

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

Summer 2016 examination

MA103

Solutions

(a) We are dealing with three statements p, q, r, each of which can be true ("T") or false ("F"). Using the simple truth tables for $a \lor b$ and $a \Rightarrow b$, we get the following truth table, showing both $(p \Rightarrow r) \lor (q \Rightarrow r)$ and $(p \lor q) \Rightarrow r$:

р	q	r	$ p \Rightarrow r$	$q \Rightarrow r$	$(p \Rightarrow r) \lor (q \Rightarrow r)$	$p \lor q$	$(p \lor q) \Rightarrow r$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	F	Т	F
Т	F	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	F
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	Т	F
F	F	Т	Т	Т	Т	F	Т
F	F	F	∥ т	Т	Т	F	Т

We see that there are two lines in which the truth values for $(p \Rightarrow r) \lor (q \Rightarrow r)$ and $(p \lor q) \Rightarrow r$ differ, which means that the two statements are not logically equivalent. [4 + 2 pts, Standard question]

(b) Since $S_1 = 1$ and $S_2 = 2$, the statement is true for n = 1 and n = 2.

Now suppose that the statement is true for all $n \le k$, for some $k \ge 2$, and consider the number S_{k+1} . Since $k + 1 \ge 3$, we know that $S_{k+1} = 2S_k + S_{k-1} - 2$.

Now if k+1 is even, then k is odd and k-1 is even, and hence by the induction hypothesis we have that S_k is odd and S_{k-1} is even. This means that $2S_k + S_{k-1} - 2$ is even ("two times odd plus even minus even" is even).

And if k + 1 is odd, then k is even and k - 1 is odd, and hence by the induction hypothesis we have that S_k is even and S_{k-1} is odd. This means that $2S_k + S_{k-1} - 2$ is odd ("two times even plus odd minus even" is odd).

We have shown that the statement is true for n = k + 1.

By the Principle of Induction, we can can conclude that P(n) is true for all $n \in \mathbb{N}$. [8 pts, Similar to many questions, although more involved than most seen]

(c) (i) If $z = Re^{i\theta}$, then $z^2 = R^2 e^{2i\theta}$ and $2\overline{z} = 2Re^{-i\theta}$. So to have $z^2 = 2\overline{z}$ we must have $R^2 = 2R$ and $e^{2i\theta} = e^{-i\theta}$.

Since $R^2 = 2R$ is equivalent to R(R-2) = 0, we have R = 0 or R = 2.

And to have $e^{2i\theta} = e^{-i\theta}$, we must have that 2θ and $-\theta$ differ by a multiple of 2π . So we have $2\theta = -\theta + 2k\pi$ for some integer k, while we also want that $0 \le \theta < 2\pi$. This gives $3\theta = 2k\pi$. If k = 0, then we get $\theta = 0$; if k = 1, then we get $\theta = \frac{2}{3}\pi$; and if k = 2, then we get $\theta = \frac{4}{3}\pi$. For all other values of k, we don't find $0 \le \theta < 2\pi$. Combining it all, if R = 0, then we have the one solution z = 0. And if R = 2, then we have $z = 2e^{0i} = 2$, $z = 2e^{2i\pi/3}$ and $z = 2e^{4i\pi/3}$. [8 pts, Unseen]

(ii) We can write 0 = 0 + 0i and 2 = 2 + 0i. For the other two solutions we find

$$2e^{2i\pi/3} = 2\left(\cos(\frac{2}{3}\pi) + i\sin(\frac{2}{3}\pi)\right) = 2\left(-\frac{1}{2} + i\frac{1}{2}\sqrt{3}\right) = -1 + i\sqrt{3},$$

$$2e^{4i\pi/3} = 2\left(\cos(\frac{4}{3}\pi) + i\sin(\frac{4}{3}\pi)\right) = 2\left(-\frac{1}{2} - i\frac{1}{2}\sqrt{3}\right) = -1 - i\sqrt{3}.$$

[3 pts, Standard]

- (a) (i) We have that d is a divisor of m if there exists an integer k such that m = k · d. The greatest common divisor gcd(m, n) of two integers m, n, not both zero, is the largest integer d such that d is a divisor of both m and n. [1 + 1 pts, Bookwork]
 - (ii) Every integer is a divisor of 0, since we have 0 = 0 ⋅ d for every integer d. That means that if we would ask for common divisors of 0 and 0, then we would have the set of all integers. Hence there would be no largest common divisor.
 [3 pts, Discussed in lectures]
 - (iii) We first note that gcd(-51, 141) = gcd(141, 51), and then start taking the steps in Euclid's algorithm as follows.

