈ Ω | sup

n≥1
Xn(ω) ≤ a

}
=
∞⋂
n=1

{ω ∈ Ω | Xn(ω) ≤ a} ∈ F for all a ∈ [−∞,∞],

implies that supn≥1Xn is an
(
[−∞,∞],B([−∞,∞])

)
-valued random variable.
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Recalling that, if Z is a random variable, then −Z is also a random variable (see
Lemma 2.7), we can see that the result we have just proved and the identity

inf
n≥1

Xn = − sup
n≥1

(−Xn)

imply that infn≥1Xn is an
(
[−∞,∞],B([−∞,∞])

)
-valued random variable.

If we define

Zn = inf
k≥n

Xk and Zn = sup
k≥n

Xk, for n ≥ 1,

then Zn and Zn are
(
[−∞,∞],B([−∞,∞])

)
-valued random variables for all n ≥ 1. It

follows that

lim inf
n→∞

Xn = lim
n→∞

inf
k≥n

Xk = sup
n≥1

inf
k≥n

Xn = sup
n≥1

Zn

and

lim sup
n→∞

Xn = lim
n→∞

sup
k≥n

Xk = inf
n≥1

sup
k≥n

Xk = inf
n≥1

Zn

are
(
[−∞,∞],B([−∞,∞])

)
-valued random variables.

Finally, we note that (2.9) follows immediately from the identity{
ω ∈ Ω | lim

n→∞
Xn(ω) exists in R

}
=
{
ω ∈ Ω | lim sup

n→∞
Xn(ω) <∞

}
∩
{
ω ∈ Ω | lim inf

n→∞
Xn(ω) > −∞

}
∩
{
ω ∈ Ω |

(
lim sup
n→∞

Xn − lim inf
n→∞

Xn

)
(ω) = 0

}
and the fact that the events on the right-hand side of this expression belong to F .

2.2 σσσ-algebras generated by random variables

9. Definition. The σ-algebra σ(X) generated by a real-valued random variable X, namely,
the information set σ(X) associated with the observation of X, is the σ-algebra defined
by

σ(X) =
{
{X ∈ A} | A ∈ B(R)

}
. (2.10)

10. Definition. The σ-algebra σ(X) generated by an (S,S)-valued random variable X,
namely, the information set σ(X) associated with the observation of X, is the collection
of all sets {X ∈ A} =

{
ω ∈ Ω | X(ω) ∈ A

}
, for A ∈ S, i.e.,

σ(X) =
{
{X ∈ A} | A ∈ S

}
. (2.11)
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11. Lemma. The family of events σ(X) defined by (2.10) is indeed a σ-algebra on Ω.

Proof. We use the fact that B(R) is a σ-algebra on R to check that σ(X) satisfies the
three properties that characterise a σ-algebra on Ω:

(i) Ω ∈ σ(X) because Ω = {X ∈ R} and R ∈ B(R).

(ii) Let any event C ∈ σ(X). We need to show that Ω \ C ∈ σ(X).

To this end, observe that the definition (2.10) of σ(X) implies that there exists
A ∈ B(R) such that

C = {X ∈ A} ≡
{
ω ∈ Ω | X(ω) ∈ A

}
.

Now, we calculate

Ω \ C = Ω \
{
ω ∈ Ω | X(ω) ∈ A

}
=
{
ω ∈ Ω | X(ω) /∈ A

}
=
{
ω ∈ Ω | X(ω) ∈ R \ A

}
= {X ∈ R \ A} ∈ σ(X),

because R \ A ∈ B(R).

(iii) Consider any sequence of events C1, C2, . . . , Cn, . . . ∈ σ(X). We need to prove that⋃∞
n=1Cn ∈ σ(X).

Since Cn ∈ σ(X) for all n, the definition (2.10) of σ(X) implies that there exists a
sequence of events A1, A2, . . . , An, . . . ∈ B(R) such that

Cn = {X ∈ An} ≡
{
ω ∈ Ω | X(ω) ∈ An

}
for all n = 1, 2, . . . .

Now, we calculate

∞⋃
n=1

Cn =
∞⋃
n=1

{
ω ∈ Ω | X(ω) ∈ An

}
=

{
ω ∈ Ω | X(ω) ∈

∞⋃
n=1

An

}
=

{
X ∈

∞⋃
n=1

An

}
∈ σ(X),

because
⋃∞
n=1 An ∈ B(R).

12. It is worth stressing that the information set σ(X) is associated with the random variable
X and not with its eventually observed value. To appreciate this comment, we consider
the following example.

Suppose that Ω = {1, 2, 3, 4, 5} and F = P(Ω). Also, let A = {1, 2} and let X be the
random variable defined by

X(ω) = 1A(ω) =

{
1, if ω ∈ A,
0, if ω /∈ A,

for ω ∈ Ω.
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We can check that, in this case,

σ(X) = {Ω, ∅, A,Ac} =
{

Ω, ∅, {1, 2}, {3, 4, 5}
}
.

Before observing the actual value of X, we have certainty that we will be able to say
whether each event in this information set has occurred or not as soon as we observe X.
Furthermore, there is no event outside this information set for which we can have such a
certainty.

13. Definition. The σ-algebra generated by a collection of random variables (Xi, i ∈ I),
where I 6= ∅, namely, the information we obtain by the observation of the random vari-
ables in the family (Xi, i ∈ I), is the σ-algebra

σ
(
Xi, i ∈ I

)
= σ

(
σ(Xi), i ∈ I

)
≡ σ

(⋃
i∈I

σ(Xi)

)
.

14. Definition. Given a random variable X and a σ-algebra H on Ω, we say that X is
H-measurable if σ(X) ⊆ H.

15. With the terminology introduced by this definition, note that:

Given a random variable X, σ(X) is the smallest σ-algebra with respect to which X is
measurable.

Given a family of random variables (Xi, i ∈ I), σ
(
Xi, i ∈ I

)
is the smallest σ-algebra

with respect to which every Xi is measurable.

Informally, this definition says that a random variable X is H-measurable if the informa-
tion provided by X is a subset of the information contained in H.

2.3 Distributions

16. Definition. The distribution function FX of a real-valued random variable X is defined
by

FX(a) = P(X ≤ a) ≡ P
(
X ∈ (−∞, a]

)
, for a ∈ R.

Provided there is no possibility of confusion, we often write F (a) instead of FX(a).

17. Lemma. The following are simple properties of distribution functions:

(i) Every distribution function F is an increasing function.

Proof. Observing that, given any a ≤ b,

{ω ∈ Ω | X(ω) ≤ a} ⊆ {ω ∈ Ω | X(ω) ≤ b},
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we can see that

F (a) = P(X ≤ a) ≤ P(X ≤ b) = F (b).

Here, we have used the monotonicity of a probability measure: given any A,B ∈ F ,

A ⊆ B ⇒ P(A) ≤ P(B).

(ii) Every distribution function F satisfies

lim
a→−∞

F (a) = 0 and lim
a→∞

F (a) = 1.

Proof. Since F is an increasing function, both limits exist. Therefore, we only have to
show that

lim
n→∞

F (−n) = 0 and lim
n→∞

F (n) = 1.

To this end, we first consider the decreasing sequence of events A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · ·
defined by

An = {ω ∈ Ω | X(ω) ≤ −n},

and we observe that
⋂∞
n=1An = ∅. Using the “continuity” of a probability measure, we

can calculate

lim
n→∞

F (−n) = lim
n→∞

P(An) = P

(
∞⋂
n=1

An

)
= P(∅) = 0.

Next, we consider the increasing sequence of events B1 ⊆ B2 ⊆ · · · ⊆ Bn ⊆ · · · defined
by

Bn = {ω ∈ Ω | X(ω) ≤ n}.

and we observe that
⋃∞
n=1 Bn = Ω. In view of the “continuity” of a probability measure,

it follows that

lim
n→∞

F (n) = lim
n→∞

P(Bn) = P

(
∞⋃
n=1

Bn

)
= P(Ω) = 1.

(iii) Every distribution function F is right-continuous.

Proof. Since F is increasing, both of the limits limx↓a F (x) and limx↑a F (x) exist at
every point a ∈ R. Therefore, to see that F is right-continuous we observe that, given
any a ∈ R,

lim
n→∞

F

(
a+

1

n

)
= lim

n→∞
P
(
X ≤ a+

1

n

)
= P

(
∞⋂
n=1

{
X ≤ a+

1

n

})
= P (X ≤ a) = F (a).
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18. Example. Suppose that we roll a fair die once. Let X be the number we observe. The
distribution of X is

F (a) =



0, if a < 1,
1
6
, if 1 ≤ a < 2,

2
6
, if 2 ≤ a < 3,

3
6
, if 3 ≤ a < 4,

4
6
, if 4 ≤ a < 5,

5
6
, if 5 ≤ a < 6,

1, if 6 ≤ a.

19. Example. The distribution function of a random variable X is given by

F (x) =

{
0, if −∞ < x < 0,

1− 0.5e−x, if 0 ≤ x.

We can compute

P(X = 0) = F (0)− F (0−)

= 0.5,

and

P(1 < X ≤ 2) = P(X ≤ 2)− P(X ≤ 1)

= F (2)− F (1)

= 0.5
(
e−1 − e−2

)
.

20. Definition. The joint distribution of n random variables X1, . . . , Xn is defined to be

FX1...Xn(a1, . . . , an) = P(X1 ≤ a1, . . . , Xn ≤ an) = P

(
n⋂
i=1

{
Xi ∈ (−∞, ai]

})
.
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2.4 Discrete random variables

21. Definition. A real-valued random variable X is discrete if it maps Ω into a count-
able subset of R. The probability mass function of a discrete random variable X is the
collection of all pairs (xj, pj) such that

pj = P
(
X = xj

)
> 0. (2.12)

22. In view of (2.12), the distribution function of a discrete random variable X is given by

F (a) =
∑

j such that xj≤a

pj.

Also,

pj = F (xj)− F (xj−).

23. Example. Given an event A ∈ F , the random variable

X = 1A(ω) =

{
1, if ω ∈ A (“success”),

0, if ω ∈ Ac (“failure”),

is called the indicator of A. The probability mass function of this random variable is
given by

p = P
(
X = 1

)
= P

(
1A = 1

)
= P(A) and 1− p = P

(
X = 0

)
= P

(
1A = 0

)
= P(Ac).

We say that such a random variable X is Bernoulli with parameter p.

24. Example. A discrete random variable X has the binomial distribution with parameters
n, p if its probability mass function is characterised by

pj ≡ P
(
X = j

)
=

(
n
j

)
pj(1− p)n−j, for j = 0, 1, . . . , n,

where (
n
j

)
=

n!

j!(n− j)!
.

Here, n is a positive integer and p ∈ (0, 1). We often write X ∼ B(n, p),

Suppose that a coin that lands heads with probability p is tossed n times. If we define
the random variable X to be the total number of heads observed in the n tosses, then X
has the binomial distribution. More generally, the total number of “successes” in a fixed
number of independent trials has the binomial distribution.

This interpretation reflects the fact that a random variable X ∼ B(n, p) has the same
distribution as X1 + X2 + · · · + Xn, where X1, X2, . . . , Xn are independent Bernoulli
random variables, each with parameter p.
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25. Example. A random variable X has the Poisson distribution with parameter λ > 0 if
its probability mass function is given by

pn = P
(
X = n

)
= e−λ

λn

n!
, n = 0, 1, . . . .

2.5 Continuous random variables

26. Definition. A real-valued random variable X is continuous if there exists a function f ,
called the probability density function of X, such that

P
(
X ∈ A

)
=

∫
A

f(x) dx for all A ∈ B(R). (2.13)

27. Since probabilities are positive, every probability density function f satisfies

f(x) ≥ 0 for all x ∈ R.

Since P(Ω) ≡ P(X ∈ R) = 1, every probability density function f satisfies∫ ∞
−∞

f(x) dx = 1.

Also, observe that (2.13) implies

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b) =

∫ b

a

f(x) dx.

