Summer 2016 examination

MA100

Mathematical Methods

2015/2016 syllabus only — not for resit candidates

Instructions to candidates

This examination counts 75% towards your final grade for MA100.
This paper contains $\mathbf{6}$ questions. Answer all $\mathbf{6}$ questions. All questions carry equal numbers of marks.
Answers should be justified by showing work.
Please write your answers in dark ink (black or blue) only.

Time Allowed	Reading Time: None
	Writing Time: 3 hours

You are supplied with:
You may also use:

Calculators:

Answer booklets

No additional materials

Calculators are not allowed in this examination

Question 1

Consider the linear system $\mathbf{A x}=\mathbf{b}$ where

$$
\mathbf{A}=\left(\begin{array}{cccc}
1 & 5 & 1 & 0 \\
2 & 10 & 0 & 2 \\
4 & 20 & 1 & 3 \\
1 & 5 & 0 & 1
\end{array}\right), \mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{c}
3 \\
8 \\
15 \\
4
\end{array}\right)
$$

(a) Find the reduced row echelon form of the augmented matrix $(\mathbf{A} \mid \mathbf{b})$ and the general solution of the system $\mathbf{A x}=\mathbf{b}$.
(b) Find a basis B for the column space of \mathbf{A} and obtain the coordinates $\left(\mathbf{c}_{1}\right)_{B},\left(\mathbf{c}_{2}\right)_{B},\left(\mathbf{c}_{3}\right)_{B}$, $\left(\mathbf{c}_{4}\right)_{B}$ of the columns $\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}, \mathbf{c}_{4}$ of \mathbf{A} with respect to the basis B.
(c) Find three different linear combinations of the columns $\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}, \mathbf{c}_{4}$ that produce the vector \mathbf{b}.
(d) Find a basis C for the null space of \mathbf{A}^{T}, where \mathbf{A}^{T} is the transpose of \mathbf{A}.
(e) Hence, or otherwise, obtain a Cartesian description in \mathbb{R}^{4} for the column space of \mathbf{A}.
(f) Using your answer to part (e), find a set of equations that must be satisfied by the components k, l, m, n of the vector

$$
\mathbf{d}=\left(\begin{array}{c}
k \\
l \\
m \\
n
\end{array}\right)
$$

in order for the system $\mathbf{A x}=\mathbf{d}$ to be consistent. You do not need to solve this set of equations.

Question 2

The production function for a particular manufacturer has the Cobb-Douglas form

$$
P(x, y)=100 x^{1 / 5} y^{4 / 5}
$$

where the variables x and y represent labour and capital, respectively. The cost of labour is 200 pounds per unit and the cost of capital is 400 pounds per unit; i.e., the cost function is

$$
C(x, y)=200 x+400 y
$$

(a) Sketch the feasible region $D \subset \mathbb{R}^{2}$ defined by $x \geq 0, y \geq 0$ and the requirement that the total cost of capital and labour cannot exceed 100,000 pounds. Also sketch roughly a few contours of the production function $P(x, y)$ in order to establish the existence of a point $M \in D$ corresponding to the constrained maximum of $P(x, y)$ on D.
(b) Write down a suitable Lagrangian for the maximisation of $P(x, y)$ on D and use it to find the coordinates $\left(x^{*}, y^{*}\right)$ of M.
(c) Does the problem of minimising $P(x, y)$ on D admit a solution? If your answer is yes, state where. If your answer is no, briefly explain why.
(d) On a separate graph, sketch roughly the feasible region $R \subset \mathbb{R}^{2}$ defined by $x \geq 0, y \geq 0$ and the requirement that the total production cannot be less than 40,000 product units. Also sketch a few contours of the cost function $C(x, y)$ and indicate on your graph the point $m \in R$ corresponding to the constrained minimum of $C(x, y)$ on R.

Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by

$$
f(x, y, z)=(x-1)^{2}+(y-1)^{3}+(z-1)^{4} .
$$

(e) Show that f has a single stationary point.
(f) Is the matrix $f^{\prime \prime}$ evaluated at this point a positive definite, a positive semi-definite, a negative definite, a negative semi-definite or an indefinite matrix? You need to justify your answer.
(g) Is the stationary point of f a local maximum, a local minimum or a saddle point? You need to justify your answer.

Question 3

Consider the basis $B=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ of \mathbb{R}^{3} consisting of the vectors

$$
\mathbf{f}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \mathbf{f}_{2}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), \quad \mathbf{f}_{3}=\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)
$$

(a) Use the Gram-Schmidt process to find an orthonormal basis $C=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ for the twodimensional subspace $\operatorname{Lin}\left\{\mathbf{f}_{1}, \mathbf{f}_{2}\right\}$.
(b) Noting that \mathbf{f}_{3} is orthogonal to both \mathbf{f}_{1} and \mathbf{f}_{2}, extend your basis $C=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to an orthonormal basis $K=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ for \mathbb{R}^{3}.