$$141 = 2 \times 51 + 39;$$

$$51 = 1 \times 39 + 12;$$

$$39 = 3 \times 12 + 3;$$

$$12 = 4 \times 3 + 0.$$

As the final line ends in 0, we have found the greatest common divisor: gcd(-51, 141) = gcd(141, 51) = 3. [4 pts, Standard]

(b) (i) If we have $x = 0.0\overline{119}$, then $1000x = 11.9\overline{119}$. This means that $999x = 1000x - x = 11.9\overline{119} - 0.0\overline{119} = 11.9 = \frac{119}{10}$. And hence we have $x = \frac{119}{10 \cdot 999} = \frac{119}{9,990}$. [3 pts, Bookwork]

(ii) We can write $x = 0.01191\overline{191}$. This shows immediately that $r = 0.01191 = \frac{1191}{100,000}$ satisfies $0.0119 < r < 0.0\overline{119}$. [3 pts, Standard]

- (iii) From a result in the course we know that $\sqrt{2}$ is irrational. We also know that $1 < \sqrt{2} < 2$. This means that $0 < \frac{\sqrt{2}}{200,000} < \frac{2}{200,000}$. Since $\sqrt{2}$ is irrational, also $z = \frac{119}{10,000} + \frac{1}{200,000}\sqrt{2}$ is irrational. Note that z satisfies $z > \frac{119}{10,000} = 0.0119$ and $z < \frac{119}{10,000} + \frac{2}{200,000} = 0.0119 + 0.00001 = 0.01191 < 0.0\overline{119}$. So z has indeed the desired properties. [5 pts, Unseen]
- (c) Let $x \in (A \cup B) \setminus C$. That means that $x \in A \cup B$ and $x \notin C$. And from $x \in A \cup B$ we know that $x \in A$ or $x \in B$. If $x \in A$, then together with $x \notin C$ we have $x \in A \setminus C$, and hence $x \in (A \setminus C) \cup (B \setminus C)$. While if $x \in B$, then together with $x \notin C$ we have $x \in B \setminus C$, giving $x \in (A \setminus C) \cup (B \setminus C)$ again. So we can conclude that $(A \cup B) \setminus C \subseteq (A \setminus C) \cup (B \setminus C)$. [5 pts, Unseen]

(a) (i) The *contrapositive* of the statement is "if p/q can not be expressed as an Egyptian fraction with k + 1 terms, then p/q can not be expressed as an Egyptian fraction with k terms".

The *converse* of the statement is "if p/q can be expressed as an Egyptian fraction with k + 1 terms, then p/q can be expressed as an Egyptian fraction with k terms". [2 + 1 pts, Standard]

- (ii) We need to show that we can write 1/a = 1/b + 1/c, for some natural numbers b, c, $b \neq c$. We greedily take 1/b < 1/a as large as possible, hence we take b = a + 1. We find that $\frac{1}{a} \frac{1}{a+1} = \frac{1}{a(a+1)}$. Hence we have $\frac{1}{a} = \frac{1}{a+1} + \frac{1}{a(a+1)}$. And since $a \ge 2$, we have $a(a+1) \neq a+1$, as required. [4 pts, Unseen]
- (iii) Let p/q, 0 < p/q < 1, be a rational number and suppose that we can express p/q as an Egyptian fraction with $k \ge 2$ terms. In other words we can write $\frac{p}{q} = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_k}$, where a_1, a_2, \dots, a_k are different natural numbers. So we can assume that $a_1 < a_2 < \dots < a_k$. Now in part (ii) we have seen that we can write $\frac{1}{a_k} = \frac{1}{a_k + 1} + \frac{1}{a_k(a_k + 1)}$, with $a_k < a_k + 1 < a_k(a_k + 1)$ (since $a_k > a_1 \ge 1$). Putting it together gives $\frac{p}{q} = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{k-1}} + \frac{1}{a_k + 1} + \frac{1}{a_k(a_k + 1)}$, which gives an expression of p/q as an Egyptian fraction with k + 1 terms. [6 pts, Unseen]
- (iv) The *contrapositive* of a statement is logically equivalent to the statement itself. Since we proved in (iii) that P is always true, that means that the contrapositive of P is also always true.
 [2 pts, Bookwork]
- (b) (i) If c = 1, the system becomes $\begin{cases}
 5x + 3y = 2, \\
 x + 2y = 1.
 \end{cases}$ Multiplying the second equation by 5 gives 5x + 10y = 5. Since 10 = 3 in \mathbb{Z}_7 , that equation is equivalent to 5x + 3y = 5. But as the first equation is 5x + 3y = 2, we get 5 = 2, which is not valid in \mathbb{Z}_7 . [3 pts, Standard]
 - (ii) Multiplying the first equation by 2 gives 10x+6y = 4, which is equivalent to 3x+6y = 4 in \mathbb{Z}_7 . Multiplying the second equation by 3 gives 3cx + 6y = 3. Subtracting the new first equation from the new second one gives (3c 3)x = -1 = 6 in \mathbb{Z}_7 . Since 7 is a prime number, every element $a \in \mathbb{Z}_7$, $a \neq 0$, has an inverse $a^{-1} \in \mathbb{Z}_7$. Since $3c 3 \neq 0$ if $c \neq 1$, there is an inverse $(3c 3)^{-1}$. That means that (3c 3)x = 6 has the solution $x = 6(3c 3)^{-1}$.