28. Example. A random variable X has the uniform distribution if its probability density
function is given by

f(x) =
1

b− a
1[a,b](x) =

{
1
b−a , if a ≤ x ≤ b,

0, if x < a or b < x,

for some constants a < b. Given such a random variable X, we often write X ∼ U(a, b).
We say that X has the standard uniform distribution if a = 0 and b = 1.

29. Example. A random variable X has the exponential distribution with parameter µ > 0
if its probability density function is given by

f(x) =

{
µe−µx, if x ≥ 0,

0, if x < 0.
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30. Example. A random variable X has the normal distribution with mean m and variance
σ2 if its probability density function is given by

f(x) =
1

σ
√

2π
exp

(
−(x−m)2

2σ2

)
.

Here, m ∈ R and σ > 0. Given such a random variable X, we often write X ∼ N (m,σ2).
Normal random variables are also called Gaussian. Also, we say that X has the standard
normal distribution if m = 0 and σ = 1.

The probability distribution function of a normal random variable satisfies

F (a) = Φ

(
a−m
σ

)
,

where Φ is the standard normal distribution function defined by

Φ(a) =
1√
2π

∫ a

−∞
e−

x2

2 dx. (2.14)

To see this, observe first that

F (a) =
1

σ
√

2π

∫ a

−∞
exp

(
−(x−m)2

2σ2

)
dx.

If we make the change of variables y = (x−m)/σ, then

F (a) =
1√
2π

∫ a−m
σ

−∞
exp

(
−y

2

2

)
dy.

= Φ

(
a−m
σ

)
. (2.15)

31. Definition. n real-valued random variables X1, . . . , Xn are said to be jointly continuous
if there exists a function f : Rn → R, called the joint probability density function of
X1, . . . , Xn, such that

P
(
X1 ∈ A1, . . . , Xn ∈ An

)
=

∫
A1

· · ·
∫
An

f(x1, . . . , xn) dx1 · · · dxn

for all A1, . . . , An ∈ B(R).

2.6 Exercises

1. Consider a real-valued random variable X and a function f : R→ R such that{
a ∈ R | f(a) ∈ C

}
∈ B(R) for all C ∈ B(R).

Show that σ
(
f(X)

)
⊆ σ(X), and conclude that f(X) is a random variable.
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2. Suppose that a real-valued random variable X can take only four possible values, i.e.,
suppose that there exist distinct x1, x2, x3, x4 ∈ R such that

X(ω) ∈ {x1, x2, x3, x4} for all ω ∈ Ω.

Describe explicitly the σ-algebra σ(X) generated by X.

3. Given a real-valued random variable X, prove that

(i) if H = {∅,Ω}, then X is H-measurable if and only if X is constant, and

(ii) if H is a σ-algebra such that X is H-measurable and P(A) = 0 or 1 for every
A ∈ H, then P(X = c) = 1, for some constant c.

4. Consider a probability space (Ω,F ,P) and a measurable space (S,S). Also, let X
be an (S,S)-valued random variable defined on (Ω,F), i.e., let X be a function
mapping Ω into S such that

{X ∈ A} =
{
ω ∈ Ω | X(ω) ∈ A

}
∈ F for all A ∈ S.

Define the function P : S → [0, 1] by

P(A) = P
({
ω ∈ Ω | X(ω) ∈ A

})
, for A ∈ S.

Prove that (S,S,P) is a probability space.

Remark . Suppose that S = R and S = B(R), so that X is a real-valued random
variable. In this case, compare the relevant definitions to conclude that

P
(
(−∞, a]

)
= F (a) for all a ∈ R,

where F is the distribution function of X.

5. Consider tossing a coin that lands heads with probability p ∈ (0, 1) three times, and
let X be the number of heads observed. Determine the distribution function of X.

6. Which of the following functions are probability distribution functions?

(i) F (x) =

{
0, if x ≤ 0,

1− 0.3e−x, if x > 0,

(ii) F (x) =


0, if x < 0,

0.5, if 0 ≤ x < 2,

0.3, if 2 ≤ x < 4,

1, if 4 ≤ x,

(iii) F (x) =

{
0, if x < 0,

0.3(1− e−x), if x ≥ 0.
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7. Consider a real-valued random variable X with distribution function F . Prove the
following results:

(i) P(a < X ≤ b) = F (b)− F (a),

(ii) P(a ≤ X ≤ b) = F (b)− F (a−),

(iii) P(X = a) = F (a)− F (a−).

In (ii) and (iii), F (a−) is the left-hand limit of F at a, i.e., F (a−) = limc↑a F (c).

8. (i) Give an example of a probability distribution function F that has infinite discon-
tinuities.

(ii) Prove that a probability distribution function F has at most countably many
discontinuities.

Hint : Recalling that F is an increasing function with values in [0, 1], how many
points x such that F (x)− F (x−) ∈

(
1

n+1
, 1
n

]
can we have for each n ≥ 1?
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CHAPTER

3

INDEPENDENCE

1. Throughout the chapter, we assume that an underlying probability space (Ω,F ,P) is
fixed. Also, we assume that every σ-algebra that we consider is a σ-algebra on Ω that is
a subset of F .

3.1 Independence of σσσ-algebras, random variables

and events

2. Definition. The σ-algebras G1,G2, . . . ,Gn are called independent if

P
(
A1 ∩ A2 ∩ · · · ∩ An

)
= P

(
A1

)
P
(
A2

)
· · ·P

(
An
)

for every choice of events A1 ∈ G1, A2 ∈ G2, . . . , An ∈ Gn.

3. Definition. The σ-algebras G1,G2, . . . ,Gn, . . . are called independent if the σ-algebras
G1,G2, . . . ,Gn are independent for all n ≥ 2.

4. Definition. The random variables X1, X2, . . . , Xn, . . . are called independent if the σ-
algebras σ(X1), σ(X2), . . . , σ(Xn), . . . are independent.

5. Definition. The events A1, A2, . . . , An, . . . are called independent if the σ-algebras
A1,A2, . . . ,An, . . . are independent, where

An =
{

Ω, ∅, An, Acn
}
, for n ≥ 1.
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6. Recall that the indicator of an event A is defined by

1A(ω) =

{
1, if ω ∈ A,
0, if ω ∈ Ac,

and that σ(1A) =
{

Ω, ∅, A,Ac
}

. As a consequence, the events A1, A2, . . . , An, . . . are
independent if and only if the random variables 1A1 ,1A2 , . . . ,1An , . . . are independent,
which is true if and only if the σ-algebras σ(1A1), σ(1A2), . . . , σ(1An) are independent.

7. Example. Two events A1, A2 are independent if

P
(
A1 ∩ A2

)
= P

(
A1

)
P
(
A2

)
, (3.1)

Proof. To verify that the events A1, A2 are independent, we have to check that

P(C ∩D) = P(C)P(D) for all C ∈
{

Ω, ∅, A1, A
c
1

}
and D ∈

{
Ω, ∅, A2, A

c
2

}
. (3.2)

In other words, we have to prove that (3.1) implies each of the 4 × 4 = 16 relations in
(3.2). To this end, we calculate

P(Ac1 ∩ A2) = P(A2 \ (A1 ∩ A2))

= P(A2)− P(A1 ∩ A2)

(3.1)
=
[
P(Ac1) + P(A1)

]
P(A2)− P(A1)P(A2)

= P(Ac1)P(A2).

All other identities in (3.2) are now straightforward.

8. Example. Similarly, we can verify that three events A1, A2, A3 are independent if all of
the identities

P
(
A1 ∩ A2

)
= P

(
A1

)
P
(
A2

)
,

P
(
A1 ∩ A3

)
= P

(
A1

)
P
(
A3

)
,

P
(
A2 ∩ A3

)
= P

(
A2

)
P
(
A3

)
,

P
(
A1 ∩ A2 ∩ A3

)
= P

(
A1

)
P
(
A2

)
P
(
A3

)
.

hold true.

9. Lemma. Two random variables X and Y are independent if their joint distribution
function FXY can be factorised in the form

FXY (x, y) = FX(x)FY (y). (3.3)

10. Lemma. Real-valued random variables X1, . . . , Xn are independent if their joint dis-
tribution function FX1,...,Xn can be written as the product of the associated marginal
distribution functions, i.e., if

FX1,...,Xn(x1, . . . , xn) = FX1(x1) · · ·FXn(xn), for all x1, . . . , xn ∈ R.
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3.2 Exercises

1. Suppose that Ω = {1, 2, 3, 4, 5, 6, 7, 8}, F is the collection of all subsets of Ω, and the
probability measure P assigns mass 1

8
on each point of Ω.

(i) Are the following events independent?

A1 = {1, 2, 3, 4}, A2 = {5, 6, 7, 8}.

(ii) Are the following events independent?

B1 = {1, 2, 3, 4}, B2 = {3, 4, 5, 6}, B3 = {2, 4, 6, 8}.

(iii) Are the following events independent?

C1 = {1, 2, 3, 4}, C2 = {3, 4, 5, 6}, C3 = {3, 4, 7, 8}.

(iv) Are the following events independent?

D1 = {1, 2, 3, 4}, D2 = {4, 5, 6, 7}, D3 = {4, 6, 7, 8}.

2. Prove that if events A, B are disjoint, namely, if A ∩B = ∅, then A and B cannot be
independent unless P(A) = 0 or P(B) = 0.
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CHAPTER

4

EXPECTATION

1. Throughout the chapter, we assume that an underlying probability space (Ω,F ,P) is
fixed.

4.1 Preliminary considerations

2. Consider the toss of a coin that lands heads with probability p ∈ (0, 1) and tails with
probability 1− p. Also, denote by X the random variable that takes the value 1 if tails
are observed and the value 0 if heads are observed. Now, consider two parties, say A
and B, that bet on the coin’s toss: once the coin lands, party A will pay $X to party B
(i.e., A will pay B $1 if tails occur and $0 if heads occur). What is the value E[X] of this
game? In other words, how much money E[X] should B pay to A in advance for both
parties to feel that they engage in a fair game? Intuition suggest that

E[X] = 1× (1− p) + 0× p = 1− p.

The number E[X] is the expectation of X.
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3. Generalising the example above, the expectation E[1A] of the random variable

1A =

{
1, if ω ∈ A,
0, if ω /∈ A,

where A is an event in F , is given by

E[1A] = 1× P(A) + 0× P(Ac) = P(A).

This idea and the requirement that expectation should be a linear operator provide the
starting point of this chapter’s theory.

4.2 Definitions

4. Definition. We say that X is a simple random variable if it is a discrete random variable
that can take only a finite number of possible values.

In particular, a random variable is simple if there exist distinct real numbers x1, x2, . . . , xn
and a measurable partition A1, A2, . . . , An of the sample space Ω (i.e., A1, A2, . . . , An ∈ F
satisfying Ai ∩ Aj = ∅, for i 6= j, and

⋃n
i=1 Ai = Ω) such that

X(ω) =
n∑
i=1

xi1Ai(ω) for all ω ∈ Ω. (4.1)

5. Definition. The expectation of the simple random variable X given by (4.1) is defined
by

E[X] =
n∑
i=1

xiP(Ai).

6. Definition. Suppose that X is a
(
[0,∞],B([0,∞]

)
-valued random variable. The expec-

tation of X is defined by

E[X] = sup
{
E[Y ] | Y is a simple random variable with 0 ≤ Y ≤ X

}
.

Note that E[X] ≥ 0, but we may have E[X] =∞.

7. Definition. Given a real-valued random variable X, define

X+ = max(0, X) and X− = −min(0, X)

and observe that X+, X− are positive random variables such that X = X+ − X− and
|X| = X+ +X−.

A random variable X has finite expectation (is integrable) if both E[X+] < ∞ and
E[X−] <∞. In this case, the expectation of X is defined by

E[X] = E[X+]− E[X−].

We often write
∫

Ω
X(ω)P(dω) or

∫
Ω
X dP instead of E[X].
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8. Definition. We denote by L1(Ω,F ,P), or just L1 if there is no ambiguity, the set of all
integrable random variables.

