

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

Summer 2016 examination

MA100 Mathematical Methods

2015/2016 syllabus only — not for resit candidates

Instructions to candidates

This examination counts 75% towards your final grade for MA100.

This paper contains ${\bf 6}$ questions. Answer **all 6** questions. All questions carry equal numbers of marks.

Answers should be justified by showing work.

Please write your answers in dark ink (black or blue) only.

Time Allowed	Reading Time:	None
	Writing Time:	3 hours
You are supplied with:		Answer booklets
You may also use:		No additional materials
Calculators:		Calculators are not allowed in this examination

Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where

$$\mathbf{A} = \begin{pmatrix} 1 & 5 & 1 & 0 \\ 2 & 10 & 0 & 2 \\ 4 & 20 & 1 & 3 \\ 1 & 5 & 0 & 1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 3 \\ 8 \\ 15 \\ 4 \end{pmatrix}.$$

- (a) Find the reduced row echelon form of the augmented matrix $(\mathbf{A}|\mathbf{b})$ and the general solution of the system $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- (b) Find a basis *B* for the column space of **A** and obtain the coordinates $(\mathbf{c}_1)_B$, $(\mathbf{c}_2)_B$, $(\mathbf{c}_3)_B$, $(\mathbf{c}_4)_B$ of the columns \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{c}_3 , \mathbf{c}_4 of **A** with respect to the basis *B*.
- (c) Find three different linear combinations of the columns c_1 , c_2 , c_3 , c_4 that produce the vector **b**.
- (d) Find a basis C for the null space of \mathbf{A}^{T} , where \mathbf{A}^{T} is the transpose of \mathbf{A} .
- (e) Hence, or otherwise, obtain a Cartesian description in \mathbb{R}^4 for the column space of **A**.
- (f) Using your answer to part (e), find a set of equations that must be satisfied by the components *k*, *l*, *m*, *n* of the vector

$$\mathbf{d} = \begin{pmatrix} k \\ l \\ m \\ n \end{pmatrix}$$

in order for the system Ax = d to be consistent. You do **not** need to solve this set of equations.

The production function for a particular manufacturer has the Cobb-Douglas form

$$P(x, y) = 100x^{1/5}y^{4/5}$$

where the variables x and y represent labour and capital, respectively. The cost of labour is 200 pounds per unit and the cost of capital is 400 pounds per unit; i.e., the cost function is

$$C(x,y)=200x+400y.$$

- (a) Sketch the feasible region $D \subset \mathbb{R}^2$ defined by $x \ge 0, y \ge 0$ and the requirement that the total cost of capital and labour cannot exceed 100,000 pounds. Also sketch roughly a few contours of the production function P(x, y) in order to establish the existence of a point $M \in D$ corresponding to the constrained maximum of P(x, y) on D.
- (b) Write down a suitable Lagrangian for the maximisation of P(x, y) on D and use it to find the coordinates (x^*, y^*) of M.
- (c) Does the problem of minimising P(x, y) on D admit a solution? If your answer is yes, state where. If your answer is no, briefly explain why.
- (d) On a separate graph, sketch roughly the feasible region $R \subset \mathbb{R}^2$ defined by $x \ge 0, y \ge 0$ and the requirement that the total production cannot be less than 40,000 product units. Also sketch a few contours of the cost function C(x, y) and indicate on your graph the point $m \in R$ corresponding to the constrained minimum of C(x, y) on R.

Consider the function $f : \mathbb{R}^3 \to \mathbb{R}$ given by

$$f(x, y, z) = (x - 1)^{2} + (y - 1)^{3} + (z - 1)^{4}.$$

- (e) Show that *f* has a single stationary point.
- (f) Is the matrix f'' evaluated at this point a positive definite, a positive semi-definite, a negative definite, a negative semi-definite or an indefinite matrix? You need to justify your answer.
- (g) Is the stationary point of f a local maximum, a local minimum or a saddle point? You need to justify your answer.

Consider the basis $B = {\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3}$ of \mathbb{R}^3 consisting of the vectors

$$\mathbf{f}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \quad \mathbf{f}_2 = \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \quad \mathbf{f}_3 = \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}.$$

- (a) Use the Gram-Schmidt process to find an orthonormal basis $C = {\mathbf{u}_1, \mathbf{u}_2}$ for the twodimensional subspace Lin ${\mathbf{f}_1, \mathbf{f}_2}$.
- (b) Noting that \mathbf{f}_3 is orthogonal to both \mathbf{f}_1 and \mathbf{f}_2 , extend your basis $C = {\mathbf{u}_1, \mathbf{u}_2}$ to an orthonormal basis $K = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ for \mathbb{R}^3 .

Now let $S : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$S(\mathbf{f}_1) = 2\mathbf{f}_1, \qquad S(\mathbf{f}_2) = 2\mathbf{f}_2, \qquad S(\mathbf{f}_3) = \mathbf{f}_3.$$

(c) Write down the matrix $\mathbf{A}_{S}^{B \to B}$ that represents S with respect to the basis $B = {\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}}$ and explain why

$$\mathbf{A}_{S}^{B
ightarrow B} = \mathbf{A}_{S}^{K
ightarrow K}$$
 ,

where $\mathbf{A}_{S}^{K \to K}$ is the matrix that represents S with respect to the basis $K = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$.