Substituting this value for x in the first equation leads to $5 \cdot 6(3c - 3)^{-1} + 3y = 2$, which gives $3y = 2 - 30(3c - 3)^{-1} = 2 + 5(3c - 3)^{-1}$ (since -30 = -2 = 5 in \mathbb{Z}_7). The inverse of 3 in \mathbb{Z}_7 is 5 (since $3 \cdot 5 = 15 = 1$ in \mathbb{Z}_7). So for y we find the solution $y = 5 \cdot (2 + 5(3c - 3)^{-1}) = 10 + 25(3c - 3)^{-1} = 3 + 4(3c - 3)^{-1}$ in \mathbb{Z}_7 .

So the solution for the case $c \neq 1$ is $x = 6(3c - 3)^{-1}$ and $y = 3 + 4(3c - 3)^{-1}$. [7 pts, Unseen in this form]

- (a) (i) A function is *surjective* if for all y ∈ Y there exists an x ∈ X such that f(x) = y. A function is *injective* if for all x₁, x₂ ∈ X with x₁ ≠ x₂ we have that f(x₁) ≠ f(x₂). A function is *bijective* if it is both surjective and injective. [1 + 1 + 1 pts, Bookwork]
 - (ii) Form 1: For all natural numbers m, n ∈ N, if there is an injection from N_m to N_n (where N_m = {1, 2, 3, ..., m}), then m ≤ n.
 Form 2: Let A, B be two finite sets, and let f be a function from A to B. If |A| > |B|, then there exist a₁, a₂ ∈ A, a₁ ≠ a₂, such that f(a₁) = f(a₂).
 [2 pts, Bookwork]
 - (iii) Suppose $f : X \to X$ is injective, but not surjective. Let X' be the set of elements in X that appear as an image f(x) for $x \in X$. Since f is not surjective, we have that $X' \neq X$. But since we also have $X' \subseteq X$, this means that |X'| < |X|. Since we can consider f as a function from X to X', by the Pigeonhole Principle there are $x_1, x_2 \in X, x_1 \neq x_2$, such that $f(x_1) = f(x_2)$. But that contradicts that f is injective. Hence f must be surjective.
 - [6 pts, Unseen, and quite hard]
 - (iv) Define the function f : N → N by f(x) = x + 1. Then f is injective, but not surjective (since there is no element x ∈ N such that f(x) = 1).
 [3 pts, Unseen]
- (b) (i) *R* is reflexive on \mathbb{N} . For this, we use that gcd(a, a) = a (if $a \in \mathbb{N}$). And if $x \in \mathbb{N}$, then $x + 1 \ge 2$, hence $gcd(x + 1, x + 1) = x + 1 \ge 2$. So we have that xRx for all $x \in \mathbb{N}$. [2 pts, Unseen, though similar to many exercises]
 - (ii) *R* is symmetric on \mathbb{N} . For all $a, b \in \mathbb{N}$ we have gcd(a, b) = gcd(b, a). This means that $gcd(x + 1, y + 1) \ge 2$ if and only if $gcd(y + 1, x + 1) \ge 2$. So we have that $xRy \Rightarrow yRx$ for all $x, y \in \mathbb{N}$.
 - [3 pts, Unseen, though similar to many exercises]
 - (iii) *R* is not transitive on \mathbb{N} . Take x = 1, y = 5 and z = 2. Then we have that $gcd(x + 1, y + 1) = gcd(2, 6) = 2 \ge 2$ and $gcd(y + 1, z + 1) = gcd(6, 3) = 3 \ge 2$, hence xRy and yRz hold. But $gcd(x + 1, z + 1) = gcd(2, 3) = 1 \ge 2$, hence xRz does not hold. So it is not the case that $(xRy \land yRz) \Rightarrow xRz$ for all $x, y, z \in \mathbb{N}$, and hence *R* is not transitive. [4 pts, Unseen]
 - (iv) Since R is not transitive, it cannot be an equivalence relation.[2 pts, Bookwork]