For 1 ≤ p <∞, we denote by Lp(Ω,F ,P), or just Lp if there is no ambiguity, the set of
all random variables X such that |X|p ∈ L1.

9. For every positive random variable X, there exists a sequence (Xn) of positive simple
random variables such that Xn increases to X as n increases to infinity. An example of
such a sequence is given by

Xn(ω) =

{
k2−n, if k2−n ≤ X(ω) < (k + 1)2−n and 0 ≤ k ≤ n2n − 1,

n, if X(ω) ≥ n.

4.3 Properties of expectation

10. We say that a property holds P-a.s. if it is true for all ω in a set of probability 1. For
example, we say that X = Y , P-a.s., if

P(X = Y ) ≡ P
(
{ω ∈ Ω | X(ω) = Y (ω)}

)
= 1.

Similarly, we say that a sequence of random variables (Xn) converges to a random variable
X, P-a.s., if

P
(

lim
n→∞

Xn = X
)
≡ P

({
ω ∈ Ω | lim

n→∞
Xn(ω) = X(ω)

})
= 1.

11. The following results hold true:

(i) Expectation is a positive, linear operator, i.e.,

X ≥ 0 ⇒ E[X] ≥ 0,

X, Y ∈ L1 and a, b ∈ R ⇒ E[aX + bY ] = aE[X] + bE[Y ].

(ii) If X = Y , P-a.s., then E[X] = E[Y ].

(iii) If X and Y are independent random variables, then E[XY ] = E[X]E[Y ].

(iv) The expectation of a discrete random variable X is given by

E[X] =
∑
xi

xi P(X = xi).

(v) The expectation of a continuous random variable X with probability density function
f is given by

E[X] =

∫ ∞
−∞

xf(x) dx.
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(vi) (Jensen’s inequality) Given a random variable X and a convex function g : R→ R,
such that X, g(X) ∈ L1,

E
[
g(X)

]
≥ g
(
E[X]

)
.

(vii) (Monotone convergence theorem) If (Xn) is an increasing sequence of positive ran-
dom variables (i.e., 0 ≤ X1 ≤ X2 ≤ · · · ≤ Xn ≤ · · · ) such that limn→∞Xn = X,
P-a.s., for some random variable X, then

lim
n→∞

E[Xn] = E[X].

Note that we may have E[X] =∞ here.

(viii) (Dominated convergence theorem) If (Xn) is a sequence of random variables that
converges to a random variable X, P-a.s., and is such that |Xn| ≤ Y , P-a.s., for all
n ≥ 1, for some Y ∈ L1, then

lim
n→∞

E[Xn] = E[X].

(ix) (Fatou’s lemma) If (Xn) is a sequence of random variables such that Xn ≥ Y , P-a.s.,
for all n ≥ 1, for some Y ∈ L1, then

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn].

Similarly, if (Xn) is a sequence of random variables such that Xn ≤ Y , P-a.s., for all
n ≥ 1, for some Y ∈ L1, then

E
[
lim sup
n→∞

Xn

]
≥ lim sup

n→∞
E[Xn].

4.4 Moment generating functions

12. Definition. The moment-generating function of a random variable X is defined by

MX(t) = E
[
etX
]
, for t ∈ R.

Provided there is no possibility of confusion, we often write M(t) instead of MX(t).

13. Given a random variable X, suppose that there exists ε > 0 such that

MX(t) <∞ for all t ∈ [−ε, ε].

The k-th moment E
[
Xk
]

of X is equal to the k-th derivative of the moment generating
function MX evaluated at 0, namely,

E
[
Xk
]

= M
(k)
X (0) ≡ dkMX(t)

dtk

∣∣∣∣
t=0

. (4.2)
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Proof. Passing the derivative operator inside the expectation, we can see that

M
(k)
X (t) =

dk

dtk
E
[
etX
]

= E
[
dketX

dtk

]
= E

[
XketX

]
.

Evaluating this result at t = 0, we obtain (4.2).

4.5 Examples

14. Example. Suppose that X has the binomial distribution with parameters n, p. Also
recall that X has the same distribution as X1 +X2 + · · ·+Xn, where X1, X2, . . . , Xn are
independent Bernoulli random variables, each with parameter p (see Example 2.24). The
moment generating function of X is given by

M(t) = E
[
etX
]

= E

[
exp

(
t

n∑
i=1

Xi

)]
= E

[
n∏
i=1

etXi

]
=

n∏
i=1

E
[
etXi

]
=

n∏
i=1

(
P (Xi = 0) + etP (Xi = 1)

)
=
(
1− p+ pet

)n
.

Using this expression, we calculate

E
[
X
]

= M ′(0) = npet
(
1− p+ pet

)n−1
∣∣∣
t=0

= np

and E
[
X2
]

= M ′′(0) =
{
npet

(
1− p+ pet

)n−1
+ n(n− 1)p2e2t

(
1− p+ pet

)n−2
}∣∣∣

t=0

= np+ n(n− 1)p2,

so, var(X) = E
[
X2
]
−
(
E
[
X
])2

= np(1− p).

15. Example. Suppose that X has the Poisson distribution (see also Example 2.25). We
can calculate the mean of X as follows:

E
[
X
]

=
∞∑
n=0

ne−λ
λn

n!
= λe−λ

∞∑
n=1

λn−1

(n− 1)!
= λ.

16. Example. Suppose that X has the Poisson distribution. The moment generating func-
tion of X is given by

M(t) = E
[
etX
]

=
∞∑
n=0

etne−λ
λn

n!
= e−λ

∞∑
n=0

(
λet
)n

n!
= eλ(et−1).
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Using this result, we calculate

E
[
X
]

= M ′(0) = λeteλ(et−1)
∣∣∣
t=0

= λ

and E
[
X2
]

= M ′′(0) =
{
λeteλ(et−1) + λ2e2teλ(et−1)

}∣∣∣
t=0

= λ+ λ2,

so, var(X) = E
[
X2
]
−
(
E
[
X
])2

= λ.

17. Example. Suppose that X is a Gaussian random variable with mean m and variance σ2

(see also Example 2.30). We can calculate the mean of X as follows:

E[X] =
1

σ
√

2π

∫ ∞
−∞

x exp

(
−(x−m)2

2σ2

)
dx

=
1

σ
√

2π

∫ ∞
−∞

(x−m) exp

(
−(x−m)2

2σ2

)
dx

+m
1

σ
√

2π

∫ ∞
−∞

exp

(
−(x−m)2

2σ2

)
dx

=
1

σ
√

2π

∫ ∞
−∞

x exp

(
− x2

2σ2

)
dx︸ ︷︷ ︸

=0

+m
1

σ
√

2π

∫ ∞
−∞

exp

(
−(x−m)2

2σ2

)
dx︸ ︷︷ ︸

=1

= m.

In the penultimate expression, the first integral is 0 because its integrand is an odd
function, and the fact that the second integral is equal to 1 because its integrand is a
probability density function.

18. Example. Suppose that X is a Gaussian random variable with mean m and variance
σ2. The moment generating function of X is given by

M(t) = E
[
etX
]

=
1

σ
√

2π

∫ ∞
−∞

etx exp

(
−(x−m)2

2σ2

)
dx

= exp

(
mt+

1

2
σ2t2

)
1

σ
√

2π

∫ ∞
−∞

exp

(
−
(
x− (m+ σ2t)

)2

2σ2

)
dx︸ ︷︷ ︸

=1

= exp

(
mt+

1

2
σ2t2

)
,

where we have used the fact that the last integral is equal to 1 because its integrand is a
probability density function.
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Using this result, we calculate

E [X] = M ′(0) = (m+ σ2t) exp

(
mt+

1

2
σ2t2

)∣∣∣∣
t=0

= m

and

E
[
X2
]

= M ′′(0)

=

{
σ2 exp

(
mt+

1

2
σ2t2

)
+ (m+ σ2t)2 exp

(
mt+

1

2
σ2t2

)}∣∣∣∣
t=0

= σ2 +m2,

so, var(X) = E [X2]−
(
E [X]

)2
= σ2.

19. Example. If X is a normal random variable with mean 0 and variance σ2, then

E
[
exp

(
−σ

2

2
−X

)]
=

1

σ
√

2π

∫ ∞
−∞

exp

(
−σ

2

2
− x
)

exp

(
− x2

2σ2

)
dx

=
1

σ
√

2π

∫ ∞
−∞

exp

(
−(x+ σ2)2

2σ2

)
dx

= 1.

In these calculations, the second integral is equal to 1 because its integrand is the density
of a Gaussian random variable with mean −σ2 and variance σ2.

20. If X and Y are independent random variables, then E [XY ] = E [X]E [Y ] (see Property
4.11.(ii) above). The following example shows that the converse is not true.

Example. Suppose that the events A,B,C ∈ F form a partition of Ω (i.e., A ∩ B =
A∩C = B∩C = ∅ and A∪B∪C = Ω) and have probabilities P(A) = P(B) = P(C) = 1

3
.

Also, let X and Y be the random variables defined by

X(ω) =

{
1, if ω ∈ A,
0, if ω ∈ B ∪ C,

Y (ω) =


1, if ω ∈ A,
2, if ω ∈ B
0, if ω ∈ C.

Combining the fact that XY = X with the calculation

E[Y ] = 1× 1

3
+ 2× 1

3
+ 0× 1

3
= 1,

we can see that E[XY ] = E[X] = E[X]E[Y ]. On the other hand, X and Y are not
independent because, e.g.,

P
(
{X = 1} ∩ {Y = 1}

)
= P(A ∩ A) = P(A) =

1

3

6= 1

9
= P(A)P(A) = P(X = 1)P(Y = 1).
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21. The following example shows that Jensen’s inequality is strict in general (see Property
4.11.(vi) above).

Example. Suppose that X has the normal distribution, namely X ∼ N (0, 1) (see also
Example 2.30). Also, consider the quadratic function g(x) = x2, x ∈ R. Using the results
of Example 2.18, we calculate

E [g(X)] = E
[
X2
]

= σ2 > 0 =
(
E [X]

)2
= g
(
E [X]

)
.

22. The following example shows that the inequalities in Fatou’s lemma can be strict (see
Property 4.11.(ix) above).

Example. Suppose that Ω = (0, 1), F = B
(
(0, 1)

)
and P is the Lebesgue measure on(

(0, 1),B
(
(0, 1)

))
. Consider the sequence (Xn, n ≥ 1) of the random variables given by

Xn(ω) = (n+ 1)1( 1
2
, 1
2

+ 1
n+1)(ω) ≡

{
n+ 1, if ω ∈

(
1
2
, 1

2
+ 1

n+1

)
,

0, otherwise.

Given any n ≥ 1, we calculate

E [Xn] = (n+ 1)P
(
( 1
2
, 1

2
+ 1

n+1
)
)

+ 0P
(
(0, 1

2
] ∪ [ 1

2
+ 1

n+1
, 1)
)

= 1.

Moreover, we can see that

lim
n→∞

Xn(ω) = 0 for all ω ∈ Ω.

These observations imply that

lim
n→∞

E [Xn] = 1 > 0 = E
[

lim
n→∞

Xn(ω)
]
.

Note that the sequence of random variables considered in this example does not satisfy the
assumptions of either the monotone convergence theorem or the dominated convergence
theorem.

4.6 Exercises

1. Suppose that X has the geometric distribution with parameter p ∈ (0, 1), i.e.,

P(X = n) = (1− p)pn−1, for n = 1, 2, . . . .

Calculate the expectation of the random variable Y =
(

1
2

)X
.

2. Suppose that a random variable X has the uniform distribution U(a, b). Find the
moment generating function of X.
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3. Suppose that a random variable X has the exponential distribution with parameter
µ > 0. Calculate: (i) the moment generating function MX , and (ii) the mean and
the variance of X.

4. Show that, if X and Y are independent random variables, then

var(X + Y ) = var(X) + var(Y ).

5. Prove the following statements:

(i) If (Zk) is a sequence of positive random variables (i.e., Zk ≥ 0 for all k), then

E

[
∞∑
k=1

Zk

]
=
∞∑
k=1

E
[
Zk
]
≤ ∞.