- (d) Also explain why the matrix \mathbf{A}_S that represents S with respect to the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ of \mathbb{R}^3 must be a symmetric matrix.
- (e) Hence write down an orthogonal matrix **P** and a diagonal matrix **D** such that

$$\mathbf{A}_{S} = \mathbf{P} \mathbf{D} \mathbf{P}^{T}.$$

You do **not** need to find A_S .

(f) Find the first column \mathbf{c}_1 of $\mathbf{A}_S = (\mathbf{c}_1 \mathbf{c}_2 \mathbf{c}_3)$ using the relations $S(\mathbf{f}_1) = 2\mathbf{f}_1$ and $S(\mathbf{f}_3) = \mathbf{f}_3$.

For $t \in \{0, 1, 2, ...\}$, consider the system of difference equations

$$\begin{cases} x_{t+1} = x_t + y_t \\ y_{t+1} = -2x_t + 4y_t \\ z_{t+1} = 5z_t \end{cases}$$

satisfied by the sequences $\{x_t\}$, $\{y_t\}$, $\{z_t\}$.

(a) Express the particular solution of this system subject to the initial conditions $x_0 = 1$, $y_0 = 2$, $z_0 = 3$ in the form

$$\begin{pmatrix} x_t \\ y_t \\ z_t \end{pmatrix} = \mathbf{P} \mathbf{D}^t \mathbf{P}^{-1} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

for some suitable invertible matrix **P**, diagonal matrix **D** and column vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

You do **not** need to perform the matrix multiplications.

For $n \in \{0, 1, 2, ...\}$, the sequence $\{w_n\}$ satisfies the difference equation

$$w_{n+2} - 5w_{n+1} + 6w_n = 4n.$$

(b) Find the general solution of this equation.

(c) Determine all values of the arbitrary constants appearing in your general solution for which

(i)
$$w_n \to \infty$$
 as $n \to \infty$ (ii) $w_n \to -\infty$ as $n \to \infty$.

For x > 0, consider the homogeneous ordinary differential equation

$$2x^2\frac{dy}{dx} = x^2 + y^2.$$

(a) Introduce a new dependent variable z(x) by

$$z(x) = \frac{y(x)}{x}$$

and transform this homogeneous equation into a separable one.

- (b) Obtain the general solution of this separable equation in the form G(x, z)=C for some function G and arbitrary constant C.
- (c) Hence, obtain in the explicit form y = f(x) the particular solution of the homogeneous equation subject to the condition that y = 9 when x = 1.
- (d) Noting that x > 0 and that x = 1 belongs to the domain of f, find the largest set $D \subset \mathbb{R}$ for which $f : D \to \mathbb{R}$ is continuous.

Suppose that the general solution of a first-order ordinary differential equation for a function w(t) is given implicitly by

$$H(t,w)=k,$$

where H is a given function and k is an arbitrary constant.

- (e) Use implicit differentiation to find an expression for the ordinary derivative $\frac{dw}{dt}$ in terms of the partial derivatives of *H*.
- (f) Hence, obtain an exact ordinary differential equation of the form

$$M(t,w)dt + N(t,w)dw = 0$$

whose general solution is given implicitly by H(t, w) = k.

The set

$$V = \left\{ f : [-3,3] \to \mathbb{R} \mid f(x) = a + bx + cx^2 \text{ where } a, b, c, \in \mathbb{R} \right\}$$

is a vector space under the standard operations of pointwise addition and scalar multiplication of functions; that is, under the operations

$$(f+g)(x) = f(x) + g(x),$$
$$(\lambda f)(x) = \lambda f(x),$$

where $f, g \in V$ and $\lambda \in \mathbb{R}$.

(a) Identify which function $z : [-3, 3] \to \mathbb{R}$ is the zero vector in V.

Now consider the vectors f_1 , f_2 , $f_3 \in V$ given below:

$$f_1(x) = 2$$
, $f_2(x) = 1 + x$, $f_3(x) = x + x^2$.

(b) Show that the set $B = \{f_1, f_2, f_3\}$ is a linearly independent set.

(c) Show that B spans V and state the dimension of V.

(d) Determine whether or not the subset W of V given by

$$W = \left\{ f : [-3,3] \to \mathbb{R} \mid f(x) = a + ax + x^2 \text{ where } a \in \mathbb{R} \right\}$$

is a vector subspace of V.

The vector space V is turned into an inner product space by introducing the inner product

$$\langle f,g\rangle = \int_{-3}^{3} f(x)g(x)dx.$$

(e) Considering the vectors $f_1, f_2 \in V$, determine whether or not these vectors are orthogonal to each other and show that their lengths $||f_1||$ and $||f_2||$ are equal.

END OF PAPER