- (a) (i) s is an upper bound for A if s ≥ a for all a ∈ A. s is the supremum of A if s is the least upper bound of A, i.e., s is an upper bound for A, and s ≤ t whenever t is an upper bound for A.
 [3pts, Bookwork]
 - (ii) To show that sup(A ∪ B) ≥ sup(A), it suffices to show that t = sup(A ∪ B) is an upper bound for A, since it then follows that sup(A) ≤ t. But this is immediate, since, for every a ∈ A, a ∈ A ∪ B, and so a ≤ t.
 [2pts, Similar to exercise]
 - (iii) Suppose that A dominates B, let $s = \sup(A)$, and take any $c \in A \cup B$. Either (i) $c \in A$, in which case $c \leq s$ since s is an upper bound for A, or (ii) $c \in B$, in which case there is some $a \in A$ with $c \leq a \leq s$, since A dominates B and s is an upper bound for A. Thus s is an upper bound for $A \cup B$.

This implies that $\sup(A \cup B) \le s = \sup(A)$, and combining this with the previous part gives $\sup(A \cup B) = \sup A$. [5pts, Unseen]

- (iv) This is false. Consider A = (0, 1), B = (0, 1]. Then $\sup(A \cup B) = \sup(A) = 1$, but A does not dominate B since $1 \in B$ but there is no element $a \in A$ with $a \ge 1$. [2pts, Unseen]
- (v) This is true. Take any b ∈ B. As s is an upper bound for B, but s ∉ B, we have b < s. Now, as s is the supremum of A, b is not an upper bound for A, and so there is some a ∈ A with a > b. Hence A dominates B.
 [4pts, Unseen]
- (b) To show that there is at least one such value, we use the Intermediate Value Theorem: if $g : [a, b] \to \mathbb{R}$ is a continuous function, and $g(a) \le c \le g(b)$, then there is some $x \in [a, b]$ with g(x) = c.

[2pts]

We apply the Intermediate Value Theorem with $g(x) = \sqrt{x} - f(x)$, and [a, b] = [0, 1]. We know that g is continuous as it is the sum of the continuous functions \sqrt{x} and -f(x). Also g(0) = -f(0) = -1, and $g(1) = 1 - f(1) \ge 1 - f(0) = 0$, since f is decreasing. Hence $g(0) \le 0 \le g(1)$, and so there is some $x \in [0, 1]$ with g(x) = 0, i.e., $f(x) = \sqrt{x}$. [5pts, Unseen but routine]

To see that there is at most one such x, note that g(x) is strictly increasing. Explicitly, suppose there are two solutions x_1 and x_2 with $x_1 < x_2$. Then $f(x_1) = \sqrt{x_1} < \sqrt{x_2} = f(x_2)$, contradicting the assumption that f is decreasing. [2pts, Unseen]

- (a) (i) To say that (a_n)_{n∈N} is convergent, with limit 1, means that, for every ε > 0, there is some N ∈ N such that, for n > N, |a_n − 1| < ε.
 [3pts, Bookwork]
 - (ii) Suppose that $a_n \to 1$. We show that $a_n^2 \to 1$. Fix $\varepsilon > 0$. As $a_n \to 1$, there is some $N \in \mathbb{N}$ such that, for n > N, $|a_n - 1| < \min(1, \varepsilon/3)$. Now we have, for n > N, $a_n \le 2$, and therefore

$$|a_n^2 - 1| = |a_n - 1| |a_n + 1| < 3|a_n - 1| < 3\frac{\varepsilon}{3} = \varepsilon.$$

Hence indeed $a_n^2 \rightarrow 1$. [6pts, essentially Bookwork]

(iii) We now show that $b_n = \max(a_n, a_n^2) \to 1$.