Hint : You may use the monotone convergence theorem.

(ii) If (Zk) is a sequence of positive random variables such that
∑∞

k=1 E
[
Zk
]
<∞,

then

∞∑
k=1

Zk <∞, P-a.s., which implies that lim
k→∞

Zk = 0, P-a.s..
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CHAPTER

5

CONDITIONAL EXPECTATION

1. Throughout the chapter, we assume that an underlying probability space (Ω,F ,P) sup-
porting all random variables considered is fixed.

5.1 Definitions and existence

2. Definition. Consider a random variable X such that E
[
|X|
]
<∞, and let G ⊆ F be a

σ-algebra on Ω. The conditional expectation E [X | G] of the random variable X given
the σ-algebra G is any random variable Y such that

(i) Y is G-measurable,

(ii) E
[
|Y |
]
<∞, and

(iii) for every event C ∈ G,

E [1CY ] = E [1CX] .

We say that a random variable Y with the properties (i)–(iii) is a version of the conditional
expectation E [X | G] of X given G, and we write Y = E [X | G], P-a.s..
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3. Theorem. Consider a random variable X such that E
[
|X|
]
< ∞, and let G ⊆ F be a

σ-algebra. There exists a random variable Y having properties (i)–(iii) in Definition 5.2.

Furthermore, Y is unique in the sense that, if Ỹ is another random variables satisfying
the required properties, then Ỹ = Y , P-a.s..

4. Definition. Consider an event B ∈ F , and let G ⊆ F be a σ-algebra. The conditional
probability of B given G is the random variable defined by

P (B | G) = E [1B | G] .

5. Note that conditional expectation and probability are random variables: probability
theory is concerned with the future.

5.2 Conditional probability given an event

6. Given an event B ∈ F , P(B) quantifies our views on how likely it is for the event B to
occur. Now, suppose that we have been informed that chance outcomes are restricted
within an event A ∈ F . In other words, suppose that somebody informs us that all likely
to happen events are subsets of A, and all events that are subsets of Ac are impossible to
occur.

How should we modify our views, namely our probability measure, to account for this
scenario? To this end, we denote by P (B | A) our modified belief on the likelihood of the
event B ∈ F given the knowledge that A has occurred. Since the only new information
that we possess is that chance outcomes are restricted within the event A, it is natural
to postulate that P (B | A) should be proportional to P (B ∩ A), namely

P (B | A) ∼ P (B ∩ A) . (5.1)

However, our beliefs should “add up” to 1, so that we have a proper probability measure.
This means that we should impose the requirement that P(Ω | A) = 1. Since P (Ω ∩ A) =
P (A), we conclude that we should scale the right hand side of (5.1) by 1/P (A) to obtain

P (B | A) =
P (B ∩ A)

P (A)
. (5.2)

(Of course, this formula makes sense only if P (A) > 0.)

We can check that the function P (· | A) : F → [0, 1] defined by (5.2) is indeed a proba-
bility measure on (Ω,F).
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7. Bayes’ theorem. Consider events A1, A2, . . . , An ∈ F that form a partition of Ω (i.e.,
Ai ∩ Aj = ∅ for all i 6= j and

⋃n
i=1Ai = Ω). Given an event B ∈ F , the events

B ∩ A1, B ∩ A2, . . . , B ∩ An are pairwise disjoint and
⋃n
i=1B ∩ Ai = B. Therefore, the

additivity property of a probability measure and (5.2) imply the total probability formula

P (B) = P (B ∩ A1) + P (B ∩ A2) + · · ·+ P (B ∩ An)

= P (B | A1)P (A1) + P (B | A2)P (A2) + · · ·+ P (B | An)P (An) .

Using this result and (5.2), we derive Bayes’ formula

P (Ak | B) =
P (Ak ∩B)

P (B)

=
P (B | Ak)P (Ak)

P (B | A1)P (A1) + P (B | A2)P (A2) + · · ·+ P (B | An)P (An)
.

8. Conditional probabilities defined as in (5.2) have an a posteriori character: we have been
informed and we know that event A has occurred. How should we develop our theory to
account for a prior to observation perspective? In other words, suppose that we anticipate
an observation that will inform us on whether A or Ac occurs. How should we modify
our views to account for this situation?

Given the arguments in Paragraph 5.6, the natural answer is to set

P (B | “observation of A or Ac”) =

{
P (B | A) if A occurs,

P (B | Ac) if Ac occurs,

= P (B | A) 1A + P (B | Ac) 1Ac , (5.3)

provided, of course, that 0 < P (A) < 1. Observe that our views on how likely it is for the
event B to occur have now become a simple random variable. Given any sample ω ∈ Ω,
the conditional probability of the event B takes the value P (B | A) if ω ∈ A and takes
the value P (B | Ac) if ω ∈ Ac.

9. Given events A,B ∈ F such that 0 < P(A) < 1, the random variable Y defined by

Y =
P (A ∩B)

P (A)
1A +

P (Ac ∩B)

P (Ac)
1Ac (5.4)

is the conditional probability of B given the σ-algebra {∅,Ω, A,Ac}. We denote this
conditional probability by

P
(
B | {∅,Ω, A,Ac}

)
= E

[
1B | {∅,Ω, A,Ac}

]
.
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10. We can verify that the random variable Y defined by (5.4) is indeed the conditional
probability of B given the σ-algebra {∅,Ω, A,Ac} by checking the defining properties of
conditional probability (see Definition 5.4):

(i) The simple random variable Y is clearly {∅,Ω, A,Ac}-measurable.

(ii) We calculate

E
[
|Y |
]

= E
[
Y
]

=
P (A ∩B)

P (A)
P (A) +

P (Ac ∩B)

P (Ac)
P (Ac) = P (B) <∞.

(iii) Let C be any event in {∅,Ω, A,Ac}. We calculate

E
[
1CY

]
= E

[
P (A ∩B)

P (A)
1C1A +

P (Ac ∩B)

P (Ac)
1C1Ac

]
=

P (A ∩B)

P (A)
P (A ∩ C) +

P (Ac ∩B)

P (Ac)
P (Ac ∩ C)

=


P (∅ ∩B) , if C = ∅,
P (Ω ∩B) , if C = Ω,

P (A ∩B) , if C = A,

P (Ac ∩B) , if C = Ac,

= E
[
1C1B

]
.

5.3 Conditional expectation of a simple random vari-

able given another simple random variable

11. Consider two simple random variables X and Z and suppose that

X =
n∑
i=1

xi1{X=xi} and Z =
m∑
j=1

zj1{Z=zj},

for some distinct x1, . . . , xn and z1, . . . , zm. Also, assume that P (Z = zj) > 0 for all
j = 1, . . . ,m.

Suppose that we have made an “experiment” that has informed us about the actual value
of Z. In particular, suppose that we have been given the information that the actual value
of the random variable Z is zj, for some j = 1, . . . ,m. In this context where we know
that the event {Z = zj} has occurred, we should revise our probabilities from P(·) to
P (· | Z = zj). Furthermore, we should revise the expectation of X from E [X] to

E [X | Z = zj] =
n∑
i=1

xi P (X = xi | Z = zj) .
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This conditional expectation, the conditional expectation of X given that the random
variable Z is equal to zj, which is a real number, has an a posteriori character: we have
been informed that the actual value of Z is zj.

Prior to observation, namely, before we observe the actual value of Z, it is natural to
consider the random variable

Y =
m∑
j=1

E [X | Z = zj] 1{Z=zj}, (5.5)

as the conditional expectation E
[
X | σ(Z)

]
≡ E [X | Z] of X given the σ-algebra σ(Z),

namely, given the information set σ(Z) that is associated with the observation of the
random variable Z.

12. We can verify that the random variable Y defined by (5.5) is indeed the conditional
expectation ofX given σ(Z) by checking the defining properties of conditional expectation
(see Definition 5.2). To this end, we first observe that the σ-algebra σ(Z) consists of all
possible unions of sets in the family

{
{Z = z1}, . . . , {Z = zm}

}
, namely,

σ(Z) =

{⋃
k∈J

{Z = zk}
∣∣∣ J ⊆ {1, . . . ,m}} , (5.6)

with the convention that ⋃
k∈∅

{Z = zk} = ∅.

(i) In view of (5.6), we can see that Y is σ(Z)-measurable because

Y =
m∑
j=i

cj1{Z=zj},

where the constants cj are given by

cj =
n∑
i=1

xi pX|Z(xi|zj), for j = 1, . . . ,m.
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(ii) We calculate

E
[
|Y |
]

=
m∑
j=1

∣∣∣∣∣
n∑
i=1

xi pX|Z(xi|zj)

∣∣∣∣∣P (Z = zj)

≤
m∑
j=1

n∑
i=1

|xi|
P (X = xi, Z = zj)

P (Z = zj)
P (Z = zj)

=
n∑
i=1

|xi|
m∑
j=1

P (X = xi, Z = zj)

=
n∑
i=1

|xi|P (X = xi)

= E
[
|X|
]
<∞.

(iii) Let C be any event in σ(Z). In view of (5.6), there exists a set J ⊆ {1, . . . ,m} such
that

C =
⋃
k∈J

{Z = zk}.

Since {Z = z1}, . . . , {Z = zm} are pairwise disjoint,

1C =
∑
k∈J

1{Z=zk} and 1{Z=zk}1{Z=zj} = 0, for k 6= j.
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In light of these observations, we calculate

E
[
Y 1C ] = E

[(
m∑
j=1

n∑
i=1

xi
P(X = xi, Z = zj)

P(Z = zj)
1{Z=zj}

)(∑
k∈J

1{Z=zk}

)]

= E

[
n∑
i=1

xi
∑
k∈J

m∑
j=1

P(X = xi, Z = zj)

P(Z = zj)
1{Z=zj}1{Z=zk}

]

= E

[
n∑
i=1

xi
∑
k∈J

P(X = xi, Z = zk)

P(Z = zk)
1{Z=zk}

]

=
n∑
i=1

xi
∑
k∈J

P(X = xi, Z = zk)

=
n∑
i=1

xi
∑
k∈J

E
[
1{X=xi}∩{Z=zk}

]
=

n∑
i=1

xi
∑
k∈J

E
[
1{X=xi}1{Z=zk}

]
=

n∑
i=1

xiE

[
1{X=xi}

∑
k∈J

1{Z=zk}

]

=
n∑
i=1

xiE
[
1{X=xi}1C

]
= E

[
1C

n∑
i=1

xi1{X=xi}

]
= E [1CX] .

5.4 Conditional expectation of a continuous random

variable given another continuous random variable

13. Suppose that X and Z are continuous random variables with joint probability density
function fXZ , so that

fZ(z) =

∫ ∞
−∞

fXZ(x, z) dx

is the probability density function of Z, and assume that

E
[
|X|
]

=

∫ ∞
−∞
|x|fX(x) dx =

∫ ∞
−∞

∫ ∞
−∞
|x|fXZ(x, z) dx dz <∞.
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We define the conditional probability density function of X given Z by

fX|Z(x|z) =

{
fXZ(x, z)/fZ(z), if fZ(z) 6= 0,

0, if fZ(z) = 0.

The random variable

Y =

∫ ∞
−∞

x fX|Z(x|Z) dx (5.7)

is the conditional expectation E
[
X | σ(Z)

]
≡ E[X | Z] of X given the σ-algebra σ(Z),

namely, given the information set σ(Z) that is associated with the observation of the
random variable Z.

14. We can verify that the random variable Y defined by (5.7) is indeed the conditional
expectation ofX given σ(Z) by checking the defining properties of conditional expectation
(see Definition 5.2):

(i) Y is σ(Z)-measurable.

(ii) E
[
|Y |
]
<∞. Indeed, we note that x 7→ |x| is a convex function and we use Jensen’s

inequality to calculate

E
[
|Y |
]

=

∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

x fX|Z(x|z) dx

∣∣∣∣ fZ(z) dz

≤
∫ ∞
−∞

(∫ ∞
−∞
|x| fX|Z(x|z) dx

)
fZ(z) dz

=

∫ ∞
−∞

∫ ∞
−∞
|x| fX|Z(x|z)fZ(z) dx dz

=

∫ ∞
−∞

∫ ∞
−∞
|x| fXZ(x, z) dx dz

= E
[
|X|
]
<∞.