Now let $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
S\left(\mathbf{f}_{1}\right)=2 \mathbf{f}_{1}, \quad S\left(\mathbf{f}_{2}\right)=2 \mathbf{f}_{2}, \quad S\left(\mathbf{f}_{3}\right)=\mathbf{f}_{3} .
$$

(c) Write down the matrix $\mathbf{A}_{S}^{B \rightarrow B}$ that represents S with respect to the basis $B=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ and explain why

$$
\mathbf{A}_{S}^{B \rightarrow B}=\mathbf{A}_{S}^{K \rightarrow K},
$$

where $\mathbf{A}_{S}^{K \rightarrow K}$ is the matrix that represents S with respect to the basis $K=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
(d) Also explain why the matrix \mathbf{A}_{S} that represents S with respect to the standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ of \mathbb{R}^{3} must be a symmetric matrix.
(e) Hence write down an orthogonal matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that

$$
\mathbf{A}_{S}=\mathbf{P D P}^{\top}
$$

You do not need to find \mathbf{A}_{S}.
(f) Find the first column \mathbf{c}_{1} of $\mathbf{A}_{S}=\left(\mathbf{c}_{1} \mathbf{c}_{2} \mathbf{c}_{3}\right)$ using the relations $S\left(\mathbf{f}_{1}\right)=2 \mathbf{f}_{1}$ and $S\left(\mathbf{f}_{3}\right)=\mathbf{f}_{3}$.

Question 4

For $t \in\{0,1,2, \ldots\}$, consider the system of difference equations

$$
\left\{\begin{aligned}
x_{t+1} & =x_{t}+y_{t} \\
y_{t+1} & =-2 x_{t}+4 y_{t} \\
z_{t+1} & =5 z_{t}
\end{aligned}\right.
$$

satisfied by the sequences $\left\{x_{t}\right\},\left\{y_{t}\right\},\left\{z_{t}\right\}$.
(a) Express the particular solution of this system subject to the initial conditions $x_{0}=1$, $y_{0}=2, z_{0}=3$ in the form

$$
\left(\begin{array}{l}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right)=\mathbf{P D}^{t} \mathbf{P}^{-1}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

for some suitable invertible matrix \mathbf{P}, diagonal matrix \mathbf{D} and column vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$.
You do not need to perform the matrix multiplications.

For $n \in\{0,1,2, \ldots\}$, the sequence $\left\{w_{n}\right\}$ satisfies the difference equation

$$
w_{n+2}-5 w_{n+1}+6 w_{n}=4 n
$$

(b) Find the general solution of this equation.
(c) Determine all values of the arbitrary constants appearing in your general solution for which
(i) $w_{n} \rightarrow \infty$ as $n \rightarrow \infty$
(ii) $w_{n} \rightarrow-\infty$ as $n \rightarrow \infty$.

Question 5

For $x>0$, consider the homogeneous ordinary differential equation

$$
2 x^{2} \frac{d y}{d x}=x^{2}+y^{2}
$$

(a) Introduce a new dependent variable $z(x)$ by

$$
z(x)=\frac{y(x)}{x}
$$

and transform this homogeneous equation into a separable one.
(b) Obtain the general solution of this separable equation in the form $G(x, z)=C$ for some function G and arbitrary constant C.
(c) Hence, obtain in the explicit form $y=f(x)$ the particular solution of the homogeneous equation subject to the condition that $y=9$ when $x=1$.
(d) Noting that $x>0$ and that $x=1$ belongs to the domain of f, find the largest set $D \subset \mathbb{R}$ for which $f: D \rightarrow \mathbb{R}$ is continuous.

Suppose that the general solution of a first-order ordinary differential equation for a function $w(t)$ is given implicitly by

$$
H(t, w)=k
$$

where H is a given function and k is an arbitrary constant.
(e) Use implicit differentiation to find an expression for the ordinary derivative $\frac{d w}{d t}$ in terms of the partial derivatives of H.
(f) Hence, obtain an exact ordinary differential equation of the form

$$
M(t, w) d t+N(t, w) d w=0
$$

whose general solution is given implicitly by $H(t, w)=k$.

Question 6

The set

$$
V=\left\{f:[-3,3] \rightarrow \mathbb{R} \mid f(x)=a+b x+c x^{2} \text { where } a, b, c, \in \mathbb{R}\right\}
$$

is a vector space under the standard operations of pointwise addition and scalar multiplication of functions; that is, under the operations

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(\lambda f)(x) & =\lambda f(x)
\end{aligned}
$$

where $f, g \in V$ and $\lambda \in \mathbb{R}$.
(a) Identify which function $z:[-3,3] \rightarrow \mathbb{R}$ is the zero vector in V.

Now consider the vectors $f_{1}, f_{2}, f_{3} \in V$ given below:

$$
f_{1}(x)=2, \quad f_{2}(x)=1+x, \quad f_{3}(x)=x+x^{2}
$$

(b) Show that the set $B=\left\{f_{1}, f_{2}, f_{3}\right\}$ is a linearly independent set.
(c) Show that B spans V and state the dimension of V.
(d) Determine whether or not the subset W of V given by

$$
W=\left\{f:[-3,3] \rightarrow \mathbb{R} \mid f(x)=a+a x+x^{2} \text { where } a \in \mathbb{R}\right\}
$$

is a vector subspace of V.

The vector space V is turned into an inner product space by introducing the inner product

$$
\langle f, g\rangle=\int_{-3}^{3} f(x) g(x) d x
$$

(e) Considering the vectors $f_{1}, f_{2} \in V$, determine whether or not these vectors are orthogonal to each other and show that their lengths $\left\|f_{1}\right\|$ and $\left\|f_{2}\right\|$ are equal.