Fix $\varepsilon > 0$. Take $N_1 \in \mathbb{N}$ such that, for $n > N_1$, $|a_n - 1| < \varepsilon$. Take also $N_2 \in \mathbb{N}$ such that, for $n > N_2$, $|a_n^2 - 1| < \varepsilon$. Now take $N = \max(N_1, N_2)$. For n > N, we have $a_n < 1 + \varepsilon$ and $a_n^2 < 1 + \varepsilon$, so $b_n < 1 + \varepsilon$. Also we have $b_n \ge a_n > 1 - \varepsilon$. So $|b_n - 1| < \varepsilon$. Hence indeed $b_n \to 1$.

[4pts, Unseen, but related to a recent past exam question]

(b) (i) We note that

$$\sqrt{n+1} - \sqrt{n-1} = \frac{(\sqrt{n+1} - \sqrt{n-1})(\sqrt{n+1} + \sqrt{n-1})}{\sqrt{n+1} + \sqrt{n-1}}$$
$$= \frac{(n+1) - (n-1)}{\sqrt{n+1} + \sqrt{n-1}} = \frac{2}{\sqrt{n+1} + \sqrt{n-1}},$$

and hence $a_n = \frac{2\sqrt{n}}{\sqrt{n+1} + \sqrt{n-1}} = \frac{2}{\sqrt{1+\frac{1}{n}} + \sqrt{1-\frac{1}{n}}}.$

[5pts, Similar examples have been seen] By the Algebra of Limits, we have

$$\lim_{n \to \infty} a_n = \frac{2}{\lim_{n \to \infty} \sqrt{1 + \frac{1}{n}} + \lim_{n \to \infty} \sqrt{1 - \frac{1}{n}}}$$
$$= \frac{2}{\sqrt{1 + \lim_{n \to \infty} \frac{1}{n}} + \sqrt{1 - \lim_{n \to \infty} \frac{1}{n}}} = \frac{2}{\sqrt{1 + 0} + \sqrt{1 - 0}} = 1.$$

[3pts]

(ii) We proved in the course that $2^{1/n} \to 1$ as $n \to \infty$. Hence there is some $N \in \mathbb{N}$ such that $2^{1/n} > \frac{1}{2}$ for n > N. We see that $b_n > \frac{1}{2}$ for even n > N, and $b_n < -\frac{1}{2}$ for odd n > N. This implies that $(b_n)_{n \in N}$ does not converge. (One could write more, but I think this should suffice.) [4pts, Unseen]

- (a) (i) A function $\phi : G \to G'$ is a *homomorphism* if, for every $a, b \in G$, $\phi(a*b) = \phi(a)*'\phi(b)$. [2pts, Bookwork]
 - (ii) The *kernel* of φ is ker(φ) = {a ∈ G | φ(a) = e'}, where e' is the identity element of (G', *').
 [2pts, Bookwork]
 - (iii) To see that ker(\$\phi\$) is a subgroup of (\$G\$, *), we have three things to check:
 1) If \$a\$, \$b\$ ∈ ker(\$\phi\$), \$\phi(a) = \$\phi(b) = e'\$, so \$\phi(a * b) = \$\phi(a) * \$\phi(b) = e' *' e' = e'\$, so \$a * b ∈ ker(\$\phi\$).
 2) We are given that \$\phi(e) = e'\$, so that \$e ∈ ker(\$\phi\$).
 3) If \$a ∈ ker(\$\phi\$), then \$\phi(a^{-1}) = (\$\phi(a)\$)^{-1} = (\$e'\$)^{-1} = e'\$, so \$a^{-1} ∈ ker(\$\phi\$).
 Hence indeed ker(\$\phi\$) is a subgroup.
 [5pts, Bookwork]
- (b) (i) We show first that g * ker(φ) ⊆ S_h. An element of g * ker(φ) is of the form g * a, where a ∈ ker(φ). Now φ(g * a) = φ(g) *'φ(a) = h*'e' = h, so g * a ∈ S_h, as required. [3pts, Unseen]
 Now suppose that f ∈ S_h, so that φ(f) = h. We note that f = g * (g⁻¹ * f), and we claim that g⁻¹ * f ∈ ker(φ). Indeed, φ(g⁻¹ * f) = (φ(g))⁻¹ *' φ(f) = h⁻¹ *' h = e'. Hence f ∈ g * ker(φ), as required. [3pts, Unseen]
 - (ii) For the next part, we know that all left cosets of ker(φ) have size |ker(φ)|, and there is one coset for each element of im(φ). As the cosets (or indeed the inverse images of elements of im(φ)) partition the group, we have that |G| is equal to the number of cosets times the size of each coset, as given.
 [2pts, Unseen]
- (c) The function θ is a homomorphism iff we have θ(a * b) = θ(a) * θ(b) for all a, b ∈ G, i.e., a * b * a * b = a * a * b * b for all a, b ∈ G. This certainly holds if b * a = a * b for all a, b ∈ G, i.e., if G is Abelian. Conversely, if, for all a, b ∈ G, we have a * b * a * b = a * a * b * b, then we also have a⁻¹ * a * b * a * b * b⁻¹ = a⁻¹ * a * a * b * b * b⁻¹, and so b * a = a * b hence G is Abelian.