(iii) E
[
1CY

]
= E

[
1CX

]
for all C ∈ σ(Z). To see this claim, we first note, given any

event C ∈ σ(Z), there exists A ∈ B(R) such that

C =
{
ω ∈ Ω | Z(ω) ∈ A

}
.
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In view of this observation, we calculate

E
[
1CY

]
= E

[
1{Z∈A}

(∫ ∞
−∞

x fX|Z(x|Z) dx

)]
=

∫ ∞
−∞

1{z∈A}

(∫ ∞
−∞

x fX|Z(x|z) dx

)
fZ(z) dz

=

∫ ∞
−∞

∫ ∞
−∞

1{z∈A} x fX|Z(x|z)fZ(z) dx dz

=

∫ ∞
−∞

∫ ∞
−∞

1{z∈A} x fXZ(x, z) dx dz

= E
[
1{Z∈A}X

]
= E

[
1CX

]
.

5.5 Properties of conditional expectation

15. In the following list of properties of conditional expectation, we assume that all random
variables are in L1, and that G,H ⊆ F are σ-algebras on Ω.

(i) E[X | {Ω, ∅}] = E[X].

(The trivial σ-algebra {Ω, ∅} can be viewed as a model for “absence of information”:
we can interpret Ω as the event that “something occurs” and ∅ as the event that
“nothing happens”. This property reflects the idea that expectation is the same as
conditional expectation given no information.)

(ii) (Linearity) Given constants a1, a2 ∈ R, and random variables X1, X2,

E[a1X1 + a2X2 | G] = a1E[X1 | G] + a2E[X2 | G], P-a.s..

(iii) If X is G-measurable, then E[X | G] = X, P-a.s..

(This property reflects the idea that “knowledge” of G implies “knowledge” of the
actual value of X.)

(iv) (“Taking out what is known”) If Z is G-measurable, then

E[ZX | G] = Z E[X | G], P-a.s..

(This property is again based on the idea that “knowledge” of G implies “knowledge”
of the actual value of Z.)

(v) (Independence) If σ(X) and H are independent σ-algebras,

E[X | H] = E[X], P-a.s..

(Indeed, if the random variable X is independent of the information G, then “knowl-
edge” of G provides no information about X.)
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(vi) (Tower property) If H ⊆ G, then

E
[
E[X | G] | H] = E[X | H], P-a.s..

(vii) (Conditional Jensen’s inequality) Given a random variable X and a convex function
g : R→ R,

E
[
g(X) | G

]
≥ g
(
E[X | G]

)
, P-a.s..

(viii) (Conditional monotone convergence theorem) If (Xn) is an increasing sequence of
positive random variables (i.e., 0 ≤ X1 ≤ X2 ≤ · · · ≤ Xn ≤ · · · ) converging to the
random variable X, P-a.s., then

lim
n→∞

E[Xn | G] = E[X | G], P-a.s..

(ix) (Conditional Fatou’s lemma) If (Xn) is a sequence of random variables such that
Xn ≥ Z, P-a.s., for all n ≥ 1, for some random variable Z, then

E
[
lim inf
n→∞

Xn | G
]
≤ lim inf

n→∞
E[Xn | G], P-a.s..

Similarly, if (Xn) is a sequence of random variables such that Xn ≤ Z, P-a.s., for all
n ≥ 1, for some random variable Z, then

E
[
lim sup
n→∞

Xn | G
]
≥ lim sup

n→∞
E[Xn | G], P-a.s..

(x) (Conditional dominated convergence theorem) If (Xn) is a sequence of random vari-
ables that converges to a random variable X, P-a.s., and is such that |Xn| ≤ Z,
P-a.s., for all n ≥ 1, for some random variable Z, then

lim
n→∞

E[Xn | G] = E[X | G], P-a.s..

5.6 Examples

16. Example. A laboratory blood test is 95% effective in detecting a certain disease when it
is present. However, the test also yields a ‘false positive’ result for 2% of healthy people
tested. If 0.1% of the population actually have the disease, what is the probability that
a person has the disease, given that his test result is positive?
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To derive the answer to this question, we consider the events

H = {the person does not have the disease}
and P = {the test result is positive},

so that Hc = {the person has the disease}. We are given the probabilities

P (P | Hc) = 0.95, P (P | H) = 0.02 and P (Hc) = 0.001.

Since the events H, Hc form a partition of the sample space, we can use Bayes’ theorem
(see Paragraph 5.7) to calculate

P (Hc | P ) =
P (P | Hc)P (Hc)

P (P | Hc)P (Hc) + P (P | H)P (H)

=
0.95× 0.001

0.95× 0.001 + 0.02× 0.999
' 0.045.

We conclude that if the result of a person’s test is positive, then there is 4.5% chance
that he/she has the disease.

17. Example. Consider two independent Poisson random variablesX and U with parameters
λ and µ, respectively, and define Z = X + U . Also, recall that the moment generating
functions of X and U are given by

MX(t) = e−λeλe
t

and MU(t) = e−µeµe
t

.

(see Example 4.16). Since X and U are independent,

MZ(t) = E
[
et(X+U)

]
= E

[
etX
]
E
[
etU
]

= MX(t)MU(t) = e−(λ+µ)e(λ+µ)et .

which proves that the random variable Z = X + U has the Poisson distribution with
parameter λ+ µ.

Given any n ≥ 0 and m = 0, 1, 2, . . . , n, we calculate

P (X = m | Z = n) =
P (X = m, Z = n)

P (Z = n)

=
P (X = m, U = n−m)

P (X + U = n)

=
P (X = m)P (U = n−m)

P (X + U = n)

=
e−λ λ

m

m!
e−µ µn−m

(n−m)!

e−(λ+µ) (λ+µ)n

n!

=
n!

m! (n−m)!

λmµn−m

(λ+ µ)n

=

(
n
m

)(
λ

λ+ µ

)m(
1− λ

λ+ µ

)n−m
,
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which proves that the conditional distribution of X given that the event {Z = n} has
occurred is Binomial with parameters n and λ

λ+µ
.

In view of results in Example 4.14, we can also see that

E [X | Z = n] =
λn

λ+ µ
, for n ≥ 0.

We conclude this example with the expression

P
(
X = m | σ(Z)

)
=

(
Z
m

)(
λ

λ+ µ

)m(
1− λ

λ+ µ

)Z−m
1{Z≥m}

for the conditional probability of {X = m} given the information set σ(Z) that is asso-
ciated with the observation of the random variable Z = X + U , and the expression

E
[
X | σ(Z)

]
=

λZ

λ+ µ

for the conditional expectation of X given the information set σ(Z) that is associated
with the observation of the random variable Z = X + U .

5.7 Exercises

1. Consider a probability space (Ω,F ,P) and an event B ∈ F with P(B) > 0. Prove that
the function P(· | B) : F → R defined by

P(A | B) =
P(A ∩B)

P(B)
, for A ∈ F ,

is a probability measure on (Ω,F).

2. An insurance company classifies drivers as class X, Y or Z. Experience indicates that
the probability that a class X driver has at least one accident in any given year is
0.01, while the corresponding probabilities for classes Y and Z are 0.05 and 0.10,
respectively. The company has also found that, of the drivers who apply for cover,
30% are class X, 60% class Y and 10% class Z.

i) A certain new client had an accident within one year. What is the probability
that he is a class Z risk?

ii) Another client goes for n years without an accident. Assuming the incidence of
accidents in different years to be independent, how large must n be before the
company decides that she is more likely to belong to class X than to class Y ?

3. A certain region is inhabited by two types of insect. Each insect caught will be of type
1 with probability p and type 2 with probability 1 − p, independently of previous
catches. Suppose that a random number N of catches are made, and the number
of type 1 insects caught is X.
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(i) For n = 0, 1, 2, . . . , find E[X | N = n].

(ii) What is the conditional expectation E
[
X | σ(N)

]
of X given the information

set σ(N) that is associated with the observation of the random variable N?

(iii) If E[N ] = µ, find E[X].

4. Suppose that a random variable X has the geometric distribution with parameter p,
so that

P(X = j) = p(1− p)j−1, for j = 1, 2, . . . .

Show that, given any n, k = 1, 2, . . . ,

P(X = n+ k | X > n) = P(X = k).

5. Let X be a simple random variable. Given an event A, describe explicitly a version of
the conditional probability P

(
A | σ(X)

)
.

6. Suppose that a random variable X is equal to a constant c, P-a.s.. Show that, given
any σ-algebra G, E [X | G] = c.

Hint . You may use the following property of the expectation operator that you are
not required to prove here: if Z1, Z2 are random variables such that Z1 = Z2, P-a.s.,
then E [Z1] = E [Z2].

7. Suppose that X is a random variable defined on a probability space (Ω,F ,P) such
that X ≥ 0, P-a.s., and E [X] <∞. Given a σ-algebra G ⊆ F , prove that

E [X | G] ≥ 0, P-a.s..

Hint . You may use the following property of the expectation operator that you are
not required to prove here: if Z is a random variable such that Z ≥ 0, P-a.s., then
E [Z] ≥ 0.

8. Suppose that X is a random variable in L1(Ω,F ,P). Prove that

E
[
X | {Ω, ∅}

]
= E

[
X
]
.

9. Consider random variables X,X1, X2 ∈ L1(Ω,F ,P) and two σ-algebras G,H ⊆ F .
Use the definition of conditional expectation to prove the following properties:

(i) If Y is a version of E [X | G], then E [Y ] = E [X].

(ii) (Linearity) Given any constants a1, a2 ∈ R,

E [a1X1 + a2X2 | G] = a1 E [X1 | G] + a2 E [X2 | G] , P-a.s..

Hint . To answer this question, you can use the linearity of expectation, which
you are not required to prove here.

(iii) (Tower property.) If H ⊆ G, then

E
[
E [X | G] | H

]
= E [X | H] , P-a.s..
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CHAPTER

6

STOCHASTIC PROCESSES

1. Throughout the chapter, we assume that all random variables considered are defined on
a fixed a probability space (Ω,F ,P).

6.1 Stochastic processes

2. Definition. A stochastic process is a family of random variables (Xt, t ∈ T ) indexed by
a non-empty set T .

When the index set T is understood by the context, we usually write X or (Xt) instead
of (Xt, t ∈ T ).

3. In this course, we consider only stochastic processes whose index set T is the set of
natural numbers N = {0, 1, 2, . . .} or the set of positive real numbers R+ = [0,∞). In
the first instance, we are talking about discrete time processes , in the second one, we are
talking about continuous time processes .

4. Stochastic processes are mathematical models for quantities that evolve randomly over
time. For example, we can use a stochastic process (Xt, t ≥ 0) to model the time
evolution of the stock price of a given company. In this context, assuming that present
time is 0, the random variable Xt is the stock price of the company at the future time t.
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6.2 Filtrations and stopping times

5. Definition. A filtration on a probability space (Ω,F ,P) is a family (Ft, t ∈ T ) of
σ-algebras such that

Ft ⊆ F for all t ∈ T , and Fs ⊆ Ft for all s, t ∈ T such that s ≤ t. (6.1)

We usually write (Ft) or {Ft} instead of (Ft, t ∈ T ).

A probability space (Ω,F ,P) endowed with a filtration (Ft), often denoted by (Ω,F ,Ft,P),
is said to be a filtered probability space.

6. We have seen that σ-algebras are models for information. Accordingly, filtrations are
models for flows of information. The inclusions in (6.1) reflect the idea that, as time
progresses, more information becomes available, as well as the idea that “memory is
perfect” in the sense that there is no information lost in the course of time.

7. Definition. The natural filtration (FXt ) of a stochastic process (Xt) is defined by

FXt = σ
(
Xs, s ∈ T , s ≤ t

)
, t ∈ T .

8. The natural filtration of a process (Xt) is the flow of information that the observation of
the evolution in time of the process (Xt) yields, and only that.

9. Definition. We say that a process (Xt) is adapted to a filtration (Ft) if Xt is Ft-
measurable for all t ∈ T , or equivalently, if FXt ⊆ Ft for all t ∈ T .

10. In the context of this definition, the information becoming available by the observation
of the time evolution of an (Ft)-adapted process (Xt) is (possibly strictly) included in
the information flow modelled by (Ft).

11. Recalling that T = N or T = R+, a random time is any random variable with values in
T ∪ {∞}.
We often use a “random time” τ to denote the time at which a given random event
occurs. In this context, the set {τ = ∞} represents the event that the random event
never occurs.

12. Definition. Given a filtration (Ft), we say that a random time τ is an (Ft)-stopping
time if

{τ ≤ t} = {ω ∈ Ω | τ(ω) ≤ t} ∈ Ft for all t ∈ T . (6.2)

13. We can think of an (Ft)-stopping time as a random time with the property that, given
any fixed time t, we know whether the random event that it represents has occurred or
not in light of the available information Ft.
Note that the filtration (Ft) is essential for the definition of stopping times. Indeed, a
random time can be a stopping time with respect to some filtration (Ft), but not with
respect to some other filtration (Gt).

56



14. Example. Suppose that τ1 and τ2 are two (Ft)-stopping times. Then the random time
τ defined by τ = min

{
τ1, τ2

}
is an (Ft)-stopping time.

Proof. The assumption that τ1 and τ2 are (Ft)-stopping times implies that{
τ1 ≤ t

}
,
{
τ2 ≤ t

}
∈ Ft for all t ∈ T .

Therefore {
τ ≤ t

}
=
{
τ1 ≤ t

}
∪
{
τ2 ≤ t

}
∈ Ft for all t ∈ T ,

which proves the claim.

6.3 Martingales

15. Definition. An (Ft)-adapted stochastic process (Xt) is an (Ft)-supermartingale if

(i) E
[
|Xt|

]
<∞ for all t ∈ T , and

(ii) E
[
Xt | Fs

]
≤ Xs, P-a.s., for all s, t ∈ T such that s < t.

An (Ft)-adapted stochastic process (Xt) is an (Ft)-submartingale if

(i) E
[
|Xt|

]
<∞ for all t ∈ T , and

(ii) E
[
Xt | Fs

]
≥ Xs, P-a.s., for all s, t ∈ T such that s < t.

An (Ft)-adapted stochastic process (Xt) is an (Ft)-martingale if

(i) E
[
|Xt|

]
<∞ for all t ∈ T , and

(ii) E
[
Xt | Fs

]
= Xs, P-a.s., for all s, t ∈ T such that s < t.

16. A process (Xt) is a submartingale if (−Xt) is a supermartingale, and vice versa, while a
process (Xt) is a martingale if it is both a submartingale and a supermartingale.

A supermartingale “decreases on average”. A submartingale “increases on average”.

17. Example. A gambler bets repeatedly on a game of chance. If we denote by X0 the
gambler’s initial capital and by Xn the gambler’s total wealth after their n-th bet, then
Xn −Xn−1 are the gambler’s net winnings from their n-th bet (n ≥ 1).

If (Xn) is a martingale, then the game series is fair .

If (Xn) is a submartingale, then the game series is favourable to the gambler.

If (Xn) is a supermartingale, then the game series is unfavourable to the gambler.
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18. Example. Let X1, X2, . . . be a sequence of independent random variables in L1 such
that E[Xn] = 0 for all n. If we set

S0 = 0, Sn = X1 +X2 + · · ·+Xn, for n ≥ 1,

F0 = {∅,Ω} and Fn = σ(X1, X2, . . . , Xn), for n ≥ 1,

then the process (Sn) is an (Fn)-martingale.

Proof. Since

|X1 +X2 + · · ·+Xn| ≤ |X1|+ |X2|+ · · ·+ |Xn|,

the assumption that Xn ∈ L1(Ω,F ,P) for all n ≥ 1, implies that E
[
|Sn|

]
< ∞ for all

n ≥ 1.

The assumption that X1, X2, . . . are independent implies that

E
[
Xi | Fm

]
=

{
Xi, if i ≤ m,

E[Xi], if i > m.

It follows that, given any m < n,

E
[
Sn | Fm

]
=

n∑
i=1

E
[
Xi | Fm

]
=

m∑
i=1

Xi +
n∑

i=m+1

0

= Sm.

19. Example. Let (Ft) be a filtration, and let any random variable Y ∈ L1. If we define

Mt = E
[
Y | Ft

]
, t ∈ T ,

then M is a martingale.

Proof. By the definition of conditional expectation, E
[
|Mt|

]
<∞ for all t ∈ T .

Given any times s < t, the tower property of conditional expectation implies

E
[
Mt | Fs

]
= E

[
E
[
Y | Ft

]
| Fs

]
= E

[
Y | Fs

]
= Ms.

20. Definition. A stochastic process (Xt) with continuous sample paths such that X0 is a
constant, P-a.s., is an (Ft)-local martingale if there exists a sequence (τn) of (Ft)-stopping
times such that

(i) lim
n→∞

τn =∞, P-a.s.,

(ii) the process (Xτn
t ) defined by Xτn

t = Xt∧τn is an (Ft)-martingale.

Here, a ∧ b = min(a, b).
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21. Remark. It is important to remember that

- every (Ft)-martingale is an (Ft)-local martingale;

- there are (Ft)-local martingales that are NOT (Ft)-martingales;

- (Ft)-local martingales are occasionally “awkward” to work with, but they have impor-
tant applications, e.g., in the modelling of financial bubbles.

6.4 Brownian motion

22. Definition. The standard one-dimensional Brownian motion or Wiener process (Wt) is
the continuous time stochastic process described by the following properties:

(i) W0 = 0.

(ii) Continuity : All of the sample paths s 7→ Ws(ω) are continuous functions.

(iii) Independent increments : The increments of (Wt) in non-overlapping time intervals
are independent random variables. Specifically, given any times t1 < t2 < · · · < tk,
the random variables Wt2 −Wt1 , . . . , Wtk −Wtk−1

are independent.

(iv) Normality : Given any times s < t, the random variable Wt −Ws is normal with
mean 0 and variance t− s, i.e., Wt −Ws ∼ N (0, t− s).

23. Given any times s < t,

E [WsWt] = E [Ws(Ws +Wt −Ws)]

= E
[
W 2
s

]
+ E [Ws(Wt −Ws)]

= s+ E [Ws]E [Wt −Ws]

= s.

Therefore, given any times s, t,

E [WsWt] = min (s, t) .

24. Time reversal. The continuous time stochastic process (Bt, t ∈ [0, T ]) defined by

Bt = WT −WT−t, t ∈ [0, T ],

is a standard Brownian motion.
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Proof. We verify the requirements of the definition:

- B0 = WT −WT−0 = 0.

- The process (Bt) has continuous sample paths because this is true for (Wt).

- Given 0 ≤ t1 < t2 < · · · < tk ≤ T , observe that T − tk < · · · < T − t2 < T − T1, and
Bti −Bti−1

= WT−ti−1
−WT−ti . Therefore, the increments

Bt2 −Bt1 , . . . Btk −Btk−1

are independent random variables because this is true for the random variables

WT−t1 −WT−t2 , . . . WT−tk−1
−WT−tk

which are increments of the Brownian motion (Wt) in non-overlapping time intervals.

- Fix any times s < t and note that WT−t−Wt−s ∼ N (0, t−s) because (Wt) is a Brownian
motion. Combining this observation with the fact that Bt−Bs = −(WT−t−Wt−s),
we can see that Bt −Bs ∼ N (0, t− s).

25. Definition. An n-dimensional standard Brownian motion (Wt) is a (column) vector
(W 1

t , . . . ,W
n
t )′ composed by independent standard one-dimensional Brownian motions

(W 1
t ), . . . , (W n

t ).

26. We often want a stochastic process to be a Brownian motion with respect to the flow of
information modelled by a filtration (Ft), which gives rise to the following definition.

Definition. If (Ft) is a filtration, then an (Ft)-adapted stochastic process (Wt) is called
an (Ft)-Brownian motion if

(i) (Wt) is a Brownian motion, and

(ii) for every time t ≥ 0, the process (Wt+s −Wt, s ≥ 0) is independent of Ft, i.e., the
σ-algebras σ (Wt+s −Wt, s ≥ 0) and Ft are independent.

27. Lemma. Every (Ft)-Brownian motion (Wt) is an (Ft)-martingale.

Proof. The inequalities

E
[
|Wt|

]
≤ 1 + E

[
W 2
t

]
= 1 + t <∞

imply that Wt ∈ L1 for all t ≥ 0.

Given any times s < t,

E[Wt | Fs] = E[Wt −Ws | Fs] +Ws

= 0 +Ws

= Ws,

the second equality following because the random variable Wt−Ws is independent of Fs.
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28. Lemma. Consider a standard (Ft)-Brownian motion (Wt) and define

Lt = exp

(
−1

2
ϑ2t− ϑWt

)
,

for some constant ϑ. The process (Lt) is an (Ft)-martingale.

Proof. Given any times s < t, the random variable ϑ(Wt −Ws) is normal with mean 0
and variance ϑ2(t − s) that is independent of Fs. In view of these observations, we can
see that

E
[
LtL

−1
s | Fs

]
= E

[
exp

(
−ϑ

2(t− s)
2

− ϑ(Wt −Ws)

)
| Fs

]
= E

[
exp

(
−ϑ

2(t− s)
2

− ϑ(Wt −Ws)

)]
= 1,

The last equality here follows from Example 4.19 with the identifications X → ϑ(Wt−Ws)
and σ2 → ϑ2(t− s). Therefore,

E
[
|Lt|
]

= E[LtL
−1
0 | F0] = 1 <∞ and E[Lt | Fs] = Ls.

6.5 Exercises

1. Let X0 = 1, and let X1, X2, . . . be a sequence of independent positive random variables
with

E
[
Xk

]
= 1 for all k.

Define

Mn = X0X1 · · ·Xn, for n ≥ 0,

and let Fn be the σ-algebra generated by the random variables X0, X1, . . . , Xn.
Prove that the process (Mn) is an (Fn)-martingale.

2. Let X0 = 0, and let X1, X2, . . . be a sequence of random variables such that E
[
|Xk|

]
<

∞ for all k ≥ 1. Also, let Fn be the σ-algebra generated by the random variables
X0, X1, . . . , Xn, and define

M0 = X0 and Mn =
n∑
i=1

(
Xi − E

[
Xi | Fi−1

])
, for n ≥ 1.

Prove that the process (Mn) is an (Fn)-martingale.
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3. Consider a filtration (Fn) and an (Fn)-adapted stochastic process (Xn) such that
X0 = 0 and E

[
|Xn|

]
< ∞ for all n ≥ 0. Also, let (cn) be a sequence of constants.

Define M0 = 0 and

Mn = cnXn −
n∑
j=1

cjE
[
Xj −Xj−1 | Fj−1

]
−

n∑
j=1

(
cj − cj−1

)
Xj−1, for n ≥ 1.

Prove that (Mn) is an (Fn)-martingale.

4. Let (Wt) be a standard one-dimensional Brownian motion. Given times r < s < t < u,
calculate the expectations

(i) E [(Wt −Ws)(Ws −Wr)],

(ii) E [(Wu −Wt)
2(Ws −Wr)

2],

(iii) E [(Wu −Ws)(Wt −Wr)],

(iv) E [(Wt −Wr)(Ws −Wr)
2], and

(v) E [WrWsWt].

5. Scaling of the standard Brownian motion. Let (Wt) be a standard Brownian motion.
Given a constant c > 0, show that the stochastic process (Xt) defined by

Xt =
1√
c
Wct, for t ≥ 0,

is a standard Brownian motion.

6. Suppose that the process (Wt) is a standard one-dimensional (Ft)-Brownian motion.
Prove that the process (Xt) defined by

Xt = W 2
t − t, for t ≥ 0,

is an (Ft)-martingale.