[6pts, Unseen, though related to material in lectures/exercises]

(d) If G is Abelian, then the function θ is a homomorphism. Its kernel is {g | g * g = e}, and its image is {a | a = g * g for some g ∈ G}. The result now follows from (b). [2pts, Unseen]

(a) (i) A *basis* of a vector space V is a set B of vectors in B such that (i) B is linearly independent, and (ii) B spans V.

The vector space V has dimension d if there is a basis of cardinality d. [4pts, Bookwork]

(ii) We follow the hint and take bases $\{\mathbf{u}_1, \mathbf{u}_2\}$ of U and $\{\mathbf{w}_1, \mathbf{w}_2\}$ of W. Now consider $\mathbf{u}_1, \mathbf{u}_2, \mathbf{w}_1, \mathbf{w}_2$. As there are four vectors here (though not necessarily distinct) and V has dimension 3, they are linearly dependent. Thus there are real numbers $\alpha_1, \alpha_2, \beta_1, \beta_2$, not all zero, with

 $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \beta_1 \mathbf{w}_1 + \beta_2 \mathbf{w}_2 = \mathbf{0}.$

We can then rewrite this as

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 = -\beta_1 \mathbf{w}_1 - \beta_2 \mathbf{w}_2 := \mathbf{v}.$$

The vector \mathbf{v} is in U, since it is a linear combination of the basis elements of U, and similarly it is in W. Suppose that $\mathbf{v} = \mathbf{0}$. As $\mathbf{0} = \mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2$, then as $\mathbf{u}_1, \mathbf{u}_2$ are linearly independent, we have $\alpha_1 = \alpha_2 = 0$. Similarly, as $\mathbf{0} = \mathbf{v} = -\beta_1 \mathbf{w}_1 - \beta_2 \mathbf{w}_2$, we have $\beta_1 = \beta_2 = 0$. But this contradicts the assumption that not all of $\alpha_1, \alpha_2, \beta_1, \beta_2$ are zero. Therefore the vector \mathbf{v} is a non-zero vector in $U \cap W$. [11pts, Unseen]

(b) We have three things to check:

(i) The set *L* is closed under addition. Suppose then that *f* and *g* are in *L*; there are constants K_f and K_g such that, for all $x, y \in \mathbb{R}$, $|f(x) - f(y)| \le K_f |x - y|$, and $|g(x) - g(y)| \le K_g |x - y|$. So we have, for all $x, y \in \mathbb{R}$,

$$|(f+g)(x) - (f+g)(y)| \le |f(x) - f(y)| + |g(x) - g(y)|$$

$$\le K_f |x-y| + K_g |x-y| = (K_f + K_g)|x-y|.$$

So the function f + g is Lipschitz, with constant $K_f + K_g$.

(ii) The zero function is in L: this is clear: we can take $K_0 = 0$.

(iii) The set L is closed under scalar multiplication. Indeed, for f in L with Lipschitz constant K_f , and $\alpha \in \mathbb{R}$, we have

$$|\alpha f(x) - \alpha f(y)| = |\alpha| |f(x) - f(y)| \le |\alpha| \mathcal{K}_f |x - y|,$$

for all $x, y \in \mathbb{R}$, so the function αf is Lipschitz, with constant $|\alpha|K_f$. Thus indeed L is a subspace of X. [10pts, Unseen]

END OF PAPER