Hint . Observe that the (Ft)-martingale property of (Xt) is equivalent to

E
[
W 2
t | Fs

]
−W 2

s = t− s for all s < t. (6.3)

Then consider E
[
(Wt −Ws)

2 | Fs
]

and prove (6.3).
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CHAPTER

7

STOCHASTIC CALCULUS

1. Throughout the chapter, we fix a filtered probability space (Ω,F ,Ft,P) carrying a stan-
dard (Ft)-Brownian motion (Wt). Unless explicitly stated otherwise, we assume that the
Brownian motion (Wt) is one-dimensional.

A proper development of the material in this chapter is mathematically rather technical
and involved. In what follows, we focus on some of the main ideas and useful results.

7.1 Itô integrals

2. The theory of Itô calculus presents one successful answer to how we can make sense to
the integral ∫ t

0

Ks dWs.

We assume that the integrand (Kt) is (Ft)-adapted and has “reasonable” sample paths
in the sense that ∫ t

0

K2
s ds <∞ for all t ≥ 0, P-a.s.. (7.1)
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3. Definition. (Kt) is a simple process if there exist times 0 = t0 < t1 < · · · < tn = T and
Ftj -measurable random variables K̄j, j = 0, 1, . . . , n− 1, such that

Kt =
n−1∑
j=0

K̄j1[tj ,tj+1)(t).

4. Definition. The stochastic integral of a simple process (Kt) as in Definition 7.3 is defined
by ∫ T

0

Ks dWs =
n−1∑
j=0

K̄j(Wtj+1
−Wtj).

5. One construction of the Itô integral starts from stochastic integrals of simple processes as
above, and then appeals to a density argument based on the Itô isometry. In particular,
if (Kt) is an integrand satisfying the assumptions discussed informally in Paragraph 7.2
above, then its stochastic integral satisfies the Itô isometry

E

[(∫ T

0

Ks dWs

)2
]

= E
[∫ T

0

K2
s ds

]
=

∫ T

0

E
[
K2
s

]
ds for all T ≥ 0.

(Note that the terms in these identities may be equal to ∞.)

6. Consider an (Ft)-adapted process (Kt) satisfying (7.1) and let (It) be the stochastic
process aggregating the stochastic integrals

It =

∫ t

0

Ks dWs, t ≥ 0.

The process (It) is an (Ft)-local martingale (see Definition 6.20 and Remark 6.21).

If additionally (Kt) is such that

E
[∫ T

0

K2
s ds

]
=

∫ T

0

E
[
K2
s

]
ds <∞ for all T > 0,

then (It) is an (Ft)-martingale. In fact, it belongs to the class of square integrable (Ft)-
martingales, which is a sub-class of all (Ft)-martingales.

64



7.2 Martingale representation theorem

7. Suppose that (Wt) is a standard n-dimensional Brownian motion (see Definition 6.25).
Also, let (FWt ) be the natural filtration of (Wt). The martingale representation theorem
states that, given any (FWt )-local martingale (Mt),

Mt = M0 +

∫ t

0

Ks dWs, (7.2)

for some (FWt )-adapted row-vector process (Kt) satisfying∫ t

0

|Ks|2 ds =
n∑
j=1

(Kj
s)

2 ds <∞ for all t ≥ 0, P-a.s.,

where

Kt dWt =
n∑
j=1

Kj
t dW

j
t .

7.3 Itô’s formula

8. Itô processes follow from the definition of stochastic integrals. The expression

dXt = at dt+ bt dWt (7.3)

is short for

Xt = X0 +

∫ t

0

as ds+

∫ t

0

bs dWs, t ≥ 0.

Here, we assume that (at) and (bt) are processes that satisfy assumptions ensuring that
the two integrals in this expression are well-defined.

Note that an Itô process is a local martingale if and only if

at = 0 for all t ≥ 0.

9. Itô’s formula can be memorised by recalling Taylor’s series expansion of a smooth function
and using the expressions

(dWt)
2 = dt, dWt dt = 0, (dt)2 = 0, (7.4)

which imply that, if X is the Itô process given by (7.3), then

(dXt)
2 = a2

t (dt)2 + 2atbt dWt dt+ b2
t (dWt)

2

= b2
t dt. (7.5)
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10. Given a C1,2 function (t, x) 7→ f(t, x) and the Itô process (Xt) given by (7.3), Itô’s lemma
states that the stochastic process (Ft) defined by Ft = f(t,Xt) is also an Itô process. In
particular, Itô’s formula provides the expression

df(t,Xt) = ft(t,Xt) dt+ fx(t,Xt) dXt +
1

2
fxx(t,Xt) (dXt)

2

=

[
ft(t,Xt) + atfx(t,Xt) +

1

2
b2
tfxx(t,Xt)

]
dt+ btfx(t,Xt) dWt, (7.6)

where

ft(t, x) =
∂f(t, x)

∂t
, fx(t, x) =

∂f(t, x)

∂x
and fxx(t, x) =

∂2f(t, x)

∂x2
.

The following is a useful special case:

df(t,Wt) = ft(t,Wt) dt+ fx(t,Wt) dWt +
1

2
fxx(t,Wt) (dWt)

2

=

[
ft(t,Wt) +

1

2
fxx(t,Wt)

]
dt+ fx(t,Wt) dWt. (7.7)

11. If f does not depend explicitly on time, i.e., if x 7→ f(x) is a C2 function, then Itô’s
formula takes the form

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt) (dXt)

2

=

[
atf
′(Xt) +

1

2
b2
tf
′′(Xt)

]
dt+ btf

′(Xt) dWt, (7.8)

where f ′ and f ′′ are the first and the second derivative of f , respectively. Also,

df(Wt) = f ′(Wt) dWt +
1

2
f ′′(Wt) (dWt)

2

=
1

2
f ′′(Wt) dt+ f ′(Wt) dWt. (7.9)

12. Example. The solution to the stochastic differential equation (SDE)

dSt = µSt dt+ σSt dWt, (7.10)

where µ, σ are constants, is given by

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
. (7.11)

We can verify this claim in two ways:
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Way 1 . Noting that

d ln s

ds
=

1

s
and

d2 ln s

ds2
= − 1

s2
,

we can use (7.8) to calculate

d lnSt =
1

St
dSt +

1

2

(
− 1

S2
t

)
(dSt)

2

=
1

St

[
µSt dt+ σSt dWt

]
− 1

2S2
t

(σSt)
2 dt

=

(
µ− 1

2
σ2

)
dt+ σ dWt,

which implies that

lnSt − lnS0 =

∫ t

0

d lnSu

=

∫ t

0

(
µ− 1

2
σ2

)
du+

∫ t

0

σ dWu.

It follows that

St = elnSt

= exp

(
lnS0 +

(
µ− 1

2
σ2

)
t+ σWt

)
,

which establishes that the solution of (7.10) is given by (7.11).

Way 2 . We consider the Itô process

dXt =

(
µ− 1

2
σ2

)
dt+ σ dWt,

and we define f(x) = S0e
x, so that

f ′(x) = f ′′(x) = f(x).

Using Itô’s formula (7.8), we can see that the process (St) defined by (7.11) satisfies

dSt = df(Xt)

= f ′(Xt) dXt +
1

2
f ′′(Xt) (dXt)

2

=

(
µ− 1

2
σ2

)
f(Xt) dt+ σf(Xt) dWt +

1

2
σ2f(Xt) dt

= µf(Xt) dt+ σf(Xt) dWt

= µSt dt+ σSt dWt, (7.12)

which proves that (St) satisfies (7.10).
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13. Another useful result of stochastic analysis is the integration by parts formula. Given the
pair of Itô processes

dXt = at dt+ bt dWt,

dYt = ct dt+ et dWt,

the product process (XtYt) is again an Itô process, and

d (XtYt) = Xt dYt + Yt dXt + (dXt)(dYt)

= [Ytat +Xtct + btet] dt+ [Ytbt +Xtet] dWt, (7.13)

where we have used the formal expressions (7.4).

14. Itô’s formula can be generalised in a straightforward way to account for multi-dimensional
Itô processes.

Suppose that the Brownian motion (Wt) is n-dimensional (see Definition 6.25). Also,
consider the Itô processes (X1

t ), . . . , (Xm
t ) given by

dX i
t = ait dt+ bit dWt, for i = 1, . . . ,m,

where

bit dWt =
n∑
j=1

bijt dW
j
t ,

with (ait) and (bit) = (bi1t , . . . , b
in
t ) being suitable row-vector stochastic processes.

If f is a C1,2,...,2 function, then Itô’s formula provides the expression

df(t,X1
t , . . . , X

m
t ) = ft(t,X

1
t , . . . , X

m
t ) dt+

m∑
i=1

fxi(t,X
1
t , . . . , X

m
t ) dX i

t

+
1

2

m∑
i,k=1

fxixk(t,X
1
t , . . . , X

m
t )
(
dX i

t

) (
dXk

t

)
=

(
ft(t,X

1
t , . . . , X

m
t ) +

m∑
i=1

aitfxi(t,X
1
t , . . . , X

m
t )

+
1

2

m∑
i,k=1

(
n∑
`=1

bi`t b
k`
t

)
fxixk(t,X

1
t , . . . , X

m
t )

)
dt

+
m∑
i=1

fxi(t,X
1
t , . . . , X

m
t )bit dWt. (7.14)

The second expression here follows immediately from the first one if we consider the
formal expressions

(dt)2 = 0, dW i
t dt = 0 and dW i

t dW
j
t =

{
dt, if i = j,

0, if i 6= j.
(7.15)
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15. Similarly, the integration by parts formula can be generalised in a straightforward way
to account for Itô processes driven by a multi-dimensional Brownian motion.

Suppose that the Brownian motion (Wt) is n-dimensional. Given the pair of Itô processes

dXt = at dt+ bt dWt, t ≥ 0,

dYt = ct dt+ et dWt, t ≥ 0,

where (at), (bt) = (b1
t , . . . , b

n
t ), (ct) and (et) = (e1

t , . . . , e
n
t ) are suitable row-vector stochas-

tic processes, the product (XtYt) is an Itô process such that

d (XtYt) = Xt dYt + Yt dXt + (dXt)(dYt)

= (Ytat +Xtct + bte
′
t) dt+ (Ytbt +Xtet) dWt,

where we have used the formal expressions in (7.15).

7.4 Changes of probability measure

16. We can have many probability measures other than P defined on the measurable space
(Ω,F). Indeed, let Y be any random variable defined on (Ω,F ,P) such that

Y > 0, P-a.s., and EP [Y ] = 1.

Here, we write EP instead of just E to indicate that we compute expectations with respect
to the probability measure P. We can then define the probability measure Q on (Ω,F)
by

Q(A) ≡ EQ [1A] = EP [Y 1A] , for A ∈ F . (7.16)

This probability measure has the property that, given any event A ∈ F ,

P(A) = 0 ⇔ Q(A) = 0 and P(A) = 1 ⇔ Q(A) = 1.

Any probability measures P and Q having this property are called equivalent .

17. Lemma. The function Q : F → [0, 1] defined by (7.16) is indeed a probability measure.

Proof. First, we note that the identity EP [Y ] = 1 and the inequalities 0 ≤ 1A ≤ 1 imply
that

0 ≤ Q(A) ≤ 1 for all A ∈ F ,

so (7.16) defines a function Q : F → [0, 1]. In particular,

Q(∅) = EP [Y 1∅] = EP [1∅] = P(∅) = 0 and Q(Ω) = EP[Y 1Ω

]
= EP[Y ] = 1.
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Furthermore, given any sequence (An) of pairwise disjoint events in F , we can use the
monotone convergence theorem and the linearity of expectation to calculate

Q

(
∞⋃
j=1

Aj

)
= EP

[
Y 1⋃∞

j=1 Aj

]
= EP

[
Y
∞∑
j=1

1Aj

]
= EP

[
lim
n→∞

n∑
j=1

Y 1Aj

]

= lim
n→∞

EP

[
n∑
j=1

Y 1Aj

]
= lim

n→∞

n∑
j=1

EP[Y 1Aj
]

=
∞∑
j=1

EP[Y 1Aj
]

=
∞∑
j=1

Q(Aj),

which proves that Q is countably additive. It follows that Q has all of the properties that
define a probability measure.

18. Lemma. Given a random variable Z such that the corresponding expectations are well-
defined,

EQ [Z] = EP [Y Z] and EP [Z] = EQ [Y −1Z
]
. (7.17)

Proof. We prove this claim using the so-called “measure-theoretic induction”, which is
a proof technique that is taylor made for this kind of results. First, we assume that Z is
a simple random variable, namely,

Z =
n∑
j=1

zj1{Z=zj},

for some distinct constants z1, . . . , zn. In this case, we use the linearity of the expectation
and the definition of Q to calculate

EQ[Z] = EQ

[
n∑
j=1

zj1{Z=zj}

]
=

n∑
j=1

zjEQ [1{Z=zj}
]

=
n∑
j=1

zjQ ({Z = zj})

=
n∑
j=1

zjEP [Y 1{Z=zj}
]

= EP

[
Y

n∑
j=1

zj1{Z=zj}

]
= EP[Y Z].

Next, we assume that Z is a positive random variable and we consider any increasing
sequence of positive simple random variables (Zn) such that limn→∞ Zn = Z, P-a.s. (e.g.,
see Paragraph 4.9). The assumption that each of the random variables Zn is simple and
what we have proved above imply that

EQ[Zn] = EP[Y Zn] for all n ≥ 1.

Combining this observation with the monotone convergence theorem, we can see that

EQ[Z] = EQ
[

lim
n→∞

Zn

]
= lim

n→∞
EQ [Zn] = lim

n→∞
EP [Y Zn] = EP

[
lim
n→∞

Y Zn

]
= EP[Y Z].
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If Z is a random variable such that EQ
[
|Z|
]
<∞, then we consider the positive random

variables Z+, Z− satisfying Z = Z+ − Z− and |Z| = Z+ + Z−. Using the fact that the
required result holds true if Z is a positive random variable, which we have proved above,
we can see that

EQ[Z] = EQ[Z+]− EQ[Z−] = EP[Y Z+]− EP[Y Z−] = EP[Y Z],

and the first identity in (7.17) has been established.

Finally, the second identity in (7.17) follows from the observation that

EP [Z] = EP [Y Y −1Z
]

= EQ [Y −1Z
]
.

19. Suppose that (Lt) is an (Ft)-martingale with respect to the probability measure P such
that Lt > 0, P-a.s., and EP [Lt] = 1 for all t ≥ 0. Given a time T > 0, we define an
equivalent probability measure Q on the measurable space (Ω,FT ) by

Q(A) = EP [LT1A] for all A ∈ FT .

Lemma. The process
(
L−1
t , t ∈ [0, T ]

)
is an (Ft)-martingale with respect to the proba-

bility measure Q.

Proof. Fix any times 0 ≤ s ≤ t ≤ T and consider any Fs-measurable random variable
Z such that the corresponding expectations are well-defined. In view of Lemma 7.18, the
tower property and the fact that (Lt) is an (Ft)-martingale with respect to the probability
measure P, we can see that

EQ [L−1
t Z

]
= EP [LTL−1

t Z
]

= EP
[
EP [LT | Ft]L−1

t Z
]

= EP [LtL−1
t Z

]
= EP [Z] .

Similarly, we can see that EQ [L−1
s Z] = EP [Z] and conclude that

EQ [L−1
s Z

]
= EQ [L−1

t Z
]

for all 0 ≤ s ≤ t ≤ T and Fs-measurable Z. (7.18)

For s = 0 and Z = 1, this identity implies that EQ
[
L−1
t

]
= 1 for all t ∈ [0, T ] .

Furthermore, given any times 0 ≤ s < t ≤ T and any event A ∈ Fs, we can use (7.18)
with Z = 1A to obtain

EQ
[
EQ [L−1

t | Fs
]
1A

]
= EQ

[
EQ [L−1

t 1A | Fs
]]

= EQ [L−1
t 1A

]
= EQ [L−1

s 1A
]

In light of the definition of conditional expectation, we can see that

EQ [L−1
t | Fs

]
= L−1

s ,

and the result follows.
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20. Given a random variable Z such that the corresponding expectations are well-defined,
Lemma 7.18 implies that

EQ [Z] = EP [LTZ] ≡ EP [LTZ]

L0

and EP [Z] = EQ [L−1
T Z

]
≡

EQ
[
L−1
T Z

]
L−1

0

.

The following result, which is also known as Bayes’ theorem, generalises these identities
and is very useful in relating conditional expectations under P with conditional expecta-
tions under Q.

Lemma. If Z is an FT -measurable random variable such that the corresponding condi-
tional expectations are well-defined, then

EQ [Z | Fs] =
EP [LTZ | Fs]

Ls
and EP [Z | Fs] =

EQ
[
L−1
T Z | Fs

]
L−1
s

(7.19)

for all s ∈ [0, T ].

Proof. In view of Lemma 7.19 and the symmetric roles of the probability measures
P and Q, we only need to prove the first identity in (7.19). To this end, we consider
the definition of conditional expectation, we observe that both sides of this identity are
Fs-measurable random variables in L1, and we note that, given any event A ∈ Fs,

EQ
[
EP [LTZ | Fs]

Ls
1A

]
= EP

[
LT

EP [LTZ | Fs]
Ls

1A

]
= EP

[
EP
[
LT

EP [LTZ | Fs]
Ls

1A | Fs
]]

= EP
[
EP [LT | Fs]

EP [LTZ | Fs]
Ls

1A

]
= EP [EP [LTZ | Fs] 1A

]
= EP [LTZ1A]

= EQ [Z1A]

= EQ [EQ [Z | Fs] 1A
]
.
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7.5 Girsanov’s theorem

21. Given a constant ϑ, the process

Lt = exp

(
−1

2
ϑ2t− ϑWt

)
,

is an (Ft)-martingale (see Lemma 6.28). If we define the probability measure Q on (Ω,FT )
by

Q(A) = EP [LT1A] for A ∈ FT , (7.20)

then Girsanov’s theorem states that the process (W ϑ
t ) defined by

W ϑ
t = ϑt+Wt, for t ∈ [0, T ],

is a standard (Ft)-Brownian motion with respect to the probability measure Q.

In this context,

EP [Wt] = 0, EQ [Wt] = −ϑt,
EP [W ϑ

t

]
= ϑt and EQ [W ϑ

t

]
= 0.

Also, if (Kt) is a process such that all associated stochastic integrals are well-defined, and
all integrals with respect to the associated Brownian motions are martingales, then

EP
[∫ t

0

Ku dWu

]
= 0,

EQ
[∫ t

0

Ku dWu

]
= EQ

[∫ t

0

Ku dW
ϑ
u −

∫ t

0

Kuϑ du

]
= −ϑEQ

[∫ t

0

Ku du

]
,

EP
[∫ t

0

Ku dW
ϑ
u

]
= EP

[∫ t

0

Ku dWu +

∫ t

0

Kuϑ du

]
= ϑEP

[∫ t

0

Ku du

]
and EQ

[∫ t

0

Ku dW
ϑ
u

]
= 0.
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22. In a more general context, suppose that the Brownian motion (Wt) is n-dimensional and
let (Xt) be an n-dimensional (Ft)-adapted process satisfying∫ t

0

|Xs|2 ds <∞ for all t ≥ 0, P-a.s..

Under this assumption, the process (Lt) given by

Lt = exp

(
−1

2

∫ t

0

|Xs|2 ds−
∫ t

0

Xs dWs

)
is well-defined for all t. Using Itô’s formula, we can verify that

Lt = 1−
∫ t

0

XsLs dWs, (7.21)

so (Lt) is an (Ft)-local martingale.

Under appropriate conditions, the process (Lt) given by (7.21) is a martingale, in which
case, E

[
LT
]

= 1 for all T ≥ 0. One sufficient condition for (Lt) to be a martingale is
Novikov’s condition:

E
[
exp

(
1

2

∫ t

0

|Xs|2 ds
)]

<∞ for all t ≥ 0.

If (Lt) is a martingale, then, given any fixed time T > 0, we can define a probability
measure Q on (Ω,FT ) by

Q(A) = E [LT1A] , for A ∈ FT .

Girsanov’s theorem states that, given any fixed time T > 0, the process (W̃t) defined by

W̃t = Wt +

∫ t

0

Xs ds, t ∈ [0, T ]

is an n-dimensional (Ft)-Brownian motion with respect to Q.

7.6 Exercises

1. Consider a standard one-dimensional Brownian motion (Wt). Use Itô’s formula to
calculate

W 2
t = t+ 2

∫ t

0

Ws dWs,

and

W 27
t = 351

∫ t

0

W 25
s ds+ 27

∫ t

0

W 26
s dWs.
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2. Consider a standard one-dimensional Brownian motion (Wt). Given k ≥ 2 and t ≥ 0,
use Itô’s formula to prove that

E
[
W k
t

]
=

1

2
k(k − 1)

∫ t

0

E
[
W k−2
u

]
du.

Use this expression to calculate E [W 4
t ] and E [W 6

t ].

Hint : You may assume that all stochastic integrals with respect to a Brownian
motion that you encounter in this exercise are martingales, so they have expectation
0.

3. Consider the following stochastic differential equation

Zt = −
∫ t

0

Zu du+

∫ t

0

e−u dWu.

Prove that its solution is given by

Zt = e−tWt.

4. In Vasicek’s interest rate model, the dynamics of the short rate process (rt) are given
by the stochastic differential equation

drt = k(ϑ− rt) dt+ σ dWt, (7.22)

where k, ϑ and σ are strictly positive constants

(a) Show that the solution of (7.22) is given by

rt = ϑ+ (r0 − ϑ)e−kt + σe−kt
∫ t

0

eks dWs.

Hint : Consider the Itô processes (Xt) and (Yt) defined by

Xt = ekt and Yt = rt,

and use the integration by parts formula.

(b) Calculate the mean E[rt] and the variance var(rt) of the random variable rt.

Hint . To calculate the variance of rt, you may use Itô’s isometry. Also, you
may assume that all stochastic integrals with respect to a Brownian motion
that you encounter in this exercise are martingales, so they have expectation
0.
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5. In the Cox-Ingersoll-Ross interest rate model, the dynamics of the short rate process
(rt) are given by the stochastic differential equation

drt = k(ϑ− rt) dt+ σ
√
rt dWt,

where k, ϑ and σ are strictly positive constants. Prove that the stochastic process
(rt) satisfies

rt = ϑ+ (r0 − ϑ)e−kt + σe−kt
∫ t

0

eks
√
rs dWs,

and then calculate the mean E[rt] and the variance var(rt) of the random variable
rt.

Hint . You may assume that all stochastic integrals with respect to a Brownian
motion that you encounter in this exercise are martingales, so they have expectation
0.

6. Consider a standard one-dimensional Brownian motion (Wt), and the Itô process given
by

dXt = teWt dt+ cos(t2Wt) dWt, X0 =
√
π.

Also, let (Zt) be the Itô process defined by

(i) Zt = sin(tXt), or

(ii) Zt = Xt exp(t2Xt), or

(iii) Zt = X3
t + t cos(Xt).

In each of these cases, use Itô’s formula to provide expressions for the constant Z0,
and the processes (At) and (Ct) such that

Zt = Z0 +

∫ t

0

As ds+

∫ t

0

Cs dWs.

7. Consider the exponential martingale (Lt) defined by the stochastic differential equation

dLt = ϑLt dWt, L0 = 1,

where ϑ is a constant, and let (πt) be the process defined by

πt =
Lt

1 + Lt
.

Prove that (πt) satisfies the stochastic differential equation

dπt = −ϑ2π2
t (1− πt) dt+ ϑπt (1− πt) dWt.

8. Suppose that (Xt) is a continuous (Ft)-local martingale such that Xt ≥ 0 for all t ≥ 0,
P-a.s.. Prove that (Xt) is an (Ft)-supermartingale.
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